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Understanding superradiant phenomena with synthetic vector potentials
in atomic Bose-Einstein condensates
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We theoretically investigate superradiance effects in quantum field theories in curved space-times by propos-
ing an analog model based on Bose-Einstein condensates subject to a synthetic vector potential. The breaking
of the irrotationality constraint of superfluids allows us to study superradiance in simple planar geometries and
obtain intuitive insight into the amplified scattering processes at ergosurfaces. When boundary conditions are
modified to allow for reflections, dynamical instabilities are found, similar to the ones of ergoregions in rotating
space-times. Their stabilization by horizons in black hole geometries is discussed. All these phenomena are
reinterpreted through an exact mapping with the physics of one-dimensional relativistic charged scalar fields in
electrostatic potentials. Our study provides a deeper understanding of the basic mechanisms of superradiance: By
disentangling the different ingredients at play, it shines light on some misconceptions on the role of dissipation
and horizons and on the competition between superradiant scattering and instabilities.
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I. INTRODUCTION

The term superradiance is typically used in the context of
quantum field theories and gravitational physics to indicate
generic processes where some radiation gets amplified upon
scattering onto some object [1]. As such, it is a very general
phenomenon appearing in many different physical systems:
Celebrated examples of it are the bosonic Klein paradox for
charged fields incident on a steplike electrostatic potential,
the Zel’dovich amplification of electromagnetic waves from
a fast spinning absorbing body, hydrodynamic wave amplifi-
cation at spatial discontinuities of the flow profile and, finally,
the superradiant scattering of scalar field, electromagnetic, or
gravitational waves from rotating black holes. These ampli-
fication processes are often associated to different instability
mechanisms that are important in the search of physics beyond
the standard model.

Superradiance in the gravitational context can be directly
translated to condensed matter systems through the so-called
gravitational analogy that maps the propagation of a scalar
field in a curved space-time onto the one of sound in a nonuni-
formly moving fluid [2]. This mapping is possible because
superradiance only relies on the kinematics of the fields in a
fixed background and not on the gravitational dynamics. In
this framework, it has been extensively theoretically studied
in vortex configurations that reproduce the essential features
of rotating black holes [3–8] and has been recently observed
in such a setup using gravity waves on water [9].

In spite of these impressive advances, there are still a num-
ber of intriguing open points in our understanding of basic
superradiance phenomena. The circular geometry of rotating
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systems and their limited tunability makes it difficult to dis-
entangle the different microscopic mechanisms at play and
build an intuitive picture of the overall process. The goal of
the present paper is to propose a concept of analog model that
allows a local tuning of the velocity profile and, thus, a wider
flexibility in the design of the analog space-time to be studied.
In this way, we obtain a comprehensive understanding of the
basic superradiant phenomena and of the related dynamical
instability mechanisms.

The key idea of our paper is to use an atomic Bose-Einstein
condensate (BEC) [10] subject to a so-called synthetic vec-
tor potential [11]. Several strategies to this purpose have
been demonstrated in recent years using combinations of
static electromagnetic fields and microwave and/or optical
Raman beams [12–14]. As a result, neutral atoms end up
experiencing a minimal coupling to a vector potential that is
formally analogous to the electrostatic vector potential act-
ing on electrically charged objects and is responsible for all
sorts of magnetic effects [15]. Even though we will restrict
here to the case of atomic systems, it is worth remembering
that similar routes can also be explored for analog models
based on optical systems [16–18] where synthetic magnetic
fields for neutral photons are presently the subject of intense
investigations [19].

The basic effect of a synthetic vector potential is to change
the relation between the wave vector of the associated matter
wave to the physical velocity of the atoms. This allows us
to break the irrotationality constraint of superfluid flows and,
thus, widens the range of spatial flow profiles that can be
generated and used as analog models. In this paper, we exploit
this idea to propose a setup in which superradiance occurs in
a simple and tunable geometry displaying a jump in the trans-
verse velocity. Here, superradiance can be understood in terms
of the scattering of a plane wave on a single planar interface
playing the role of the analog of a black hole ergosurface.
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This approach takes inspiration from recent investigations of
analog Hawking radiation from analog black holes, where the
horizon was created by juxtaposing two uniform regions, a
subsonic one and a supersonic one [20–22].

Further interest for these simple configurations is pro-
vided by the possibility of an exact mapping via dimensional
reduction onto the one-dimensional problem of a charged
and massive relativistic scalar field incident coupled to an
electrostatic potential. This offers further evidence that the
superradiance of the bosonic Klein paradox and black hole
superradiance are essentially two manifestations of the same
phenomenon [23] and provides a route for the quantum
simulation of charged massive quantum fields in complex
electrostatic potential landscapes.

By changing the boundary conditions, e.g., by introducing
reflection on one of the two sides of the ergosurface, transi-
tions from a stable superradiant amplification to dynamical
instability behaviors can occur. These mechanisms are anal-
ogous to the instabilities predicted for rotating black holes
when they are placed in a reflecting box, or an asymptotically
anti-de Sitter space-time, or for horizonless rotating stars [1].
Also, in the electrostatic mapping, similar instabilities oc-
cur with box-shaped electrostatic potentials via the so-called
Schiff–Snyder–Weinberg (SSW) effect [23,24]. One of the
objectives of our paper is to use the analog model to shine
light on all these intriguing instability phenomena and build a
unified and intuitive picture of them all.

As a final step, we introduce a horizon into the model and
investigate how this affects the dynamical instabilities. As a
remarkable result, we find that horizons do not, in general,
prevent the development of instabilities in the ergoregion of
analog black holes, as instead is usually the case in general-
relativistic black holes. For suitable choices of parameters,
the waves traveling toward the horizon can in fact undergo
a sizable reflection leading to a dynamical instability.

Putting these questions in an even wider perspective, we
revisit widespread statements in the literature about the actual
need of dissipating elements for the observation of superradi-
ance effects. While dynamical stability of the system requires
that the superradiant amplified field is efficiently evacuated
outside of the system or dissipated, we confirm the result
in Ref. [25] that absence of dissipation does not prevent a
wave packet from being efficiently amplified by superradiant
processes on a shorter timescale.

Another common thread that extends throughout the whole
paper is to consider the impact of the superluminal dispersion
of the Bogoliubov sound in BECs onto the different super-
radiant effects under investigation. As a general result, in
agreement with our previous results for multiply quantized
vortices [26], we find that amplified reflections and insta-
bilities are typically not affected by the dispersion at low
momenta and preserve all their qualitative features, while they
are strongly suppressed at large momenta.

While our setup is not expected to quantitatively reproduce
the physics of specific general-relativistic systems, it offers
a toy model in which the fundamental mechanisms of super-
radiance are reproduced in the simplest possible setting and
each of the different elements at play can be addressed indi-
vidually. This provides a conceptual framework that includes
astrophysical black holes as particular cases of a more general

effect and, thus, can serve as a guide in the study of new
configurations.

The structure of this paper is the following. In Sec. II, we
show how a synthetic vector potential for a BEC modifies the
acoustic metric of the corresponding curved space-time and
how this possibility can be exploited to increase the range
of curved space-time to be investigated in analog models. In
Sec. III, we study the Klein-Gordon equation for a minimal
acoustic metric showing superradiance. The kinematic struc-
ture of the process is characterized in Sec. III A. In Sec. III B,
we exploit the exact mapping with an electrostatic problem
to derive the condition for amplified scattering. In Sec. III C,
we comment on the modifications due to dispersion and in
Sec. III D we verify the occurrence of superradiant scattering
with a numerical study of the full dynamics of the conden-
sate. Then in Sec. IV we study the occurrence of dynamical
instabilities when the boundary conditions are changed and
reflections are introduced. These instabilities are illustrated
by means of numerical simulations in Sec. IV A, in terms of
the Bogoliubov excitation spectra in Sec. IV B and via mode-
matching techniques in Sec. IV C. They are then linked to the
SSW effect for massive charged fields incident on box-shaped
electrostatic potentials and to the instabilities of astrophysical
objects in Sec. IV D. In Sec. V, we further extend the model
by including an acoustic horizon and investigating how this
latter affects superradiant phenomena: In Sec. V A, we discuss
scattering features at horizons, in Sec. V B we describe our
toy-model setup, and in Sec.V C we investigate dynamical in-
stabilities in the presence of a horizon. Conclusions and future
perspectives are finally sketched in Sec. VI. Additional mate-
rial on the relation between the Bogoliubov problem and the
hydrodynamic approximation encoded in the Klein-Gordon
equation is given in the Appendix.

II. ACOUSTIC METRIC IN THE PRESENCE
OF A SYNTHETIC VECTOR POTENTIAL

At the mean-field level, the dynamics of a dilute BEC of
weakly interacting bosons can be described in terms of a
complex scalar field �(r, t ), corresponding to the order pa-
rameter of the condensation phase transition and obeying the
famous Gross–Pitaevskii equation (GPE) [10]. For the sake
of simplicity, in this paper we consider a two-dimensional
condensate, where one dimension is frozen by a tight confine-
ment and the dynamics can be described by a two-dimensional
GPE. Generalization to the three-dimensional case would
make the discussion more cumbersome but would not involve
any additional conceptual difficulty.

In the last decades, strong efforts have been devoted to the
design of combinations of optical and/or microwave and/or
magnetostatic fields that result in a modification of the effec-
tive dispersion relation of the atoms and, in particular, in a
shift of the position of its minimum. In mathematical terms,
this can be described by including additional terms to the GPE
in the form of a vector potential A(r, t ) minimally coupled to
the atomic momentum, the so-called synthetic vector potential
[11,27,28]. Putting all terms together, the GPE then reads

ih̄∂t� =
[

(−ih̄∇ − A(r, t ))2

2M
+ V (r) + g|�|2

]
� , (1)
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where V (r) is the external trapping potential, g is the inter-
action constant and M is the bare atomic mass. In analogy to
usual magnetism, the curl of the vector potential provides the
synthetic magnetic field B experienced by the neutral atoms.
Its time dependence contributes to the synthetic electric field.
In what follows, we will focus our attention on static vector
potentials with complex spatial profiles A(r) giving spatially
inhomogeneous synthetic magnetic fields but no synthetic
electric field.

The core idea of analog models of gravity is that propaga-
tion of sound in a flowing fluid can be described in a geometric
way in terms of the propagation of the perturbations of a scalar
field on a curved space-time with a nontrivial acoustic metric
determined by the density and current profile of the underlying
fluid [2]. The goal of this section is to show how the presence
of the synthetic vector potential modifies the acoustic metric
and discuss the possibilities that this feature allows.

To this end, we follow the usual strategy and rewrite the
GPE (1) in the superfluid hydrodynamic form in terms of the
modulus and the phase of the order parameter � = √

n ei�:

∂t n = −∇ ·
[

n
(h̄∇� − A)

M

]
, (2a)

h̄∂t� + (h̄∇� − A)2

2M
+ gn + V − h̄2

2M

∇2√n√
n

= 0. (2b)

Except for the last quantum pressure term in the second equa-
tion, these equations recover the usual continuity and Euler
equations of a perfect fluid.

The effect of the synthetic field is visible in the expression
of the velocity field in terms of the condensate phase:

v = h̄∇� − A
M

= vcan − A
M

. (3)

The distinction between the canonical velocity vcan = ∇�

and the physical velocity v = vcan − A/M in the presence of
a vector potential has the crucial consequence [27] that the
physical velocity field v(r) appearing in the hydrodynamic
equations is no longer constrained to be irrotational as it
occurs in textbook superfluid hydrodynamics. This is the key
additional element that synthetic vector potentials introduce
in the world of analog models and will be at the heart of all
developments in this paper.

By linearizing the hydrodynamic equations around some
stationary background configuration �0(r) = √

n0(r) ei�0(r)

so the total density and phase are n = n0 + n1 and � = �0 +
�1, one obtains the Bogoliubov-de Gennes equations

∂t n1 + ∇ ·
[

n1v + n0
h̄

M
∇�1

]
= 0,

h̄∂t�1 + h̄v · ∇�1 + gn1 − h̄2

4M

1

n
∇ ·

[
n∇

(n1

n

)]
= 0. (4)

In the so-called hydrodynamic limit where the density and
phase profiles vary over distances much larger than the heal-
ing length of the condensate ξ =

√
h̄2/Mgn0, we can safely

neglect the quantum pressure term in (2b). As in the stan-
dard case [2] of a perfect irrotational fluid in the absence of
magnetic effects, the motion equation for �1(r, t ) can then be
recast in the form of a Klein-Gordon equation for a massless

scalar field,

1√−g
∂μ(

√−ggμν∂ν�1) = 0, (5)

in a curved space-time of acoustic metric

gμν = n0

cs

⎡⎣−[
c2

s − v2
] −vT

−v I

⎤⎦, (6)

where cs = √
gn0/M is the local speed of sound, I is the

identity matrix, and v is the local physical velocity.
As a key result of this section, the possibility of breaking

the irrotationality constraint on the physical velocity field v by
means of the synthetic vector potential dramatically expands
the range of space-times that can be implemented in analog
models and gives a degree of freedom in engineering config-
urations for the study of analog gravity effects. In the next
sections, we will exploit this possibility to investigate aspects
of superradiance phenomena.

III. SUPERRADIANCE FROM AN ISOLATED
PLANAR ERGOSURFACE

Inspired by analogous phenomena for rotating black holes
in gravitational physics, superradiance effects have been
widely investigated in the context of analog models, in par-
ticular, for velocity fields in the form of a vortex with a drain.
In this flow geometry, the acoustic metric, in fact, recovers the
main properties of a rotating black hole, i.e., a horizon and
an ergoregion [1,2], the horizon corresponds to the locus of
points where the radial velocity crosses the speed of sound,
while the ergoregion (delimited by the ergosurface) is the
spatial region where the overall velocity is supersonic and
negative energy modes exist. In such configurations, super-
radiance is visible as the amplified reflection of a wave packet
scattering on the vortex core [3–5,7,8] and in this form it
has been experimentally observed using surface waves on
water [9].

Superradiance crucially relies on the presence of an er-
goregion, where negative energy excitations are available and
can compensate for the extra positive energy of the amplified
scattered waves. In standard treatments, it is often argued that
a horizon (providing an open boundary condition) or some
other kind of dissipation is an essential ingredient to observe
superradiant scattering [6]. This point was recently clarified
in Ref. [25], where it was argued that horizons are not an
essential ingredient for superradiance. In what follows, we
will exploit the wider flexibility offered by the synthetic vector
potential to design configurations that allow us to disentangle
the role of the different elements at play.

Let us start from the simplest case of a single planar ergo-
surface separating regions of sub- and supersonic flow with
a velocity directed along the x axis parallel to the interface.
As sketched in Fig. 1, the synthetic vector potential gives the
possibility to break the irrotationality constraint and generate
a rotational superfluid flow using a two-dimensional BEC in
the form of a plane wave of wave vector K with a spatially
uniform density. The rotational flow is induced by a jump in
the x component of the synthetic vector potential, for instance,
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FIG. 1. Schematic representation of our setup for the realization
of an analog ergosurface in a Cartesian geometry using synthetic
vector potential fields.

from a vanishing value for y < 0 to a finite value Ax for y > 0
(right panel).

The translational invariance of this geometry along x offers
crucial advantages from both the technical and the conceptual
points of view. In particular, it guarantees that the kx com-
ponent of the momentum is conserved during the scattering
process. This is in analogy to the angular momentum con-
servation in cylindrical geometries (left panel). In contrast to
the cylindrical case where the flow displays a nontrivial radial
dependence, the asymptotic regions of our geometry are, how-
ever, flat and homogeneous, which allows us to expand the
incident and scattered waves in a plane-wave basis. Finally,
in contrast to the cylindrical geometry, the ergosurface is, in
our case, an infinite line and the ergoregion an unbounded
half plane. Thanks to this simpler geometry, the superradiance
process at the ergosurface can be isolated from additional
geometrical features and the products of the superradiant am-
plification are automatically evacuated without the need of a
horizon.

It is interesting to note that geometrically similar flows can
be studied in classical fluid mechanics. Also in this context,
tangential discontinuities are known to show amplification for
sound and gravity waves. An example is given in Sec. 84 of
Ref. [29] and is discussed in the context of superradiance
[1]. In the same book [29], it is also pointed out that the
amplification occurs together with the surface instabilities of
shear flows, for example, the Kelvin–Helmholtz instability. As
we are going to see in what follows, our system is instead
immune to these instabilities, which leaves us with a station-
ary configuration in which superradiant scattering is the main
physical process.

A. Superradiant scattering in the hydrodynamic
Klein-Gordon approximation

As a first step, we consider the problem in the hydro-
dynamic limit and derive a prediction for the amplification
by means of a scattering approach [6]. The impact of the
superluminal features of the Bogoliubov dispersion will be
discussed in Sec. III C. In the configuration under examina-
tion, the acoustic metric has the form

gμν = n0

cs

⎡⎣−(
c2

s − v2
x

) −vx 0
−vx 1 0

0 0 1

⎤⎦, (7)

where the total physical velocity vx = vx(y) includes the syn-
thetic vector potential and is oriented along x.

Because of the translational invariance along x, we can
look for solutions of the form �1(t, x, y) = eikxxφ(t, y) with
a well-defined x component of the wave vector k. Note that
here k is the wave vector of the perturbation, to be distin-
guished from the one K of the underlying condensate. Under
this ansatz, the Klein–Gordon Eq. (5) reduces the a single
differential equation for φ(t, y):

−
(

1

cs
∂t + i

vx

cs
kx

)2

φ + ∂2
y φ − k2

x φ = 0. (8)

The analysis is further simplified if we restrict to cases where
the flow velocity vx(y) has a y dependence concentrated
around y = 0, while sufficiently far from this interface it ac-
quires constant asymptotic values vx(y) = v

s, f
x in the slower

(s) region y < 0 and in the faster f one y > 0. These velocities
are related to the atomic canonical momentum Kx and the
synthetic vector potential by vs

x = h̄Kx/M and v
f
x = (h̄Kx −

Ax )/M. For the sake of concreteness, we assume the veloci-
ties fulfill 0 � vs

x < v
f
x , but our results are straightforwardly

extended to other configurations.
In particular, we look at the stationary scattering problem

for an incident plane wave of frequency ω coming from y =
−∞. In this case, we can expand the solution in plane waves
as φ(t, y) = e−iωtϕ(y) with ϕ(y � 0) = eiks

yy + Re−iks
yy and

ϕ(y � 0) = T eik f
y y. Within each region, the wave vector ks, f

y

along y is determined by the dispersion relations for the
Klein–Gordon equation in the two regions

ω = vs, f
x kx ± cs

√
k2

x + (
ks, f

y
)2

, (9)

where the plus and minus signs refer to positive- and negative-
norm modes (see Appendix). It is immediate to analytically
see that, for subsonic flows cs > vx, for a given positive fre-
quency ω > 0, only positive-norm modes are available and
their k-space locus has a closed, elliptic shape as shown by the
solid lines in Fig. 2. For supersonic flows cs < vx, the locus
consists instead of two hyperbolic branches of opposite norms
(dashed lines in the same figure).

For given values of ω and kx, the ky values involved in the
scattering process have to be chosen with the requirement that
the group velocity vg = ∇kω of the incident and transmitted
waves has a positive y component, so the incident wave in
the lower, slow region moves toward the interface and the
transmitted wave in the upper, fast one moves away from it.
For the same reason, the reflected wave in the lower region
must be chosen for the group velocity to have a negative y
component. The fact that the flow velocity is parallel to the
interface guarantees that the wave vectors of the incident and
reflected waves have opposite y components ±ks

y.
A concrete example of the superradiant scattering process

is given in Fig. 2 for a case where the lower y < 0 region
(solid lines) is subsonic and the upper y > 0 one (dashed lines)
is supersonic, so the y = 0 interface is an ergosurface. The
incident and reflected modes (filled and empty black dots) lie
on a positive-norm (thin line) branch, while the transmitted
mode (red dot) lies on a negative-norm (thick line) branch.
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FIG. 2. k-space locus of modes at a given ω for the Klein-Gordon
equation in the slow lower y < 0 region (solid line) and the fast
upper y > 0 region (dashed lines). The slow region is taken at rest
vx (y < 0) = vs

x = 0 and the fast one is moving with supersonic speed
vx (y > 0) = v f

x = 3cs. The speed of sound cs is the same on both
sides. Positive norm (see Appendix) branches are shown as thin
black lines, negative norm branches are shown as thick red lines. For
each mode, the arrows indicate the direction of the group velocity
vg = ∇kω. The different levels of gray (I–IV) indicate the kx intervals
for which the different scattering processes occur (see text). The
vertical white line in the darkest region (I) indicates an amplified
superradiant scattering process, with the filled black dot indicating
the incident mode, the empty black dot the reflected one, and the red
dot the transmitted one.

To establish the superradiant amplification, we can con-
sider the relation between the reflection and transmission
coefficients stemming from the conservation of the Wronskian
W = ϕ(ϕ∗)′ − ϕ′ϕ∗ between the solution and its complex
conjugate. Physically, conservation of this Wronskian corre-
sponds to the conservation of the current of norm of the modes
along y. This provides a relation

1 − |R|2 = k f
y

ks
y

|T |2 (10)

between the reflection R and the transmission T amplitudes.
From this relation, it is immediate to see that the reflection
coefficient exceeds one (i.e., the reflected wave is amplified)
if the wave vectors ks

y and k f
y of the incident and transmitted

waves have opposite signs. Given the form of our dispersion
shown in Fig. 2, this condition is naturally satisfied if the scat-
tering process involves modes of opposite norms on the two
sides. This is a sufficient condition for superradiant scattering
to occur at an isolated ergosurface. A similar explanation
for the amplification of waves at tangential discontinuities in
classical fluid mechanics was given in Ref. [30].

In addition to the superradiant amplified reflection dis-
cussed so far, other kinds of scattering processes can occur
depending on the wave vector kx, that is, on the incidence
angle from the lower region. The characterization of the dif-

ferent cases can be carried out by comparing the dispersion
in the two regions as shown in Fig. 2 and keeping in mind
the conservation of kx at the interface [31]. The incident wave
vector is to be chosen on the dispersion in the lower region
(solid line).

For instance, superradiant scattering is restricted to the
darkest region (I) where a single, opposite norm mode is avail-
able for transmission in the upper region (thick red dashed
line). In the neighboring, slightly lighter region (II), the inci-
dent wave is completely reflected since there is no available
mode to transmit into the upper region. In the next two, even
lighter regions (III and IV), ordinary scattering occurs and the
incident wave is partially reflected and partially transmitted
into a same-norm mode (thin black dashed line), the incident
energy being distributed among the two in an incident-angle-
dependent way as it happens for refraction of electromagnetic
waves at the surface of a dielectric. While in all other regions
(I–III), the x component of the group velocity has the same
positive sign in both the lower and upper regions, in region
IV, the incident and transmitted waves have opposite signs of
the x component of the group velocity, leading to a negative
refraction phenomenon [32]. In this case, the incident wave
has a negative x component of the group velocity, but due to
the drag by the moving fluid, the transmitted wave in the y > 0
region deviates its path toward the positive-x direction.

Whereas all other scattering process (II–IV) only involve
positive norm modes and can also occur with nonuniform,
yet everywhere subsonic velocity profiles, the superradiant
process (I) crucially relies on the presence of a negative norm
transmitted mode, which is only possible for a supersonic
flow. To this purpose, it is worth noting that one cannot replace
the change in the transverse velocity with a change in the local
speed of sound, e.g., via a spatial modulation of the interaction
constant as proposed in Refs. [20,21] for the analog Hawking
radiation. Even though negative norm modes emerge in the
upper, fast region, superradiant scattering cannot occur since
there are no kx values for which states are simultaneously
available on the positive-norm curve of the lower, slow region
and on the negative-norm curve of the upper, fast region. This
can be easily checked analytically. On a dispersion diagram
such as Fig. 2, it corresponds to the red thick dashed curve
being always located to the right of the thin solid line.

As a final point, note how, in contrast to the cylindrical
geometry, our translationally invariant (and thus Galilean in-
variant) geometry along x gives symmetric roles to the upper
and lower regions. As a result, amplification does not depend
on the way in which the interface is crossed. In particular, the
same superradiant scattering process occurs for wave packets
hitting the interface from the upper, fast region.

B. Mapping to a 1D electrostatic problem

The acoustic space-time emerging from our translationally-
invariant, two-dimensional setup offers a realization of the
rectilinear model of the Kerr metric introduced in Ref. [23] as
a toy model for the study of bosonic fields in rotating space-
times. As it was explained there, in this case the problem of a
massless neutral scalar field in the curved space-time can be
reduced to a electrostatic problem in reduced dimensions. In
this section, we take inspiration from these results to build an
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FIG. 3. Schematic representation of the physical mechanism un-
derlying the massive bosonic Klein paradox. The dispersion relations
in the asymptotic regions are plotted along with the spatial profile
of the electrostatic potential. The condition for the amplification to
occur is to have both particle and antiparticle modes available at the
same frequency, as indicated by the light gray shading in the plot.

explicit link between our synthetic field configuration and the
massive bosonic Klein paradox. This suggests a further direc-
tion in which our atomic system can be used as a quantum
simulator of a relativistic quantum field theory.

This link is easily understood by comparing the reduced
one-dimensional Klein-Gordon equation for our analog model
(8) with the equation for a one-dimensional massive charged
scalar field in an electrostatic potential A0:

−
(

1

c
∂t + i

e

h̄c
A0

)2

φ + ∂2
y φ − m2c2

h̄2 φ = 0. (11)

Here, e is the charge, m is the mass of the field, and c is the
speed of light. The two equations are mapped into each other
with the identifications

m2c2

h̄2 ←→ k2
x

eA0

h̄
←→ kxvx c ←→ cs :, (12)

the role of the scalar potential A0(y) is played by the transverse
velocity vx(y) and both the mass m and the charge e are
controlled by the value of the transverse momentum kx. This
parallelism makes it evident that superradiance in our system
is equivalent to the bosonic Klein paradox, that is the ampli-
fied reflection of a bosonic field off an electrostatic potential
step. In this analogy, the negative norm modes correspond to
antiparticles, amplified reflection is associated to the trans-
mission of antiparticles, and energy conservation corresponds
to overall charge conservation. Because of the particle-hole
symmetry of the Bogoliubov problem, the positive frequency,
negative-norm modes are actually physically equivalent to
positive-norm modes at negative frequencies for −kx. This is
consistent with our identification of the transverse momentum
kx with the charge of the particle in the reduced problem.

The condition for the superradiant process to happen can
be derived by looking at the dispersion relations in the two
asymptotic regions far from the potential step as shown in
Fig. 3. These plots correspond to a different cut of the same
dispersion relation studied in Fig. 2: there, the k-space locus
of modes at a given ω was shown. Here, we plot instead the
dependence of ω on ky for a given kx. It is immediate to see
that the effect of a constant electrostatic potential is to rigidly
shift the dispersion relation along the ω direction.

As a simplest example, one can take the electrostatic po-
tential A0(y) to be zero far in the y < 0 region and to tend to a
positive constant A0 far in the y > 0 region (thin blue line). If

this value is large enough to satisfy

eA0 > 2mc2 , (13)

transmission to antiparticles, and hence amplification of the
reflected wave, can occur in the range of frequencies mc2 <

ω < eA0 − mc2. The factor of 2 in the condition (13) physi-
cally corresponds to the fact that a particle-antiparticle pair is
generated during the scattering process and both the particle
and the antiparticle have the same mass m.

Through the identifications (12), we can easily obtain from
(13) a necessary condition for amplified scattering,


vx > 2cs, (14)

where 
vx is the velocity jump across the interface, 
vx =
v

f
x − vs

x. Quite remarkably, this condition shows that the pres-
ence of an analog ergosurface separating sub- and supersonic
flows is not sufficient for superradiant scattering to occur, but
a large enough velocity jump must be present. This condition
is easily understood based on the Galilean invariance of our
setup under velocity boosts along the x direction: As long as
vx < 2cs, there exists, in fact, a reference frame in which the
flow is everywhere subsonic and superradiance cannot occur.

While the parallelism with the Klein paradox has been
rigorously established for a given kx, it is important to keep
in mind that the nontrivial form of the identifications in (12)
make our sound scattering process have a completely different
angular kx dependence from the one of a charged field hitting
a scalar potential step at different angles. For instance, for
kx = 0 waves at normal incidence, the mass gap in the corre-
sponding electrostatic problem vanishes. Since for a massless
field there is no forbidden mass gap to overcome and ev-
ery nonzero electrostatic field provides amplification within
a suitable interval of incident frequencies, one could have
expected amplification to occur for every small value of vx.
However, one must also remember that for kx = 0 the charge
also vanishes in our identification, so the scalar potential has
no effect and superradiant scattering is forbidden.

Finally, it is worth noting that condition (14) is the same
result derived in Ref. [29] for the hydrodynamic tangential
discontinuity. Notice, however, that because of the rotational
velocity field, the metric treatment of that system (such as
the one presented in Ref. [1]) is not a full description of the
physics because of the presence of surface unstable modes.

C. The role of the superluminal Bogoliubov dispersion

Up to now, we have considered the problem within the
hydrodynamic approximation, where sound is described by a
Klein–Gordon equation and hence displays a linear dispersion
relation. In reality, the collective excitations in a uniform flow-
ing BEC follow a Doppler-shifted version of the celebrated
Bogoliubov dispersion [10]:

h̄ω = h̄v · k ±
√

h̄2k2

2M

(
h̄2k2

2M
+ 2gn

)
. (15)

This dispersion is well linear and sonic at small momenta but
then grows quadratically at higher momenta, i.e., becomes
superluminal. The first term accounts for the Doppler shift of
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the frequency when moving from the fluid to the laboratory
frame.

While the superluminal nature of the Bogoliubov disper-
sion is not expected to completely suppress the superradiance
effects, important modifications may well appear. The first
study of superradiant scattering for dispersive fields [33] fo-
cused on the Klein paradox for a one-dimensional massless
field. In what follows, we extend the study to the general two-
dimensional case of a Bogoliubov dispersion. In the previous
subsection, we have seen how the transverse momentum kx of
the sound waves, besides giving the coupling with the back-
ground flow, also provides a mass term for the dimensionally
reduced Klein paradox problem. We are now going to show
how the main effect of the superluminal dispersion will be
encoded in a modification to this mass term.

Within the one-dimensional perspective at a given kx, hav-
ing a finite frequency range for superradiance requires that the
maximum of the negative norm branch in one region be higher
than the minimum of the positive norm branch in the other
region. Imposing this requirement on the Doppler-shifted dis-
persion relations (15) for velocities parallel to x implies that

h̄ 
vx kx − 2

√
h̄2k2

x

2M

(
h̄2k2

x

2M
+ 2gn

)
> 0, (16)

where we have taken 
vx = v
f
x − vs

x > 0. This condition is
satisfied for

0 <
h̄2k2

x

M2
< 
v2

x − 4c2
s , (17)

which implies that, in contrast to the Klein–Gordon case, there
is a maximum value of the transverse momentum above which
superradiance can no longer occur:

kmax
x =

√

v2

x − 4c2
s

cs
ξ−1. (18)

The dependence of this upper bound on ξ highlights the
dispersive origin of the effect. As illustrated in Fig. 4, this
upper bound can be related to the nonlinear kx dependence
of the effective mass gap in the reduced one-dimensional
Bogoliubov problem. For small kx, both the mass gap and the
rigid upward shift of the dispersions given by the effective
electrostatic potential grow linearly in kx. For large kx, the
mass gap grows faster than the rigid shift, so the negative-
and positive-norm modes eventually stop intersecting for large
enough values of kx.

Further light on this physics can be obtained by looking at
the constant-ω cuts of the Bogoliubov dispersion relation (15)
that are displayed in the different panels of Fig. 5. Figure 5(a)
shows how the main effect of the superluminal dispersion is
to change the shape of the curves in the supersonic region: In-
stead of the hyperbolic open shape of the Klein–Gordon case
shown as dashed lines in Fig. 2, they now have a closed, oval-
like shape. For increasing ω, the oval corresponding to the
positive norm modes expands, while the one corresponding
to the negative norm ones shrinks and eventually disappears
above some critical frequency.

Analogously to the Klein-Gordon case presented in Fig. 2,
the occurrence of superradiant scattering can be visualized

FIG. 4. Constant-kx cuts of the hydrodynamic Klein–Gordon
(upper panels) and the Bogoliubov (lower panels) dispersion rela-
tions for increasing values of kx (left to right). Solid lines refer to
the slow region at rest with vs

x = 0 and dashed lines to the fast
region with v f

x = 2.8cs. Black (thinner) lines are the positive-norm
branches, red (thicker) lines are the negative-norm ones. In the Klein-
Gordon case, if the condition (14) is satisfied, superradiant scattering
remains possible at all kx thanks to the enduring intersection between
the positive-norm branch in the slow region and the negative-norm
one in the fast region (upper panels). In the Bogoliubov case, this
intersection is only present for low or moderate values of kx (bottom-
left and bottom-center panels) and disappears for high enough values
of kx for which superradiant scattering is no longer possible (bottom-
right panel).

from the intersection of both positive- and negative-norm
curves with the vertical line at a fixed kx: this happens in the
gray region in panel of Fig. 5(c) and an example of such a
process is displayed on a magnified scale in panel of Fig. 5(d).
As before, also other kinds of scattering behaviors can be
recognized depending on parameters: in the darker gray region
of panel of Fig. 5(b) the incident wave gets totally reflected,
while in the lighter gray region negative refraction occurs.

While these cases exhaust the possibilities for a velocity
parallel to x, in the following Sec. V we shall see how even
more complex scattering processes can occur once the flow
can also acquire a y component.

D. GPE numerical calculations

To shine further light on superradiant scattering and con-
firm the predictions drawn from the graphical study of
the analytical dispersion relations, we performed numerical
simulations of the time-dependent dynamics of the two-
dimensional GPE (1). For the background condensate, we take
a real and constant order parameter �0 and a spatially uniform
interaction strength, so that the canonical velocity is zero and
the speed of sound is spatially uniform and equal to cs =√

gn/M. We take the vector potential directed along x with
Ax(y < 0) = 0 and Ax(y � 0) = Ax constant to give a sudden
jump in the physical velocity along x. To maintain the plane-
wave shape of the BEC at all times, we need to introduce an
external potential jump V (y � 0) − V (y < 0) = −A2

x/(2M ).
We impose periodic boundary conditions in both directions
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FIG. 5. Cuts of the Bogoliubov dispersion relation at constant ω.
Solid (dashed) lines refer to the slow (fast) region at y < 0 (y > 0).
The speed of sound cs is the same on both sides. Black (thin) lines
are positive-norm modes and red (thicker) ones negative-norm ones.
Arrows indicate the direction of the group velocity, that is, outward
for the black curves and inward for the red ones. (a) Cuts at different
values of h̄ω/Mc2

s (indicated by the numbers on the curves) in a
uniform region with a supersonic speed v f

x = 2cs: Because of the
superluminal dispersion, these curves have an oval shape also in the
supersonic case, rather than the hyperbolic one of the Klein-Gordon
case. (b) Dispersions at h̄ω = Mc2

s in the two zones for a slow region
at rest vs

x = 0 and a fast region with a subsonic speed v f
x = 0.83 cs.

In the darker gray region, one has total reflection while in the lighter
gray one negative refraction occurs; the dots and the arrows indicate
the modes involved in an example of such process and their group
velocities. This process will be addressed in the GPE simulation
shown in the lower panels of Fig. 8. (c) Dispersions at h̄ω = 1.5Mc2

s

for a slow region at rest vs
x = 0 and a fast one with a supersonic speed

v f
x = πcs: In the gray region, superradiant scattering is possible.

(d) A closeup of the same plot; the dots and the arrows indicate
the modes involved in an example of such a process and their group
velocities. This specific process will be addressed in the GPE simu-
lations shown in Fig. 6 and in the upper panels of Fig. 8.

and we ensure that the integration box is large enough for
finite-size effects to be irrelevant for the computational times
of interest [26].

Among many other possible schemes that may be imple-
mented, our choice of using a vector potential that is directed
along x and only varies along y is beneficial from both the
experimental and numerical point of view. Such a configura-
tion could be, for instance, obtained by means of a pair of
counterpropagating Raman laser beams directed along the ±x
directions and a y-dependent magnetic field that varies the
detuning of the atomic states [13].

Time evolution is numerically performed with a split-step
pseudospectral method in which we apply the propagator of
the GPE as e−iHt ∼ e−iṼ t/2e2iAx (y) px e−ip2/2Me−iṼ t/2, where Ṽ

contains all the terms multiplicative in position space such as
the external potential. As usual, the kinetic energy is included
in a multiplicative way in Fourier space for both x, y. Thanks
to the specific form Ax(y) of the vector potential considered
here, the latter can also be included in the calculation as a
multiplicative factor provided the Fourier transforms along
x and y are performed separately and the vector potential is
applied in between the partially Fourier transformed wave
function �̃(kx, y).

To study superradiance phenomena, we impose on top of
the uniform condensate a small amplitude (|δ�/�0| � 1)
wave packet with a plane-wave shape of wave vector kx along
x and a Gaussian shape along y with a carrier wave vector
ky. The variance σy is taken sufficiently small for the wave
packet to be localized in the y < 0 region, but large enough
for the momentum distribution to be sharply peaked around
the desired ky. The central wave vector (kx, ky) is chosen to
be on the positive-norm mode of the slower region with a
group velocity directed toward the interface. To obtain a clean
wave packet of Bogoliubov excitations, positive and negative
frequency components in the atomic basis must be suitably
combined to only have positive frequencies in the Bogoliubov
quasiparticle basis.

The value of the vector potential is chosen to satisfy the
condition (14) for amplification. In particular, the same pa-
rameters of Fig. 5(d) are used; the chosen wave vector (kx, ky)
is indicated there as a black dot. Since kx and ω are conserved,
we expect that the wave packet is transmitted in the faster
region on the mode indicated by a red dot and located on
the negative-norm (red) oval. At the same time, the amplified
reflected wave packet is expected to appear at the wave vector
indicated by the black empty dot.

Snapshots of the time evolution for parameters for which
one expects amplification are shown in Fig. 6. For each wave
packet, the white arrows indicate the direction of the group
velocity along y while the red and black arrows indicate the
directions of the phase velocities. We can recognize the nega-
tive norm transmitted wave packet in the upper region of the
last snapshot from the fact that the y components of the phase
and group velocities have opposite signs, as expected from
the dispersion diagram of Fig. 5(d). For all numerical wave
packets, a Fourier analysis confirms that their central wave
vectors match the ones expected from the analytical dispersion
relation shown in Fig. 5(d).

To numerically verify that the expected amplification of
the reflected wave packet is indeed taking place, one cannot
simply look at the maximum of the wave packets, since the
presence of superluminal dispersion leads to a spreading of the
wave packet. One can instead compute the Bogoliubov norm
of the wave packets (see the Appendix), that is conserved by
the time evolution of linear perturbations and corresponds to
a generalized number conservation in which negative-norm
modes are weighted with a minus sign:

||δψ ||B(t ) =
∫

dky(|u(t, ky)|2 − |v(t, ky)|2). (19)

Here u and v are the positive and negative frequency com-
ponents of the wave packet in the atomic basis and in the
fluid reference frame. In practice, these two components can
be isolated by computing the spatial Fourier transform of
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FIG. 6. Snapshots of the time evolution of a superradiant scatter-
ing process as predicted by a numerical simulation of the GPE. The
color plot shows the spatial profile of the density modulation with
respect to the uniform unperturbed BEC. We impose a perturbation
wave packet on top of a uniform BEC in the presence of a vector
potential Ax = −πMcs in the y > 0 half plane and a compensating
external potential as specified in the text. The interaction constant
g is spatially uniform to give a constant speed of sound cs. The
initial Gaussian wave packet has kx = 0.63/ξ , a central ky = 0.63/ξ

[indicated as dot in the dispersion plot of Fig. 5(d)] and is spatially
centered around y = −30ξ with a variance σy = 8ξ . Times are ex-
pressed in units of μ/h̄. The white arrows indicate the group velocity
of the wave packets along y. The thick black (red) arrows indicate the
directions of the wave vector (i.e., of the phase velocity) of the pos-
itive (negative) norm wave packets. One can recognize the negative
norm wave packet from the opposite directions of the group velocity
and of the wave vector along y. The simulations have been carried
out in an integration box of size Lx = 20ξ along x and Ly = 200ξ

along y. Grid spacings 
x = 
y = 0.2ξ are taken and a time step

t = 10−3μ/h̄. Thanks to the periodic boundary conditions along x,
visibility of the figure was improved by expanding the x domain by
repeating the data multiple times.

the two regions separately and identifying the components of
wave vector ±kx. For our choice of a plane wave along x, the
positive and negative kx wave vector components are, in fact,
directly associated to the positive and negative frequency ones
of (19). Within each region, the ingoing and outgoing wave
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FIG. 7. Time dependence of the Bogoliubov norm (19) of the
wave packets, normalized to the one of the initial ingoing wave
packet, for the parameters of the simulation of Fig. 6. One can see
that the reflected wave packet is amplified by roughly 70%.

packets can be isolated since the peak of their momentum
distributions is located at values of ky with opposite signs; for
example, the in-going initial wave packet will have its positive
frequency peak at (kx, ks

y ) and its negative frequency one at
(−kx,−ks

y ), while the outgoing reflected one will have them,
respectively, at (kx,−ks

y ) and (−kx, ks
y ).

The resulting time dependence of the norms of the different
wave packets is shown in Fig. 7, where one can see that the
reflected wave packet is strongly amplified by approximately
70% as compared to the incident wave packet. The negative
value of the norm of the transmitted wave packet exactly
corresponds to the amplification, so the total norm and en-
ergy are correctly conserved in the scattering process. This
confirms the physical interpretation that the amplification of
the reflected wave packet is compensated by the storage of
negative energy in the upper region.

While using a plane-wave form along x was beneficial to
draw the analogy with the electrostatic problem and perform
a quantitative study of the time-evolution of the norm, a clear
intuitive picture of the scattering process can be obtained by
performing an analogous calculation for a wave packet of
finite width also along x. Even though the mapping onto the
electrostatic problem is no longer exact, the same energetic
considerations hold. The result is shown in the upper panels
of Fig. 8, where the thick arrows again point in the direction
of the phase velocity of the wave packet while the thin ones
along the dashed lines of the last panel indicate the direction
of the group velocity. Even though the overall geometry of
the scattering process closely resembles standard refraction,
a computation the norm of the different wave packets shows
that the reflected wave packet has indeed been amplified.

It is interesting to compare this scattering process with the
negative refraction process [32] that takes place for different
values of the incident wave vector and of the vector potential
(lower panels). In this case, depicted in Fig. 5(b), the incident
wave packet has a negative x component of the group velocity
but the transmitted wave packet is dragged back by the moving
condensate toward the positive-x direction. Since no amplifi-
cation is taking place, the reflected and transmitted intensities
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FIG. 8. Upper panels: Snapshots of the scattering process for the same configuration as in Fig. 6 except for a finite width σx = σy = 10ξ

of the wave packet along x. The integration box has the same size Ly = 200 ξ along y but a wider size Lx = 200 ξ along x. The color plot
shows the spatial profile of the density modulation with respect to the uniform unperturbed BEC. The thick black and red arrows indicate the
direction of the wave vector (i.e., of the phase velocity) of the positive-norm and negative-norm wave packets, respectively. The dashed lines
in the rightmost panels are the trajectories of the center of the wave packets during the scattering and the thin arrows on them indicate the
direction of the group velocities. Lower panels: Analogous plots in the case of negative refraction. The vector potential in the upper region is
Ax = −1.26 Mcs and the initial Gaussian wave packet is centered in kx = 0.3/ξ and ky = 0.58/ξ and has variances σx = σy = 10 ξ . Notice
the different scale used in the bottom-right panel, showing the reduced amplitudes of the reflected and negative-refracted wave packets as
compared to the superradiant case shown in the upper-right panel.

sum up to the incident one and the reflected and transmitted
wave packets are individually weaker than the incident one.

As a final remark, we need to emphasize that these simula-
tions indicate that we are dealing with superradiant scattering
from a dynamically stable interface: It is clear from the nu-
merical GPE simulations that the interface quickly returns
to its unperturbed state once the wave packets have moved
away from it. This numerical result will be confirmed by the
Bogoliubov analysis presented in Sec. IV C, where we find
no unstable modes on the surface. This is a key difference
from the case of tangential discontinuities in hydrodynam-
ics discussed in Ref. [29]. In this case, discontinuity surface
is typically dynamically unstable and tends to quickly de-
velop ripples that complicate the observation of superradiant
amplification.

IV. SUPERRADIANT DYNAMICAL INSTABILITIES

We have seen that superradiant scattering processes dis-
cussed in the previous sections crucially rely on the presence
of negative energy modes in some part of the system; the
presence of such modes is called energetic instability. In our
configuration, the negative energy modes are available in the
upper half of the system and can be populated while con-
serving the energy by radiating positive energy away in the
lower half. Still, in the case of a single interface considered

so far, this process cannot happen spontaneously (at least at
the classical level) and it must be continuously stimulated by
some incident wave.

Things change if different boundary conditions are con-
sidered. Take, for example, a configuration in which, instead
of having an unbounded system which can evacuate waves
in both the ±y directions, we introduce a reflecting bound-
ary condition for fluctuations at the upper system edge. In
this case, the transmitted negative norm wave packet will get
reflected and sent back to the interface. Since amplification
does not depend on the way the interface is crossed, amplified
superradiant reflection will now take place in the upper part, a
stronger wave packet will be generated that propagate upward,
and the process will continue indefinitely. This bouncing back
and forth of the wave packet between the interface and the
reflecting boundary is associated to sizable amplification at
each bounce on the interface, so the amplitude of the trapped
negative-energy mode will increase indefinitely until satura-
tion effects beyond our Bogoliubov model start taking place.

In the general relativity analogy, this configuration can
be seen as an analog of the ergoregion instability of a fast-
spinning star with no horizon [1]. The space-time region
within the ergosurface shows an exponentially growing per-
turbation, while correspondingly growing waves get emitted
into the outer space. But the dynamical instability mecha-
nism is not restricted to this specific geometry: an analogous
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FIG. 9. Snapshots of the time evolution of a dynamically unstable condensate as predicted by a numerical GPE calculation starting from
different initial states. The condensate is confined along y in a box of length ymax = 80ξ . The interaction constant g is constant, giving a
spatially uniform speed of sound cs. In the 0 � y � L region, a transverse vector potential Ax = −3Mcs and a compensating external potential
V = −A2

x/(2M ) are applied. Fluctuations are absorbed via an imaginary potential when approaching the lower edge at ymax to mimic an open
system geometry along that direction. On the upper row, the initial state features an incident wave packet traveling in the upward direction
toward the cavity of length L = 30ξ ; the white arrows indicate the directions along y of the group velocities of the wave packets. On the lower
row, the initial state only features a weak white noise and the cavity length is L = 15ξ .

dynamics would, e.g., occur if the reflecting boundary condi-
tion was imposed in the lower part of the system, resulting in
an exponential growth of a trapped positive-energy mode. In
the general relativity context, this situation can be associated
to the black hole bomb instabilities that occur when ampli-
fied (positive-energy) waves are sent back to the ergosurface
by some effective external mirror [1], while the negative-
energy waves falls through the horizon into the black hole.
Qualitatively similar instabilities take place also in more com-
plex configurations with stripe-shaped regions of fast motion
within a medium at rest.

In the electrostatic model, these configurations correspond
to a square box electrostatic potential for the Klein-Gordon
equation. This is known to give rise to dynamical instabilities
as first derived in Ref. [24] with a toy model for nuclear
physics in mind and has been thoroughly investigated in
Refs. [23,34], also in connection with rotating space-times.
The emergence of these dynamical instabilities is known in
literature as the SSW effect.

A. Numerical simulations

As a concrete example of this physics, we consider a finite
condensate trapped along the y direction in a box potential; the

vanishing density at the upper boundary at y = 0 introduces
reflecting boundary conditions for the Bogoliubov excitations.
An absorbing region for fluctuations is introduced around the
lower boundary at ymax to simulate an open system geometry
in this direction. We then apply a transverse synthetic vector
potential field in the upper region y ∈ [0, L], with L < ymax.

In the upper panels of Fig. 9, we display the numeri-
cal solution of the GPE for this configuration starting from
an incident wave packet traveling in the upward direction
with a wave vector in the superradiant amplification range.
At the first bounce on the y = L interface, an amplified re-
flected wave packet is obtained via superradiant scattering.
The negative-norm transmitted wave packet keeps bouncing
back and forth between the interface at y = L and the reflect-
ing boundary at y = 0 while its intensity exponentially grows.

In the lower panels of Fig. 9, we display an analogous
numerical simulation starting from a noisy initial state. In this
case, the development of the dynamical instability appears
qualitatively different. In the y > L lower region, one can
see the emergence of a pattern that can be recognized as a
down-going wave, while a stationary wave coming from su-
perposition of up-going and down-going waves appears in the
upper region with an exponentially growing amplitude. This
latter standing wave is the trapped negative-energy mode that
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gets self-amplified while a positive-energy wave is radiated in
the downward direction.

B. The Bogoliubov spectrum

Further light on these phenomena is offered by a study
of the Bogoliubov eigenmodes. This is done by lineariz-
ing the GPE around some stationary state �0 as � = �0 +
δ�. Thanks to the translational symmetry along x, we can
adopt the one-dimensional perspective and study the spec-
trum of the excitations for fixed transverse momentum kx.
This corresponds to taking a plane-wave form δ�(x, y, t ) =
eikxxϕ(y, t ) for the fluctuations; the field ϕ then satisfies the
one-dimensional Bogoliubov problem [35],

ih̄∂t

(
ϕ

ϕ∗

)
=

[
D+ g|�0|2

−g|�0|2 −D−

](
ϕ

ϕ∗

)
, (20)

where the field ϕ and its complex conjugate are treated as
independent variables and

D± = − h̄2

2M
∂2

y + (±kx − Ax )2

2M
+ 2g|�0|2 + V − μ . (21)

The spectrum of this problem can be studied by diagonalizing
Eq. (20) in matrix form. Since the matrix is not Hermitian,
complex eigenvalues can arise (see the Appendix for more
details).

Here we consider the specific configuration that was ad-
dressed in Fig. 9 and we impose Dirichlet boundary conditions
in 0 and ymax to the field ϕ. The lower panel in Fig. 10 shows
how the spectrum of this Bogoliubov problem varies as a
function of the vector potential intensity Ax for a fixed size
L of the moving region and a fixed transverse momentum kx.
In the electrostatic model, this corresponds to increasing the
amplitude of the electrostatic potential A0. One can see that
at some point a negative norm state enters the mass gap: In
the electrostatic case, this corresponds to a bound antiparti-
cle state localized in the positive electrostatic potential box.
When the frequency of this state approaches the positive-norm
band, opposite-norm states stick together and give rise to
zero-norm dynamically unstable modes (see Appendix) that
can be thought of as the continuous production of pairs of
particles with opposite energies, one falling into the localized
negative-norm mode, the other being radiated away on the
positive-norm band. This is exactly the mechanism of the
SSW effect.

Along with the exact solution of the Bogoliubov prob-
lem that we just discussed, it is also interesting to consider
this problem within the framework of the hydrodynamic
approximation. This approximation corresponds, in fact,
to the Klein–Gordon equation for which the SSW ef-
fect was originally derived. The result of such calculations
(see the Appendix for the specification of the problem) is
shown in the upper panel of Fig. 10: Except for some
quantitative differences, the phenomenology is qualitatively
identical.

The effects of superluminal nature of the Bogoliubov
dispersion can be highlighted by performing an analogous
calculation of the spectra as a function of the transverse mo-
mentum kx for fixed values of size L and of vector potential
intensity Ax. The results for both the exact problem and the

FIG. 10. Spectra of the effective one-dimensional Bogoliubov
problem (20) for a condensate confined in a box 0 � y � ymax in
the presence of a transverse vector potential of variable intensity Ax

restricted to the region y ∈ [0, L] with L = 2ξ and ymax = 30ξ . The
transverse momentum is fixed at kx = −0.5/ξ and the speed of sound
cs is spatially uniform. Black solid (red dotted) lines indicate the
real-valued frequencies of the positive (negative) norm modes; the
blue thick lines are the real part of the frequencies of dynamically
unstable zero-norm modes. The inset is a zoom of the region where
dynamical instability emerges. The lower panel shows the complete
calculation, the upper part is the prediction of the hydrodynamic
Klein-Gordon approximation as discussed in the Appendix.

hydrodynamic approximation are reported in the lower and
upper panels of Fig. 11, respectively. One can see that at small
transverse momenta kx the behavior is, as expected, essentially
the same. In contrast, at large kx the presence of dispersion
in the Bogoliubov problem has the consequence that both
the mass gap and the bound-state energy no longer show a
linear dependence on kx. In particular, for large enough kx the
bound state reenters into the mass gap and the instability is
correspondingly suppressed.

This impact of the superluminal dispersion onto the in-
stability is very similar to the suppression of superradiant
scattering for high transverse momenta. Also, condition (14)
for superradiance is the same for the occurrence of insta-
bilities. In the upper plot of Fig. 11, this condition can be
graphically understood in terms of the slope of the bound
state. This slope is proportional to |Ax| and, for |Ax| < 2Mcs,
is smaller than the slope of the kx-dependent mass gap, that
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FIG. 11. kx-dependent spectra of the same effective one-
dimensional Bogoliubov problem (20) as studied in Fig. 10. System
parameters: ymax = 30ξ , L = 4ξ , and Ax = −3Mcs. The upper panel
shows the result of the hydrodynamical Klein-Gordon approxima-
tion, the lower panel illustrates the complete Bogoliubov problem.
The effects of superluminal dispersion are evident in the different
spacing of the modes and in their curvature as a function of kx ,
which result in the suppression of the instability at high transverse
momenta.

is, of the lowest positive-norm state. As a result, instabilities
cannot develop in this case.

Our reasoning so far assumed open boundary conditions
for large y, so radiative waves can be emitted in this direction.
Actually, the spectra shown in Figs. 10 and 11 were calculated
for finite-size systems with Dirichlet boundary conditions.
While the considered system size is generally large enough
that the geometry can generally be considered as effectively
open in the large-y direction, following the arguments in
Ref. [26], some remnants of the finite size are still visible in
some specific parts of the spectra. For instance, a suppression
of the instability is possible for specific parameter values: The
dynamical instability is due to the coupling of two modes
of opposite norm that are close to resonance. For a finite
system, the spectrum is discrete so such pairs of modes may
not be available. This is what happens in the lower panel of
Fig. 11 around kxξ ∼ 2, where the instability is absent for
some intervals of the transverse momenta: even though the
energetically unstable negative-norm mode is above the mass
gap, it is far from resonance with positive-norm modes and the

instability is effectively quenched. As discussed in full detail
in Ref. [26], increasing the system size reduces the spacing
between modes and removes the stability islands.

C. Detection of dynamical instabilities via mode-matching

The discussion on dynamical instabilities carried out in the
previus subsections was based on a combination of numerical
GPE simulations and a semianalytical study of a standard
Bogoliubov problem in a finite-size system with Dirichlet
boundary conditions. In this subsection, we introduce a vari-
ant of the Bogoliubov approach that naturally includes the
open boundary conditions and is able to identify the intrinsic
dynamical instabilities of an unbounded system without the
need of artificially restricting to a finite size and then taking
an infinite-size limit as discussed in Ref. [26].

The idea is the following. For a fixed (real) kx and different
(complex) frequencies ω, we look for the roots of the disper-
sion relations (15) in each of the two uniform regions and we
construct the associated plane-wave modes. Among all these
modes, we focus on the ones that display an exponential decay
away from the interface. The existence of global modes of the
whole system at a given (complex) ω satisfying the desired
boundary conditions is then checked by trying to match the
plane waves at the interface under the required continuity
conditions. This imposes a linear set of equations to the mode
amplitudes and the existence of nontrivial solutions at specific
ω is signaled by a vanishing determinant. This approach was
used to prove the dynamical stability of a white-hole configu-
ration in Ref. [36].

One advantage of this method is that we can treat exactly
open systems in the y direction by selecting the appropriately
decaying modes in each of the two regions. At fixed kx and ω,
the Bogoliubov dispersion relation will in general have four
ky roots. For nonreal frequencies, all roots are complex, two
with a positive imaginary part and two with a negative one.
If open boundary conditions are considered, exponentially
growing modes have to be discarded. This leaves us with only
two relevant asymptotically bounded modes in each region,
namely, the ones with (ky) > 0 in the faster upper region
and the ones with (ky) < 0 in the slower lower region.

In the fast/slow region, the plane-wave expansion of the
modes will hence be

|φ f /s〉 =
∑

j

A f /s
j

(
1

β
f /s
j

)
eik f /s

y, j y, (22)

where the sum runs over the physically relevant modes and
β

f /s
j is the proportionality constant between the two com-

ponents of the Bogoliubov spinor that can be obtained from
the linear problem (20) for a homogeneous system with the
parameters of the fast/slow region.

Consider first the configuration with open boundary condi-
tions on both sides. In this case, we have two relevant modes
per side. The continuity conditions at the interface for the
two spinor components of the fluctuation field and of their
first derivative give four linear conditions that can be used to
determine the four mode amplitudes. The existence of non-
trivial solutions requires the determinant to be zero at some
frequency ω. Dynamical instabilities are associated to roots
with a positive imaginary part (ω) > 0. Notice that this is a

043309-13



LUCA GIACOMELLI AND IACOPO CARUSOTTO PHYSICAL REVIEW A 103, 043309 (2021)

FIG. 12. Log-scale color plots of the absolute value of the de-
terminant (arbitrary units) of the linear matching problem with open
boundary conditions on both sides of the interface for kx = 0.5/ξ .
The three plots correspond to Af

x = 0, Af
x = −1.5 Mcs and Af

x =
−3 Mcs. A vanishing value of the determinant at a positive imaginary
part of the frequency (ω) is a necessary (but not sufficient) condi-
tion for instability. Here, zeros of the determinant are present only
in the first (trivial) case and only for real values of the frequency,
meaning that the single interface configuration is dynamically stable.

necessary but not sufficient condition for instabilities: Zeros
of the determinant may, in fact, also occur for frequencies for
which the roots of the dispersion relation become degenerate
within one of the two homogeneous regions. These zeros do
not correspond to dynamical instabilities and can be easily
identified by looking at the corresponding values of ky. In
our configuration, such zeros are found for ω = ±iμ/h̄ and
ω = −Axkx/M ± iμ/h̄.

Beyond these spurious roots that must be discarded from
the outset, in the case of a single interface, no other solu-
tions are found except for purely real frequencies in the case
of a vanishing vector potential, as one can see in Fig. 12.
This proves that the condensate is dynamically stable and, in
particular, does not show localized instabilities along the er-
gosurface, in stark contrast to classical hydrodynamic systems
where analogous velocity fields are generally unstable against
the generation of ripples at the interface.

FIG. 13. Log-scale plots of the absolute value of the determinant
(arbitrary units) in the case of a reflecting boundary condition in the
faster region at a distance L from the interface. Here kx = 0.5/ξ and
Af

x = −3 Mcs and the tree plots correspond to L = 5 ξ , L = 10 ξ ,
and L = 20 ξ . Dynamical instabilities are signalled by the presence
of roots in the upper half complex plane (ω) > 0.

Things, of course, change if we introduce reflecting bound-
ary conditions on either side. Let us focus on the simplest
case with a reflecting boundary condition in the fast region
at a distance L from the interface as discussed in the previ-
ous section. In this case, we need to keep all four roots of
the dispersion relations in the upper region, corresponding to
waves that propagate back and forth between the interface and
the upper reflecting boundary. We then have six amplitudes
to determine, the two extra conditions being provided by the
condition that the field vanishes on the upper boundary. A plot
of the resulting determinant in the complex-ω plane is shown
in Fig. 13: As expected, the dynamical instabilities associated
to the SSW effect discussed in the previous section emerge as
a series of zeros of the determinant in the (ω) > 0 half-plane.
Their frequency �(ω) lies within the superradiant frequency
range, here located between 0.5 � h̄ω/gn � 1.

As expected, the number of the unstable modes depends
on the size of the faster region. The momenta of the trapped
modes giving rise to instability must in fact satisfy a quan-
tization condition given by the finite size of the electrostatic
potential box. This is clearly visible in the growing number
of zeros when increasing L from the top to the bottom panel
of Fig. 13. On the other hand, the instability rate (ω) de-
creases while increasing the cavity size. Physically, this is also
easily understood since amplification occurs upon bouncing
on the ergosurface and the round-trip time of the excitations
increases with L.

D. Discussion

Based on our findings so far, let us summarize the con-
nection between our predictions for flowing condensates and
the dynamics of rotating space-times in gravitational physics.
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Conside,r for example, a massless scalar field in the space-
time surrounding an asymptotically flat Kerr black hole. The
radial reduction of the problem for fields with a fixed az-
imuthal number is formally equivalent to our mapping to an
electrostatic problem at fixed transverse momentum, except
for the cylindrical instead of planar geometry. In the black
hole case, the ergoregion is surrounded by an unbounded
space on one side and by the black hole horizon on the other
side. Both these regions then provide some effective dissipa-
tion in the shape of open boundary conditions that exclude
the backfeeding of radiation toward the ergosurface (further
discussion on space-times with horizons will be given in the
following section). As a result, the Kerr black hole is dynam-
ically stable against scalar field perturbations, even though it
is energetically unstable since energy extraction is possible
via superradiant scattering processes [1]. In the analogy, this
corresponds to a single ergosurface in an unbounded conden-
sate on both sides along y, for which we have anticipated
superradiant scattering and dynamical stability in Sec. III.

Removing (part of) the dissipation on one of the two sides
gives rise to dynamical instabilities just as we have just seen
for our analog model. If a strong enough reflection occurs
inside the ergoregion (corresponding to a reflection at the
upper edge of our setup), one has the so-called ergoregion
instability: In astrophysics, this can happen for ergostars that
have an ergoregion but no horizon and, in analog models, for
vortices with no drain [37]. On the other hand, if the reflection
occurs on the outside (corresponding to the lower part of our
setup), the instability is known as a black-hole-bomb: this
happens, for example, for rotating black holes in asymptoti-
cally AdS space-times or for massive bosonic fields, whose
low-frequency excitations (falling in the asymptotical mass
gap) are naturally confined by the absence of propagating
modes at infinity [1].

Whereas this discussion confirms the usual picture of su-
perradiant phenomena, it is important to make some general
comments on the actual role of open boundary conditions
and dissipation mechanisms in superradiance. It is sometimes
stated (see, for example, Ref. [6]) that no amplified scatter-
ing can be observed in the absence of efficient dissipation
channels able to evacuate the amplified waves, e.g., through
the horizon. Our discussion in this section and the calcula-
tions performed in Ref. [26] for quantized vortex geometries
have shown that the situation is slightly more complex than
that, as was already pointed out in Ref. [25]. On one hand,
dynamical instabilities do indeed emerge in the absence of
dissipation, preventing amplified scattering of incident plane
waves that extend indefinitely over time. On the other hand,
the plots on the upper row of Fig. 9 show that finite-width
wave packets can be significantly amplified upon reflection
on the ergosurface, even if this eventually ends up triggering
some instability at later times. Amplification is, in fact, due
to the coupling between opposite-norm modes in a restricted
region of space around the interface. If this process is well
separated in space from the reflecting element, the positive
feedback mechanism responsible for the instability only oc-
curs after a sizable time-interval set by the round-trip time of
the transmitted wave packet. Meanwhile, only the amplified
wave packet is visible. As a result, while the time-independent
spectrum of the system does show clear signatures of

dynamical instabilities, superradiance can still be observed as
a time-dependent process.

V. THE EFFECT OF HORIZONS

A common thread of the previous sections has been that
an efficient amplified reflection requires some effective dis-
sipation mechanism inside the ergoregion to evacuate the
product of superradiant amplification and avoid dynamical
instabilities due to the repeated amplification of the negative-
energy waves. In the classical treatments of superradiance, it
is pointed out how such a mechanism is naturally provided
in black hole space-times by the horizon, which acts as an
open boundary condition, prohibiting the reflection of radi-
ation toward the ergosurface. In this section, we show how
the behavior can be much richer than this; in particular, we
will present configurations where ergoregion instabilities may
occur despite the presence of a horizon.

A. Scattering at a horizon

As a first step, consider an interface at y = 0 separating a
slow region of subsonic flow vs < c1 in the lower half-plane
y < 0 from a fast region of supersonic flow v f > c2. In con-
trast to the previous sections, the flow velocities vs, f are no
longer assumed to be oriented along the direction x parallel
to the interface but can have different directions, and we do
not assume that the speed of sound is spatially uniform; in
particular, we focus on the c1 > c2 case.

Let us start from the hydrodynamic Klein-Gordon regime.
For generic flow velocity directions, the dispersion of the
modes in each region can be obtained by rotating the curves in
Fig. 2 in the (kx, ky) plane. In the upper region of supersonic
v f > c2 flow, the asymptotes of the hyperbolas are oriented
in a different way depending on whether the y component of
the velocity v

f
y is smaller or larger than the speed of sound

c2, which gives rise to different scattering processes. In the
former case, one has a slight rotation of Fig. 2, namely, there
still exist two windows of kx values in which one only has a
positive or a negative norm mode and these two regions are
separated by an interval with no available mode. As a result,
the same superradiance physics takes place: depending on kx,
an incident wave packet coming from the subsonic region at
y < 0 can either be totally reflected (region II in Fig. 2, or
be partially transmitted and reflected (regions III and IV) or
undergo superradiant scattering (region I).

In the latter v
f
y > c2 case, the orientation of the asymptotes

is the one displayed by the dashed lines in Fig. 14(a). As
expected for a horizon, all the modes have a positive y compo-
nent of the group velocity, so they cannot travel back through
the horizon. In particular, both a positive and a negative norm
mode are available for any value of kx: As a result, the incident
wave packet will split in a pair of transmitted and reflected
positive-norm components in addition to the negative-norm
transmitted one. In spite of the amplification given by the
negative-norm mode, because of this multipartite splitting, the
intensities of the wave packets are not necessarily larger than
the incident one and superradiance in the sense of amplified
reflection does not generically occur.
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FIG. 14. (a) Comparison of the cuts at h̄ω/Mc2
1 = 1 of the

Bogoliubov dispersion relations inside (solid lines) and outside
(dash-dotted lines) the horizon for vs

x = 0, v f
x = 2.12Mc1, vs

y = v f
y =

0.85c1, and c2 = 0.3c1. Dashed lines are instead the cut of dispersion
relation of the corresponding Klein-Gordon problem inside the hori-
zon. (b)–(d) Referring to the configuration of Fig. 15: Comparison
of the h̄ω/Mc2

1 = 0.2 cut of the Bogoliubov dispersion relations in
the exterior region (dash-dotted lines) with the one in the ergoregion
(b) and with the ones inside a region of supersonic longitudinal flow
v f

y > c2 (c), (d). Parameters: AE = −2.12Mc1, vs
y = v f

y = 0.85c1,
c2 = 0.3c1. In panel (c), AH = 0. In panel (d), AH = AE . The vertical
blue lines in (b)–(d) indicate the value kxξ = 0.1 considered in the
following Figs. 15 and 16.

The situation changes dramatically when the superluminal
Bogoliubov dispersion is considered. In this case, illustrated
by the solid lines in Fig. 14(a), there exist again regions of
kx values in which a single negative norm mode is available,
which leads to the unexpected behavior of a superradiant
scattering occurring directly at the horizon in the absence of
an isolated ergosurface. GPE simulations of the wave-packet
dynamics (not shown) give results qualitatively identical to
the ones in Sec. III. This reflects the fact that horizons
are ill-defined for a field of superluminal dispersion rela-
tion. However, for transverse momenta in the gray region
of Fig. 14(a), positive- and negative-norm modes coexist in
the faster region, so, despite superluminality, it behaves for
large-wavelength modes as the interior of a horizon.

Solid lines in Fig. 14(c) show instead an analogous disper-
sion for v

f
x = 0 case: In this case, there are no kx values for

which negative-norm modes only exist, so no purely superra-
diant scattering is possible. This shows how a lateral flow is
anyway an essential ingredient of superradiance.

B. A toy model for rotating black holes

Inspired by general-relativistic black holes, let us now fo-
cus on configurations displaying an external ergosurface and
an internal horizon like the one sketched in the upper part

FIG. 15. Top row: Scheme of a configuration including both an
ergoregion and a horizon. The ergoregion is included by means of a
vector potential oriented along x. The horizon is created by changing
the speed of sound in the third region. Here, the vector potential
AH may or may not be present. Bottom row: Plots of the disper-
sion relations at fixed transverse momentum kxξ = 0.1 for the same
parameters considered in Figs. 14(a)–14(c), namely, AE = 2.12Mc1,
vy = 0.85c1, c2 = 0.3c1, AH = AE (dashed) or 0 (solid). The gray re-
gion indicates the frequency interval in which superradiant scattering
can occur.

of Fig. 15. This configuration consists of three layers and
displays a finite longitudinal velocity along y in addition to the
synthetic vector potential directed along x. In the outermost
layer (left), the speed of sound c1 exceeds all components of
the velocity and the flow is subsonic. In the central layer, the
vector potential AE is large enough to give a supersonic flow
along x, but the inward radial velocity vy is still subsonic.
Except for the small longitudinal speed, the first interface is
expected to behave very similarly to the ergosurface discussed
in the previous sections. In the third layer (right), the longitu-
dinal velocity vy exceeds the speed of sound c2, so the second
interface behaves as a horizon for long-wavelength waves.
The synthetic vector potential AH in the third region is drawn
with a dashed line to indicate that we are going to consider
values ranging from AH = AE (which resembles a vortex with
drain) to AH = 0.

In Fig. 14, we show comparisons between the fixed-ω cuts
of the Bogoliubov dispersion relations in the left, subsonic
region (dash-dotted lines) and in the supersonic central and
right regions (solid lines). Figure 14(b) shows the comparison
between the left and the central ergoregion: The flow along y
is responsible for a tilt of the curves in the ergoregion with
respect to the vy = 0 case shown in Fig. 5(d) but the structure
of the available modes remains essentially the same. Panels
of Figs. 14(c) and 14(d) show instead the comparison with the
third region inside the horizon in, respectively, the AH = 0 and
AH = AE cases.

The vertical blue lines in the panels of Figs. 14(b)–14(d)
indicate a value of the transverse wave vector kxξ = 0.1 at
which, for the chosen frequency value h̄ω/Mc2

1 = 0.2, the
central region behaves as an ergoregion and the right one as
the interior of a black hole. Focusing on this specific value
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TABLE I. Spatial dependence of the vector potential field, of
the interaction constant, and of the external potential to obtain the
configuration of Fig. 15.

Ax (y) g(y) V (y)

y < yE 0 g1 0

yE < y < yH AE g1 − A2
E

2M

y > yH AH g2 − A2
H

2M + (g1 − g2)n0

of kx, in the lower part of Fig. 15 we show constant-kx cuts of
the dispersion relations. The choice of parameters is such that,
for all the values between AH = 0 and AH = AE of the vector
potential in the third region, the interface between the second
and third regions behaves as a horizon (that is, inside the
horizon both positive- and negative-norm modes are available
at the same frequency) at all frequencies for which amplified
reflection at the ergosurface is possible (gray region).

Based on general arguments of black hole physics [38,39],
we could expect that the horizon behaves as a perfectly ab-
sorbing element, so all negative-norm excitations created by
superradiant processes at the ergosurface are dumped into the
black hole. In fact, Kerr black holes in asymptotically flat
space-times are found to be dynamically stable with respect to
massless scalar field perturbations [1] thanks to the presence
of a horizon that provides an open boundary condition and
to the negligible amount of reflection by the gravitational po-
tential barrier. However, from a different perspective, moving
away from general relativistic black holes, one could also
expect that the presence of a horizon is not enough to assure
dynamical stability since a sizable reflection inside the ergore-
gion may well occur.

This conjecture can be tested by studying the one-
dimensional Bogoliubov-de Gennes equation (20) in the
configuration sketched in Fig. 15. As done in Refs. [20–22],
a spatially varying speed of sound is obtained by means
of a suitable spatial profile of the interaction constant and
of the external potential, taken as specified in Table I, to
maintain a constant density for the background condensate
�0(y) = √

n0ei(Mvy/h̄)y. As usual, the interaction constant is
related to the speed of sound via c1,2 = √

g1,2n0/M and, with
the parameters specified in Fig. 15, we have the configuration
summarized in Table I.

Instead of taking sharp jumps of these quantities in pass-
ing between the regions, we consider smooth spatial spatial
variations of the following forms for the interaction constant:

g(y) = g1 + g2 − g1

2

[
1 + tanh

(y − yH

�H

)]
(23)

and for the vector potential

Ax(y) = AE

2

[
1 + tanh

(y − yE

�E

)]
+ AH − AE

2

[
1 + tanh

(y − yH

�H

)]
. (24)

Here, yE and yH are the points around which the transitions to
the ergoregion and to the black hole interior are centered, and
�E and �H regulate the smoothness of these transitions.

C. Ergoregion instabilities in the presence of a horizon

To detect the presence of dynamical instabilities, we
perform numerical integrations of the time-dependent Bo-
goliubov problem (20) in the configuration described above,
starting from an initial noisy configuration to offer a seed to
the unstable modes. A pair of absorbing regions are included
well outside the ergoregion and well inside the horizon to
mimic open boundary conditions. This guarantees that all
spurious instabilities that may come from the backfeeding
of excitations from the outside (black hole bomb) and from
the inside (black hole lasing) of the black hole are fully
suppressed.

Even if we saw that the structure of the modes in the
three regions is the same for all the values between AH = 0
and AH = AE of the vector potential inside the horizon, the
numerical results turn out to be qualitatively different depend-
ing on the difference between AH and AE . Moreover, while
the thickness �E of the transition at the ergoregion does not
alter the physics substantially (and one can also consider a
sharp jump as in the rest of the paper), the smoothness �H of
the transition at the horizon can determine largely different
behaviors.

In the presence of a second jump of vector potential from
Ax = AE to Ax = AH = 0, for very sharp horizons (that is,
for small �H ), dynamically unstable modes localized on the
interface and independent on the size of the ergoregion are
observed; these do not seem to be directly related to super-
radiant phenomena but depend on the microscopic physics of
the condensate. This will not be further discussed here and
will be addressed in future work.

For smoother horizons, such localized instabilities are no
longer present and a spatially extended dynamical instabil-
ity of completely different nature takes place, as signaled
by the fast temporal growth of a spatially oscillating pattern
between the ergosurface and the horizon. An example of such
a temporal evolution is shown in Fig. 16. The origin of this
instability can be traced to the self-amplification of the exci-
tations trapped in the ergoregion according to a mechanism
similar to one one illustrated in Fig. 6: Excitations bounce
between the ergosurface, where they get amplified, and the
transition region of the horizon, where they are reflected with
a sufficiently high amplitude to give an overall increase of the
excitation intensity during a round-trip. These are the typical
features of an ergoregion instability: Interestingly enough,
such instability occurs here in spite of the presence of a hori-
zon. Note that here the radiative wave that enters the horizon
is composed of two ky components of opposite norms whose
beating is responsible for the oscillating behavior seen in the
figure for y > 0.

Further confirmation of this physical picture is provided
by a spectral analysis of the growing perturbation. This shows
that the frequencies of all unstable modes fall in the superra-
diant interval (gray region of Fig. 15). Moreover, we checked
that increasing the size of the ergoregion causes the number
of unstable modes to increase and their instability rates to
decrease according to the increased round-trip time within the
ergoregion.

While this instability may be ascribed to a reflection given
by the relatively sharp transition between the second and
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FIG. 16. Snapshots of the time evolution of the moduli of the
fluctuation spinor components given by the reduced one-dimensional
Bogoliubov problem at a fixed transverse wave vector kxξ = 0.1 for
the configuration sketched in Fig. 15 with AH = 0 and �0 = 5ξ . The
evolution starts from a noisy configuration and absorbing regions are
included at the boundary of the integration box to avoid spurious
reflections. The black (thinner) and red (thicker) lines show the
modulus of the u, v components of the Bogoliubov spinor. Time is
measured in units of the external μ = mc2

1.

third regions, that is to the deviation from the hydrodynamic
regime, a further increase of �H shows that, even if the growth
rate decreases, the instability does not disappear even for very
smooth transitions (�H ∼ 100ξ ). The situation is different if
we reduce the second jump of the vector potential AH − AE .
We performed simulations for AH ranging from zero to a flat
vector potential profile across the horizon interface AH = AE ,
finding that no instability is present for high enough AH . The
initial noisy configuration smoothly decays in time and only
displays some quasinormal modes. This configuration is thus
close to the standard astrophysical case where reflection of
waves traveling toward the black hole horizon is typically not
present.

The difference between the two behaviors can be un-
derstood with a simple analysis in the spirit of the WKB
approximation as done, for example, in Refs. [40,41]. If
the background space-time varies over length scales much
larger than the wavelength of the excitations, one can un-
derstand the propagation of fields by considering at each
point the dispersion relation of a uniform medium depend-
ing on the local properties of the space-time. In this picture,
excitations of frequency ω will adiabatically follow the
local dispersion relation of the given branch, until they en-
counter a turning point where propagating states cease being
available and the frequency ω enters into a gap of the

FIG. 17. Space dependence of the minimum frequency of the
upper branch of the dispersion relation min+(y) (black thin lines)
and of the maximum of the lower dispersion branch max−(y) (red
thick lines) in two configurations realizing the sketch in Fig. 15.
Both panels refer to fixed kxξ = 0.1, c2 = 0.3 c1, vy = 0.85 c1,
AE = 2.12 Mc1 and the thickness of the two transition regions are
�E = �H = 20ξ . The upper panel corresponds to the case AH = 0,
with the gray region indicating the frequency range in which ergore-
gion instabilities occur. In the inset, the corresponding nondispersive
Klein–Gordon case. The lower panel corresponds to AH = (2/3)AE ,
for which no ergoregion instabilities occur; the horizontal blue line
indicates a generic frequency at which stable superradiant scattering
occurs.

local dispersion relation. At these points, the WKB approx-
imation breaks down, the wave vector turns complex, and
energy exchange between modes is possible. In our case, the
points where this happens can be understood by following,
at the given value of the conserved kx, the spatial depen-
dence of the lower edge of the upper positive-norm branch
of the dispersion relation, min+(y) := minky [ω+(y, kx, ky)],
and of the upper edge of the lower negative-norm branch,
max−(y) := maxky [ω−(y, kx, ky)]. The turning point occurs at
the position yt p where the frequency ω hits the edge of its
branch, e.g., ω = min+(yt p) [ω = max−(yt p)]. As compared
to analogous WKB treatments of wave reflection processes
in solid-state physics [42] and optics of light [43] and matter
[44] waves, our superradiant effects originate from the fact
that the two branches display opposite signs of the conserved
norm.

Following this picture, analogously to what was done in
Ref. [41], in Fig. 17 we plot the edges of the two branches
as a function of the position y for two choices of AH leading
to the two different behaviors mentioned above. Let us start
from the case of a relatively large AH displayed in the lower
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panel. Consider a positive-norm wave coming from negative
y at the frequency indicated by the horizontal blue line. When
this line intersects the black one, no propagating mode is any
longer available at its frequency and the wave gets reflected.
Since states on the lower dispersion branch are available at
larger y, partial tunneling of the wave onto this branch is
possible. Since the negative norm of the tunneled wave must
be compensated by amplified reflection on the positive-norm
branch, superradiance naturally occurs. Since no more turning
points are present on the negative branch, the tunneled wave
freely propagates toward large y suppressing the possibility of
ergoregion instabilities.

The situation is different in the AH = 0 case displayed in
the upper panel. Here, additional turning points are present
on the lower branch. In particular, for frequencies in the gray
region, a second pair of turning points is available around
y = 100 ξ , so the negative-norm wave can undergo reflection.
Together with the superradiant process taking place around
y = 15 ξ for waves moving in the opposite direction, these
repeated amplified reflections lead to an effective confinement
of the negative-norm mode inside the ergoregion associated
with a growth of its amplitude, leading to the ergoregion
instability.

It is interesting to comment that stationary points of the
curves of Fig. 17 are associated to the existence of orbits,
that is, trajectories moving along x with vanishing velocity
along y; these are the equivalent of light rings in circular
geometries. Maxima of the black thin curves min+(y) and
minima of the red thick curves max−(y) correspond to the
locations of unstable orbits that can radiate to the surrounding
propagating modes of the same band. Minima of the black
curves and maxima of the red curves correspond instead to
stable orbits, since fluctuations living there can radiate away
only through tunneling. These stable orbits, when occurring
inside the ergoregion, give rise to the structure of turning
points that we just discussed and are hence associated to the
presence of ergoregion instabilities.

It is important to notice that this kind of ergoregion insta-
bility is not restricted to the superluminal dispersive case we
are considering. An analogous analysis of the Klein-Gordon
dispersion throughout our toy model is displayed in the inset
of the upper panel of Fig. 17. This differs from the dispersive
case for the absence of extrema of the dispersion branches
inside the horizon. However, the same structure of turning
points outside the horizon is present, so again ergoregion
instabilities occur in the frequency range indicated by the gray
region.

On the basis of this analysis, we can conclude that the
presence of a horizon does not in general guarantee the
absence of ergoregion instabilities. Observable ergoregion
instabilities may, in fact, arise for scattering on the gravita-
tional potential past the ergosurface. The fact that no such
instabilities have been ever found in general-relativistic black
holes [1] or in draining vortex geometries [4] is associ-
ated to the fact that these space-times do not display stable
negative-energy orbits that instead can exist around ultracom-
pact objects with no horizon [45,46]. Still, as our calculations
show, this feature does not appear to be a general property of
space-times with a horizon and may not be satisfied in other
configurations.

VI. CONCLUSIONS AND DISCUSSION

In this paper, we have proposed the use of synthetic vector
potential fields in BECs as an analog model platform where to
quantum simulate a large variety of quantum field theories in
curved space-times. As compared to standard superfluids, the
application of a synthetic vector potential removes, in fact,
the irrotationality constraint and allows us to realize a wider
range of flow profiles. In turn, this widens the spectrum of
space-time geometries that can be studied in the framework
of analog models.

Here, we have made use of this tool to theoretically inves-
tigate the fundamental mechanisms of superradiance without
being limited to the traditional vortex geometry. This has
allowed us to disentangle the different effects at play in su-
perradiant phenomena and highlight their rich interplay with
black hole horizons. This provides intuitive insight on some
delicate issues of superradiant phenomena and clarifies some
conceptual debates in the literature.

In simplest terms, superradiant scattering can be under-
stood as a mode-mixing scattering process taking place at
the ergosurface, where an incident positive-energy wave gets
amplified via transmission of a negative-energy wave inside
the ergoregion. While in rotating black holes the conserved
energy can be negative inside the ergoregion because of the
time-time component of the metric changing sign, negative-
energy modes naturally appear in moving condensate as soon
as the flow velocity exceeds the speed of sound. A graphical
construction based on the Bogoliubov mode dispersion is pro-
posed to determine and characterize the different scattering
processes that can take place in each configuration, including
negative refraction and superradiant reflection.

The fact that superradiance is based on a spatially localized
mode-mixing process implies that the presence of dissipa-
tion is not a necessary ingredient for amplified scattering to
occur: A wave packet impinging on the ergosurface will, in
fact, undergo amplification regardless of the presence of ad-
ditional reflecting or absorbing elements in the neighborhood
of the ergosurface and of the global dynamical stability of the
configuration. Nevertheless, dissipation is a fundamental in-
gredient to avoid all those dynamical instabilities that emerge
at later times when the amplified wave is fed back to the
amplifying element. This can occur when reflecting boundary
conditions are imposed or when several interfaces are present.

While open boundary conditions or spatially unbounded
geometries provide a natural mechanism for evacuating the
amplified waves and suppressing such instability mechanisms,
we have found that the presence of a horizon is not always able
to remove instabilities. Depending on the specific geometry,
backscattering of waves traveling toward a black hole horizon
may in fact turn the superradiant scattering into a dynamical
instability and therefore destabilize the ergoregion. The fact
that this does not occur in general-relativistic black holes is to
be ascribed to the specific properties of the space-times and is
not a general feature of space-times with an ergoregion and a
horizon.

While our discussion has been carried out with ana-
log models of gravitational physics in mind, a similar
phenomenology is also found for massive charged scalar
fields. When such a field hits a jump in the electrostatic
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potential, amplified reflection processes may occur in the so-
called bosonic Klein paradox. In more complex geometries,
dynamical instabilities have been anticipated to occur, e.g.,
in the presence of square box electrostatic potentials, the so-
called SSW effect. Introducing a synthetic vector potential in
our analog model thus provides a flexible platform where to
quantum simulate this physics in different geometries.

As already mentioned, our work does not mean to quan-
titatively reproduce any specific system of general relativity.
We rather aim at providing a general conceptual framework
where known results can be inserted and understood under
a different light and which can offer an intuitive guidance
in further studies of black hole physics. Moreover, our work
can be of help in the study of dispersive fields in black hole
space-times. This problem is of great interest in the general
relativity context in the light of understanding the effects
of a possible breaking of the Lorentz symmetry at small
scales [47] and has already led to the remarkable discovery
of the black hole lasing effect in the presence of an inner
horizon [48].

So far, our work has focused on the dynamics in a small
excitation regime, where the linearized Bogoliubov approx-
imation is an accurate description of the dynamics. This is
valid for the superradiant scattering of weak incident wave
packets and accurately describes the early stages of the dy-
namical instability. A natural next step is to extend our
investigation to the case of large amplitude perturbations for
which the nonlinear coupling between Bogoliubov modes is
important. In spite of the obviously different form of the non-
linear coupling in the GPE for condensates and in the Einstein
equations for gravity, this problem is of high potential interest
for the gravitational community as it provides a toy model for
the back-reaction effect of the superradiant instability on the
underlying metric, e.g., of rotating or charged black holes in
anti-de Sitter space-times [49–51]. First steps in this direction
have been made in the context of the late-time evolution of
black hole lasers based on atomic condensates [52–55].

Along a related direction, our study of the scattering of
classical waves and on the development of dynamical in-
stabilities leading to macroscopic excitations is the natural
starting point to attack quantum features of the field theory
on curved space-time. Given the same mode-mixing origin of
superradiant and Hawking processes [1,21,22], it is natural to
expect that superradiance in condensates will lead to the spon-
taneous production of phonon pairs with specific signatures
in the correlation functions. The long-term perspective will
be to explore the interplay between the quantum spontaneous
superradiance and the backreaction effects and identify paths
to black hole evaporation.

From the experimental point of view, even though our
discussion has been carried out with a special eye to atomic
condensates, the general ideas developed in this work are also
of direct applicability to analog models based on quantum
fluids of light [16,56,57] for which synthetic magnetic fields
are currently under active study [19].
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APPENDIX: NORM, ENERGY AND THE BOGOLIUBOV
AND KLEIN–GORDON PROBLEMS

In Sec. II, we reported the hydrodynamic shape of the
Bogoliubov-de Gennes equations for linear perturbations
around some stationary state of the GPE. In this repre-
sentation, one derives the Klein-Gordon equation for phase
fluctuations once the hydrodynamic approximation is taken.

However, we analyzed superradiant amplification and in-
stabilities using the concepts of energy and norm of the modes
that are more natural for the Bogoliubov problem than for
the Klein–Gordon one. Here, for completeness, we summa-
rize some different formulations of the Klein–Gordon and the
Bogoliubov problems, the connection between them, and the
properties of the eigenmodes.

By linearizing the GPE around some stationary state �0 as

� = �0(1 + ϕ) = √
nei�

(
1 + δn

2n
+ iδ�

)
, (A1)

one obtains the Bogoliubov-de Gennes equations that can be
written in the convenient spinorial shape

ih̄∂t

(
uϕ

vϕ

)
=

[
D + gn gn
−gn −D∗ − gn

](
uϕ

vϕ

)
= L

(
uϕ

vϕ

)
, (A2)

where

D = − h̄2

2M

1

n
∇ · (n∇) − i

h̄2

M
∇θ · ∇ = Dn + iD� (A3)

and where uϕ = ϕ and vϕ = ϕ∗ are considered independent.
The problem (A2) is not Hermitian, so the eigenvalues

are not in general real. However, the matrix L is σ3-pseudo-
Hermitian, that is, σ3L†σ3 = L. From this, some properties
follow. If εi is an eigenvector, also εi∗ must be one and
modes with ε j = ε∗

i are called pseudodegenerate. Also, the
nonpositive definite inner product

〈ϕ|ψ〉B = 〈ϕ|σ3|ψ〉 =
∫

dx[u∗
ϕ (x)uψ (x) − v∗

ϕ (x)vψ (x)]

(A4)

is conserved in time. Finally, for any eigenvectors, φi and φ j ,

(εi − ε∗
j ) 〈ϕ j |ϕi〉B = 0, (A5)

so modes with different eigenvalues are orthogonal and pseu-
dodegenerate modes have zero norm.

The energy of a mode is given by

Ei = ||ϕi||B εi, (A6)

so, for positive frequencies, modes with a positive norm have
a positive energy and ones with a negative norm have negative
energy. For negative frequencies, instead one will find the
particle-hole symmetric modes of the ones at positive fre-
quencies. Notice also that pseudodegenerate modes have zero
energy and can be thought of as the simultaneous creation of
pairs of modes with opposite energies.
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We can distinguish two notions of instability: Energetic
instability is the presence of negative energy modes (in the
text negative norm modes at positive frequencies) and dynam-
ical instability is instead the presence of pseudo-degenerate
modes, whose complex frequencies determines an exponential
growth in time.

Dynamical instabilities can emerge under a perturbation of
the parameters of the system, when two modes of opposite-
signed norm approach the same frequency. In fact, while
same-signed modes experience avoided crossing, eigenvalues
of opposite-signed modes stick together, that is, the real part
of the frequencies become degenerate while their imaginary
parts acquire opposite values. This also happens in Hamil-
tonian systems, where the norm is replaced by the Krein
signature. For a proof of this band sticking in the Bogoliubov
problem see, for example, Ref. [58].

Consider now the Klein–Gordon equation in the transverse
flow metric (7)

∇2φ − 1

c2
(∂t + vx∂x )2φ = 0. (A7)

It is useful to rewrite this equation as a system of first-order in
time [59] by defining

π = − 1

c2
(∂t + vx∂x )φ, (A8)

so the equation takes the form

∂t

(
φ

π

)
=

⎡⎣−vx∂x −c2

−∇2 −vx∂x

⎤⎦(
φ

π

)
. (A9)

The associated conserved inner product is

〈φ1|φ2〉KG = i
∫

dx [π∗
1 φ2 − φ∗

1π2]. (A10)

Let us compare this with another formulation of the
Bogoliubov problem in terms of the density and phase vari-
ations of the second equality in (A1) that corresponds to the
Bogoliubov-de Gennes Eqs. (4). Define

δñ = M

h̄

δn

n
= M

h̄
(ϕ + ϕ∗); δ� = ϕ − ϕ∗

2i
(A11)

in terms of which the Bogoliubov problem (A1) takes the
form

∂t

(
δ�

δñ

)
=

⎡⎣ −v0 · ∇ − h̄2

4M2
1
n∇(n∇) − c2

s

−h̄2 1
n∇(n∇ ) −v0 · ∇

⎤⎦(
δ�

δñ

)
,

(A12)

so, for a constant density and for the desired velocity field, if
we neglect the derivatives term with respect to c2

s in the second
element of the first row, we exactly obtain the Klein–Gordon
problem (A9). In terms of the fields (A11), the Bogoliubov
inner product (A4) becomes

〈ϕ|ψ〉B = i
h̄

M

∫
dx[δñϕδ�ψ − δ�ϕδñψ ], (A13)

that has the same shape of the Klein–Gordon inner product
(A10) so all the considerations about norm and energy we
made also hold true for the Klein-Gordon equation. The two
degrees of freedom that emerge in BEC excitations from the
mixing of positive and negative frequencies are here a con-
sequence of the second order in time of the Klein-Gordon
equation [59].

Finally, let us rewrite problem (A12) in terms of the fields
uϕ and vϕ after taking the hydrodynamic approximation. This
is the problem whose spectrum we calculated for the nondis-
persive case in Sec. IV:

ih̄∂t

(
uϕ

vϕ

)
=

[Dn
2 + iDθ + gn −Dn

2 + gn
Dn
2 − gn −(Dn

2 − iDθ

) − gn

](
uϕ

vϕ

)
.

(A14)

Notice that with respect to the full dispersive problem (A2),
here the derivatives are distributed in all the matrix elements.

It is useful to make a last comment on the comparison
of the dispersive Bogoliubov problem and the dispersionless
Klein-Gordon one. The first one has a typical energy scale
that is the one over which dispersive effects take place; this is
fixed by the physics of the underlying condensate that gives
the natural units we used in our plots. The second one instead
has no intrinsic physical scale and this is why in Fig. 2 we
rescaled the quantities using the frequency. Throughout the
paper, when we compare the two problems, we instead use
the condensate natural units for the problem in the hydrody-
namic limit as well; this makes sense for the comparison but,
from the point of view of the Klein-Gordon problem, we are
introducing an arbitrary scale.
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