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Rydberg-dressed Fermi liquid: Correlations and signatures of droplet crystallization
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We investigate the effects of many-body correlations on the ground-state properties of a single-component
ultracold Rydberg-dressed Fermi liquid with purely repulsive interparticle interactions in both three and two
spatial dimensions. We employed the Fermi-hypernetted-chain Euler-Lagrange approximation and observed that
the contribution of the correlation energy on the ground-state energy becomes significant at intermediate values
of the soft-core radius and large coupling strengths. For small and large soft-core radii, the correlation energy
is negligible and the ground-state energy approaches the Hartree-Fock value. The positions of the main peaks
in static structure factor and pair distribution function in the homogeneous fluid phase signal the formation of
quantum droplet crystals with several particles confined inside each droplet.
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I. INTRODUCTION

Ultracold atoms can provide clean and controllable experi-
mental tools to explore novel quantum phases of matter. These
systems enjoy an artificial interparticle interaction that usually
does not have a counterpart in conventional condensed matter
systems. Rydberg atom systems, due to their long-range and
strong dipole-dipole interactions, are suitable for constructing
strongly correlated models and for many-body simulations
[1–4]. Rydberg atoms have many applications in nonlinear
quantum optics [5–7], quantum information [8–11], quantum
simulation [12], and in the study of biophysical transport phe-
nomena [13]. Optical imaging of the shape of electron orbitals
of neutral atoms in Bose-Einstein condensation of Rydberg
atoms has been proposed by Karpiuk et al. [14].

Usually, the lifetime of a Rydberg state is not long enough
to allow the study of the atomic dynamics, but to enhance
the lifetime of Rydberg atoms, the ground state could be
coupled to the Rydberg state off-resonantly. In other words,
with a small admixture of the Rydberg state in the ground
state, it is possible to obtain long-lived Rydberg-dressed states
[2,15,16]. Rydberg dressing for two atoms [17] and in optical
lattices [2,18], has been observed experimentally. The mi-
croscopy of Rydberg macro-dimers has been reported as well
[19]. Rydberg-dressed atoms can be employed in the search
for novel quantum phases such as the supersolid phase [15,20–
24], quantum liquid droplets [24–30], topological quantum
magnetism [31], topological superfluidity [32], mixed topo-
logical density waves [33], and quantum spin-ice [34].

*abedinpour@iasbs.ac.ir

The long-anticipated supersolid phase has finally been
observed in ultracold dipolar systems of magnetic atoms
[35–37]. Therefore, the observation of the predicted super-
solid or droplet solid phases in Rydberg-dressed systems
appears very feasible.

The effect of interparticle interactions in a three-
dimensional (3D) Rydberg-dressed Fermi system with a pure
repulsive interaction has been studied within the mean-field
approximation and the density-wave instability to a metallic
quantum solid phase has been predicted [38]. The ground-
state properties of a two-dimensional (2D) Rydberg-dressed
Fermi liquid has been investigated in the framework of the
Hartree-Fock approximation and functional renormalization
group [39,40]. The density-wave instability of the homoge-
nous system has been reported using the random-phase
approximation (RPA) [39]. With the help of the functional
renormalization-group method, both f -wave superfluidity and
density-wave instability has been predicted for Rydberg-
dressed fermions with repulsive interaction in 2D [40].

In this work, we address the effects of many-body
correlation on the ground-state properties of a single-
component Rydberg-dressed Fermi liquid in both three- and
two-dimensions, within the Fermi hyper-netted chain Euler-
Lagrange (FHNC-EL) formalism at zero temperature. We
show that the impact of the correlation energy on the ground-
state energy becomes significant only at intermediate values of
the soft-core radius and large coupling strengths. Having cal-
culated the positions of the main peaks in the static structure
factor and the pair distribution functions in the homogeneous
fluid phase, we anticipate instability of the homogeneous
fluid to form quantum droplet crystals with several particles
confined inside each droplet. In the absence of any exact
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or state-of-the-art quantum Monte Carlo (QMC) simulation
results for Rydberg-dressed fermions, we aim to verify the
validity domain of the mean-field approximations as well the
regimes of the system parameters where the beyond-mean-
field effects become significant. The FHNC-EL formalism has
been shown to provide a very accurate account of the many-
body correlations in the homogeneous liquid phase [41–43],
with orders of magnitude less computational demand in com-
parison with the QMC simulations. Furthermore, the analytic
treatment of the ground state in FHNC methods allows an
extension to dynamic properties [44].

The rest of this paper is organized as follows. In Sec. II,
we describe our theoretical formalism and review the details
of the FHNC-EL approximation. In Sec. III, we present our
numerical results for different ground-state quantities of the
homogeneous fluid phase such as the static structure fac-
tor, pair distribution function, effective interaction, and the
ground-state energy. Furthermore, we investigate the insta-
bility of the homogeneous phase towards density-modulated
phases. Finally, Sec. IV summarizes our main findings.

II. MODEL AND THEORETICAL FORMALISM

We consider a single-component gas of Rydberg-dressed
fermions with the average density of n, and the bare mass
of particles m, confined in a two- or three-dimensional space.
The interaction between two Rydberg-dressed atoms is given
by [15]

vRD(r) = U

1 + (r/Rc)6 , (1)

where Rc = [C6/(2h̄�)]1/6 is the soft-core radius of interac-
tion and U = [�/(2�)]4|C6|/R6

c is the interaction strength.
Here �, � < 0, and C6 < 0 are the effective Raman cou-
pling, red detuning and averaged van der Waals coefficient,
respectively. The ground-state properties of this gas could
be characterized in terms of two dimensionless parameters
u = U/εF and rc = RckF, where εF = h̄2k2

F/(2m) is the Fermi
energy and kF = (2dπd−1n)1/d is the Fermi wave vector in d
spatial dimensions with d = 2 or 3.

A. Fermi-hypernetted-chain Euler-Lagrange approximation

Taking the chemical potential of the system as the zero
point of energy, we can write the differential equation for the
pair distribution function g(r) [41,42] as[

− h̄2

m
∇2

r + weff (r)

]√
g(r) = 0, (2)

where weff (r) is the effective potential and in practice needs to
be approximated. Unlike the bosonic systems, a truly FHNC
formulation for the effective interaction in Fermi gases leads
to a very complicated set of coupled equations [45]. However,
several simplified recipes have tried to implement the exact
weak or strong-coupling limiting behavior in the effective
interaction and proved to give reasonably accurate results in
the corresponding limits [46,47]. In this work, we follow the
recipe of Kallio and Piilo (KP), which has been tailored to
exactly capture the Fermi statistics and weak-coupling be-
havior [46]. For an alternative approximation, based on the

approximate summation of ladder and ring diagrams, see
Appendix B.

Within the KP approximation the effective interaction is
given by

weff (r) = vRD(r) + wB(r) + wF(r), (3)

where the bosonic potential wB(q) in the Fourier space, at
the level of HNC-EL/0 approximation, i.e., neglecting the
elementary diagrams and correlations higher than pair corre-
lations, is given by

wB(q) = − εq

2n
[2S(q) + 1]

[
S(q) − 1

S(q)

]2

. (4)

Here, εq = h̄2q2/(2m) is the noninteracting dispersion and
S(q) is the static structure factor, related to the pair distribu-
tion function as S(q) = 1 + nTF [g(r) − 1], where the Fourier
transform TF is defined as

∫
dr f (r)e−iq·r. The Fermi contri-

bution to the effective potential wF(r), which includes most
importantly the exchange effects, within the KP approxima-
tion reads

wF(r) = h̄2

m

∇2
r
√

g0(r)√
g0(r)

− lim
u→0

wB(r), (5)

where g0(r) is the pair distribution function of a noninteract-
ing Fermi gas [48] and the noninteracting limit of the Bose
potential could be obtained after replacing the static structure
factor in Eq. (4) with S0(q), the static structure factor of a
noninteracting Fermi gas [48].

A numerically efficient strategy to solve the zero-energy
differential equation (2) is to invert it and obtain the effective
potential

V (r) = g(r)weff (r) − wB(r) + h̄2

m
|∇

√
g(r)|2, (6)

whose Fourier transform gives the static structure factor

S(q) = 1√
1 + 2nV (q)/εq

. (7)

Now, Eqs. (4), (6), and (7) could be solved self-consistently
for a given set of system parameters u and rc. Note that the
Fermi potential in the KP formalism, as given by Eq. (5),
is already fixed by the noninteracting pair distribution func-
tion and structure factor, and does not enter the loop of
self-consistency.

B. The ground-state energy

Once the pair distribution function is known for differ-
ent interaction strengths, the ground-state energy per particle
could be obtained from the coupling constant integration [48]

εGS(u, rc) = ε0 + n

2

∫ u

0
du′

∫
dr

gu′ (r)

1 + (r/Rc)6 . (8)

Here, ε0 = εFd/(d + 2) is the noninteracting kinetic energy
of a d-dimensional Fermi gas and gu′ (r) is the interacting
pair distribution function of a Rydberg-dressed Fermi liquid
with interaction strength equal to u′ and at fixed soft core
radius rc. The correlation energy, which is defined as the
difference between the exact ground-state and the restricted
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Hartree-Fock energies is a good measure of the performance
of any approximate theories. In the next section, we report our
numerical results for the ground-state and correlation energies
as functions of the interaction strength u and the soft-core
radius rc.

C. Density-density response function

The collective density modes and signatures of the insta-
bility of a homogeneous system to density modulated phases
both could be obtained from the singularities of its density-
density response function

χ (q, ω) = χ0(q, ω)

1 − Vph(q, ω)χ0(q, ω)
, (9)

respectively in the dynamic and static regimes. Here, χ0(q, ω)
is the noninteracting density-density response function [48],
and Vph(q, ω) is the particle-hole irreducible interaction [44],
which needs to be approximated for any practical purpose.
In the acclaimed random-phase approximation (RPA), all the
exchange and correlation effects are discarded, replacing the
effective interaction with the bare interaction. Schemes to go
beyond the RPA mainly rely on introducing the many-body
local-field factors [48]. On the other hand, if the interacting
static structure factor is known, the fluctuation-dissipation
theorem

S(q) = − h̄

nπ

∫ ∞

0
dωIm m[χ (q, ω)], (10)

could be used to extract a static effective interaction [43].
Further approximating the noninteracting density-density re-
sponse function of the Fermi gas with a Bose-like expression,
i.e., the “mean spherical approximation” (MSA)

χMSA
0 (q, ω) = 2nεq

(h̄ω + i0+)2 − [εq/S0(q)]2
, (11)

the frequency integral in Eq. (10) could be performed analyt-
ically and a simple analytic expression for the static effective
interaction is obtained:

Vph(q) = εq

2n

[
1

S2(q)
− 1

S2
0 (q)

]
. (12)

In this work, we use the static structure factor obtained from
the solution of KP equations to extract the static effective
interaction. This approach has proved to give very good results
for different properties of various strongly interacting Fermi
liquids [49,50].

III. NUMERICAL RESULTS AND DISCUSSION

In this section, we turn to the presentation of our numerical
results for static structure factor, pair distribution function,
and effective interaction weff (r) of a one-component Rydberg-
dressed Fermi liquid obtained from the KP approximation.
We also investigate the contribution of correlation energy
to the total ground-state energy at different system parame-
ters. Finally, we discuss the dynamical structure factor and
the density-wave instability of the homogeneous Rydberg-
dressed Fermi liquid.
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FIG. 1. The static structure factor of 3D (left) and 2D (right)
Rydberg-dressed Fermi liquid versus q/kF obtained from the solution
of KP equations at two fixed values of the dimensionless soft-core
radius rc = RckF and for different values of the interaction strength
u = U/εF.

A. Static structure factor

Figure 1 shows the static structure factors of three- and
two-dimensional Rydberg-dressed Fermi liquids, obtained
from the solution of KP equations at different values of the
soft-core radius rc and coupling constant u. For a fixed value
of the soft-core radius, increasing the interaction strength,
the height of the main peak in S(q) increases, indicating the
enhancement of correlations. Another interesting observation
in the behavior of the static structure factor is the location of
its main peak. The position of the main peak of S(k) in the
homogeneous state predicts the Bragg peak of the crystalline
phase. Our numerical results show that this peak moves to
smaller wave vectors as the correlations get stronger. This is
an indication of the tendency of the system to the formation
of crystalline structures with a larger lattice constant in the
ordered phase, which means having a larger number of atoms
in each unit cell.

B. Pair distribution function and effective interaction

The pair distribution function g(r) gives the relative spatial
distribution of particles in the system, therefore is a positive-
definite function. The pair distribution function is normalized
such that lim

r→∞ g(r) → 1, since the correlation between parti-

cles vanishes at large separations.
Figure 2 illustrates the pair distribution function of

Rydberg-dressed Fermi liquids at different values of the soft-
core radius rc and coupling constant u. It is interesting to
note that the positivity of the pair distribution function and
the exact condition g(r = 0) = 0 for our spin-polarized Fermi
system, as implied by Pauli’s exclusion principle, are both
satisfied within the approximate KP formalism, even up to
very strong interaction strengths. Notice that the vanishing
on top value of the pair distribution function for classical
particles originates from their impenetrability. In our model
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FIG. 2. The pair distribution function versus rkF within the KP
approximation at two fixed values of the soft-core radius and for
different values of the interaction strength for 3D (left) and 2D (right)
Rydberg-dressed Fermi liquids.

of point particles with soft repulsive interaction, this is simply
due to Pauli’s exclusion principle.

Apart from the well-expected behavior of the pair dis-
tribution function of the liquid phase at strong correlations,
i.e., a pronounced first peak at a specific distance and slowly
decaying oscillations, here an interesting observation is the
appearance of a shoulder at small distances which evolves
into a peak and eventually dominates the original first-peak
of the pair distribution function at large soft-core radius and
strong couplings. This indicates a smaller first-neighbor dis-
tance than the average interparticle separation or the tendency
of particles to aggregate at strong interactions. This is quite
counterintuitive, keeping in mind the repulsive nature of the
bare interparticle interaction. When considered together with
the peculiar behavior of the main peak in the static structure
factor, this could be an indication of the tendency of the
system for the formation of quantum droplet crystals at strong
correlations. The main peak position of S(k) moves to smaller
wave vectors as the correlation increases, indicating a larger
lattice constant in the ordered phase. At the same time, the
first neighbor distance in the pair distribution function gets
smaller due to the clustering of several particles inside each
droplet. As a result, the average distance between ordered
droplets becomes larger and the number of atoms in each
droplet increases (see Table I).

The above-mentioned distinctive behavior of the pair dis-
tribution function could be understood from the effective
interaction weff (r), as illustrated in Fig. 3. Apart from the
repulsive hard-core of the effective interaction which orig-
inates from the statistical i.e., Pauli repulsion, the effective
interaction becomes attractive around the distance where the
first peak of the pair distribution function appears. At strong
couplings, the effective interaction has an oscillatory behavior,
and its first minimum moves towards smaller distances, in
agreement with the behavior of the pair distribution function.
It is worth mentioning that quantum fluctuations are enhanced
in 2D and the possibility of observing droplets in 2D is of

TABLE I. Instability wave vector qI (in units of kF), lattice con-
stant a (in units of 1/kF), and the rounded number of particles per
droplet Nd , of Rydberg-dressed fermions in a body-centered cubic
three-dimensional and a two-dimensional triangular lattice structure
for several values of the soft-core radius rc and interaction strength u
in the vicinity of the density-wave instability.

rc u qI [kF] a [1/kF] Nd

3D 4 9 1.28 6.94 3
3D 5 6 1.055 8.42 5
3D 6 2 0.89 9.98 8
3D 7 1 0.77 11.54 13
2D 4 7 1.22 5.95 2
2D 5 5 0.97 7.48 4
2D 6 3 0.81 8.96 6
2D 7 2 0.69 10.51 8

great interest and, as shown in Fig. 3, attractive effective po-
tential permits the formation of self-bound quantum droplets.

C. The ground-state and correlation energies

The ground-state energy per particle of the Rydberg-
dressed Fermi liquid could be written in terms of different
contributions to it:

εGS(u, rc) = ε0 + εH(u, rc) + εx(u, rc) + εc(u, rc), (13)

where ε0 = εFd/(d + 2) is the noninteracting kinetic energy
of a d-dimensional Fermi gas and the Hartree energy is given
by

εH(u, rc) = n

2
vRD(q = 0) = αd urd

c εF, (14)

with αd = (π/
√

3)3−d/(6d ). The exchange energy per parti-
cle could be obtained from [48]

εx(u, rc) = − 1

2NLd

∑
q

vRD(q)
∑

k

nk+qnk, (15)
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FIG. 3. The effective interaction weff (r) (in units of the Fermi
energy εF) versus rkF obtained within the KP approximation at
two fixed values of RckF and for different values of the interaction
strength for 3D (left) and 2D (right) Rydberg-dressed Fermi liquids.
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FIG. 4. (top panels) The interacting part of the ground-state en-
ergy per particle εint (in units of the interaction strength U ) versus
U/εF for different values of the soft-core radius, obtained from the
KP approximation for 3D (left) and 2D (right) Rydberg-dressed
Fermi liquids. (bottom panels) Same as the top panels, but for the
correlation energy εc.

where N is the particle number, L is the sample length, and nk
is the Fermi-Dirac distribution function, which becomes a step
function 
(εF − εk ) at zero temperature. Analytic summation
over q and k in Eq. (15) is possible and yields

ε(3D)
x (u, rc) = εFu

4r3
c

{
e−2rc (1 + rc)2 − 2r3

c + 2r2
c + 1

− e−rc
[√

3
(
2rc + r2

c

)
sin(

√
3rc)

+ (
2 + 2rc − r2

c

)
cos(

√
3rc)

]}
, (16)

and [39]

ε(2D)
x (u, rc) = εFu

2

⎡
⎢⎣1 −

G4,3
3,9

(
r6

c
36

∣∣∣ 1
6 , 1

2 , 5
6

0, 1
3 ,1,− 1

3 , 1
3 , 2

3

)

3
√

3

⎤
⎥⎦, (17)

in three and two dimensions, respectively. Here, G(· · · ) is the
Meier G function [51].

The correlation energy εc itself is defined through Eq. (13)
as the difference between the exact ground-state energy and
the Hartree-Fock energy and needs to be approximated. We
use the coupling constant integration as introduced through
Eq. (8), with the pair distribution function obtained from the
KP calculations to find the correlation energy of three- and
two-dimensional Rydberg-dressed Fermi liquids for different
values of the coupling strengths and soft-core radii.

In Fig. 4 we present the interaction contribution to the
ground-state energy εint = εGS − ε0 and the correlation en-
ergy εc versus the interaction strength for different values of
the soft-core radius. The correlation energy, as expected, is
negative but the total ground-state energy is an increasing
function of both u and rc. As it is clear from the analytic
expressions (14) and (15), very weak nonlinear u dependence
of the interaction energy (top panels of Fig. 4) originates
solely from the correlation energy (bottom panels of Fig. 4).

Rc kF
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ε G
S 
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FIG. 5. The correlation energy per particle εc in units of the
total ground-state energy εGS, as a function of the soft-core radius
rc at several values of the coupling strength u, calculated within the
KP formalism for 3D (left) and 2D (right) Rydberg-dressed Fermi
liquids.

Figure 5 illustrates the soft-core radius dependence of
the correlation energy of a Rydberg-dressed Fermi liquid.
The correlation energy has a considerable contribution to the
ground-state energy only at intermediate values of the soft-
core radii (i.e., rc ≈ 2) and at large coupling strengths. For
both small and large values of rc, the correlation energy has
a small value, and the KP ground-state energies approach the
mean-field HF results. This can be attributed to the behavior
of the bare potential. At small values of Rc, the potential is
short-ranged decaying as 1/r6, and for large Rc the potential
is almost constant.

D. The dynamical structure factor and collective modes

The zero-temperature dynamical structure factor is propor-
tional to the imaginary part of the interacting density-density
response function

S(q, ω) = − h̄

nπ
Im mχ (q, ω). (18)

Using a static approximation for the effective interaction, such
as the one given by Eq. (12), the imaginary part of the density-
density response function remains nonzero only inside the
single-particle excitation continuum, where the imaginary part
of the noninteracting density-density response function is
nonzero and along the dispersion of collective density mode,
where it is proportional to a Dirac delta peak [48]. In Fig. 6
we illustrate the dynamical structure factor for three- and
two-dimensional Rydberg-dressed Fermi liquids at a fixed
interaction strength and for two different values of the soft-
core radius. The broadening of the collective mode inside the
single-particle excitation continuum due to its damping into
particle-hole pairs is evident. At larger values of the soft-core
radius (bottom panels) softening of the collective mode inside
the continuum is an indication of the density-wave instability,
which will be discussed in detail in the next section.

E. Density-wave instability

When the static density response function of a homoge-
neous system diverges, or equivalently its static dielectric
function becomes zero at a specific wave vector qI , the ho-
mogeneous system becomes unstable to a density-modulated
phase with wavelength λI = 2π/qI . However, one should
note that this instability corresponds to a second-order phase
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FIG. 6. The density plots of the dynamical structure factor (in
units of h̄/εF) versus q/kF and h̄ω/εF at a fixed value of the inter-
action strength U = 3εF and for two fixed values of the soft-core
radius for 3D (left) and 2D (right) Rydberg-dressed Fermi liquids.
The green lines h̄2q2/(2m) ± h̄2kFq/m, show the borders of the
single-particle excitation continuum where the imaginary part of
the noninteracting density-density response function is nonzero. The
imaginary part of the density-density response function outside the
continuum is broadened by 10−4 to make the Dirac delta peak of the
collective mode visible.

transition in the density channel and relies on the presumption
that no first-order phase transition, or a competing second-
order phase transition in other channels, precedes it.

Using the mean-field Hartree-Fock approximation and the
above-mentioned density instability criterion from the density
response function within the RPA, a metallic quantum solid
phase has been predicted for a 3D system of Rydberg-dressed
fermions [38]. The mean-field method predicted a first-order
phase transition from a homogeneous phase to the bcc crys-
talline structure, but interestingly the phase boundary between
liquid and solid phases obtained from two techniques was
in very good agreement. For a two-dimensional system of
Rydberg-dressed fermions, density instability has been in-
vestigated using the RPA for the density-density response
function [39] too. In Fig. 7, we compare the phase diagram
of Rydberg-dressed fermions obtained from the poles of the
density-density response function (9) in the static limit, within
the RPA, where Vph(q) is replaced with the bare interaction
vRD(q), and the FHNC approximation, where the effective
interaction is extracted from Eq. (12) using the numerical data
for the static structure factor obtained from KP calculations.
In the latter approximation, the effects of the exchange and
correlation holes are approximately included in the effec-
tive interaction. This inclusion of exchange-correlation effects
within the KP approximation makes the homogeneous liquid
phase more stable. This is in line with the results obtained
from the improvements over RPA with the inclusion of the
Hubbard local-field factor [39]. However, the phase boundary
seems not to be very sensitive to the exchange-correlation
at intermediate and large soft core radii. At small values of
rc, the difference between the two approximations becomes
significant and, eventually, we do not find any instability at

 0
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FIG. 7. The phase diagram of 3D and 2D Rydberg dressed
fermions versus u and rc, obtained from the RPA and FHNC ap-
proximation. The stable homogeneous Fermi liquid (FL) phase and
regions where it becomes unstable towards the density wave instabil-
ity phase (DWI) are shown in the phase diagram.

much smaller soft-core radii when we include the effects of
exchange-correlation in the effective interaction.

As the static noninteracting density-density response func-
tion χ0(q, ω = 0) is always negative, the vanishing of the
denominator of Eq. (9) is possible only in the regions of
wave vector where the effective interaction is also nega-
tive. As the Fourier transform of the bare interaction vRD(q)
becomes negative around q ≈ 5/Rc, the wavelength of the
density-modulated phase would be directly proportional to the
soft-core radius within the RPA. At small enough soft-core
radii, the RPA unphysically predicts instability whose wave-
length λI is much smaller than the average distance between
particles, i.e., qI � 2kF [39]. In contrast, when the effective
interaction is extracted from the static structure factor, the
instability wave vector is given by the location of the main
peak in S(q). As discussed in Sec. III B, this is related to the
average spacing between droplets in the crystalline phase, and
never exceeds 2kF.

To obtain the lattice constant and the approximate number
of atoms in each droplet, we determine the instability wave
vector from the main peak of the static structure factor and
then obtain the lattice constant and the number of atoms in
each droplet. The wave vector corresponding to the main
peak of the static structure factor is related to the lattice
constant through qI = (2π

√
2)/abcc and qI = 4π/(

√
3atri ), in

three-dimensional body-centered cubic and two-dimensional
triangular lattices, respectively. The number of atoms in each
droplet is given by Nd = n�, where n is the density of
particles which is given in terms of the Fermi wave vector
as n(3D) = k3

F/(6π2) and n(2D) = k2
F/(4π ). The volume (or

area) of the unit cell � is related to the lattice constant as
�(3D) = a3

bcc/2 and �(2D) = √
3a2

tri/2, respectively, for the
chosen three- and two-dimensional lattice structures.

We have reported the properties of representative lattice
structures made of quantum droplets, in three and two dimen-
sions, in Table I. In both spatial dimensions, increasing the
dimensionless soft-core radius rc, the lattice constant and the
number of particles in each droplet increases.
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IV. SUMMARY

We have studied the ground-state properties of Rydberg-
dressed Fermi liquids in two and three dimensions in the
framework of Fermi-hypernetted-chain Euler-Lagrange ap-
proximation. The emergence of an extra small distance peak
in the pair distribution function and the shift of the main
peak in the static structure factor to long wavelengths with
increasing interaction strength or the soft-core radius signals
the phase transition from the homogenous Fermi liquid to
quantum droplet crystalline phase.

We expect that our anticipated quantum droplet regime
to be experimentally accessible. If one considers 40K atoms
excited to the 62S state, the bare van der Waals coefficient
would be C6/h̄ ≈ −2π × 129.8 GHz μm6 [52]. The soft core
radius of Rc ≈ 5.6 μm is obtained for the red laser detun-
ing frequency of |�| ≈ 2π × 2 MHz. rc ≈ 5 requires n3D ≈
1.2 × 1010 cm−3 and n2D ≈ 6.2 × 106 cm−2 in three and two
dimensions, respectively, and the Rabi frequency of at least
� ≈ 2π × 400 kHz would be necessary to observe the for-
mation of quantum droplets (i.e., to get u ≈ 4).

We have also calculated the ground-state energy of the ho-
mogeneous liquid phase. We found that the correlation energy
is considerable only at intermediate values of the soft-core
radii. At both small and large values of the soft-core param-
eter, the mean-field approximation seems to be adequate to
describe the physics of the Rydberg-dressed fermions. We
should note that, to the best of our knowledge, more accurate
numerical techniques such as the quantum Monte Carlo sim-
ulations are not yet available for Rydberg-dressed fermions.
However, previous experience with Fermi liquids with other
forms of interactions [41–43], suggests that the KP results
for the ground-state energy are generally reliable up to very
strong couplings. The relative error in comparison to the exact
results is not expected to exceed a few percent.

Our results for the correlation energy of the homogeneous
Rydberg-dressed Fermi liquid could be used as input for the
density-functional theory like studies of inhomogeneous sys-
tems, such as the more realistic trapped systems.

We should also note that we have examined other
approximate methods such as the RPA and Singwi-Tosi-Land-
Sjölander (STLS) approximations [53] to find the ground-
state properties and the correlation energy of Rydberg-dresses
Fermi liquids [54]. Notably, within the RPA the correlation
energy is strongly overestimated. This leads to an erro-
neous prediction of the self-bound state for Rydberg-dressed
fermions. The STLS approximation, although it largely im-
proves the RPA results for the ground-state energy, even at
intermediate couplings its pair distribution function severely
violates the exact conditions, i.e., the positivity and vanishing
on-top value [54].
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APPENDIX A: HYPERNETTED-CHAIN
EULER-LAGRANGE METHOD

Here, we provide a brief overview of the microscopic de-
scription of a homogeneous many-body quantum system at
zero temperature and in the thermodynamic limit, within the
HNC-EL formalism. We consider the following Hamiltonian
for the interacting system:

H =
N∑

i=1

p2
i

2m
+

N∑
i< j

v(ri j ). (A1)

Whenever interactions between particles become strong,
perturbation theory is no longer applicable to solve the many-
particle Schrödinger equation. Therefore, a nonperturbative
approach such as HNC-EL variational approach is needed.
Within this approach, the ground-state wave function is ap-
proximated as

�T = FN (1, . . . , N )φ(1, . . . , N ), (A2)

where FN (1, . . . , N ) is the N-particle correlation operator that
is assumed to be symmetric and φ(1, . . . , N ) is a wave func-
tion of a noninteracting model of the system and determines
the symmetry of the ground-state wave function. Discarding
the three-body and higher-order correlations, the correlation
operator assumes the Jastrow-Feenberg form given by

F (r1, . . . , rN ) =
N∏

i< j

f (ri j ), (A3)

where f (r) is the Jastrow factor and it goes to zero as r → 0
and tends to unity as r → ∞. The exact form of f (r) is not
known, but it can be determined by variational method

∂

∂ f

〈�T |Ĥ |�T 〉
〈�T |�T 〉 = 0. (A4)

The exact solution of this equation could be obtained, e.g.,
from Monte Carlo methods, but here we use the analytic
cluster expansion method to calculate the integrals in the
expectation value of Hamiltonian [55]. The contribution of
potential energy in the expectation value of Hamiltonian is
calculated as follows:

1

N
〈V̂ 〉 ≡ 1

N

〈
�T

∣∣∑
i< j v(ri j )

∣∣�T
〉

〈�T |�T 〉
= N (N − 1)

2N

〈�T |v(r12)|�T 〉
〈�T |�T 〉

= n2

2N

∫
dr1dr2v(r12)g(r1, r2), (A5)

where the two-particle radial distribution function is defined
as

g(r1, r2) ≡ N (N − 1)

n2

∫
dR12|�T |2∫
dR|�T |2 , (A6)

with
∫

dR = ∫
dr1 . . . drN and

∫
dR12 = ∫

dr3 . . . drN . For
uniform and homogeneous systems that are invariant under
rotation and translation, g(r1, r2) depends only on r = r1 − r2,
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and we find
1

N
〈V̂ 〉 = n

2

∫
drv(r)g(r). (A7)

Obtaining the contribution of the kinetic energy is more cum-
bersome and we refer to Refs. [56–59]. After calculating the
contributions of potential and kinetic energies, the total energy
per particle is written as

〈H〉 = n

2

∫
drg(r)

[
v(r) − h̄2

2m
∇2 ln f (r)

]
. (A8)

As we can see in this expression, the energy per particle is
related to g(r) and f (r). It is convenient to do the variation
with respect to g(r) instead of f (r). The simplest way to do
this is done within the HNC/0 approximation, where we can
express f (r) as

ln f (r) = 1

2

[
ln g(r) − 1

(2π )3n

∫
(S(q) − 1)2

S(q)
eiq·rdq

]
.

(A9)

After inserting Eq. (A9) into Eq. (A8), the energy per particle
is obtained in terms of g(r):

〈H〉 = n

2

∫
drg(r)v(r) − h̄2

8m

1

(2π )3n

×
∫

dqq2 [S(q) − 1]3

S(q)
− n

2

h̄2

4m

∫
drg(r)∇2 ln g(r).

(A10)

To obtain equations for the optimal pair distribution func-
tion g(r), we minimize the energy expectation value of
the system with respect to g(r) by performing a functional
derivative

∂〈H〉
∂
√

g(r)
= 0, (A11)

and what ensues is Eq. (2).

APPENDIX B: COMPARISON BETWEEN KALLIO-PIILO
AND LADDER+APPROXIMATIONS FOR THE EFFECTIVE

INTERACTION

Recently, Panholzer, Hobbiger, and Böhm (PHB) pro-
posed a new particle-hole effective potential for the Fermi-
hypernetted-chain approximation, based on the approximate
summation of ladder and ring diagrams [47]. The self-
consistent equations of PHB essentially become identical to
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FIG. 8. Comparison between the results of KP (lines) and PHB
(symbols) approximations for the Fermi potentials of FHNC method,
for static structure factor (top) and pair distribution function (bottom)
of 3D (left) and 2D (right) systems of Rydberg dressed fermions
for several coupling strengths. The dimensionless soft-core radius is
rc = 2 in all panels.

the KP equations if one replaces the Fermi potential wF(r) in
equation (5) with

wPHB
F (r) = h̄2

m

∇2
r
√

g0(r)√
g0(r)

+ wl (r), (B1)

where

wl (q) = εq

2n

[
2S(q)

(
1 − 1

S3
0 (q)

)
− 3

(
1 − 1

S2
0 (q)

)]
. (B2)

In Fig. 8, we compare the results for the static structure factor
and pair distribution function of Rydberg-dressed fermions,
obtained from the KP and PHB approximations. Both meth-
ods give very similar results for the set of parameters we
have checked here. The PHB method gives slightly more pro-
nounced peaks for both the static structure factor and the pair
distribution function at strong couplings. Validation of both
methods and their performance at different coupling strengths
requires more accurate results, e.g., those obtained from the
quantum Monte Carlo simulations. Such benchmark data are
not yet available in the literature.
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