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Coupling between standard model particles and theoretically well-motivated ultralight dark matter (UDM)
candidates can lead to time variation of fundamental constants, including the proton-to-electron mass ratio μ ≡
mp/me ≈ 1836. The presence of nearly degenerate vibrational energy levels of different character in polyatomic
molecules can result in significantly enhanced relative energy shifts in molecular spectra originating from ∂tμ,
relaxing experimental complexity required for high-sensitivity measurements. We analyze the amplification of
UDM effects in the spectrum of laser-cooled strontium monohydroxide (SrOH). SrOH was the first polyatomic
molecule to be directly laser cooled to submillikelvin temperatures [Kozyryev et al., Phys. Rev. Lett. 118, 173201
(2017)], opening the possibility of long experimental coherence times and providing a promising platform for
suppressing systematic errors. Because of the high enhancement factors (|Qμ| ≈ 103), measurements of the
X̃ (200) ↔ X̃ (0310) rovibrational transitions of SrOH in the microwave regime can result in ∼10−17 fractional
uncertainty in δμ/μ with one day of integration, leading to significantly improved constraints for UDM coupling
constants. We also detail how the use of more complex MOR-type radicals with additional vibrational modes
arising from larger ligands R could lead to even greater enhancement factors, while still being susceptible to
direct laser cooling.
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I. INTRODUCTION

The quantum mechanical nature of dark matter remains a
mystery despite significant experimental efforts [1–5]. Strin-
gent limits placed recently on the promising class of dark
matter candidates, weakly interacting massive particles [3,6],
as well as the absence of signatures for supersymmetric part-
ners at the Large Hadron Collider [1,7,8] and electron electric
dipole moment (EDM) experiments [9,10] have motivated a
new generation of searches for other theoretically motivated
dark matter candidates [11–17]. Bosonic ultralight dark mat-
ter (UDM) particles, like axions, axionlike particles (ALPs),
dilatons, moduli, and relaxions [11], can form coherently
oscillating classical fields φ(r, t ) = φ0 cos (ωφt − kφ ·r) with
the oscillation frequency set by the mass of the dark matter
particle ωφ � mφ [18–20]. Coupling between UDM fields
and ordinary matter can lead to variation in fundamental
constants X = α (fine-structure constant) and μ (proton-to-
electron mass ratio) as [19,21]

δX (t )

X
= �X φn(r, t ), (1)

where the coupling strength is �X and n = 1 (2) for linear
(quadratic) coupling.

Transitions between different quantum levels with energy
separation �E = h̄ω in atoms and molecules are dependent
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on the dimensionless constants δω = f (δα, δμ) with [22,23]

δω

ω
= Qα

δα

α
+ Qμ

δμ

μ
. (2)

Sensitive probes of α variation due to UDM-induced effects
have recently been explored with the use of ultraprecise
atomic clocks [18,24,25], reaching ∂tα/α ∼ 10−17/yr sensi-
tivity [26–28]. Additionally, specific atomic transitions with
enhanced sensitivities |Qα| � 1 have allowed measurements
on a Dy beam to be competitive with atomic clock lim-
its [13,29]. Exploring both �μ and �α is important as these
effects probe different underlying physical phenomena [18].
While the use of atomic clocks for probing dark-matter-
induced oscillating, drifting, and transient-in-time funda-
mental constants has been considered in depth [21,30,31],
laser-cooled molecules have additional degrees of freedom
that could enable further breakthroughs in this area.

In molecular spectra, the energy scales for electronic,
vibrational, and rotational transitions typically relate as 1 :
μ−1/2 : μ−1 [32]. Molecular transitions provide a system to
study �μ couplings without any contributions from �α be-
cause vibrational transitions in molecules have Qμ = − 1

2 and
Qα ≈ 0 [23]. Thus, isolating effects from μ variation in a
model-independent manner becomes possible [33]. Moreover,
certain beyond the standard model theories predict larger
μ variation δμ/μ = Rδα/α with R ≈ 40 [23,34,35], further
motivating precision experiments in molecular spectroscopy.
Molecular ions can also be used for such experiments and re-
cent theoretical proposals consider using diatomic hetero- and
homonuclear molecular ions to search for μ variation [36,37].
In this paper we propose to use laser-cooled samples of the

2469-9926/2021/103(4)/043313(14) 043313-1 ©2021 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.103.043313&domain=pdf&date_stamp=2021-04-08
https://doi.org/10.1103/PhysRevLett.118.173201
https://doi.org/10.1103/PhysRevA.103.043313


KOZYRYEV, LASNER, AND DOYLE PHYSICAL REVIEW A 103, 043313 (2021)

neutral polyatomic radical SrOH that can be trapped at high
densities and low temperatures, allowing for large scalability
and enhanced sensitivity to UDM-induced μ variation.

II. ENHANCED SENSITIVITY TO DARK MATTER WITH
NEAR-DEGENERATE STATES

As previously pointed out [22,38–41], rovibrational spec-
troscopy of diatomic and polyatomic molecules may provide
significant enhancements in relative sensitivity to the varia-
tion of μ with |Qμ| � 1. An extensive list of enhancement
factors calculated for diatomic and polyatomic molecules
to μ variation can be found in Refs. [22,23], with large
enhancements of Qμ ∼ 300 and Qμ ∼ 700 estimated for
CH3OH and l-C3H, respectively. Other polyatomic molecules
found in space like methanol [42], acetone [43], and ammo-
nia [44] have been analyzed as well, leading to a stringent
limit of δμ/μ � 10−7 from the observations of astronom-
ical methanol [23,45]. While astrophysical observations
place stringent time-variation limits with ∂tμ/μ ∼ 10−17/yr
bounds due to large look-back times (�t ∼ 7 Gyr) [23], they
have limited sensitivity to UDM-induced coherent oscillations
since a linear drift ∂tμ = δμ/�t must be assumed.

Here we analyze the enhancement factors for one of the
simplest possible polyatomic molecules, the linear triatomic
XY Z-type radical SrOH, and discover that enhancement
factors of Qμ ≈ 10–103 can be reached by probing rovi-
brational transitions of the X̃ (200) ↔ X̃ (0310) excitation
spectrum in the ω ≈ 2π × 1–30 GHz transition frequency
band. SrOH was the first polyatomic molecule to be directly
laser cooled [46], and thus provides the additional significant
advantages of low translational and internal temperatures,
long experimental coherence times, and optical internal state
preparation and efficient readout. Furthermore, the simple
vibrational structure of SrOH strongly limits the possibility
of internal vibrational redistribution (IVR) or nonradiative
transitions [47], enabling highly sensitive laboratory mea-
surements of both δμ/μ and ∂tμ/μ in the frequency band
of theoretical interest for promising UDM models. Figure 1
shows the relevant vibrational energy levels of SrOH in the
ground electronic state X̃ .

To see how a large sensitivity to μ variation arises in the
rovibrational spectrum of SrOH, we begin by following previ-
ous treatments in Refs. [22,23]. Consider two different energy
levels Eg and Ee within the same electronic state with Eg < Ee.
We use h̄ = 1 so that angular frequency and energy units are
equivalent throughout this paper. The energy difference is then

ω = Ee − Eg, (3)

with the change arising from μ variation given as

δω = ∂Ee

∂μ
δμ − ∂Eg

∂μ
δμ. (4)

Therefore, the fractional change in the level separation is

δω

ω
= 1

Ee − Eg

(
∂Ee

∂μ
− ∂Eg

∂μ

)
δμ. (5)
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FIG. 1. Vibrational levels of SrOH in the electronic ground state.
The dominant nature of the vibrational motion is indicated schemat-
ically at the top. The states are labeled using (v1v

l
2v3) notation for

the number of vibrational quanta in the Sr-O stretching (v1), Sr-O-H
bending (v2), and O-H stretching (v3) vibrational motion. The num-
ber of units of vibrational angular momentum present in the doubly
degenerate bending of linear triatomic molecules is denoted with the
superscript l . Nearly degenerate excited stretching (200) and bending
(0310) vibrations are indicated with a red oval.

Equivalently, the relationship between the fractional changes
in ω and μ are related to each other as

δω

ω
= Qμ

δμ

μ
, (6)

with the proportionality constant Qμ also known as the dimen-
sionless enhancement factor defined as

Qμ ≡ μ

Ee − Eg

(
∂Ee

∂μ
− ∂Eg

∂μ

)
(7)

or as more common in the literature

Qμ ≡ 1

ω

(
∂Ee

∂ (ln μ)
− ∂Eg

∂ (ln μ)

)
. (8)

The absolute dependence of each energy level is calculated as

qg,e ≡ ∂Eg,e

∂ (ln μ)
(9)

and has units of energy. From Eq. (8) one can observe that a
large enhancement factor Qμ will arise when two levels being
probed are closely spaced (i.e., ω ≈ 0) and have different
dependence on μ (i.e., qg �= qe).

Generically, the interplay between harmonic and anhar-
monic contributions (discussed in detail for SrOH below) to
the difference in sensitivity coefficients �q can lead to en-
hancement factors Qμ significantly larger than unity. In order
to demonstrate the role of both harmonic and anharmonic
terms, we consider two vibrational levels separated by �E =
�Eharm + �Eanharm. Using the dependence of vibrational con-
stants on the proton-to-electron mass ratio (see Appendix C)
we calculate �q = − 1

2�Eharm − �Eanharm for the μ sensi-
tivity difference. Therefore, the absolute enhancement factor
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Qμ = �q/�E becomes

Qμ = −1

2

(
1 + �Eanharm

�Eharm + �Eanharm

)
. (10)

For illustration we consider three limiting cases, depending on
the relative contributions of �Eharm and �Eanharm:

�Eanharm = 0 : Qμ → − 1
2 ,

�Eharm = 0 : Qμ → −1,

�Eharm ∼ −�Eanharm : Qμ → ±∞. (11)

Therefore, a large enhancement factor is expected for a transi-
tion with anharmonic contributions comparable in magnitude
to the harmonic oscillator energy difference and opposite in
sign. Inclusion of the small rotational energy difference �Erot

in a given rovibrational transition leaves Eq. (10) unchanged
up to the substitution �Eanharm → �Eanharm + �Erot.

We now consider the harmonic and anharmonic contribu-
tions to the energy of rovibrational states in SrOH. As shown
in Appendix A, for a linear triatomic molecule like SrOH, the
positions of the vibrational energy levels (v1v

l
2v3) referenced

relative to the lowest level (000) in a given electronic state are
described as [48]

Ev1v2v3−000 =
3∑

i=1

(
ωivi + xiiv

2
i + xiividi

) + g22l2
2 , (12)

with di = 1 for the stretching modes with frequencies ω1

(Sr ↔ O) and ω3 (O ↔ H), and di = 2 for the doubly de-
generate bending mode with frequency ω2. The anharmonic
contributions to the molecular potentials have been included
leading to additional xii and gii terms in the expansion.
The expressions for the two closely lying vibrational levels
of SrOH shown in Fig. 1 are given as E200−000 = 2ω1 +
6x11 and E0310−000 = 3ω2 + 15x22 + g22. With the estimated
molecular constants for SrOH based on experimental mea-
surements [49], we determine the energy separation between
the two states �E200−0310 to be

2ω1 + 6x11 − 3ω2 − 15x22 − g22 = 2π × 1.18 GHz. (13)

As discussed above, because the harmonic and anharmonic
contributions to �E200−0310 = �Eharm + �Eanharm depend
differently on μ, the transition frequency displays a strong
sensitivity to μ that is not suppressed even in the limit of
degeneracy. In this regime, extremely small absolute energy
shifts δ�E200−0310 < 2π × 10 μHz can be experimentally re-
solved, providing a sensitive probe of δμ ∝ δ�E200−0310.

While the dominant energy scale arises from vibration, the
smaller contribution to Qμ from rotational motion becomes
important when the vibrational energies between two states
are nearly degenerate. For the ground electronic state X̃ of
SrOH, the valence electron is effectively localized on the Sr
atom and the unpaired electron spin is not strongly bound to
the internuclear molecular symmetry axis z [50]. Therefore,
rotational levels in both (200) and (0310) vibrational states
can be analyzed in terms of Hund’s coupling case (b) quan-
tum numbers [48] as F[v](N ) = B[v]N (N + 1), where N is the
quantum number of the total angular momentum apart from
spin and B[v] is a rotational constant for a specific vibrational
level [v].

Using the dependence of the harmonic (ωi), anharmonic
(xii, gii), and rotational (Bi) coefficients on the proton-
to-electron mass ratio μ [23], we calculate the absolute
sensitivity of each rovibrational level [N, v] to be

q[N,v] ≡ ∂E[N,v]

∂ (ln μ)
= −1

2
ωiv − xii(v

2 + vdi ) − giil
2
i

− B[v]N (N + 1), (14)

where l1(l2) = 0(1), d1(d2) = 1(2), and the sensitivity q[0,000]

of the ground vibrational level has been subtracted. Each of
the rotational levels in the (0310) vibrational state consists
of 
-type parity doublets separated by �E±l ∼ O(B2

[v]/ω2)
which has been measured for SrOH in this specific vibra-
tional level to be �E±l ≈ 2π × 12 MHz [51]. Driving the
perpendicular vibronic transition �-� with �l = ±1 leads
to P and R branches with �N = ±1, as well as a strong Q
branch with �N = 0 [52]. Using Eq. (14) we obtain absolute
sensitivity coefficients q[N,v=(200)] = [−15505 − 7.4 N (N +
1)] × 2π × 1 GHz and q[N,v=(0310)] = [−14830 − 7.4 N (N +
1)]] × 2π × 1 GHz. The relative sensitivity coefficient of
the rovibrational N ′′ = 1 → N ′ = 1 transition for X̃ (200) →
X̃ (0310) is therefore estimated to be Qμ = −617 with tran-
sition frequency ω = 2π × 1.1 GHz. By choosing the N ′′ =
2 → N ′ = 1 rotational branch instead, we obtain Qμ = −23
with ω = 2π × 31 GHz. The sign of the shift can be reversed
by using the other transition branch N ′′ = 1 → N ′ = 2 with
Qμ = 23 and ω = 2π × 29 GHz. Thus, by measuring differ-
ent rotational branches of the same vibrational transition the
sign and magnitude of the sensitivity enhancement factor Qμ

can be controlled. Vibrational dependence of the rotational
constant B[v] can be used to achieve even larger Qμ since
�B200−0310 ≈ −2π × 45 MHz [49,51]. For the N ′′ = 5 →
N ′ = 5 rotational branch, the separation between the levels
is estimated to decrease to �E200−0310 < 2π × 200 MHz, re-
sulting in Qμ > 103 enhancement (see Sec. II A for discussion
of the uncertainty in these estimates and Appendix D for a Qμ

vs N plot). As a stability reference, one could use purely ro-
tational transitions within the (200) vibrational manifold with
Qμ = −1. It is important to note that our spectroscopic con-
stants derived from previous experimental measurements [49]
reproduce positions of E100, E200, E0110, E0200, and E0220 to
within 0.1 GHz (see Appendix A). Furthermore, the absolute
magnitude of the calculated enhancement factors Qμ is com-
parable to the largest values found in the literature for much
more complex polyatomic molecules like methanol [53] and
ammonia [44].

In our analysis of the anharmonic contributions to the
vibrational potential of SrOH, we have ignored the terms aris-
ing from coupling between different vibrational modes (i.e.,
xi j with i �= j) in Eq. (A1). While the vibrational potential
for SrOH is mostly harmonic with ωi � xii, xi j , contribu-
tions from the xi j terms could lead to shifts on the order of
∼2π × 50 GHz. Previous experimental bounds on the loca-
tion of the (0330) vibrational level along with the estimate
of the g22 coefficient further confirm that �E0310−200 � 2π ×
60 GHz [49]. While exact spectroscopy of the (0310) level in
reference to a known vibronic level is necessary to determine
the separation between (200) and (0310), we estimate an
absolute worst-case value of |Qμ| ≈ 100. For a generic value
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of �E0310−200 < 2π × 60 GHz, we can identify a new optimal
pair of rotational levels to use in a P or R branch as

�E0310−200 ≈ −�Erot = B[N (N + 1) − (N − 1)N] (15)

⇒ N ≈ �E0310−200

2B
� 2π × 60 GHz

2(2π × 7 GHz)
≈ 4, (16)

where �Erot is the difference in rotational energies and we
used for the rotational constants B ≡ B200 ≈ B0310 ≈ 2π ×
7 GHz [49,51]. In the worst case, the total angular transition
frequency ω = |�E0310−200 + �Erot| cannot be made smaller
than B. Therefore, ω < 2π × 7.5 GHz and |Qμ| > 100. In a
typical (rather than worst-case) scenario, enhancement factors
significantly larger than this limit would be achieved. Thus,
comparable sensitivity can be reached as estimated using the
best-fit spectroscopic constants currently available.

III. SENSITIVITY ESTIMATION

In addition to the large relative enhancement factors to μ

value variation, SrOH uniquely provides an intriguing experi-
mental platform for achieving precise measurements of δμ/μ

using previously demonstrated atomic physics technologies.
For atomic clock experiments, the statistical precision with
which the transition frequency can be measured, with the fre-
quency stability limited by quantum projection noise, is δω ≈
1/

√
NTcτ [36,54], where N is the number of independent

molecules probed per run, Tc is the experimental coherence
time, and τ is the total measurement time. Vibrational mo-
tions of SrOH are quite harmonic for low quantum numbers
and, therefore, radiative vibrational decays with �v �= ±1 are
suppressed. Thus, the coherence time in the experiment Tc will
be limited by the spontaneous vibrational decay from X̃ (200)
to X̃ (100), which we estimate to be ∼140 ms (see Sec. IV C).
Black-body stimulated lifetime at room temperature is esti-
mated to be TBBR > 1.5 s, consistent with previous theoretical
estimates [55].

Exploiting the full coherence time of the X̃ (200) −
X̃ (0310) system requires laser cooling and trapping SrOH
molecules. Direct laser cooling of 106 SrOH molecules to
millikelvin temperatures has already been demonstrated [46].
With the Doppler cooling technique, which relies on the spon-
taneous radiation pressure force, the transverse temperature
of a cryogenic SrOH beam was reduced to 30 mK [56]. Ad-
ditionally, the use of the sub-Doppler cooling method known
as magnetically assisted Sisyphus laser cooling reduced the
temperature to ∼750 μK [46]. Detailed measurements of
Franck-Condon factors (FCFs) and vibrational branching ra-
tios (VBRs) for SrOH have been completed [57], confirming
that direct laser slowing and magneto-optical trapping appears
feasible predominantly with three repumping lasers to address
losses to the (100), (200), and (0200) states. Potentially, even
fewer repumping lasers could be used employing slowing with
coherent stimulated optical forces recently experimentally
demonstrated for SrOH [58]. Sympathetic cooling of trapped
SrOH to microkelvin temperatures with ultracold lithium
also appears feasible based on rigorous quantum scattering
calculations [59]. Direct magneto-optical trapping of ∼106

diatomic CaF molecules has already been demonstrated [60].

With a combination of these demonstrated techniques, it is
realistic to assume N ≈ 106 trapped SrOH molecules per ex-
perimental run. Long coherence times with laser-cooled SrOH
molecules can be realized utilizing either an optical dipole trap
or a molecular fountain [61,62]. The required experimental
coherence time Tc is a factor of 5 shorter than the achieved
lifetime of laser-cooled CaF in a red-detuned optical dipole
trap [61]. Alternatively, a blue-detuned “box” trap [63] would
enable similarly long trap times. Precision spectroscopy of
laser-cooled atomic radium has previously been performed in
an optical dipole trap [64], demonstrating the feasibility of the
optical approach.

With 106 trapped molecules per experimental cycle, re-
peated every Tc, and one day of experimental integration, an
absolute statistical uncertainty of δω ≈ 2π × 2 μHz can be
achieved (see Sec. VI for details of a simulated measurement
analysis, leading to comparable results). Enhanced sensitiv-
ity coefficients Qμ in SrOH spectra provide an opportunity
to perform sensitive measurements with relaxed experimen-
tal precision, similar to gains in α variation sensitivity for
Dy experiments [29]. The frequency of the rotational tran-
sitions addressed during the experiment on the X̃ (200) ↔
X̃ (0310) vibrational band ranges between 1 and 30 GHz,
and therefore expected relative measurement uncertainty is
between 3 × 10−12/

√
τ (s) and 1 × 10−13/

√
τ (s). For com-

parison, microwave frequency synthesizers in the comparable
frequency range ω ∼ 2π × 10 GHz for use in atomic clock
experiments have microhertz resolution and noise levels at the
10−14/

√
τ (s) level [65].

Combining this expected frequency precision with the en-
hancement factors estimated in Sec. II, we can achieve a
fractional sensitivity δμ/μ on the order of ∼1 × 10−17 for
both ω ≈ 2π × 1 and 2π × 30 GHz transition frequencies
(for a detailed discussion of the frequency-dependent sensi-
tivity under different measurement scenarios, see Sec. VI).
Thus, microwave spectroscopy of SrOH can provide δμ/μ

sensitivity at the level of the best previously proposed ultra-
cold atom and trapped diatomic neutral [38–40] and ionic
species [36,37], but with potentially easier experimental
preparation and spectroscopy schemes, as well as suppression
of systematic errors as described in Sec. V. Furthermore, the
measurement with SrOH would lead to orders of magnitude
improvement in the limit on μ variation in a model indepen-
dent way compared to the previous experimental results with
SF6 beam spectroscopy [33] or photoassociated ultracold KRb
molecules where � 10−14/yr sensitivity was achieved [66].

IV. EXPERIMENTAL DETAILS

In this section we show in greater detail the feasibility
of transferring population to one of the nearly degenerate
vibrational states, driving the nominally forbidden microwave
transition, and achieving long vibrational coherence times.

A. State preparation

The efficient preparation of the necessary rovibrational
quantum states can be achieved in two distinct ways. First,
a two-stage optical pumping scheme from the ground vibra-
tional level can populate (200) via two stages of excitation
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FIG. 2. Internal quantum state preparation for SrOH via two-
stage optical pumping (OP). Using two OP laser beams (λ1 and
λ2), a trapped SrOH sample can be prepared in a specific rotational
quantum level of the excited Sr-O stretching vibrational level (200).
Spin-orbit splitting in the excited electronic state is indicated with
both �1/2 and �3/2 levels shown.

to vibrationally excited levels of the Ã 2�1/2 electronic state
(see Fig. 2). In the first stage, molecules would be excited to
Ã 2�1/2(100), which efficiently decays to X̃ (100). That state,
in turn, could be excited to Ã(200), which would likewise
preferentially decay to X̃ (200). Previous work on collisional
quenching of the X̃ (100) state of SrOH at 2 K has already
demonstrated high-efficiency optical pumping into the excited
Sr-O stretching mode with a 660 nm external cavity diode
laser [67]. Thus, efficient rotational state preparation in the
(200) state can be achieved with two optical pumping beams.

An alternative transfer scheme from the ground vibrational
level to the excited X̃ (200) state is to turn off the X̃ (200) →
Ã 2�1/2(100) repumping laser during the laser cooling pro-
cess, thus leading to the rapid accumulation of molecules in
the X̃ (200) vibrational level. Each of the proposed methods
appears highly feasible and the exact requirements of the fu-
ture experiment will determine the preferred internal transfer
scheme.

B. Transition strength

For linear molecules the intensity of rovibrational transi-
tions within the same electronic state is estimated as SJ ′J ′′ =
|Mv′v′′ |2S�J

J ′′ F (m), where Mv′v′′ represents a purely vibra-
tional transition moment, S�J

J ′′ is the Hönl-London factor,
and F (m) is the Herman-Wallis term that compensates for
errors in separation of vibration from rotation [52]. While
for a purely harmonic oscillator only �v = ±1 transitions
are allowed, inclusion of anharmonic terms in the molecular
vibrational potential as well as high-order terms in the dipole
moment function lead to overtones of reasonable intensity
with �v = ±2, ±3, . . . [52]. Additionally, for polyatomic
molecules with nearby vibrational levels of different symme-
try character (e.g., � vs �) like SrOH, Coriolis perturbations
lead to Coriolis resonances and mixing between levels. The
(200)–(0310) Coriolis interaction for SrOH has been sug-
gested previously [49]. Combination transitions requiring

changes in multiple v quanta induced by the Coriolis inter-
actions have previously been observed in other polyatomic
molecules [68].

To quantitatively estimate the vibrational transition mo-
ment between (200) and (0310), we consider here the
interactions that induce a strong transition dipole moment
between (200) and (0310) in SrOH. By the symmetry of a
linear molecule, anharmonic perturbations must be even in the
bending normal coordinate Q2 and therefore cannot change
v2 by an odd number. Likewise, Coriolis interactions change
v1 + v2 by an even number at all orders of perturbation the-
ory. Thus neither anharmonic, nor Coriolis, effects alone can
induce a transition with �v1 = 2 and �v2 = 3. However, a
combination of anharmonic and Coriolis interactions lead to a
relatively strong transition between (200) and (0310).

Matrix elements for the Coriolis interaction couple v1 and
v2, and may be found in [69]. Their strength is characterized
by the Coriolis coefficient ζ21, which depends only on the
atomic masses and geometry of a molecule [70]. For SrOH,
we find ζ21 = 0.98.

The vibrational potential energy for a linear polyatomic
molecule expanded in terms of the dimensionless normal co-
ordinates qi = Qi

√
2πcωi/h̄ is

V/hc = 1

2

∑
i

ωiq
2
i + 1

6

∑
i jk

φi jkqiq jqk

+ 1

24

∑
i jkl

φi jkl qiq jqkql + · · · , (17)

where φi jk and φi jkl are the cubic and quartic anharmonic
force constants, respectively [71]. We use force constants up
to quartic order, computed from the potential energy sur-
face (PES) calculation in [72]. As has been observed for
CaOH [73], the term 1

6φ122q1q2
2 cannot be treated perturba-

tively due to vibrational near resonances; we therefore directly
diagonalize the Hamiltonian including the full vibrational
energy with anharmonic terms φi jk and φi jkl , as well as the
Coriolis interaction. Our numerical results give E100−000 =
515 × 2πc cm−1 and E0110−000 = 333 × 2πc cm−1, agreeing
with experimental observations to better than 10%. As ex-
pected, the (200) and (0310) are found to be degenerate within
the 10% estimated uncertainty of the ab initio energies.

Diagonalizing the Hamiltonian produces a set of vibra-
tional eigenstates |ψv1v

l
2v3

〉 expanded in terms of the harmonic
oscillator basis, where the subscript labels the predominant
basis component of the state. We then compute the transition
dipole moment as

∑
v′,v′′ 〈ψ200|Mv′v′′ |ψ0310〉, where here Mv′v′′

gives the characteristic transition strength between hypothet-
ical pure harmonic oscillator states. Following the discussion
in Sec. IV C, we estimate that Mv′v′′ = 0.4 D for stretching
mode transitions in the harmonic oscillator basis, i.e., where
�v1 = ±1 and �v2 = 0. Likewise, we estimate that Mv′v′′ =
0.1 D for bending mode transitions in the harmonic oscillator
basis, with �v2 = ±1 and �v1 = 0 (see [74]).

The resulting vibrational transition dipole moment for
(200) ↔ (0310) is estimated to be in the range 0.02–0.04 D,
depending slightly on the specific rotational transition
considered due to the J dependence of the Coriolis interaction.
This compares favorably with other proposed measurements,
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which typically rely on transition dipole moments of order
�0.01 D [36–39,66].

C. Estimation of vibrational lifetime

The coherence time in the experiment will be limited by
the spontaneous vibrational lifetime of the (200) vibrational
state. Specifically, the decay rate X̃ (200) → X̃ (100) can be
estimated as A200−100 = 3.136 × 10−7ω̃3M2

200−100 where ω̃ =
522 × 2πc cm-1 is the energy splitting and the transition
dipole moment is M200−100 ≈ 0.4 D [52]. The dipole moment
was calculated as [55]

M200−100 =
√

h̄

mredω1

[
dM200−100

dR

]
R=Re

, (18)

where we used the approximate value for the slope of the
dipole moment at the equilibrium separation of 3.17 D/a0

estimated for the isoelectronic molecule SrF. The result-
ing lifetime is 1/A200−100 ≈ 140 ms. The black body in-
duced decay rate �BBR is further suppressed by a factor
1/{exp [h̄ω1/(kBT )] − 1} ≈ 0.1 at room temperature [75].

V. ESTIMATION OF SYSTEMATIC ERRORS

Here we show that several anticipated systematic errors can
be suppressed to below the target measurement precision, ow-
ing to the large enhancement factors and favorable molecular
structure of SrOH.

A. Line broadening and shift

As previously experimentally demonstrated with atomic
microwave clocks [76] and theoretically analyzed for a
YbF molecular fountain [77], laser-cooled samples provide
excellent suppression of possible systematic errors in preci-
sion measurement experiments. Doppler broadening is given
by [52]

�ωD = 2ω

√
2kT ln (2)

mc2
(19)

and will be suppressed at ultracold temperatures (∼50 μK)
to �ωD ≈ 5 × 10−10ω, which is 2 orders of magnitude lower
than for a 1 K sample of SrOH and below the natural linewidth
1/Tc for ω200−0310 = 2π × 1.2 GHz, illustrating one advan-
tage of driving a transition between near-degenerate states
to suppress systematic effects. The second order relativis-
tic Doppler shift is proportional to v2

thermal/c2 and will be
�ωRD ≈ 10−20ω for an ultracold SrOH sample.

Black-body radiation (BBR) can cause AC Stark shifts
of molecular energy levels. In order to determine whether
BBR-induced light shifts will cause an issue for the proposed
measurements we need to consider the differential BBR shift
for the two rovibrational levels under consideration as well
as the experimentally viable value for the time stability of
the black-body environment surrounding the molecular cloud.
The angular frequency shift for each level under consideration

is [55]

�BBR
i = 8π2

3ε0hc3h

∑
j

P
∫

dν
ν3

exp (hν/kBT ) − 1

M2
i j

ν − νi j
.

(20)
In order to estimate the magnitude of �BBR, we can recast

Eq. (20) in terms of convenient experimental units,

�BBR
i = 3.136 × 10−7

2π
T̃ 3

∑
j

M2
i jF

( ω̃i j

T̃

)
, (21)

where T̃ is the temperature in energy units of 2πc cm-1, M
is in Debye, and F (y) is an integral function introduced by
Farley and Wing [78] to evaluate the BBR-induced shift in
the case of an E1 transition. Since the BBR spectrum peaks
around 600 × 2πc cm-1, which happens to be close to vibra-
tional transitions in SrOH, we consider BBR-induced shifts
due to vibrational transition resonances. For room tempera-
ture, T̃ ≈ 200 × 2πc cm-1, and using ω̃1 ≈ 530 × 2πc cm-1

and previously estimated Mv′′v′ ≈ 0.4 D (see Sec. IV C), we
obtain �BBR ∼ 2π × 1 mHz. This is consistent with the esti-
mations provided in Ref. [55] for other similar molecules. For
the rotational transitions ω̃i j � T̃ , we obtain an asymptotic
expression F (y) � −π2y/3 [78] and �BBR

i � 2π × 1 mHz.
While the absolute magnitude of the BBR shifts seems

to be large for a given rovibrational state, Vanhaecke and
Dulieu pointed out that the differential dynamic BBR shift
�BBR

i − �BBR
j for molecular rovibrational transitions can be

have a relative uncertainty of ∼10−13–10−14 [55]. In par-
ticular, the vibrational dependence of the molecular dipole
moments for simple polyatomic molecules is on the order of
part per hundred [79] and therefore potentially leads to a con-
tribution to the differential BBR shift at the level of ∼2π ×
10 μHz, which is on the order of the absolute statistical
uncertainty for one day of experimental integration. Atomic
clock experiments have characterized the magnitude of BBR
shifts with a fractional uncertainty of � 5 × 10−4 [80]. We
do not anticipate any significant BBR anisotropies (like in
trapped molecular ion experiments, for example [37]). As-
suming realistically that BBR shifts can be characterized at
the part per thousand level, even in the worst-case scenario of
estimated absolute shift �BBR ∼ 2π × 1 mHz, the resulting
fractional uncertainty in the transition frequency measurement
will be δωBBR/ω � 10−15, thus not limiting the experimental
precision at the level of δμ/μ ∼ 10−17 due to the large en-
hancement factor Qμ � 100. A recent work by Norrgard and
co-workers describes a method to use molecules with optical
cycling properties to perform quantum black-body thermom-
etry with temperature sensitivity of σT /T ≈ 10−4–10−5 [81].
Using such methods to perform in situ measurements of TBBR

with trapped SrOH would allow further control over the BBR-
induced systematics and enable δ�BBR

i � 2π × 1 μHz.

B. Field-insensitive transitions

To assess the sensitivity of our proposed approach to
electric- and magnetic-field-induced systematic errors, we
compute the full energy level structure of the X̃ (200) and
X̃ (0310) states up through the lowest three rotational levels in
each state (N = 2 and N = 3, respectively). The Hamiltonian
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TABLE I. Molecular constants used to calculate electric and
magnetic transition sensitivity.

Parameter (200) (0310)

B [2π × MHz] 7384.788 [49] 7429.631 [51]
γ [2π × MHz] 72.77 [49] 71.14 [51]
q [2π × MHz] 0 −12.484 [51]
b[2π × MHz] 1.713 [82] 1.713 [82]
c [2π × MHz] 1.673 [82] 1.673 [82]
D [D] 1.900 [85] 1.900 [85]

takes the form

H = Hrot + HSR + H
 + HFermi + Hdd + HStark + HZeeman,

(22)
where Hrot is the rotational Hamiltonian, HSR is the spin-
rotation Hamiltonian, H
 is the 
-doubling Hamiltonian
applicable to the (0310) state, HFermi is the Fermi contact hy-
perfine interaction, Hdd arises from the electron spin-nuclear
spin dipole-dipole interaction, HStark is the Stark interaction,
and HZeeman is the Zeeman interaction. Matrix elements for the
rotational, spin-rotation, and 
-doubling Hamiltonians may be
found in [69] for both the bending and nonbending vibra-
tional states. The hyperfine Hamiltonians are HFermi = bF IS
and Hdd = c(IzSz − IS/3) [82], with matrix elements found
in Ref. [83]. Likewise, the Stark interaction matrix elements
may be found in Ref. [83]. Following [57], we use HZeeman =
gSμBSB + glμB(SxBx + SyBy) where Sx(y) and Bx(y) are writ-
ten in the molecular frame. The electron g factor is constrained
to its nominal value of gS = 2.002319, and gl = −γ /(2B) is
given by the Curl identity. The relevant matrix elements are
available in Ref. [83], where we can use standard methods
to transform B from the laboratory frame to the molecule
frame [84].

While most of these Hamiltonians and matrix elements are
readily available in the literature, it would be easy to over-
look that the general form of the spin-rotation Hamiltonian is
HSR = γ S(J − S − G), where γ is the spin-rotation constant,
J is the total angular momentum excluding nuclear spin, and
G is the angular momentum associated with the vibrational
motion [69]. As a result, in the bending vibrational state, HSR

includes an interaction between the electron spin and vibra-
tional angular momentum along the molecular symmetry axis.
The spin-rotation splitting of a rotational state N in (0310) is
therefore given by

�E (N ) = γ

2

(
2N + 1 − 1

N
− 1

N + 1

)
. (23)

In a nonbending mode, the last two terms, which decrease
with higher N , are absent. In addition, these terms are some-
times neglected for spectroscopy of bending modes when the
high-N limit is appropriate. However, for the low-N states of
interest here, all terms must be retained.

The rotational constant B, spin-rotation constant γ , 
-
doubling constant q, Fermi contact coefficient bF , dipole-
dipole hyperfine coefficient c, and electric dipole moment D
have been previously measured for SrOH and are given in
Table I with appropriate references for both the (200) and
(0310) states.

As an example of this system’s robustness against system-
atic errors, we will first consider transitions between the N ′′ =
1 → N ′ = 1 manifolds of the X̃ (200) → X̃ (0310) transition.

In our numerical calculations, a reliable estimate of the
energy shifts in state N requires explicit diagonalization of the
Hamiltonian including states up through N + 1. This can be
understood as follows. At vanishing electric field E = 0, the
dipole moment of every state is zero. In the (200) manifold,
the mixing of nearby rotational states at nonzero electric field
induces a dipole moment in each sublevel. As a result, the
calculated induced dipole moments at low field are only valid
for state N if the basis includes the N + 1 state. Although
the induced dipole moments in (0310) states are dominated
by mixing within 
 doublets, rotational mixing occurs at the
same level as for the (200) manifold and therefore must also
be considered to obtain an accurate estimate of the electric
field sensitivity of a transition between the (200) and (0310)
manifolds. In the calculations presented here, our basis spans
up to N = 2 in (200) and N = 3 in (0310), for a total of 156
states.

The measurement will be robust against systematic errors
related to electric (magnetic) field drifts if the transition has
a negligible difference between the ground and excited state
electric (magnetic) dipole moments. We numerically diago-
nalize the full Hamiltonian in each vibrational manifold at a
variety of magnetic and electric fields and compute the local
dipole moments of each sublevel from the change in energy
with respect to field strength. In considering the relative dipole
moments between two states, we restrict our attention to those
whose overall transition strength is at least a non-negligible
fraction (e.g., 10%) of the strongest transition.

See Fig. 3 for the relative dipole moments of strong tran-
sitions among N ′′ = 1 → N ′ = 1. The sharp vertical line in
Fig. 3 arises from a resonance between opposite-parity states
in (0310) as the magnetic field is tuned. The thick, red transi-
tions have the approximate composition

|(200), N ′′ = 1, J ′′ = 1/2, F ′′ = 0 − 1, M ′′ = 0〉
→ |(0310), N ′ = 1, J ′ = 1/2, F ′ = 0 − 1, M ′ = 0〉 (24)

and

|(200), N ′′ = 1, J ′′ = 3/2, F ′′ = 1 − 2, M ′′ = 0〉
→ |(0310), N ′ = 1, J ′ = 3/2, F ′ = 1 − 2, M ′ = 0〉, (25)

where a dash denotes an even superposition of different F
states.

In addition to having comparatively small individual rel-
ative dipole moments, these highlighted transitions can be
made to have nearly exactly opposite sensitivities to both
electric and magnetic fields. In particular, they have relative
g factors of +0.1105 and −0.1099 at fields of 6.40 G and
1 mV/cm, for a common-mode sensitivity to magnetic fields
characterized by �g/2 ∼ 3 × 10−4. Therefore, simultane-
ously measuring the resonance frequency of both transitions,
and averaging the results, allows near complete elimina-
tion of magnetic field-induced systematic errors. Although
many pairs of opposite-magnetic-sensitivity transitions exist,
it is typically the case that such pairs of transitions have
large individual and common-mode electric field sensitivity
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FIG. 3. Relative electric (left) and magnetic (right) dipole moments of strong transitions among N ′′ = 1 → N ′ = 1, in experimentally
relevant units of linear frequency per unit of field. The thick, red lines show two transitions with low relative electric dipole moments and
nearly zero common mode sensitivity to electric or magnetic fields around 6.40 G.

at any particular magnetic field; thus simultaneously sup-
pressed common-mode electric and magnetic relative dipole
moments are nontrivial and must be found numerically. The
above-estimated common-mode magnetic dipole moment is
smaller than the uncertainty arising from existing Zeeman
spectroscopy of SrOH. In particular, the rotational and nuclear
g factors, expected to be of order 10−3, have not yet been
measured in SrOH. With refined measurements of the Zeeman
structure, the optimal conditions to minimize the common-
mode sensitivity to magnetic fields could be fine tuned.

In a similar manner, the two transitions considered above
have nearly opposite electric polarizabilities (given in ex-
perimentally relevant units of linear frequency per unit of
electric field) of −1081 and +1085 Hz/(V/cm)2, for an av-
erage polarizability of only 2 μHz/(mV/cm)2 at a magnetic
field of 6.40 G. A transition in SrOH, or other co-trapped
species, with several hundred times greater sensitivity to elec-
tric fields could be used as a reference to actively stabilize
the electric field over the small volume of the optical dipole
trap to the mV/cm level, thus reducing systematic errors in
common-mode resonance to the μHz level, which is below
the frequency uncertainty obtainable with one day of exper-
imental integration. The electric dipole moment can be fine
tuned, and its sign can be reversed, with changes in magnetic
field on the order of 1–10 mG.

We have identified additional favorable transitions in the
range of 0–20 G at fields around 5.94, 18.75, and 19.07 G for
the N ′′ = 1 → N ′ = 1 manifold. Furthermore, it is straight-
forward to find transitions between other rotational manifolds
with suppressed sensitivity to systematic errors. As an exam-
ple, see Fig. 4 for a pair of transitions in the N ′′ = 1 → N ′ = 2
manifold with a nominal average g factor of �g/2 ∼ 4 ×
10−4 and average polarizability of −6 μHz/(mV/cm)2. Once
again, this magnetic moment is consistent with 0 at the level
of existing spectroscopy and the average electric sensitivity of
these transitions can be fine tuned and reversed with small
adjustments of the magnetic field. Comparably favorable
transitions have been found for the N ′′ = 0 → N ′ = 1 rota-
tional transition.

VI. SENSING COSMIC FIELDS

The proposed measurement is predominantly sensitive
to oscillation frequencies between the inverse of the total
measurement time (e.g., 1 day or 1 year) and the X̃ (200)
decay rate. We perform least-squares spectral analysis (LSSA)
on simulated data sets to quantify the projected sensitiv-
ity [86–88]. This method is closely related to the discrete
Fourier transform but can be applied to the experimentally
realistic situation in which data are not uniformly distributed
in time, and accommodates inspection of arbitrary oscilla-
tion frequencies. We briefly summarize the LSSA approach
here. For a discrete series of measurements ω(ti ), made at
times {ti}, we fit the data to a model ω(ti ) = Aj sin(2π f jti ) +
Bj cos(2π f jt ) + Cj , where Aj, Bj, and Cj are fit parameters
and f j is a possible oscillation frequency of the resonance.
The estimated amplitude of oscillation at frequency f j is then

δ̂ω( f j ; δω) =
√

A2
j + B2

j , where δω is the true oscillation am-

plitude at f j . This procedure is repeated for each oscillation
frequency f j that is of interest.

For our simulation we suppose that N = 106 trapped
molecules are probed approximately every coherence time
Tc = 140 ms, with random delays of order ∼0.1Tc be-
tween subsequent measurements. The single-measurement
frequency sensitivity is assumed to be shot-noise limited,
with statistical uncertainty �ω = (Tc

√
N )−1 [36,54]. We first

simulate the case of a single series of measurements ω(ti )
over 24 h, with no assumed oscillation of the resonance
frequency. The inferred values of δ̂ω( f j ; 0) > 0 arise from
statistical noise and allow an estimation of the noise floor of
the measurement �δω( f j ). In the case of measurements over
one day, we find a noise floor of �δω( f j ) ≈ 2π × 3 μHz
for f � 10 μHz, as expected from the shot-noise limit. At
low frequencies, f j � 10 μHz, the sensitivity falls off as f −2

j
because the inverse of the total measurement time, 24 h, is
∼10 μHz and lower frequencies cannot be resolved from
an offset in the mean of the resonance. For example, in
the limiting case f j → 0, it is impossible to determine the
phase of a possible oscillation and in the event that the entire
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FIG. 4. Relative electric (left) and magnetic (right) dipole moments of strong transitions among N ′′ = 1 → N ′ = 2, in experimentally
relevant units of linear frequency per unit of field. The thick, red lines show two transitions with low relative electric dipole moments and
nearly zero common mode sensitivity to electric or magnetic fields around 12.75 G.

measurement period occurs in the neighborhood of an antin-
ode of oscillation, no change in the resonance frequency ω

can be observed. See [13,89] for related discussion of the
low-frequency f −2

j sensitivity fall-off.
To calculate the sensitivity to oscillation of the resonance at

frequency f j , we then simulate a series of measurements with
a large oscillating resonance ω(t ) = ω0 + δω( f j ) sin(2π f jt +
θ j ), where θ j ∈ [0, 2π ) is chosen randomly and we set
δω( f j ) = 2π × 1 Hz. Each measurement of N molecules
gives a measured value of ω equal to the mean of ω(t )
over the 140 ms duration of the measurement, up to statisti-
cal shot noise. At all sufficiently low oscillation frequencies
f j � (2πTc)−1 ∼ 1 Hz, the inferred amplitude of oscillation
is accurate to excellent precision δ̂ω( f j ; 2π × 1 Hz) ≈ 2π ×
1 Hz. At large oscillation frequencies f j � (2πTc)−1, the sen-
sitivity falls off approximately as δ̂ω( f j ; 2π × 1 Hz) ∝ f −1.4

j
because the average shift in the resonance frequency averages
toward 0 over many oscillations.

The oscillation amplitude δωSNR=1( f j ) at frequency f j that
would generate a measurement signal-to-noise ratio (SNR) of
1 is then given by

δωSNR=1( f j )

2π × 1 Hz
= δ̂ω( f j ; 0)

δ̂ω( f j ; 2π × 1 Hz)
. (26)

We repeat this procedure for the case of data interspersed
throughout 1 yr, with one 24-h series of measurements re-
peated weekly. In this case, the sensitivity at intermediate and
high frequencies improves by approximately

√
52 due to the

shot-noise limit, and the low-frequency noise cutoff is reduced
to ∼30 nHz, set by the inverse of the total measurement time
of 1 yr.

Using the estimated enhancement factor Qμ ≈ −617 and
transition frequency of ω = 2π × 1.1 GHz, we find the frac-
tional μ variation at frequency f j corresponding to a signal-to-
noise ratio of unity (δμ/μ)SNR=1( f j ) = δωSNR=1( f j )/(ωQμ).
The oscillation frequency f is related to the mass m of the new
scalar particle by f = 2.42 × 105 (mc2/neV) Hz [90].

The discussion above allows us to interpret the sensitivity
of the measurement in terms of δμ/μ as a function of the
mass mφ of a possible scalar dark matter particle φ. To go
further we must consider concrete models. As an example,
we consider models of ultralight scalar particles with dilatonic
interactions, characterized by coupling constants dme , dg, and
dm̂, which arise from couplings of φ to electrons, gluons, and
the symmetric combination of up and down quarks, respec-
tively [18]. Assuming the new scalar particle comprises all of
dark matter [18,91],

δμ

μ
= (dme − dg + MAdm̂)κφ(t ), (27)

where κφ0 = 6.4 × 10−13(10−18 eV/mφ ) with φ0 being the
amplitude of the time-dependent dark matter field φ(t ) and
MA = 0.037 quantifies the variation of the nucleon mass with
the quark mass in the case considered here of a transition
directly sensitive to the proton-to-electron mass ratio [34].

From Eq. (27) we can interpret the experimental sensitiv-
ity to μ variation in terms of sensitivity to dme , dg, and dm̂.
Because |MA| < 1, the parameter space probed for dm̂ is less
stringent than for dme and dg. The sensitivity to these param-
eters is shown as a function of mφ in Fig. 5. For comparison,
we also show existing bounds on dme and dm̂ obtained from
equivalence principle (EP) tests.

The proposed measurement with SrOH would improve on
the EP tests by up to about 7 orders of magnitude at the
most sensitive frequency with 52 days of data, or over about
three orders of magnitude with only 24 h of data. The largest
sensitivity to the coupling coefficient �μ between potential
UDM coherent oscillations and proton-to-electron mass ratio
in a one-day measurement occurs for dark matter particles
in the mass range mφ ∼ 5 × 10−20 to 1 × 10−14 eV, corre-
sponding to oscillation periods of one day and the Nyquist
period 2Tc, respectively. If measurements are interspersed
throughout a year, masses as low as 1 × 10−22 eV can be
probed [90]. These mass ranges and the coupling coefficients
in the range shown in Fig. 5 are already of interest to funda-
mental particle physics [92–94]. While measurement periods
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FIG. 5. Dashed lines depict sensitivity of the proposed measure-
ments to select ultralight dark matter couplings, assuming single
one-day measurement, or 52 one-day measurements interspersed
weekly over a year. The low-frequency cusp corresponds to masses
with corresponding Compton frequency at one day (year), below
which sensitivity falls off rapidly, while the high-mass cusp cor-
responds to the decay rate of X̃ (200). Solid blue (upper) and red
(lower) lines indicate existing limits from the MICROSCOPE mis-
sion for dme and dm̂ terms, respectively [96,97]. Solid black line
shows limits on the dm̂ − dg coupling term from dual Rb/Cs cold
atomic fountain at LNE-SYRTE [89,96], while solid magenta line
depicts a limit on dme from a comparison of a hydrogen maser with a
crystalline silicone optical cavity [98].

longer than 1 yr could be employed to improve sensitivity to
masses below 10−22 eV, that range of candidate dark mat-
ter particles is disfavored because the resulting de Broglie
wavelengths would exceed the size of small dwarf galax-
ies [19]. The use of quantum enhanced metrology methods
experimentally demonstrated for microwave clocks can lead
to further gains in sensitivity [95]. For mφ � 10−23 eV, our
projected limits for 52 days of integration will improve ex-
isting experimental bounds from atomic spectroscopy over a
6-yr time period [89,96] by 4 orders of magnitude and will
be complementary to future proposed searches using atomic
clocks as they probe different combinations of the coupling
constants di [18].

VII. SUMMARY

We have considered the search for ultralight dark matter
using precision microwave spectroscopy of the laser-cooled
triatomic radical SrOH. The rovibronic spectrum of SrOH
in the ground electronic state has been analyzed, and the
enhancement factors Qμ are calculated for different rotational
transitions in the (200) ↔ (0310) vibrational band. With pre-
dicted |Qμ| � 10 for multiple rovibrational transitions, as
well as highly diagonal Franck-Condon factors in the X̃ ↔
Ã electronic excitation band, laser-cooled SrOH provides a

viable molecular platform for achieving ∼10−17 uncertainty
in δμ/μ with 1 day of integration and has the potential to
significantly improve on the previous limit on δμ/μ from
molecular spectroscopy [33].

Looking for signatures of high-energy physics in low-
energy spectroscopy experiments with laser-cooled SrOH has
the potential to complement other experimental efforts to un-
cover the quantum mechanical nature of the dark sector of
the universe [13,16]. Furthermore, while SrOH is one of the
simplest examples of monovalent metal alkoxides (MOR) that
have been previously identified as suitable for direct laser
cooling and trapping [99], degeneracies between vibrational
states of different character are ubiquitous among poly-
atomic molecules. For example, CaOH is another triatomic
molecule which has since been laser cooled in a cryogenic
beam and is actively being pursued for three-dimensional
magneto-optical trapping [100,101]. Previous high-resolution
vibrational spectroscopy [101–103] of CaOH predicts a transi-
tion energy below ∼2π × 4 GHz for the Q(N = 4) transition
of X̃ (0600) → X̃ (1440), with an associated enhancement fac-
tor estimated to be |Qμ| ∼ 500. These states are subject to
significant anharmonic contributions and Coriolis resonances,
and differ by only 5 vibrational quanta like the states of inter-
est for SrOH; it is therefore reasonable to expect a similarly
strong transition moment as analyzed above. Thus further
spectroscopy and characterization of these states may reveal
an alternative route to probe δμ/μ via precision measurement
of rovibrational transitions in triatomic MOH molecules.

The higher density of rovibrational states provided by the
mechanical motion of MOR molecules with more complex
ligands could result in similar degeneracies as analyzed here
but with even larger enhancement factors Qμ, enabling access
to a new UDM-coupling range by probing δμ/μ fractional
uncertainty in the � 10−18 regime. For example, recently
laser cooled MOR-type symmetric top molecule calcium
monomethoxide CaOCH3 [104] possesses two nearly degen-
erate vibrational modes arising from the mechanical motion
of the CH3 group (ωvib ∼ 1450 × 2πc cm-1). Previous ab
initio calculations predict that the CH3 umbrella (a1 sym-
metry) and scissoring (e symmetry) motions are less than
20 × 2πc cm-1 apart [105,106], which can be further reduced
to ∼1 × 2πc cm-1 by driving perpendicular rovibrational tran-
sitions with K ′′ = 1 → K ′ = 2. While further experimental
measurements are needed to identify the contributions from
anharmonic parts of the potential in order to accurately predict
the enhancement factors Qμ, the presence of new rotational
degrees of freedom compared to linear molecules enables
precise “tuning” of the separation between near-degenerate
levels.
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APPENDIX A: ESTIMATION OF SROH MOLECULAR
CONSTANTS

In the past, extensive molecular spectroscopy has been
performed on SrOH with many vibrational and rotational pa-
rameters precisely measured [49]. In a ground electronic state,
vibrational energy levels of a linear triatomic molecule like
SrOH are given by [52]

G
(
v1v

l
2v3

) =
3∑

i=1

ωi

(
vi + di

2

)

+
3∑

i=1

∑
k�i

xik

(
vi + di

2

)(
vk + dk

2

)
+ g22l2,

(A1)

where di = 1 for nondegenerate stretching vibrations (v1 and
v3) and di = 2 for the doubly degenerate bending mode v2.

For SrOH and other similar molecules, the low-lying vi-
brational motions are mostly harmonic and therefore ωi �
xii, xik for i �= k. Therefore, SrOH vibrational levels of ex-
perimental relevance are approximated by the following
expression:

Ev1v2v3 � ω1
(
v1 + 1

2

) + ω2(v2 + 1) + ω3
(
v3 + 1

2

)
+ x11

(
v1 + 1

2

)2 + x22(v2 + 1)2 + x33
(
v3 + 1

2

)2

+ g22l2. (A2)

Using Eq. (A2) as well as the measured energies of the (100),
(200), (0110), (0200), and (0220) states [49], we can esti-
mate all of the necessary harmonic (ω1 and ω2) as well as
anharmonic (x11, x22, and g22) constants. It is computationally
convenient to reference all of the excited vibrational levels
relative to the ground vibrational level

E000 = ω1

2
+ ω2 + ω3

2
+ x11

4
+ x22 + x33

4
. (A3)

The estimated vibrational constants (in 2πc cm-1) are
ω1 = 531.900, x11 = −2.455, ω2 = 369.584, x22 = −4.485,
and g22 = 7.558. With these extracted constants and using
Eq. (A2) for vibrational levels of SrOH, we predict positions
of E100, E200, E0110, E0200, and E0220 to 0.002 × 2πc cm-1,
which corresponds to 2π × 0.06 GHz. In particular, we have
the following expressions (in units of 2πc cm-1):

E100−000 = ω1 + 2x11 = 526.991, (A4)

�E200−100 = ω1 + 4x11 = 522.082, (A5)

�E0220−0200 = 4g22 = 30.233, (A6)

E0110−000 = ω2 + 3x22 + g22 = 363.687, (A7)

E0200−000 = 2ω2 + 8x22 = 703.288. (A8)

APPENDIX B: NORMAL MODES OF A LINEAR
TRIATOMIC MOLECULE

In order to determine the dependence of vibrational fre-
quencies of SrOH on the proton-to-electron mass ratio μ,
we perform the normal mode analysis using the GF matrix
formalism [107]. The kinetic-energy-related matrix G for a
linear triatomic molecule is given by

G =
⎡⎣μ1 + μ2 −μ3 0

−μ3 μ2 + μ2 0
0 0 G33

⎤⎦, (B1)

where following a common convention in the literature we use
the notation μ1 ≡ 1/mSr, μ2 = 1/mH, and μ3 ≡ 1/mO while

G33 = μ1
r32

r31
+ μ2

r31

r32
+ μ3

(r31 + r32)2

r31r32
, (B2)

which also has units of 1/[mass]. The diagonal force constant
matrix is given by

F =
⎡⎣F11 0 0

0 F22 0
0 0 F33

⎤⎦. (B3)

Solving for eigenvalues of GF and setting them equal to
ω2

i , we can find an expression for the harmonic vibrational
frequencies in terms of atomic masses:

ω2
1,3 = {

F11(μ1 + μ3) + F22(μ2 + μ3) ∓ (
F 2

11(μ1 + μ3)2

+ F 2
22(μ2 + μ3)2 + 4F11F22μ

2
33

− 2F11F22(μ1 + μ3)(μ2 + μ3))
1
2
}
,

ω2
2 = F33

(
μ1

r32

r31
+ μ2

r31

r32
+ μ3

(r31 + r32)2

r31r32

)
, (B4)

where ω1, ω2, and ω3 refer to the harmonic vibrational fre-
quencies for Sr-O stretching, bending, and O-H stretching
modes, respectively. Notice that since the binding energy of
the nuclei is Eb ∼ ka2

0 = mee4/h̄2 in a molecule and thus the
force constant k is proportional to the electron mass me [32],
the calculated vibrational frequencies are all proportional to

ωi ∝
√

me

mp
= μ−1/2. (B5)

The stretch-stretch coupling constant F13 has been ignored in
our calculations since it is less than 1% of the corresponding
F11 force constant and the use of the diagonal force matrix
F has proven reasonably accurate in the previous work on
SrOH [108].

APPENDIX C: ANHARMONIC VIBRATIONS
OF TRIATOMIC MOLECULES

Calculated spectroscopic constants for SrOH indicate that
there is a small anharmonic contribution to stretching and
bending molecular vibrations as can be seen above. Exact
description of the vibrational motion of polyatomic molecules
requires inclusion of the anharmonic terms in the molecular
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potential. A Morse potential of the form [47]

EMorse = Eb[1 − e−a(R−Re )]2 (C1)

provides a good approximation for the anharmonic vibrational
potential of a diatomic molecule. It can be shown that the
vibrational energy levels for a diatomic molecule take the
form [47]

Ev = h̄ω0

(
v + 1

2

)
− h̄2ω2

0

4Eb︸ ︷︷ ︸
x

(
v + 1

2

)2

, (C2)

where the μ constant dependence manifests as ω0 ∝ μ−1/2

for the harmonic and x ∝ μ−1 for the anharmonic constant.
Continuing to treat me as fixed without loss of generality, we
note that the binding energy Eb ∼ Eel ∼ e2

a0
, where a0 is the

Bohr radius, does not directly depend on the proton mass mp

and is therefore independent of μ [32].
For a polyatomic molecule, local bond stretching vibra-

tions like Sr ↔ O and O ↔ H can also be effectively treated
as Morse oscillators [109] and therefore ω1, ω3 ∝ μ−1/2 and
x11, x33 ∝ μ−1. For bending vibrations of linear triatomic
molecules like SrOH it can also be analytically shown [110]
that vibrational levels become h̄(v + 1)

√
f /μbend where f ∝

me is the force constant for the bending motion [see Eq. (B3)]
and μbend ∝ mp is the reduced mass of the bending motion.

The anharmonic constants x11, x22, and g22 for SrOH can
be expressed in terms of the force constants and vibrational
frequencies as [71]

x11 = 1

16
φ1111 − 1

16

∑
i

φ2
11i

8ω2
1 − 3ω2

i

ωi
(
4ω2

1 − ω2
i

) , (C3)

x22 = 1

16
φ2222 − 1

16

∑
i

φ2
i22

8ω2
2 − 3ω2

i

ωi
(
4ω2

2 − ω2
i

) , (C4)

g22 = − 1

48
φ2222 − 1

16

∑
i

φ2
i22

ωi

4ω2
2 − ω2

i

. (C5)

The Morse potential provides a good approximation to
bond-stretching motions of linear polyatomic molecules with
x11, x33 ∝ μ−1. Without loss of generality, consider me fixed
and, therefore, change in μ corresponds to change in mp [38].
From the dimensionality comparison of Eqs. (C3), (C4),
and (C5) we conclude that x22, g22 ∝ μ−1.

APPENDIX D: ROTATIONAL TUNING OF THE
DIMENSIONLESS SENSITIVITY COEFFICIENT Q

Figure 6 provides estimates of the dimensionless enhance-
ment factor Qμ for different rotational transitions of the
studied vibronic branch. As can be seen from the plot, by
choosing different N states it is possible to tune the ∂tμ (and
correspondingly UDM) sensitivity coefficient over 3 orders of
magnitude. The plot in Fig. 6 was generated using the most
up-to-date SrOH spectroscopic data; we refer the reader to
Sec. II A for a detailed discussion of the associated uncertain-
ties in our estimates of the enhancement factors.
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FIG. 6. Rotational dependence of the dimensionless sensitiv-
ity coefficient Qμ for a N ↔ N branch of the X̃ (200) ↔ X̃ (0310)
transition.

APPENDIX E: EXTENSIONS OF PROPOSED WORK

1. Isotopic substitution

Vibrational frequencies of the normal modes in polyatomic
molecules depend on the constituent atomic isotopes. Stron-
tium has four stable isotopes with atomic masses 88, 86,
87, and 84 and natural abundances of 82.58%, 9.86%, 7%,
and 0.56%, respectively. Additionally, a deuterated version of
the molecule SrOD has been previously experimentally ana-
lyzed [111]. While for a diatomic molecule the dependence of
the molecular vibrational constants on the reduced mass μred

is relatively simple, ω ∝ μ
−1/2
red and x ∝ μ−1

red, even for a linear
triatomic molecule the change in harmonic and anharmonic
vibrational constants as a function of isotopic substitution is
more complex, as discussed above. While the focus of this
paper is on the most abundant 88Sr16O1H isotope, potentially
other SrOH isotopes could be useful for μ variation experi-
ments as well.

2. “Frozen” SrOH

In order to observe spectral signatures of the resonant ab-
sorption of bosonic dark matter previous proposals considered
using a pressurized gas container at room temperature with
H2, O2, CO, N2, HCl, or I2 [112] or a cryogenic buffer-gas-
cooled sample of O2 molecules [113]. Alternatively, one could
consider using SrOH molecules embedded in a cryogenic
noble-gas matrix. High atomic densities of order 1017 cm-3

have been demonstrated with spin coherence times approach-
ing ∼1 s under some conditions [114]. Laser spectroscopy of
the macroscopic sample of “frozen” SrOH could allow prob-
ing ALP masses in the μeV and meV range for dark-matter
induced rotational and vibrational transitions, respectively.
We would like to point out that a similar approach of using
diatomic molecules embedded in a solid inert-gas matrix has
been proposed for performing EDM experiments with pro-
jected ∼10−37e cm sensitivity [115]. However, the approach
with frozen polyatomic molecules for dark matter searches
does not require the application of MV/cm external electric
fields for molecular orientation in the laboratory frame, thus
significantly simplifying experimental design. A more exten-
sive analysis of this approach is beyond the scope of this work.
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