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Field-theoretical aspects of one-dimensional Bose and Fermi gases with contact interactions
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We investigate local quantum field theories for one-dimensional (1D) Bose and Fermi gases with contact
interactions, which are closely connected with each other by Girardeau’s Bose-Fermi mapping. While the
Lagrangian for bosons includes only a two-body interaction, a marginally relevant three-body interaction term is
found to be necessary for fermions. Because of this three-body coupling, the three-body contact characterizing a
local triad correlation appears in the energy relation for fermions, which is one of the sum rules for a momentum
distribution. In addition, we apply in both systems the operator product expansion to derive large-energy and
momentum asymptotics of a dynamic structure factor and a single-particle spectral density. These behaviors are
universal in the sense that they hold for any 1D scattering length at any temperature. The asymptotics for the
Tonks-Girardeau gas, which is a Bose gas with a hardcore repulsion, as well as the Bose-Fermi correspondence
in the presence of three-body attractions are also discussed.
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I. INTRODUCTION

The quantum field theory (QFT) provides the description
of quantum mechanics for systems with an infinite number
of degrees of freedom. This theoretical framework has been
applied to different subfields of physics and revealed a variety
of phenomena. In particle physics, the standard model based
on gauge principle has provided precise descriptions of three
kinds of forces in nature [1]. Combined with the geometry
of spacetime, QFT predicts the evaporation of black holes
in cosmology [2]. In condensed matter physics, QFT is used
to understand excitation properties in solids [3] as well as in
ultracold atomic gases [4]. The method of QFT also becomes
a powerful tool to study universal physics such as critical
phenomena [5] and low-energy excitations in spatially one-
dimensional (1D) systems [6].

Recently, QFT has been actively applied to understand
universal properties of resonantly interacting systems [7]. For
these systems, the range r0 of an interaction potential becomes
much smaller than an interparticle distance, a thermal de
Broglie wavelength, and a scattering length characterizing the
two-body scattering at low energy. This scale separation of r0

from the other length scales leads to the universal properties
of the systems, which are independent of microscopic details
of the interaction. One representative example is the universal
thermodynamics of the unitary Fermi gas with an infinite
scattering length [8]. Resonantly interacting systems include
ultracold atoms near Feshbach resonances [9], dilute neutron
matters [10], and 4He atoms [11].

One of the striking features in the resonantly interacting
systems is a series of exact relations called universal relations
[12–14]. These relations involve quantities called contacts,
which characterize local few-body correlations, and hold for
any number of particles, temperature, and scattering length

as long as r0 is much smaller than the other length scales.
The universal relations range from thermodynamic properties
and high-energy behaviors of correlation functions such as a
momentum distribution to the energy relation, which is a sum
rule for the momentum distribution. In the QFT formalism,
the universal relations can be systematically derived [13,14].
For example, the renormalization of coupling constants leads
to the energy relation. The operator product expansion (OPE)
[15–17] is available to investigate correlation functions at
short distance or high energy.

Resonantly interacting systems in 1D, which can be
realized with ultracold atomic vapors confined into atom
waveguides [18,19], have characteristic properties. These
systems are described by models with contact interactions
and they are known as integrable systems in homogeneous
cases [20,21]. Another special property is a close relationship
between bosons and fermions via Girardeau’s Bose-Fermi
mapping [22]: All the energy eigenstates of bosons interacting
via an even-wave interaction with a 1D scattering length ae

B
[23] are exactly related to those of fermions interacting via
an odd-wave interaction with ao

F = ae
B [24]. This Bose-Fermi

correspondence has been originally found in the study of
the Tonks-Girardeau gas with ae

B → −0 corresponding to a
noninteracting Fermi gas [22], and it has been generalized to
two-component systems [25]. As a result of the Bose-Fermi
correspondence, bosons and fermions with ae

B = ao
F show the

same properties in some physical quantities (see Sec. II for
details). On the other hand, there are of course explicit dif-
ferences between these two systems. In particular, while the
even-wave interaction is well defined without regularization,
a regularization procedure is necessary to the odd-wave inter-
action [24,26]. There are several ways of the regularization in
the first quantized formalism [24–26].
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The regularization of the odd-wave interaction in QFT
formalism has been previously investigated to study several
universal relations for fermions [27]. In this QFT, fermions
interact via a local two-body interaction, and the renormaliza-
tion of the corresponding coupling constant is performed by
solving a two-body scattering problem. Using this renormal-
ized coupling as well as OPE, Ref. [27] has derived universal
relations such as power-law tails of a momentum distribution
and of a radio-frequency spectroscopy as well as the adiabatic
relation. However, as shown later in this paper, a three-body
problem in this QFT suffers from an ultraviolet divergence,
which cannot be renormalized by the two-body coupling con-
stant. In addition, the energy relation derived from this theory
is inconsistent with the result based on the first quantized for-
malism [28]: The three-body contact describing a local triad
correlation is not included in the former but appears in the
latter [see Eq. (4b)], while its necessity has been demonstrated
in the limit of ao

F → ∞ [28]. These issues imply that, besides
the renormalization of the two-body coupling constant, fur-
ther considerations are needed to construct QFT describing
fermions with the odd-wave interaction.

In this paper, a comparative study of universal relations
for 1D bosons and fermions connected with each other via
the Bose-Fermi mapping is presented from the viewpoint of
QFT. In particular, we focus on analytical studies of the uni-
versal relations. For both systems, OPE is applied to derive
asymptotic behaviors of dynamic structure factors and single-
particle spectral densities at large energy and momentum.
These dynamic correlation functions are important because
they include information about excitations of the systems.
Also, QFT for fermions applicable to three- and higher-body
problems is constructed. We show that a marginally relevant
three-body interaction term is necessary to describe fermions
whose interaction is characterized only by one length scale
ao

F . To demonstrate the validity of the constructed theory, we
study a binding energy of three fermions and confirm that it
corresponds to a three-boson bound state found by McGuire
[29]. In addition, we show that the three-body contact in the
energy relation originates from the three-body coupling term
in the QFT formalism.

This paper is structured as follows: In Sec. II we start with
a brief review of 1D gases. Section III is devoted to QFT
for bosons to investigate dynamic correlation functions. The
quantum field theory for spinless fermions is investigated in
Sec. IV. We conclude this paper in Sec. V. Our main re-
sults are universal relations for dynamic correlation functions
[Eqs. (39), (40), (56), (59), (60), (89), and (90)] and a nonzero
three-fermion coupling constant in Eq. (71). Throughout this
paper, the unit system of h̄ = kB = 1 is used and the 1D scat-
tering lengths are set as ae

B = ao
F = a so that the connection

between bosons and fermions becomes apparent.

II. BOSE-FERMI CORRESPONDENCE

Before the discussion of QFT, we briefly review important
properties of 1D Bose and Fermi gases with contact interac-
tions in the first quantized formalism. One way to represent
contact interactions in this framework is to use pseudopoten-
tials [23–26]. Interaction potentials for bosons and fermions

are given by

VB(x) = − 2

ma
δ(x), VF (x) = −2a

m
δ′(x)Dx, (1)

respectively, where m is a mass of particles. As explained
above, the regularization of the contact interaction is nec-
essary for fermions. Here we adopted a procedure with a
regularized differential operator Dx [25,28]. This operator acts
on an N-body wave function as Dxi j �(x) = ∂

∂xi j
�(x)|xi j=+0,

where x = (x1, . . . , xN ) denotes a set of coordinates of N par-
ticles and xi j = xi − x j refers to a relative coordinate between
ith and jth particles. The strengths of the pseudopotentials are
characterized by the 1D scattering length a and are inversely
proportional to each other for bosons and fermions.

If we pick up an N-body wave function �F (E ; x) with
energy eigenvalue E in the fermionic theory, there always
exists its counterpart �B(E ; x) with the same energy in the
bosonic one. These two wave functions are related to each
other by the following Bose-Fermi mapping [22]:

�B(E ; x) =
∏
i< j

sgn(xi j )�F (E ; x), (2)

where sgn(x) equals +1 (−1) for x > 0 (x < 0). The inverse
proportion of the interaction strengths in Eq. (1) shows that
weakly (strongly) interacting bosons are mapped to strongly
(weakly) interacting fermions. Because of the correspondence
in the energy spectrum, bosons and fermions with a, N ,
and temperature T fixed share the same partition function.
As a result, all the thermodynamic quantities are identical
between these two systems. In the homogeneous cases, the
ground state energy as well as the partition function at finite
T are well studied on the bosonic side by the method of
the Bethe ansatz [21]. For a repulsive interaction (a < 0),
the ground state energy and the partition function at finite
T in the thermodynamic limit can be exactly calculated by
solving the Lieb-Liniger and Yang-Yang equations, respec-
tively [23,30]. On the other hand, for an attractive interaction
(a > 0), there is one N-body bound state with energy E =
−N (N2 − 1)/(6ma2) [29]. In this paper, we focus on the
thermodynamic limit for a < 0 except for the investigation of
three-fermion bound states in Sec. IV A and Appendix B.

Since the mapping in Eq. (2) never changes the absolute
value of the wave functions, the two systems also share the
same density correlations including static and dynamic struc-
ture factors. In what follows, we abbreviate the label B/F
for physical quantities identical between bosons and fermions.
The two- and three-body contacts C2 and C3 can be expressed
in terms of density correlations at short distances. In order to
clarify the connections of the contacts between bosons and
fermions [27], we here use the following definitions in which
the two systems with N , T , and a fixed have the same C2 and
C3 [28]:

C2 =
∫

dx C2(x) =
∫

dx lim
y→x

〈n̂(x)n̂(y)〉, (3a)

C3 =
∫

dx C3(x) =
∫

dx lim
y,z→x

〈n̂(x)n̂(y)n̂(z)〉, (3b)

where n̂(x) = ∑N
i=1 δ(x − xi ) is the number density opera-

tor in the Schrödinger picture and 〈· · · 〉 denotes a thermal
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average. The two-body (three-body) contact density C2(x)
[C3(x)] measures the probability that two (three) particles
come into contact with each other at the position x. In the
homogeneous cases, C2(x) and C3(x) can be exactly calculated
by the Bethe ansatz [31–35].

Unlike thermodynamics and density correlations, single-
particle correlations such as momentum distributions and
single-particle spectral densities are not forced to be identi-
cal between bosons and fermions. Indeed, universal relations
for momentum distributions reflect the difference between
them. The momentum distributions for a large momentum
behave as ρB(k) = 4C2/(a2k4) for bosons [36] and ρF (k) =
4C2/k2 for fermions [27,28]. [Here ρB/F (k) are normalized as∫

(dk/(2π ))ρB/F (k) = N .] Other universal relations involving
ρB/F (k) are energy relations. In the absence of a trapping
potential, the energy relations for bosons and fermions are
given by

E =
∫

dk

2π

k2

2m
ρB(k) − C2

ma
, (4a)

E =
∫

dk

2π

k2

2m

(
ρF (k) − 4C2

k2

)
+ C2

ma
+ 2C3

m
, (4b)

respectively [28,37]. In the case of bosons, the interaction
energy is governed by a contribution from the configuration
where only two particles approach each other, leading to the
last term in Eq. (4a). On the other hand, the effect of the con-
figuration where a trio of particles approach each other is not
negligible for fermions and thus C3 appears in the energy rela-
tion. This situation is similar to the 3D cases with the Efimov
effect [38] in the sense that three-body correlations cannot
be neglected in the energy relation [39,40]. As mentioned in
Sec. I, the necessity of C3 in Eq. (4b) was demonstrated in the
limit of a → ∞ [28].

In the next two sections to discuss QFT, we use the
following shorthand notations: The differential ∂

↔
is de-

fined by A∂
↔

B ≡ [A∂B − (∂A)B]/2, X = (t, x) refers to a
spacetime coordinate, and K = (K0, K1) = (ω, k) to a set
of energy ω and momentum k. The inner product between
K and X is given by K · X = ωt − kx, and AB · · ·C(X ) ≡
A(X )B(X ) · · ·C(X ) is assumed.

III. BOSONS

This section is devoted to studies of high-energy behav-
iors of dynamic correlation functions for 1D bosons. The
Lagrangian density for bosons with an even-wave interaction
is given by

LB = φ†

(
i∂t + ∂2

x

2m

)
φ + 1

ma
φ†φ†φφ, (5)

where φ is a bosonic field. For convenience of diagrammatic
calculations, we perform the Hubbard-Stratonovich transfor-
mation [3]. The transformed Lagrangian density is

L′
B = φ†

(
i∂t + ∂2

x

2m

)
φ − 1

ma
(	†	 − 	†φ2 − φ†2	), (6)

where 	 is introduced as an auxiliary bosonic field. Because
the Euler-Lagrange equation for 	† provides 	 = φ2, 	 has

(b)

=iAB/F

K/2 + P K/2 + P

K/2 − PK/2 − P

= +

(a)

K

FIG. 1. Feynman diagrams for (a) the full dimer propagator and
(b) the two-body scattering amplitude. The solid, dotted, and dashed
lines indicate iG(K ), iD(0)

B/F , and iDB/F (K ), respectively.

the degree of freedom of a dimer. In terms of field opera-
tors, the number density operator in the Heisenberg picture
is written as n̂(X ) = φ†φ(X ). In this bosonic theory, there is
no renormalization of composite operators, and thus we can
naively take the limit in Eqs. (3):

C2 = 〈φ†2φ2(X )〉 = 〈	†	(X )〉, (7a)

C3 = 〈φ†3φ3(X )〉 = 〈	†φ†φ	(X )〉. (7b)

Note that the contact densities of a thermal equilibrium state
are independent of X because the system is translationally
invariant in spacetime.

We now present notations in Feynman diagrams for later
diagrammatic calculations. The propagator iG(K ) = iG(ω, k)
of a boson with energy ω and momentum k is denoted by a
solid line and given by

G(K ) = 1

ω − k2

2m + i0+ . (8)

On the other hand, a dashed (dotted) line denotes a full (bare)
propagator iDB(K ) (iD(0)

B = −ima) of a dimer. Solving the
Dyson equation in Fig. 1(a), where the boson-dimer vertex
is 2i/(ma), we obtain

DB(K ) = − ma

1 − 1/(aβK )
(9)

with βK ≡
√

k2/4 − mω − i0+. Unlike contact interactions in
higher dimensions, DB(K ) is obtained without regularization.
The scattering amplitude of two bosons iAB(K ) depicted in
Fig. 1(b) is related to DB(K ) through

AB(K ) = − 4

m2a2
DB(K ) = 4

m

1

a − 1/βK
. (10)

Note that incoming and outgoing bosons have the same total
energy ω and center-of-mass momentum k because of the
energy and momentum conservations.

The dynamic structure factor S(K ) and the single-particle
spectral density AB(K ) are defined as the imaginary parts of
retarded response functions:

S(K ) = − 1

π

Im
[〈
GR

n̂ (K )
〉]

1 − e−ω/T
, (11)

AB(K ) = − 1

π
Im

[〈
GR

φ (K )
〉]
, (12)
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where GR
A (K ) = −i

∫
d2X eiK ·X− 0+tθ (t )[A(X ), A†(0)] and

θ (t ) is the Heaviside step function. In the QFT framework,
it is more convenient to calculate time-ordered Green’s
functions defined by

〈GA(K )〉 = −i
∫

d2X eiK ·X 〈T [A(X )A†(0)]〉 (13)

than 〈GR
A (K )〉 because diagrammatic calculations are directly

applicable. From the Lehmann representations, Eqs. (11) and
(12) are rewritten as

S(K ) = − 1

π
Im[〈Gn̂(K )〉] + O(e−ω/T ), (14)

AB(K ) = − 1

π
Im[〈Gφ (K )〉] + O(e−ω/T ). (15)

We will study S(K ) and AB(K ) at high energy ω > 0 and large
momentum |k| by using OPE.

In this section, we proceed as follows: We begin with
the introduction of OPE in Sec. III A. Then OPE is ap-
plied to the density (single-particle) Green’s function in
Sec. III B (Sec. III D). The asymptotic behaviors of the dy-
namic structure factor and the single-particle spectral density
at large energy and momentum are discussed in Sec. III C and
Sec. III E, respectively.

A. Operator product expansion

In QFT, OPE states that the product of two operators A(X )
and B(0) at different spacetime points can be given by a sum
of local operators O at X = 0 [15–17]:

A(X )B(0) =
∑
O

wO(X )O(0). (16)

Hereafter, a shorthand notation O = O(X = 0) is used. The
quantities wO(X ) called Wilson coefficients are c-number
functions of X . Such an operator product appears in studies
of static or dynamic correlation functions including S(K ) and
AB(K ). From OPE in Eq. (16), GA(K ) in Eq. (13) can be
expressed as

GA(K ) =
∑
O

W O
A (K )O. (17)

The dependences of Wilson coefficients on the operator A are
explicitly shown for later convenience.

The operator product expansion becomes a powerful tool to
study 〈GA(K )〉 at large energy and momentum, i.e., in a region
where

√
m|ω| and |k| are much larger than typical scales of a

given state such as n = 〈n̂〉 and
√

mT . To see the usefulness
of OPE, let us take thermal averages of both sides of Eq. (17).
By dimensional analysis, 〈GA(K )〉 is expressed as

〈GA(K )〉 =
∑
O

1

k�O+3−2�A
f OA

(
k2

2mω

)
〈O〉, (18)

where f OA (k2/(2mω)) is a dimensionless function. The scal-
ing dimension �O is defined so that the equal-time correlation
function 〈O(0, x)O†(0)〉 with small separation x behaves as
1/|x|2�O . In our counting scheme, dimensions of particle
mass, momentum, and energy are counted as 0, 1, and 2, re-

spectively. Equation (18) shows that Wilson coefficients with
small �O dominate 〈GA(K )〉 at large energy and momentum.

Since OPE is an operator identity, the expansion of
〈GA(K )〉 for large K [Eq. (18)] is valid for any average 〈· · · 〉,
i.e., universal in the sense that it is independent of details of a
given many-body state such as a number density and a temper-
ature. In nonrelativistic QFT, W O

A (K ) of local operators with
small �O can be determined by solving few-body problems
as shown below. On the other hand, information specific to the
given many-body state is encoded in local physical quantities
〈O〉.

In the case of 1D bosons described by the Lagrangian
density (6), the dimensionless coefficients f OA (k2/(2mω))
in Eq. (18) depend not only on k2/(2mω) but also on a
scaled interaction strength 1/(ka). Therefore, the behavior
of f OA (k2/(2mω), 1/(ka)) for large |k| with k2/(2mω) and
a fixed is equivalent to that for large |a| with k2/(2mω) and
k fixed except for the case of a vanishing scattering length.
Recalling Eq. (1) or (5), we see that the limit of an infinite
scattering length corresponds to the noninteracting limit. A
perturbative few-body calculation is thus available to derive
the large-K behavior of 〈GA(K )〉. Since the power-law tail of
〈GA(K )〉 results from the interaction, the dimensionless coeffi-
cients for small 1/(ka) with k2/(2mω) fixed can be expanded
as

f OA

(
k2

2mω
,

1

ka

)
=

(
1

ka

)NO
A

gOA

(
k2

2mω

)
+ · · · (19)

with NO
A > 0. This means that the power-law decays of

W O
A (K ) are shifted by NO

A from the estimation in Eq. (18)
based on scaling dimensions. This situation in 1D bosons
with a finite interaction strength is similar to that in 1D
two-component fermions [41]. We note that the perturbative
few-body analysis of the Wilson coefficients does not mean
the perturbative treatment of the many-body state because the
expectation values 〈O〉 in Eq. (18) depend nonperturbatively
on a dimensionless coupling constant γ = −2/(na), which
characterizes the interaction strength of 1D bosons with the
number density n. On the other hand, the above analysis
cannot be applied to 1D fermions with an odd-wave interac-
tion studied in Sec. IV. In this case, the limit of an infinite
scattering length is no longer the weakly interacting limit as
in the 3D cases with s-wave interactions. Thus, NO

A > 0 is not
imposed and some nonperturbative treatment is necessary to
compute W O

A (K ). Similarly, such a shift is not imposed on
the Tonks-Girardeau gas with a hardcore repulsion (−1/a →
+∞).

In the following subsections, we apply OPE to the deriva-
tions of large-K tails of density and single-particle Green’s
functions. Since the two-body contact density C2 = 〈	†	〉
is a central quantity in the context of universal relations, we
focus on how C2 affects these correlation functions at large
energy and momentum. In order to determine the Wilson co-
efficient of 	†	, we have to take the following local operators
into account: the unit operator

1 (20)

with �1 = 0, one-body operators

Ob,c = φ†(i∂
↔

t )
b(−i∂

↔
x )cφ (21)
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with �Ob,c = 2b + c + 1 � 4, and a dimer density operator

	†	 ∼ φ†φ†φφ (22)

with �	†	 = 2. We note that local operators with total deriva-
tives are not considered because their thermal averages vanish
by the translational invariance of the system. Similarly, ther-
mal averages of Ob,c with odd c also vanish due to the
inversion invariance, while these Ob,c should be taken into
account in few-body calculations to determine the Wilson
coefficient of 	†	.

The Wilson coefficients of above local operators can be
determined by the following matching procedure: First, ma-
trix elements of these local operators O with respect to
states 〈μ| and |ν〉 are computed. Second, the matrix elements
〈μ|GA(K )|ν〉 are calculated and expanded in small momen-
tum scales Pex associated with the external states. Then, by
demanding that the expansions of both sides of Eq. (17)
match in each order of Pex, the coefficients W O

A (K ) are de-
termined. Because OPE is an operator identity, the simplest
states for which 〈μ|O|ν〉 is nonzero can be used to determine
W O

A (K ). For instance, the vacuum state |vac〉 with no particle
is available to determine the coefficient of the unit operator.
Because of 〈vac|O|vac〉 = 0 for O �= 1 on the right-hand side
of Eq. (17), taking vacuum expectation values of both sides
yields W 1

A (K ) = 〈vac|GA(K )|vac〉. Similarly, expectation val-
ues with respect to a one-boson (two-boson) state are used
to compute the coefficients for one-body operators Ob,c (the
dimer density operator 	†	).

B. OPE for Gn̂(K )

We now apply OPE to the dynamic structure factor S(K ).
By substituting

Gn̂(K ) =
∑
O

W O
n̂ (K )O (23)

into Eq. (14), S(K ) can be expanded as

S(K ) = − 1

π

∑
O

Im
[
W O

n̂ (K )
]〈O〉. (24)

We note that all the local operators O which we take into
account are Hermitian [see Eqs. (20)–(22)], leading to real-
valued 〈O〉.

In order to determine W O
n̂ (K ) for operators in Eqs. (20)–

(22), we employ the matching procedure explained above.
Taking the vacuum expectation values of both sides of
Eq. (23), we find W 1

n̂ (K ) = 〈vac|Gn̂(K )|vac〉 = 0. The coeffi-
cients of Ob,c are derived by evaluating both sides of Eq. (23)
with respect to a one-boson state |φP〉 = |φ(P0,P1 )〉, in which
the boson has energy P0 and momentum P1. Here we do
not impose the on-shell condition, i.e., P0 �= P2

1 /(2m). The
expectation values of Ob,c on the right-hand side equal

〈φP|Ob,c|φP〉 = (P0)b(P1)c, (25)

which can be expressed in terms of the Feynman diagram as
Fig. 2(a). On the other hand, the expectation value of Gn̂(K )
on the left-hand side is given by the diagrams in Fig. 2(b) and
equals

〈φP|Gn̂(K )|φP〉 = G(P + K ) + G(P − K ). (26)

+
P P + K P

(a)

P P P PP − K

(b)

FIG. 2. Diagrams for the expectation values of (a) Ob,c and of
(b) Gn̂(K ) with respect to a one-boson state |φP〉. The open dot
in (a) denotes the insertion of Ob,c, while those in (b) denote the
insertions of the density operators in Gn̂(K ).

By comparing its expansion in P with Eq. (25), the coeffi-
cients are determined by

W Ob,c

n̂ (K ) = 1

b!c!

∂b+cG(K )

∂ωb∂kc
+ (K → −K ). (27)

Because of Im[G(K )] = −πδ(ω − k2/(2m)), all the
W Ob,c

n̂ (K ) in Eq. (24) contribute to S(K ) for ω > 0 only
at the single-particle peak ω = k2/(2m).

To determine the coefficient of 	†	, we next calculate the
expectation values of both sides of Eq. (23) with respect to an
off-shell two-boson state |φ2

P/2〉, in which the two bosons have
the same energy and momentum. For a shorthand notation, we
define 〈· · · 〉2 ≡ 〈φ2

P/2| · · · |φ2
P/2〉. With the help of Eq. (27) de-

termined in the one-boson sector, several terms from 〈Ob,c〉2

on the right-hand side automatically match terms in 〈Gn̂(K )〉2

on the left-hand side. These terms correspond to diagrams
where all the operators are inserted into one external line
and do not affect the determination of W 	†	

n̂ (K ). In addition,
diagrams for 〈Gn̂(K )〉2 in which the two density operators
are inserted into different external lines without interactions
contribute to W 	†	

n̂ (K ) only at K = 0. For these reasons, we
below consider the other diagrams which are necessary to
determine W 	†	

n̂ (K ) for nonzero K .
Let us now calculate the expectation values of local opera-

tors on the right-hand side of Eq. (23). Figures 3(a) and 3(b)
show diagrams contributing to the expectation values of Ob,c

with �Ob,c � 4 and 	†	, respectively, and thus we obtain

〈Ob,c〉2 = [AB(P)]2Ib,c(P), (28)

〈	†	〉2 = m2a2

4
[AB(P)]2, (29)

where integrals corresponding to the loop in Fig. 3(b) are
given by

Ib,c(P) = i
∫

Q
G(Q)[G(P − Q)]2(P0 − Q0)b(P1 − Q1)c (30)

with
∫

Q ≡ ∫
dQ0dQ1/(2π )2. These integrals can be ana-

lytically computed and their explicit forms are shown in
Appendix A [see Eqs. (A2)]. Finally, the expectation value
of the right-hand side of Eq. (23) divided by [AB(P)]2 is

(a) (b)

FIG. 3. Diagrams for the expectation values of (a) Ob,c and of
(b) 	†	 with respect to a two-boson state |φ2

P/2〉.
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(b)

(a)

(c)

+

+

+

FIG. 4. Graph topologies contributing to the expectation value
〈Gn̂(K )〉2.

found to be

∑
O

W O
n̂ (K )〈O〉2

[AB(P)]2
=

∑
�Ob,c�4

W Ob,c

n̂ (K )Ib,c(P)

+ m2a2

4
W 	†	

n̂ (K ) + O(P) (31)

with O(P) ≡ O(βP ) + O(P1). Higher-order contributions
come from higher derivative local operators and they vanish
in the limit of P → 0.

We turn to the expectation value 〈Gn̂(K )〉2 on the left-hand
side of Eq. (23). Diagrams contributing to 〈Gn̂(K )〉2 are de-
picted in Fig. 4. These contributions are given by

〈Gn̂(K )〉(a)

[AB(P)]2
= −AB(K + P)

(
2G(K + P/2)

AB(P)
− J1(K, P)

)2

+ (K → −K ), (32a)

〈Gn̂(K )〉(b)

[AB(P)]2
= −4G(K + P/2)G(−K + P/2)

AB(P)
− J2(K, P),

(32b)

〈Gn̂(K )〉(c)

[AB(P)]2
= J3(K, P) + (K → −K ), (32c)

where integrals corresponding to loops in Fig. 4 are given by

J1(K, P) = i
∫

Q
G(Q)G(P − Q)G(K + P − Q), (33a)

J2(K, P) = −i
∫

Q
G(Q)G(Q + K )G(P − Q)

× G(P − K − Q), (33b)

J3(K, P) = i
∫

Q
G(Q)[G(P − Q)]2G(P + K − Q). (33c)

The analytical expressions of these integrals are shown in
Appendix A [see Eqs. (A4)]. As shown in Eqs. (A5), Eqs. (33)

can be expanded in P as

J1(K, P) = − m

2βP

(
G(K ) + kP1[G(K )]2

2m

)

−βK [G(K )]2 − mG(K )

2βK
+ O(P), (34a)

J2(K, P) = m

βP

(
G(K ) + kP1[G(K )]2

2m

)(
K → −K

)

+ m[G(K )]2

2βK
+ m[G(−K )]2

2β−K
+ O(P), (34b)

J3(K, P) = [G(K )]4

2m

(
k2βK − (mω)2

βK

)

+
∑

�Ob,c�4

1

b!c!

∂b+cG(K )

∂ωb∂kc
Ib,c(P) + O(P). (34c)

The expansion of 〈Gn̂(K )〉2/[A(P)]2 in P can be performed by
summing up Eqs. (32) and substituting Eqs. (34) into the sum.
The result is

〈Gn̂(K )〉2

[AB(P)]2
= m3a

4

[
1

1 − aβK

(
kG(K )

m

)4

+ 4

k2

G(K )

m

− 4

(
G(K )

m

)2

+ (K → −K )

]

+
∑

�Ob,c�4

W Ob,c

n̂ (K )Ib,c(P) + O(P). (35)

By comparing this with Eq. (31) in the limit of P → 0, the
Wilson coefficient of 	†	 is found to be

W 	†	
n̂ (K ) = m

a

[
1

1 − aβK

(
kG(K )

m

)4

+ 4

k2

G(K )

m

− 4

(
G(K )

m

)2

+ (K → −K )

]
. (36)

C. Dynamic structure factor

We now evaluate the large-energy and momentum behavior
of S(K ) [Eq. (24)] away from the single-particle peak. As
shown in the previous subsection, there is no contribution
from the one-body operators to S(K ) for ω �= k2/(2m). The
imaginary part of W 	†	

n̂ (K ) thus dominates S(K ) in the large-
K limit:

S(K ) = − 1

π
Im

[
W 	†	

n̂ (K )
]
C2 + O(K−7) (37)

with C2 = 〈	†	〉. The corrections come from two-body op-
erators with derivatives as well as higher-body operators and
their orders can be estimated with the help of the perturbation
theory. From Eq. (36), the imaginary part of W 	†	

n̂ (K ) reads

− 1

π
Im

[
W 	†	

n̂ (K )
]

= θ (mω − k2/4)
[kG(K )]4

πm3

√
mω − k2/4

1 + a2(mω − k2/4)
. (38)

The Heaviside step function θ (mω − k2/4) represents the
two-particle threshold, which is also pointed out in the 2D
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and 3D cases [42,43]. This threshold reflects the fact that the
excitations of two particles with center-of-mass momentum
k require energies larger than their center-of-mass energy
k2/(4m).

Substituting the expansion of Eq. (38) in large K into
Eq. (37), we can obtain the following power-law behavior of
S(K ) above the two-particle threshold:

S(ω, k) = m

πa2

(
k

mω − k2/2

)4 C2√
mω − k2/4

. (39)

This behavior holds when
√

mω and |k| are much larger than
n = 〈n̂〉, 1/|a|, and

√
mT . As mentioned earlier, C2 can be

exactly calculated for any scattering length and temperature
by the Bethe ansatz. By combining this exact result of C2

with Eq. (39), S(K ) at large K can be completely determined
for any scattering length (0 < −1/a < +∞) and temperature
(T � 0). From the Bose-Fermi correspondence, this power
law in S(K ) holds for 1D fermions with an odd-wave in-
teraction. We note that our result [Eq. (39)] is not valid for
the Tonks-Girardeau gas with a hardcore repulsion (−1/a →
+∞) because the expansion of W 	†	

n̂ (K ) in small 1/|a| �√
mω, |k| was used. Indeed, the Bose-Fermi correspondence

makes S(K ) of the Tonks-Girardeau gas identical to that of
free fermions, which has no power-law tail at large K . Sim-
ilarly, the tail of S(K ) vanishes in the noninteracting limit
(1/a → 0).

Near the Tonks-Girardeau limit (0 < n|a| � 1), S(K ) also
shows another power-law behavior above the two-particle
threshold. Substituting the expansion of Eq. (38) in small a
into Eq. (37), we obtain

S(ω, k) = m
√

mω − k2/4

π

(
k

mω − k2/2

)4

C2. (40)

This behavior holds when
√

mω and |k| are much larger than
n and

√
mT but much smaller than 1/|a|. For mω  k2, the

asymptotic behavior in Eq. (40) reduces to S(ω, k) ∼ k4/ω7/2,
which is consistent with the recent result based on the Bethe
ansatz [44]. We note that, when

√
mω and |k| become much

larger than 1/|a|, S(K ) should again obey Eq. (39) even near
the Tonks-Girardeau limit.

D. OPE for Gφ(K )

Next, we will apply OPE of field operators,

Gφ (K ) =
∑
O

W O
φ (K )O, (41)

to study the large-K behavior of the single-particle spectral
density AB(K ) in Eq. (15). The coefficients W O

φ (K ) for the
local operators in Eqs. (20)–(22) can be determined by the
matching procedure in a similar way as in Sec. III B.

Taking the vacuum expectation values of both sides of
Eq. (41), we find

W 1
φ (K ) = 〈vac|Gφ (K )|vac〉 = G(K ). (42)

Hereafter, G(K ) is subtracted from both sides of Eq. (41) and
OPE for δGφ (K ) = Gφ (K ) − G(K ) is considered, so that dis-
connected diagrams are canceled when its expectation values

(b)

P P

(a)

K

(d)

iTB

P

K

P

P P

K K
K + P

(c)

P P

FIG. 5. Diagrams for the expectation values of (a) δGφ (K ) =
Gφ (K ) − G(K ) with respect to a one-boson state |φP〉 and of (b) 	†	,
(c) Ob,c, and (d) δGφ (K ) with respect to a one-dimer state |	P〉.

are evaluated. The coefficients of Ob,c are derived by evalu-
ating both sides of Eq. (41) with respect to a one-boson state
|φP〉. The expectation values of Ob,c on the right-hand side
are computed in Eq. (25). On the other hand, the expectation
value of δGφ (K ) on the left-hand side is depicted in Fig. 5(a)
and is given by

〈φP|δGφ (K )|φP〉 = −AB(K + P)[G(K )]2. (43)

We note that a diagram in which the two field operators are
connected with different external lines without interactions is
not considered because it contributes to W Ob,c

φ (K ) only at K =
0. By comparing the expansion of 〈φP|δGφ (K )|φP〉 in P with
Eq. (25), the coefficients of Ob,c with �Ob,c � 4 are found
to be

W Ob,c

φ (K ) = − 1

b!c!

∂b+cAB(K )

∂ωb∂kc
[G(K )]2. (44)

Unlike W Ob,c

n̂ (K ) [Eq. (27)] for the density correlation,

W Ob,c

φ (K ) is affected by the interaction through AB(K ). There-
fore, a leading interaction effect on 〈Gφ (K )〉 at large K comes
from the coefficient of O0,0 = n̂ [45]. This point is a charac-
teristic of 〈Gφ (K )〉 different from other correlation functions
such as S(K ) and ρB(k), whose asymptotic behaviors are
governed by the two-body contact.

We now turn to the derivation of W 	†	
φ (K ). Unlike S(K )

and ρB(k), whose coefficients of 	†	 can be determined for
any K and a within two-body calculations, we have to solve
a three-body problem to compute W 	†	

φ (K ). Therefore, it is
more difficult to determine than the coefficients for S(K ) and
ρB(k). For convenience of the three-body calculation, we use
a one-dimer state |	P〉 instead of a two-boson state used in
Sec. III B. First, we evaluate the expectation value of the right-
hand side of Eq. (41) with respect to |	P〉. The expectation
values of 	†	 and Ob,c can be expressed in terms of the
Feynman diagrams as Figs. 5(b) and 5(c), respectively. The
results are

〈	P|	†	|	P〉 = 1, (45)

〈	P|Ob,c|	P〉 = 4

m2a2
Ib,c(P), (46)
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K

P

= +

P

K

iTB iTB

FIG. 6. Diagrammatic expression of the boson-dimer scattering
amplitude [Eq. (50)].

where Ib,c(P) is defined by Eq. (30). The expectation value of
the right-hand side thus reads∑

O �=1

W O
φ (K ) 〈	P|O|	P〉

=
∑

�Ob,c�4

W Ob,c

φ (K )
4

m2a2
Ib,c(P) + W 	†	

φ (K ) + O(P).

(47)

On the other hand, the expectation value δGφ (K ) on the
left-hand side of Eq. (41) is given by the diagram in Fig. 5(d),
and it is evaluated as

〈	P|δGφ (K )|	P〉 = −[G(K )]2TB(K, P; K, P). (48)

Here TB(K, P; K ′, P′) is the boson-dimer scattering amplitude
where K and P (K ′ and P′) are sets of initial (final) energy
and momentum for a boson and a dimer, respectively. Note
K + P = K ′ + P′ because of the energy and momentum con-
servations. Comparing the expansion of Eq. (48) in P with
Eq. (47), we obtain the following expression of W 	†	

φ (K ):

W 	†	
φ (K ) = lim

P→0

[
− [G(K )]2TB(K, P; K, P)

−
∑

�Ob,c�4

W Ob,c

φ (K )
4

m2a2
Ib,c(P)

]
. (49)

While Eqs. (A2) show that Ib,c(P) with small �Ob,c are di-
vergent in P → 0, these divergences are exactly canceled by
those from TB(K, P; K, P) in a similar way as in the 3D cases
[45,46].

The scattering amplitude solves the Skornyakov–Ter-
Martirosyan (STM) equation depicted in Fig. 6:

TB(K, P; K ′, P′)

= tB(K, P; K ′, P′) − i
∫

Q
tB(K, P; Q, K + P − Q)

× G(Q)DB(K + P − Q)TB(Q, K + P − Q; K ′, P′),
(50)

where the inhomogeneous term is given by

tB(K, P; K ′, P′) = − 4

m2a2
G(P′ − K ). (51)

One can solve this STM equation nonperturbatively by the
numerical method used in the 3D cases [45,46]. As explained
previously, however, a perturbative calculation is available
to determine the Wilson coefficients at large K in the case
of 1D bosons. For this reason, we evaluate TB(K, P; K ′, P′)

perturbatively in terms of −1/a in this paper. We then find
tB(K, P; K ′, P′) = O(a−2), while the loop corrections cor-
responding to the integral in Eq. (50) make higher-order
contributions. In addition, Eq. (44) combined with Eq. (10)
shows that the sum in Eq. (49) is O(a−3). Therefore, the
large-K asymptotics of W 	†	

φ (K ) is found to be

W 	†	
φ (K ) = 4

m2a2
G(−K )[G(K )]2 + O(K−7). (52)

Note that power counting of the corrections in a−1 combined
with dimensional analysis leads to that in K−1.

E. Single-particle spectral density

Let us now consider the single-particle properties of 1D
bosons in the large-K limit. First, we study quasiparticle en-
ergy and width near the single-particle peak ω ≈ k2/(2m).
The single-particle Green’s function can be expanded in large
K by taking the thermal average of OPE in Eq. (41). We
consider the expansion up to O(K−6). By using Eqs. (44) and
(52) as well as 〈O0,1〉 = 0 due to the inversion invariance of a
given thermal state, 〈Gφ (K )〉 reads

〈Gφ (K )〉 = G(K ) + W n̂
φ (K ) n + W 	†	

φ (K ) C2 + O(K−7)
(53)

with n = 〈n̂〉 = 〈O0,0〉 and C2 = 〈	†	〉. In general, the
Green’s function takes the form of 〈Gφ (K )〉 = 1/[G−1(K ) −
�(K )] with the self-energy �(K ). The self-energy up to
O(K−2) is thus given by

�(K ) = W n̂
φ (K )

[G(K )]2
n + W 	†	

φ (K )

[G(K )]2
C2 + O(K−3)

= − 4n

ma

(
1 + 1

aβK
+ 1

(aβK )2

)

+ 4C2 G(−K )

m2a2
+ O(K−3). (54)

The pole ω = ωpole of 〈Gφ (K )〉 in a complex plane of ω

gives the quasiparticle energy εB(k) and width �B(k) as

εB(k) = Re[ωpole], �B(k) = −Im[ωpole]. (55)

Within our working accuracy, the pole near the single-particle
peak is given by ωpole = k2/(2m) + �(k2/(2m), k) + O(k−3),
while the quasiparticle residue is ZB = 1 + O(k−3). As a re-
sult, εB(k) and �B(k) in the high-energy region are found to
be

εB(k) = k2

2m

[
1+4γ

(
n

k

)2

−2γ 2

(
2γ+C2

n2

)(n

k

)4
+O(k−5)

]
,

(56a)

�B(k) = k2

2m

[
4γ 2

(
n

|k|
)3

+ O(k−5)

]
, (56b)

where γ = −2/(na) is a dimensionless coupling constant
used in the studies of 1D bosons. The shift of εB(k) from
k2/(2m) depends on n and C2, which is exactly calculable by
the Bethe ansatz, while �B(k) depends only on n. The effect
of C2 on �B(k) is expected to come from loop corrections
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of TB(K, P; K, P) and to appear as subleading terms. With
Eqs. (56), the large-K behavior of AB(K ) near ω ≈ k2/(2m)
takes the form of

AB(ω, k) � 1

π

�B(k)

[ω − εB(k)]2 + [�B(k)]2
. (57)

Equation (56b) shows that the width �B(k) ∼ |k|−1 of the
single-particle peak decreases with increasing |k| as in the 3D
cases with s-wave interactions [45]. Note that the quasiparticle
width in the 2D case decreases logarithmically with increasing
the momentum.

We next turn to AB(K ) in the high-energy region away
from the single-particle peak. From Eq. (44), the imaginary
part of the coefficient for n̂ is given by

− 1

π
Im

[
W n̂

φ (K )
]

= θ (mω − k2/4)
4

πm
[G(K )]2

√
mω − k2/4

1 + a2(mω − k2/4)
. (58)

This imaginary part is of the order of O(K−5) for ω >

k2/(4m). The Heaviside step function represents the two-
particle threshold as in Eq. (38). On the other hand, Eq. (52)
shows that the leading term of W 	†	

φ (K ) is real away from
the single-particle peak. As a result, the large-K behavior of
AB(K ) for ω > k2/(4m) is found to be proportional to n:

AB(ω, k) = 4mn

πa2

1√
mω − k2/4(mω − k2/2)2

. (59)

This behavior holds when
√

mω and |k| are much larger than
n, 1/|a|, and

√
mT .

At the end of this subsection, we comment on AB(K ) for
the Tonks-Girardeau gas with a hardcore repulsion. In order to
derive Eqs. (56a), (56b), and (59), we assumed that

√
mω and

|k| are much larger than |a|−1. These results are thus not valid
for the Tonks-Girardeau gas with −1/a → ∞. Nevertheless,
OPE itself is available to study AB(K ) of the Tonks-Girardeau
gas in the large-K limit. The one-body operators Ob,c with
scaling dimensions �Ob,c = 2b + c + 1 � 4 [see Eq. (21)] are
well defined even in the case of a → −0. A well-defined
auxiliary field for a → −0 is given by 	̃ = a−1	 and the cor-
responding dimer propagator is iD̃B(K ) = imβK . The dimer
density operator 	̃†	̃ has dimension �	̃†	̃ = 4. The Wilson
coefficients of Ob,c are obtained as Eq. (44) in the limit of
a → −0, leading to the large-K behavior of AB(K ) for ω >

k2/(4m) given by

AB(ω, k) = 4mn

π

√
mω − k2/4

(mω − k2/2)2
. (60)

On the other hand, the coefficient of 	̃†	̃ equals
lima→−0[a2W 	†	

φ (K )] [see Eq. (49)]. The determination of
this coefficient requires a nonperturbative computation of
T̃B(K, P; K ′, P′) = lima→−0[a2TB(K, P; K ′, P′)], which is be-
yond the scope of this paper. Such a three-body calculation is
expected to be performed by the method used in Refs. [45,46].

IV. FERMIONS

In this section, we study QFT for spinless fermions cor-
responding to bosons studied in Sec. III. We consider the

following Lagrangian density:

LF = ψ†

(
i∂t + ∂2

x

2m

)
ψ − 1

mv2
�†�

+ 1

m
[�†(ψ (−i∂

↔
x )ψ ) + (ψ†(−i∂

↔
x )ψ†)�]

+ v3

m
�†ψ†ψ�. (61)

Here ψ with dimension �ψ = 1/2 is a fermionic field and
� with dimension �� = 1 is an auxiliary bosonic field rep-
resenting the degree of freedom of a dimer. The coupling
constant v2 characterizes the coupling between two fermions.
When we focus on a two-fermion problem, we can neglect
the last term in LF and perform the path integrals over � and
�†, leading to the Lagrangian density with a local two-body
interaction:

L′
F = ψ†

(
i∂t + ∂2

x

2m

)
ψ + v2

m
|ψ (−i∂

↔
x )ψ |2. (62)

This Lagrangian density is equivalent to the model consid-
ered in Ref. [27]. By calculating a two-fermion scattering
amplitude and matching it to the leading term in the effective-
range expansion, the two-body sector can be regularized by
renormalizing v2. On the other hand, the last term in Eq. (61)
provides the coupling between a fermion and a dimer and is
not considered in the previous work. This term involves a di-
mensionless coupling constant v3 and represents a three-body
coupling for fermions. Since this term is marginal in the sense
of the renormalization group, it should be taken into account
in general. As shown in the next subsection, v3 �= 0 plays a
crucial role to regularize the three-body sector.

We now present notations in Feynman diagrams. The prop-
agator of a fermion is equivalent to G(K ) in Eq. (8) and is
also denoted by a solid line. A dashed (dotted) line denotes
a full (bare) propagator iDF (K ) (iD(0)

F = −imv2) of a dimer.
A vertex where a dashed or dotted line is connected with two
fermion lines is 2i/m multiplied by a relative momentum of
fermions. Solving the Dyson equation for iDF (K ) given by
the same diagram as for bosons [see Fig. 1(a)], we obtain

DF (K ) = m

1/a − βK
, (63)

where βK =
√

k2/4 − mω − i0+ and the scattering length a is
related to v2 and a momentum cutoff � as

1

v2
= 2�

π
− 1

a
. (64)

The two-fermion scattering amplitude iAF (K ; P1, P′
1) is given

by the diagram in Fig. 1(b) and equals

AF (K ; P1, P′
1) = −4P1P′

1

m2
DF (K ). (65)

For fermions, the scattering amplitude depends not only on a
total energy ω and a center-of-mass momentum k but also on
initial and final relative momenta P1 and P′

1.
In this section, we proceed as follows: The former half of

Sec. IV A is devoted to a scattering problem of a fermion and
a dimer to determine v3. In order to confirm the validity of the
obtained coupling constant, we calculate the binding energy
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K

P

= +

P

K

iTF itF itF iTF

+itF =

FIG. 7. Feynman diagrams for the fermion-dimer scattering am-
plitude iTF and its tree terms itF . The solid and dashed lines indicate
iG(K ) and iDF (K ), respectively, while the dot denotes iv3/m.

of three fermions in the latter half and rederive the energy re-
lation with a three-body contact in Sec. IV B. The asymptotic
behaviors of dynamic correlation functions at large energy and
momentum are discussed in Sec. IV C.

A. Three-body problem

We start by considering the scattering problem of a fermion
and a dimer, where the incoming fermion and dimer have
sets of energy and momentum, K and P, respectively, and the
outgoing fermion and dimer have K ′ and P′, respectively. The
fermion-dimer scattering amplitude iTF (K, P; K ′, P′) solves
the STM equation depicted in Fig. 7:

TF (K, P; K ′, P′)

= tF (K, P; K ′, P′) − i
∫

Q
tF (K, P; Q, K + P − Q)

× G(Q)DF (K + P − Q)TF (Q, K + P − Q; K ′, P′),
(66)

where the inhomogeneous term is given by

tF (K, P; K ′, P′)

= (P1 − 2K ′
1)(P′

1 − 2K1)
G(P − K ′)

m2
+ v3

m
. (67)

Note K + P = K ′ + P′ because of the energy and momentum
conservations. The integrand in Eq. (66) has only one pole
Q0 = Q2

1/(2m) − i0+ in the lower half-plane of Q0. By per-
forming the integration over Q0, Eq. (66) reads

TF (K, P; K ′, P′)

= tF (K, P; K ′, P′) −
∫

dQ1

2π
tF (K, P; Q, K + P − Q)

× DF (K + P − Q)TF (Q, K + P − Q; K ′, P′)|
Q0= Q2

1
2m

.

(68)

This integral equation reduces to a simpler form under the
on-shell condition in the center-of-mass frame. Taking K =
(k2/(2m), k), K ′ = (k′2/(2m), k′), and K + P = K ′ + P′ =
(E , 0), we obtain the equation for the on-shell scattering am-
plitude TF (k; k′):

TF (k; k′) = tF (k; k′) −
∫

dq

2π
tF (k; q)DF (q)TF (q; k′), (69)

where Q1 → q, DF (q) = DF (E − q2/(2m), q), and

mtF (k; k′) = 2mE + 3kk′

mE + i0+ − (k2 + kk′ + k′2)
+ v3 − 2. (70)

The integral in Eq. (69) for |q| < � has ultraviolet diver-
gences ∼ ln � unless v3 → 2, where tF (k; k′) decays by power
law for large k′ with E and k fixed. Usually, such a diver-
gence is canceled by making a coupling constant dependent
on �. When the coupling constant is dimensionless, a new
length scale emerges as a consequence of the dimensional
transmutation [47]. In nonrelativistic QFT, the dimensional
transmutation is discussed in the 1D [48–51] and 2D [52]
cases. However, since the 1D scattering length a is only
the length scale associated with the contact interaction, the
emergence of an additional scale is prohibited in our case.
Therefore, we conclude that the three-body coupling constant
must be

v3 = 2 (71)

so that the logarithmic divergences disappear without gener-
ating an additional scale.1

To confirm that the theory with Eq. (71) corresponds to
the bosonic one studied in the previous section, we inves-
tigate a three-fermion bound state for a > 0 and compute
its binding energy. If there is a three-body bound state
with E = −κ2/m, the fermion-dimer scattering amplitude
in the limit of E → −κ2/m takes the form of TF (k; k′) →
ZF (k)Z∗

F (k′)/(E + κ2/m). Comparing residues of both sides
of Eq. (69) with respect to E = −κ2/m, we obtain the homo-
geneous integral equation for zF (k) ≡ ZF (k)DF (k):(√

3

4
k2 + κ2 − 1

a

)
zF (k) =

∫
dq

2π

2κ2 − 3kq

k2 + kq + q2 + κ2
zF (q).

(72)

We can analytically obtain one solution zF (k) =
1/[(ka/2)2 + 1] with κ = 2/a. This bound state has the
binding energy E = −4/(ma2), which is identical to that of
a three-boson bound state found by McGuire [29] and thus
confirms Eq. (71). We next rederive the energy relation as
another demonstration of the validity of Eq. (71).

B. Contacts and the energy relation

Before turning to the energy relation, we derive the expres-
sions of the two- and three-body contact densities in terms of
field operators. By recalling Eqs. (3), the contact densities are
given by

C2 = lim
y→x

〈n̂(t, x)n̂(t, y)〉, (73a)

C3 = lim
y,z→x

〈n̂(t, x)n̂(t, y)n̂(t, z)〉 (73b)

1As shown in Appendix B, fermions with a three-body attrac-
tion can be described by choosing v3 = 2 + π/[2

√
3 ln(

√
3�a3)].

Here the emergent length scale a3 generates the binding energy
E = −1/(ma2

3 ) of three fermions in the limit of a → ∞, which
corresponds to a three-boson bound state without two-body but with
three-body interactions [48].
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(t, x)

(t, y)

FIG. 8. Diagram for the expectation value of n̂(t, x)n̂(t, y) with
respect to a one-dimer state.

in the Heisenberg picture. In the fermionic theory, the number
density operator is given by n̂ = ψ†ψ . One may think that
C2 and C3 vanish due to ψ2 = 0 resulting from the Fermi
statistics. However, the presence of the contact interaction
leads to the renormalization of composite operators, which is
encoded in �, and thus C2 and C3 take nonzero values [27,28].

To obtain the explicit forms of C2 and C3, we evaluate an
equal-time OPE:

n̂(t, x)n̂(t, y) =
∑
O

wO(x − y)O(t, x). (74)

As mentioned previously, ψ and � have dimensions �ψ =
1/2 and �� = 1, respectively. Under the equal-time con-
dition, the unit and one-body operators have vanishing
coefficients because matrix elements of n̂(t, x)n̂(t, y) are zero
in the vacuum and in the one-fermion sector. As a result, the
lowest-order local operator whose coefficient takes a nonzero
value is O = �†� with ��†� = 2. By dimensional analysis,
we see that coefficients of local operators with larger scaling
dimensions vanish in the limit of x − y → 0.

In order to determine w�†� (x − y), we employ the match-
ing procedure with respect to a one-dimer state |�P〉. The
expectation value of �†�(t, x) on the right-hand side of
Eq. (74) is given by the diagram in Fig. 5(b) and equals

〈�P|�†�(t, x)|�P〉 = 1. (75)

On the other hand, the expectation value of the left-hand side
of Eq. (74) is depicted in Fig. 8 and equals

〈�P|n̂(t, x)n̂(t, y)|�P〉

= 4
∫

dq

2π

q eiq(x−y)

q2 + β2
P

∫
dq′

2π

q′e−iq′(x−y)

q′2 + β2
P

. (76)

Performing the integrations by the residue theorem yields
〈�P|n̂(t, x)n̂(t, y)|�P〉 = e−2βP |x−y|. By comparing this expec-
tation value for x − y → 0 with Eq. (75), the coefficient of
�†� is found to be unity, leading to

n̂(t, x)n̂(t, y) = �†�(t, x) + O(x − y). (77)

Substituting this operator relation into Eqs. (73), we obtain

C2 = 〈�†�(t, x)〉, (78)

C3 = lim
z→x

〈�†�(t, x)n̂(t, z)〉. (79)

The limit in the second line can be taken by evaluating OPE
for �†�(t, x)n̂(t, z) in a similar way as for Eq. (77). As a
result, the three-body contact density is found to be

C3 = 〈�†ψ†ψ�(t, x)〉. (80)

We now rederive the energy relation for fermions
[Eq. (4b)]. The energy for a thermal state is obtained as
E = ∫

dx 〈HF 〉, where the Hamiltonian density of the system
is given by

HF = |∂xψ |2
2m

+ 1

mv2
�†� − v3

m
�†ψ†ψ�

− 1

m
[�†(ψ (−i∂

↔
x )ψ ) + (ψ†(−i∂

↔
x )ψ†)�]. (81)

By using the Euler-Lagrange equations for � and �†,

ψ (−i∂
↔

x )ψ = 1

v2
� − v3ψ

†ψ�, (82)

the thermal average of the second line reduces to

− 1

m
〈�†(ψ (−i∂

↔
x )ψ ) + (ψ†(−i∂

↔
x )ψ†)�〉

= − 2

mv2
〈�†�〉 + 2v3

m
〈�†ψ†ψ�〉 (83)

so that the energy reads

E =
∫

dx

[ 〈|∂xψ |2〉
2m

− 〈�†�〉
mv2

+ v3

m
〈�†ψ†ψ�〉

]
. (84)

From Eqs. (78) and (80), the second and third terms in the
integrand are proportional to C2 and C3, respectively. Substi-
tuting the explicit forms of v2 and v3 [Eqs. (64) and (71)] into
this, the energy relation is found to be

E =
∫

dk

2π

k2

2m

(
ρF (k) − 4C2

k2

)
+ C2

ma
+ 2C3

m
, (85)

where ρF (k) = L
∫

dx e−ikx〈ψ†(t, x)ψ (t, 0)〉 with L being the
system size is the momentum distribution in terms of field
operators. In the above derivation, the nonzero three-body
coupling constant leads to the emergence of C3 in the energy
relation in agreement with Ref. [28].

C. Single-particle spectral density

This subsection is devoted to deriving the behaviors of
dynamic correlation functions for fermions at large energy and
momentum. As mentioned previously, the dynamic structure
factor S(K ) for fermions is identical to that for bosons. Indeed,
the asymptotic behaviors of S(K ) in Eqs. (39) and (40) can be
rederived in the same way as for bosons.

Unlike S(K ), the single-particle spectral density AF (K )
for fermions shows large-K behaviors different from those of
AB(K ). In terms of a time-ordered Green’s function, AF (K )
is given by

AF (K ) = − 1

π
Im[〈Gψ (K )〉] + O(e−ω/T ). (86)

In order to study AF (K ) at large K , we employ OPE:

Gψ (K ) =
∑
O

W O
ψ (K )O. (87)

In the fermionic theory, local operators with small scaling
dimensions are the unit operator 1 with �1 = 0, n̂ with �n̂ =
1, and Ĉ2 = �†� with �Ĉ2

= 2. By the matching proce-
dure in the vacuum and in the one-fermion sector, we can
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obtain Wilson coefficients of 1 and n̂ in the same way as
for bosons. On the other hand, a perturbative calculation of
the three-body scattering amplitude used for bosons cannot
be applied to the determination of W Ĉ2

ψ (K ) at large K . As
explained in Sec. III A, this is because the limit of a → ∞
does not correspond to a weakly interacting limit in the case
of fermions. The STM equation in Eq. (66) is expected to be
nonperturbatively solved by the method used in Refs. [45,46].
Since we focus on analytical studies in this paper, we consider
OPE in Eq. (87) up to dimension �O = 1.

As a result of the matching procedure, the single-particle
Green’s function reads

〈Gψ (K )〉 = G(K ) + n

m

k2[G(K )]2

1/a − βK
+ O(K−4). (88)

We first consider the high-energy region near the single-
particle peak ω ≈ k2/(2m). Within our working accuracy,
the quasiparticle energy and residue are not affected by the
interaction; εF (k) = k2/(2m) + O(1) and ZF = 1 + O(k−1).
On the other hand, the quasiparticle width is given by

�F (k) = 4n|k|
m

+ O(1). (89)

While �F (k) grows with increasing |k|, the quasiparticle pic-
ture is still valid because of �F (k)/εF (k) ∝ |k|−1. This linear
behavior of �F (k) results from both one-dimensionality and
the strong interaction at a → ∞. Indeed, the quasiparticle
width decreases with increasing the momentum for 1D bosons
[see Eq. (56b)] as well as in higher dimensions [45]. The
Wilson coefficient of Ĉ2 provides O(1) corrections in εF (k)
and �F (k) and a leading correction in ZF .

We next turn to AF (K ) in the high-energy region away
from the single-particle peak. Within our working accuracy,
the imaginary part of 〈Gψ (K )〉 in Eq. (88) arises from βK ,
which is pure imaginary only above the two-particle thresh-
old. As a result, the behavior of AF (K ) for ω > k2/(4m) is
obtained as

AF (ω, k) = mn

π

k2

(mω − k2/4)3/2(mω − k2/2)2
. (90)

This behavior holds when
√

mω and |k| are much larger than
n, 1/|a|, and

√
mT . We note that the power-law tail does not

appear in the limit of a → −0, i.e., a noninteracting limit for
fermions. Indeed, the second term in Eq. (88) vanishes in this
limit.

V. CONCLUSION

In this paper, we elucidated universal relations for 1D
bosons and fermions related to each other via the Bose-Fermi
mapping [Eq. (2)] from the viewpoint of QFT. These universal
relations are crucial properties of the systems because they
are exact even in the strongly interacting regimes. By taking
advantage of OPE in the QFT formalism, high-energy behav-
iors of dynamic correlation functions [Eqs. (39), (40), (56),
(59), (60), (89), and (90)] were derived. While the dynamic
structure factor is identical between bosons and fermions,
the single-particle spectral densities differ between them. In
particular, we found that the sharpening (broadening) of the
single-particle peak for bosons (fermions) results from the fact

that a → ∞ corresponds to a weakly (strongly) interacting
limit. The energy relation for fermions [Eq. (85)] was also
rederived, where the emergence of the three-body contact
was found to originate from a three-body coupling term with
Eq. (71) in the QFT formalism.

Our results presented in this paper can be generalized in
various directions. The universal relations can be extended to
the presence of effective-range corrections [53–55]. Indeed,
the impact of such corrections on some universal relations
has been studied in 1D [56] as well as in higher dimensions
[57,58]. Another interesting extension is QFT for fermions
in the presence of multibody resonances. In the case of 1D
bosons, such resonances have been described by introducing
higher-body interactions [48,59–62]. A three-boson attraction
with dimensional transmutation leads to the formations of
quantum droplet states [48] and of excited few-body bound
states [59–61]. A resonant four-boson interaction results in the
formation of Efimov pentamers in 1D [62]. According to the
Bose-Fermi mapping, these phenomena should also emerge
for fermions. As shown in Appendix B, the counterpart of
the three-boson attraction can be introduced to fermions by
considering the logarithmic running of the fermion-dimer cou-
pling v3 in our Lagrangian density [Eq. (61)]. The resonant
four-fermion interaction leading to the Efimov effect for five
fermions is expected to be described by adding v4�

†�†��

to Eq. (61) and tuning the dimer-dimer coupling v4.
We note that, when this paper was being finalized, there

appeared preprints [63,64] where the Bose-Fermi corre-
spondence was generalized to arbitrary spin, single-particle
dispersion, and low-energy interactions in the universal
regime by using the effective field theory. In particular,
fermions corresponding to bosons with a three-body repulsion
[65–67] were considered. The binding energy of the three-
fermion bound state, which we analytically obtained from
Eq. (72), was also investigated.
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APPENDIX A: LOOP INTEGRALS

Here the integrals corresponding to loops in Figs. 3 and 4
are computed. First, we calculate the integrals in Eq. (30):

Ib,c(P) = i
∫

Q
G(Q)[G(P − Q)]2(P0 − Q0)b(P1 − Q1)c,

(A1)

where nonnegative integers b, c are restricted to �Ob,c = 2b +
c + 1 � 4. The integration can be performed by the residue
theorem and the explicit forms of Ib,c(P) are found to be

I0,0(P) = m2

4β3
P

, (A2a)

I0,1(P) = m2

8β3
P

P1, (A2b)
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I0,2(P) = m2

4β3
P

(
P2

1 /4 + β2
P

)
, (A2c)

I0,3(P) = m2

32β3
P

P1
(
P2

1 + 12β2
P

)
, (A2d)

I1,0(P) = m

32β3
P

(
P2

1 − 12β2
P

)
, (A2e)

I1,1(P) = m

16β3
P

P1
(
P2

1 /4 − β2
P

)
. (A2f)

We next turn to the integrals in Eqs. (33):

J1(K, P) = i
∫

Q
G(Q)G(P − Q)G(K + P − Q), (A3a)

J2(K, P) = −i
∫

Q
G(Q)G(Q + K )G(P − Q)

× G(P − K − Q), (A3b)

J3(K, P) = i
∫

Q
G(Q)[G(P − Q)]2G(P + K − Q). (A3c)

The analytical expressions of these integrals are found to be

J1(K, P) =
(

m2

2βK+P
+ m2

2βP

)
1

(βK+P + βP )2 + k2/4
, (A4a)

J2(K, P) = m3

2βP

(
1

(k + iβP )2 + β2
P

1

(k/2 + iβP )2 + β2
K+P

+ (βP → −βP )

)

+ m3

2βK+P

1

(k/2 + iβK+P )2 + β2
P

1

(k/2 − iβK+P )2 + β2
P

+ (K → −K ), (A4b)

J3(K, P) = m3

4β3
P

2ikβP − β2
K+P − k2/4 + 3β2

P(
ikβP − β2

K+P − k2/4 + β2
P

)2 − m3

2βK+P

1( − ikβK+P + β2
K+P − k2/4 − β2

P

)2 . (A4c)

Their expansions in P yield

J1(K, P) = − m

2βP

(
G(K ) + kP1[G(K )]2

2m

)
− βK [G(K )]2 − mG(K )

2βK
+ O(P), (A5a)

J2(K, P) = m

βP

(
G(K ) + kP1[G(K )]2

2m

)(
K → −K

)
+ m[G(K )]2

2βK
+ m[G(−K )]2

2β−K
+ O(P), (A5b)

J3(K, P) = [G(K )]4

2m

(
k2βK − (mω)2

βK

)
+

∑
�Ob,c�4

1

b!c!

∂b+cG(K )

∂ωb∂kc
Ib,c(P) + O(P). (A5c)

APPENDIX B: FERMIONS WITH A THREE-BODY
ATTRACTION

In Sec. IV, the three-body coupling constant was fixed
as v3 = 2 [Eq. (71)] to regularize the three-body sector
for fermions without generating an additional scale. Here
we consider another possibility for the regularization, i.e.,
v3 → 2 depending logarithmically on a momentum cutoff
�. Such a v3 describes a three-body attraction characterized
by the three-body scattering length a3. In what follows, we
study bound states of three fermions with the three-body
attraction.

An integral equation for three-fermion bound states can
be derived from the STM equation [Eq. (69)] in a similar
way as for Eq. (72). If there is a three-body bound state
with E = −κ2/m, the fermion-dimer scattering amplitude
in the limit of E → −κ2/m takes the form of TF (k; k′) →
ZF (k)Z∗

F (k′)/(E + κ2/m). Comparing residues of both sides
of Eq. (69) with respect to E = −κ2/m, we obtain the

homogeneous integral equation for zF (k) ≡ ZF (k)DF (k):⎛
⎝a − 1√

3
4 k2 + κ2

⎞
⎠zF (k)

= a√
3
4 k2 + κ2

∫
dq

2π

2κ2 − 3kq

k2 + kq + q2 + κ2
zF (q)

+ wF√
3
4 k2 + κ2

(B1)

with wF = a(v3 − 2)
∫

dq zF (q)/(2π ). Because the integra-
tion of both sides over k leads to

wF

v3 − 2
−

∫
dk

2π

zF (k)√
3
4 k2 + κ2

= 2

3

wF

v3 − 2
+ 2wF√

3π
ln(

√
3�/κ ), (B2)
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we can find

wF =
√

3π

2 ln(a3κ )

∫
dq

2π

zF (q)√
3
4 q2 + κ2

, (B3)

where an emergent length scale a3 > 0 is introduced by

1

v3 − 2
= 2

√
3

π
ln(

√
3�a3). (B4)

The three-fermion bound states are obtained by solving
Eq. (B1) with (B3).

The above three-fermion bound states correspond to three-
boson bound states with two- and three-body interactions
[59–61]. The integral equation for such bosons is given by⎛

⎝a − 1√
3
4 k2 + κ2

⎞
⎠zB(k)

=
∫

dq

2π

4zB(q)

k2 + kq + q2 + κ2
+ 3wB√

3
4 k2 + κ2

(B5)

with

wB =
√

3π

2 ln(a3κ )

∫
dq

2π

zB(q)√
3
4 q2 + κ2

, (B6)

which was analytically solved in Ref. [61].2 Employing the
same method as for bosons, we can analytically solve Eq. (B1)
for fermions and find that the solutions are identical between
bosons and fermions. The solutions of Eqs. (B5) and (B1) are

2Our definition of a3 is consistent with that in Ref. [59] but different
from that in Ref. [61] by a factor eγ /2 with Euler’s constant γ ≈
0.577.

both given by

zB/F (k) = 2wB/F

π

∫ ∞

0
d p

√
3p2 + 4κ2

2 − a
√

3p2 + 4κ2

fp(k)

p2 + κ2

+ 4wB/F

aκ − 2

κ2

k2 + κ2
, (B7)

where

fp(k) = πκ2δ(k + p)√
3p2 + 4κ2

+ P p

k + p
−

p2 + κ2 + k2 p2

k2+p2+κ2

k2 + kp + p2 + κ2

+ (k → −k) (B8)

and P denotes the Cauchy principal value. Substituting the
above solutions into Eqs. (B6) and (B3) yields the same equa-
tion to determine κ:

ln(a3κ ) = 1

(aκ )2 − 4

{
8π

3
√

3
+ [3(aκ )2 − 4]g(aκ )

}
. (B9)

Here

g(aκ ) = −
ln

[
1+

√
1−(aκ )2

1−
√

1−(aκ )2

]
2
√

1 − (aκ )2
(B10)

for (aκ )−1 < −1,

g(aκ ) =
π
2 + arctan

[
1

aκ
√

1−(aκ )−2

]
aκ

√
1 − (aκ )−2

(B11)

for −1 < (aκ )−1 < 1, and (aκ )−1 > 1 corresponds to the
particle-dimer scattering continuum where is no three-body
bound state. These correspondences with respect to three-
body bound states confirm that the counterpart of the
three-boson attraction is indeed introduced to fermions by
choosing v3 as in Eq. (B4).

[1] S. Weinberg, The Quantum Theory of Fields (Cambridge
University Press, New York, 1995).

[2] N. D. Birrell and P. C. W. Davies, Quantum Fields in Curved
Space (Cambridge University Press, Cambridge, 1982).

[3] A. Altland and B. Simons, Condensed Matter Field Theory
(Cambridge University Press, Cambridge, 2010).

[4] C. J. Pethick and H. Smith, Bose-Einstein Condensation in
Dilute Gases, 2nd ed. (Cambridge University Press, Cambridge,
2008).

[5] J. Zinn-Justin, Quantum Field Theory and Critical Phenomena
(Oxford University Press, New York, 1993).

[6] T. Giamarchi, Quantum Physics in One Dimension (Oxford
University Press, Oxford, 2004).

[7] E. Braaten and H.-W. Hammer, Universality in few-body
systems with large scattering length, Phys. Rep. 428, 259
(2006).

[8] Edited by W. Zwerger, The BCS-BEC Crossover and the Unitary
Fermi Gas, Lecture Notes in Physics, Vol. 836 (Springer, Berlin,
2012).

[9] C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Feshbach
resonances in ultracold gases, Rev. Mod. Phys. 82, 1225 (2010).

[10] P. van Wyk, H. Tajima, D. Inotani, A. Ohnishi, and Y. Ohashi,
Superfluid Fermi atomic gas as a quantum simulator for the
study of the neutron-star equation of state in the low-density
region, Phys. Rev. A 97, 013601 (2018).

[11] E. Braaten and H.-W. Hammer, Universality in the three-
body problem for 4He atoms, Phys. Rev. A 67, 042706
(2003).

[12] S. Tan, Energetics of a strongly correlated Fermi gas, Ann.
Phys. (NY) 323, 2952 (2008); Large momentum part of a
strongly correlated Fermi gas, 323, 2971 (2008); Generalized
virial theorem and pressure relation for a strongly correlated
Fermi gas, 323, 2987 (2008).

[13] E. Braaten and L. Platter, Exact Relations for a Strongly Inter-
acting Fermi Gas from the Operator Product Expansion, Phys.
Rev. Lett. 100, 205301 (2008).

[14] E. Braaten, Universal relations for fermions with large scatter-
ing length, in The BCS-BEC Crossover and the Unitary Fermi
Gas, edited by W. Zwerger, Lecture Notes in Physics, Vol. 836
(Springer, Berlin, 2012), p. 193.

[15] L. P. Kadanoff, Operator Algebra and the Determination of
Critical Indices, Phys. Rev. Lett. 23, 1430 (1969).

043307-14

https://doi.org/10.1016/j.physrep.2006.03.001
https://doi.org/10.1103/RevModPhys.82.1225
https://doi.org/10.1103/PhysRevA.97.013601
https://doi.org/10.1103/PhysRevA.67.042706
https://doi.org/10.1016/j.aop.2008.03.004
https://doi.org/10.1016/j.aop.2008.03.005
https://doi.org/10.1016/j.aop.2008.03.003
https://doi.org/10.1103/PhysRevLett.100.205301
https://doi.org/10.1103/PhysRevLett.23.1430


FIELD-THEORETICAL ASPECTS OF ONE-DIMENSIONAL … PHYSICAL REVIEW A 103, 043307 (2021)

[16] K. G. Wilson, Non-Lagrangian models of current algebra, Phys.
Rev. 179, 1499 (1969).

[17] A. M. Polyakov, Properties of long and short range correlations
in the critical region, Sov. Phys. JETP 30, 151 (1970) [Zh. Eksp.
Teor. Fiz. 57, 271 (1969)].

[18] M. Olshanii, Atomic Scattering in the Presence of an External
Confinement and a Gas of Impenetrable Bosons, Phys. Rev.
Lett. 81, 938 (1998).

[19] B. E. Granger and D. Blume, Tuning the Interactions of
Spin-Polarized Fermions Using Quasi-One-Dimensional Con-
finement, Phys. Rev. Lett. 92, 133202 (2004).

[20] X.-W. Guan, M. T. Batchelor, and C. Lee, Fermi gases in one
dimension: From Bethe ansatz to experiments, Rev. Mod. Phys.
85, 1633 (2013).

[21] V. E. Korepin, N. M. Bogoliubov, and A. G. Izergin, Quantum
Inverse Scattering Method and Correlation Functions (Cam-
bridge University Press, Cambridge, 1993).

[22] M. Girardeau, Relationship between systems of impenetrable
bosons and fermions in one dimension, J. Math. Phys. 1, 516
(1960).

[23] E. H. Lieb and W. Liniger, Exact analysis of an interacting Bose
gas. I. The general solution and the ground state, Phys. Rev. 130,
1605 (1963).

[24] T. Cheon and T. Shigehara, Fermion-Boson Duality of One-
Dimensional Quantum Particles with Generalized Contact
Interactions, Phys. Rev. Lett. 82, 2536 (1999).

[25] M. D. Girardeau and M. Olshanii, Theory of spinor Fermi and
Bose gases in tight atom waveguides, Phys. Rev. A 70, 023608
(2004).

[26] T. Cheon and T. Shigehara, Realizing discontinuous wave func-
tions with renormalized short-range potentials, Phys. Lett. A
243, 111 (1998).

[27] X. Cui, Universal one-dimensional atomic gases near odd-wave
resonance, Phys. Rev. A 94, 043636 (2016).

[28] Y. Sekino, S. Tan, and Y. Nishida, Comparative study of one-
dimensional Bose and Fermi gases with contact interactions
from the viewpoint of universal relations for correlation func-
tions, Phys. Rev. A 97, 013621 (2018).

[29] J. B. McGuire, Study of exactly soluble one-dimensional
N-body problems, J. Math. Phys. 5, 622 (1964).

[30] C. N. Yang and C. P. Yang, Thermodynamics of a one-
dimensional system of bosons with repulsive delta-function
interaction, J. Math. Phys. (NY) 10, 1115 (1969).

[31] K. V. Kheruntsyan, D. M. Gangardt, P. D. Drummond, and
G. V. Shlyapnikov, Pair Correlations in a Finite-Temperature
1D Bose Gas, Phys. Rev. Lett. 91, 040403 (2003).

[32] D. M. Gangardt and G. V. Shlyapnikov, Stability and Phase
Coherence of Trapped 1D Bose Gases, Phys. Rev. Lett. 90,
010401 (2003); Local correlations in a strongly interacting one-
dimensional Bose gas, New J. Phys. 5, 79 (2003).

[33] V. V. Cheianov, H. Smith, and M. B. Zvonarev, Exact results
for three-body correlations in a degenerate one-dimensional
Bose gas, Phys. Rev. A 73, 051604(R) (2006); Three-body local
correlation function in the Lieb-Liniger model: bosonization
approach, J. Stat. Mech. (2006) P08015.

[34] M. Kormos, G. Mussardo, and A. Trombettoni, Expectation
Values in the Lieb-Liniger Bose Gas, Phys. Rev. Lett. 103,
210404 (2009); One-dimensional Lieb-Liniger Bose gas as non-
relativistic limit of the sinh-Gordon model, Phys. Rev. A 81,
043606 (2010).

[35] M. Kormos, Y.-Z. Chou, and A. Imambekov, Exact Three-Body
Local Correlations for Excited States of the 1D Bose Gas, Phys.
Rev. Lett. 107, 230405 (2011).

[36] M. Olshanii and V. Dunjko, Short-Distance Correlation Proper-
ties of the Lieb-Liniger System and Momentum Distributions of
Trapped One-Dimensional Atomic Gases, Phys. Rev. Lett. 91,
090401 (2003).

[37] M. Valiente, Exact equivalence between one-dimensional Bose
gases interacting via hard-sphere and zero-range potentials,
Europhys. Lett. 98, 10010 (2012).

[38] V. Efimov, Energy levels arising from resonant two-body forces
in a three-body system, Phys. Lett. B 33, 563 (1970); Weakly-
bound states of three resonantly-interacting particles, Sov. J.
Nucl. Phys. 12, 589 (1971) [Yad. Fiz. 12, 1080 (1970)]; Energy
levels of three resonantly interacting particles, Nucl. Phys. A
210, 157 (1973).

[39] E. Braaten, D. Kang, and L. Platter, Universal Relations for
Identical Bosons from Three-Body Physics, Phys. Rev. Lett.
106, 153005 (2011).

[40] Y. Castin and F. Werner, Single-particle momentum distribution
of an Efimov trimer, Phys. Rev. A 83, 063614 (2011).

[41] M. Barth and W. Zwerger, Tan relations in one dimension, Ann.
Phys. (NY) 326, 2544 (2011).

[42] D. T. Son and E. G. Thompson, Short-distance and short-time
structure of a unitary Fermi gas, Phys. Rev. A 81, 063634
(2010).

[43] J. Hofmann, Current response, structure factor and hydrody-
namic quantities of a two- and three-dimensional Fermi gas
from the operator-product expansion, Phys. Rev. A 84, 043603
(2011).

[44] E. Granet and F. H. L. Essler, A systematic 1/c-expansion of
form factor sums for dynamical correlations in the Lieb-Liniger
model, SciPost Phys. 9, 082 (2020).

[45] Y. Nishida, Probing strongly interacting atomic gases with en-
ergetic atoms, Phys. Rev. A 85, 053643 (2012).

[46] P. Gubler, N. Yamamoto, T. Hatsuda, and Y. Nishida, Single-
particle spectral density of the unitary Fermi gas: Novel
approach based on the operator product expansion, sum rules
and the maximum entropy method, Ann. Phys. (NY) 356, 467
(2015).

[47] S. Coleman and E. Weinberg, Radiative corrections as the ori-
gin of spontaneous symmetry breaking, Phys. Rev. D 7, 1888
(1973).

[48] Y. Sekino and Y. Nishida, Quantum droplet of one-dimensional
bosons with a three-body attraction, Phys. Rev. A 97,
011602(R) (2018).

[49] J. E. Drut, J. R. McKenney, W. S. Daza, C. L. Lin, and C. R.
Ordóñez, Quantum Anomaly and Thermodynamics of One-
Dimensional Fermions with Three-Body Interactions, Phys.
Rev. Lett. 120, 243002 (2018).

[50] W. S. Daza, J. E. Drut, C. L. Lin, and C. R. Ordóñez, A quantum
field-theoretical perspective on scale anomalies in 1D systems
with three-body interactions, Mod. Phys. Lett. A 34, 1950291
(2019).

[51] H. E. Camblong, A. Chakraborty, W. S. Daza, J. E. Drut, C. L.
Lin, and C. R. Ordóñez, Quantum anomaly and thermodynam-
ics of one-dimensional fermions with antisymmetric two-body
interactions, arXiv:1908.05210 (2019).

[52] O. Bergman, Nonrelativistic field-theoretic scale anomaly,
Phys. Rev. D 46, 5474 (1992).

043307-15

https://doi.org/10.1103/PhysRev.179.1499
https://doi.org/10.1103/PhysRevLett.81.938
https://doi.org/10.1103/PhysRevLett.92.133202
https://doi.org/10.1103/RevModPhys.85.1633
https://doi.org/10.1063/1.1703687
https://doi.org/10.1103/PhysRev.130.1605
https://doi.org/10.1103/PhysRevLett.82.2536
https://doi.org/10.1103/PhysRevA.70.023608
https://doi.org/10.1016/S0375-9601(98)00188-1
https://doi.org/10.1103/PhysRevA.94.043636
https://doi.org/10.1103/PhysRevA.97.013621
https://doi.org/10.1063/1.1704156
https://doi.org/10.1063/1.1664947
https://doi.org/10.1103/PhysRevLett.91.040403
https://doi.org/10.1103/PhysRevLett.90.010401
https://doi.org/10.1088/1367-2630/5/1/379
https://doi.org/10.1103/PhysRevA.73.051604
https://doi.org/10.1088/1742-5468/2006/08/P08015
https://doi.org/10.1103/PhysRevLett.103.210404
https://doi.org/10.1103/PhysRevA.81.043606
https://doi.org/10.1103/PhysRevLett.107.230405
https://doi.org/10.1103/PhysRevLett.91.090401
https://doi.org/10.1209/0295-5075/98/10010
https://doi.org/10.1016/0370-2693(70)90349-7
https://doi.org/10.1016/0375-9474(73)90510-1
https://doi.org/10.1103/PhysRevLett.106.153005
https://doi.org/10.1103/PhysRevA.83.063614
https://doi.org/10.1016/j.aop.2011.05.010
https://doi.org/10.1103/PhysRevA.81.063634
https://doi.org/10.1103/PhysRevA.84.043603
https://doi.org/10.21468/SciPostPhys.9.6.082
https://doi.org/10.1103/PhysRevA.85.053643
https://doi.org/10.1016/j.aop.2015.03.007
https://doi.org/10.1103/PhysRevD.7.1888
https://doi.org/10.1103/PhysRevA.97.011602
https://doi.org/10.1103/PhysRevLett.120.243002
https://doi.org/10.1142/S0217732319502912
http://arxiv.org/abs/arXiv:1908.05210
https://doi.org/10.1103/PhysRevD.46.5474


YUTA SEKINO AND YUSUKE NISHIDA PHYSICAL REVIEW A 103, 043307 (2021)

[53] V. Gurarie, One-dimensional gas of bosons with
Feshbach-resonant interactions, Phys. Rev. A 73, 033612
(2006).

[54] A. Imambekov, A. A. Lukyanov, L. I. Glazman, and V. Gritsev,
Exact Solution for 1D Spin-Polarized Fermions with Resonant
Interactions, Phys. Rev. Lett. 104, 040402 (2010).

[55] R. Qi and X. Guan, Many-body properties of quasi-one-
dimensional boson gas across a narrow CIR, Europhys. Lett.
101, 40002 (2013).

[56] X. Cui and H. Dong, High-momentum distribution with a sub-
leading k3 tail in odd-wave interacting one-dimensional Fermi
gases, Phys. Rev. A 94, 063650 (2016).

[57] E. Braaten, D. Kang, and L. Platter, Universal relations for a
strongly interacting Fermi gas near a Feshbach resonance, Phys.
Rev. A 78, 053606 (2008).

[58] F. Werner and Y. Castin, General relations for quantum gases
in two and three dimensions: Two-component fermions, Phys.
Rev. A 86, 013626 (2012); General relations for quantum gases
in two and three dimensions. I I. Bosons and mixtures, 86,
053633 (2012).

[59] Y. Nishida, Universal bound states of one-dimensional bosons
with two- and three-body attractions, Phys. Rev. A 97,
061603(R) (2018).

[60] L. Pricoupenko, Pure confinement-induced trimer in one-
dimensional atomic waveguides, Phys. Rev. A 97, 061604(R)
(2018).

[61] G. Guijarro, A. Pricoupenko, G. E. Astrakharchik, J. Boronat,
and D. S. Petrov, One-dimensional three-boson problem with
two- and three-body interactions, Phys. Rev. A 97, 061605(R)
(2018).

[62] Y. Nishida and D. T. Son, Universal four-component Fermi gas
in one dimension, Phys. Rev. A 82, 043606 (2010).

[63] M. Valiente, Universal duality transformations in interacting
one-dimensional quantum systems, Phys. Rev. A 103, L021302
(2021).

[64] M. Valiente, Bose-Fermi dualities for arbitrary one-dimensional
quantum systems in the universal low energy regime, Phys. Rev.
A 102, 053304 (2020).

[65] V. Pastukhov, Ground-state properties of dilute one-
dimensional Bose gas with three-body repulsion, Phys.
Lett. A 383, 894 (2019).

[66] M. Valiente, Three-body repulsive forces among identical
bosons in one dimension, Phys. Rev. A 100, 013614 (2019).

[67] M. Valiente and V. Pastukhov, Anomalous frequency shifts in
a one-dimensional trapped Bose gas, Phys. Rev. A 99, 053607
(2019).

043307-16

https://doi.org/10.1103/PhysRevA.73.033612
https://doi.org/10.1103/PhysRevLett.104.040402
https://doi.org/10.1209/0295-5075/101/40002
https://doi.org/10.1103/PhysRevA.94.063650
https://doi.org/10.1103/PhysRevA.78.053606
https://doi.org/10.1103/PhysRevA.86.013626
https://doi.org/10.1103/PhysRevA.86.053633
https://doi.org/10.1103/PhysRevA.97.061603
https://doi.org/10.1103/PhysRevA.97.061604
https://doi.org/10.1103/PhysRevA.97.061605
https://doi.org/10.1103/PhysRevA.82.043606
https://doi.org/10.1103/PhysRevA.103.L021302
https://doi.org/10.1103/PhysRevA.102.053304
https://doi.org/10.1016/j.physleta.2018.12.006
https://doi.org/10.1103/PhysRevA.100.013614
https://doi.org/10.1103/PhysRevA.99.053607

