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Stability of supercurrents in a superfluid phase of spin-1 bosons in an optical lattice
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We study collective modes and superfluidity of spin-1 bosons with antiferromagnetic interactions in an optical
lattice based on the time-dependent Ginzburg-Landau (TDGL) equation derived from the spin-1 Bose-Hubbard
model. Specifically, we examine the stability of supercurrents in the polar phase in the vicinity of the Mott
insulating phase with even filling factors. Solving the linearized TDGL equation, we obtain gapless spin-nematic
modes and gapful spin-wave modes in the polar phase that arise due to the breaking of S2 symmetry in spin
space. Supercurrents exhibit dynamical instabilities induced by growing collective modes. In contrast to the
second-order phase transition, the critical momentum for mass currents is finite at the phase boundary of the
first-order superfluid-Mott insulator (SF-MI) phase transition. Furthermore, the critical momentum remains finite
throughout the metastable SF phase and approaches zero towards the phase boundary, at which the metastable
SF state disappears. We also study the stability of spin currents motivated by recent experiments for spinor gases.
The critical momentum for spin currents is found to be zero, where a spin-nematic mode causes the dynamical
instability. We investigate the origin of the zero critical momentum for spin currents and find it attributed to the
fact that the polar state becomes energetically unstable even in the presence of an infinitesimal spin current. We
discuss implications of the zero critical momentum for spin currents for the stability of the polar state.
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I. INTRODUCTION

Ultracold atoms in an optical lattice have opened a versatile
research field that lies at the interface of condensed matter
physics, statistical physics, and atomic, molecular, and optical
physics [1,2]. Spinor bosons in an optical lattice provide with
an ideal platform for studying quantum magnetism, quan-
tum phase transitions, and nonequilibrium quantum dynamics
[3–9]. In particular, the superfluid-Mott insulator (SF-MI)
phase transition of spin-1 bosons in an optical lattice has
attracted much attention. The rich structure of the phase
diagram that arises from the interplay between strong corre-
lations and spin degrees of freedom has been a main focus
of intense theoretical studies. It exhibits many interesting
features including the parity effect of the MI phase [10–13],
the first-order SF-MI transition [14–17], and the spin-nematic
order in the MI phase [12,18–26]. On the other hand, recent
progress of experimental studies have made it possible to
observe the signature of the first-order phase transition [27]
and quantum critical dynamics [28] in this system.

One of the remarkable features of bosonic superfluids in
an optical lattice is dynamical instabilities of supercurrents
[29–39]. In fact, this phenomenon is considered to be deeply
related with the SF-MI phase transition. It has been predicted
for spineless bosons that the critical superfluid velocity ap-
proaches zero at the second-order SF-MI phase transition
reflecting the diverging healing length [38,39] and later it
was experimentally confirmed [33]. Given the rich physics
associated with the SF-MI phase transition and the recent
experimental progress, therefore, it is of particular interest

to investigate dynamical instabilities of spin-1 bosons in an
optical lattice. Recently, the critical momentum for mass cur-
rents and the stability phase diagram have been calculated
numerically using the dynamical Gutzwiller approximation
[40]. The critical momentum in the vicinity of the first-order
SF-MI phase transition, however, has not been fully investi-
gated. Meanwhile, critical dynamics of spin currents has been
observed in an antiferromagnetic spin-1 Bose-Einstein con-
densate [41]. In this experiment, spin currents were induced
by counterflow of two spin components. This experiment
inspires us to investigate the stability of spin currents in an
optical lattice.

In this paper, we study spin-1 bosons with antiferro-
magnetic interactions in an optical lattice. Specifically, we
examine the stability of supercurrents in the polar phase in the
vicinity of the MI phase with even filling factors based on the
time-dependent Ginzburg-Landau (TDGL) equation, which
we derive from the spin-1 Bose-Hubbard model. Our focus is
on the superfluidity in the vicinity of the first-order phase tran-
sition. We calculate the critical momentum for mass currents
and find that it has a finite value not only at the first-order
SF-MI phase boundary, but throughout the metastable SF
phase, in contrast to the second-order case. We also study the
stability of spin currents motivated by the recent experiments
for spinor gases [41]. The critical momentum for spin currents
is found to be zero. We clarify the origin of the instability of
spin currents and briefly discuss about its implications for the
stability of the polar phase.

The organization of this paper is as follows: In Sec. II, we
introduce the spin-1 Bose-Hubbard model and calculate the
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metastable phase diagram within the perturbative mean-field
theory. In Sec. III, we study collective modes in the SF phase
using the TDGL equation. In Sec. IV, we study the stability
of supercurrents and calculate the critical momenta for mass
and spin currents. In Sec. V, we investigate the origin of the
instability of spin currents and discuss the stability of the polar
phase. Finally, we summarize our results in Sec. VI. Details
of the calculations in the perturbative mean-field theory are
given in Appendixes A and B. The derivations of the TDGL
equation and the conservation laws are given in Appendixes C
and D, respectively. We set h̄ = kB = 1 throughout this paper.

II. SPIN-1 BOSE-HUBBARD MODEL
AND SF-MI PHASE TRANSITION

We consider spin-1 bosons trapped in a d-dimensional cu-
bic optical lattice at zero temperature. In this paper, we neglect
the effect of a harmonic trapping potential for simplicity. If
the lattice potential is sufficiently deep, the system is well
described by the spin-1 Bose-Hubbard model [11,19]:

Ĥ = −t
∑

〈i, j〉,α
(b̂†

iα b̂ jα + H.c.) − μ
∑

i

n̂i

+ U0

2

∑
i

n̂i(n̂i − 1) + U2

2

∑
i

(
Ŝ

2
i − 2n̂i

)
, (1)

where b̂iα (b̂†
iα ) is the annihilation (creation) operator for an

atom in the hyperfine state |F = 1, m = α〉 (α = 1, 0,−1)
at site i. Here, 〈i, j〉 denotes a summation over nearest-
neighbor sites, t the hopping matrix element, μ the chemical
potential, and U0 and U2 the on-site spin-independent and
spin-dependent interactions, respectively. In this paper, we
assume U2 > 0, i.e., an antiferromagnetic interaction. U2/U0

is fixed for each atomic species. For example, U2/U0 = 0.04
for 23Na [11]. In this paper, we set U2/U0 optimal values
for validity of the theory. The operators n̂i = ∑

α b̂†
iα b̂iα , and

Ŝi = ∑
α,β b̂†

iαFαβ b̂iβ represent the number of particles and
the spin at site i, respectively. Here, F denotes the spin-1
matrices,

Fx = 1√
2

⎡
⎣0 1 0

1 0 1
0 1 0

⎤
⎦, Fy = i√

2

⎡
⎣0 −1 0

1 0 −1
0 1 0

⎤
⎦,

Fz =
⎡
⎣1 0 0

0 0 0
0 0 −1

⎤
⎦. (2)

In the following subsections, we briefly review the per-
turbative mean-field theory developed in Ref. [11] and then
extend it to describe the first-order SF-MI phase transition as
well as the metastable SF and MI phases.

A. Mott insulating phase

We first study the MI state in the limit of t = 0, where the
Hamiltonian (1) can be written as

Ĥ =
∑

i

Ĥ0
i , (3)

Ĥ0
i = −μn̂i + U0

2
n̂i(n̂i − 1) + U2

2

(
Ŝ

2
i − 2n̂i

)
. (4)

Note that Ŝ
2
i , Ŝiz and n̂i commute with each other. The simulta-

neous eigenstates for these operators |Si, mi, ni〉 (−Si � mi �
Si ) satisfy

Ŝ
2
i |Si, mi, ni〉 = Si(Si + 1)|Si, mi, ni〉, (5)

Ŝiz|Si, mi, ni〉 = mi|Si, mi, ni〉, (6)

n̂i|Si, mi, ni〉 = ni|Si, mi, ni〉. (7)

|Si, mi, ni〉 is thus an energy eigenstate of Ĥ0
i :

Ĥ0
i |Si, mi, ni〉 = E0(Si, ni )|Si, mi, ni〉, (8)

where the energy eigenvalue E0(Si, ni ) is given by

E0(Si, ni ) = −μni + U0

2
ni(ni − 1)

+U2

2
[Si(Si + 1) − 2ni]. (9)

Si takes the minimum value in the ground state due to U2 > 0.
Since the orbital part of the wave function in a single lattice

site is symmetric under permutation of any two atoms, the spin
part has to be also symmetric under permutation of atoms due
to Bose statistics. As a result, Si is even (Si = 0, 2, 4, ..., ni )
for even ni, while Si is odd (Si = 1, 3, 5, ..., ni ) for odd ni [42].
The ground state of the single-site Hamiltonian (4) is thus
|0, 0, ni〉 for even filling factors, while it is |1, mi, ni〉 (mi =
1, 0,−1) for odd filling factors that is triply degenerate. For
even filling factors, the ground state |0, 0, ni〉 is a spin-singlet
insulator, in which all atoms form spin-singlet pairs [11] as

|0, 0, ni〉 = 1√
f
( ni

2 ; 0
) (�̂†

i )
ni
2 |vac〉, (10)

where �̂
†
i = (b̂†

i0)2 − 2b̂†
i1b̂†

i−1 is the creation operator of a
spin-singlet pair. The normalization factor is given by [43]

f (Q; S) = S!Q!2Q (2Q + 2S + 1)!!

(2S + 1)!!
. (11)

For odd filling factors, there remains a single atom that cannot
form a spin-singlet pair in the ground state as

|1, mi, ni〉 = 1√
f
( ni−1

2 ; 1
) b̂†

i mi
(�̂†

i )
ni−1

2 |vac〉. (12)

B. Perturbative mean-field theory

We employ the perturbative mean-field theory to study the
SF-MI phase transition [11]. We introduce the superfluid order
parameter ψα ≡ 〈b̂iα〉 ≡ √

ncζα , where nc = ∑
α=±1,0 |ψα|2 is

the number of condensate atoms per site and ζα is the normal-
ized spinor:

∑
α=±1,0 ζ ∗

α ζα = 1. Linearizing the hopping term
with respect to fluctuation δb̂iα = b̂iα − ψα , we obtain

−t
∑

〈i, j〉,α
(b̂†

iα b̂ jα + H.c.)

∼ −zt
∑
i,α

[(ψ∗
α b̂iα + ψα b̂†

iα )] + ztNs

∑
α

ψ∗
αψα, (13)
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where z = 2d denotes the number of nearest-neighbor sites
and Ns the total number of lattice sites. The Hamiltonian (1)
thus reduces to

Ĥ =
∑

i

Ĥmf
i , (14)

Ĥmf
i = Ĥ0

i + V̂i + zt
∑

α

ψ∗
αψα, (15)

V̂i = −zt
∑

α

(ψα b̂†
iα + ψ∗

α b̂iα ). (16)

Here, V̂i describes transfer of atoms between the ith site and
the condensate ψα . We treat V̂i as a perturbation assuming
small t. We omit the site index in the rest of this section.

We focus on the MI phase with even filling factors and the
SF phase around it in this paper. In this case, since the MI
phase has a unique ground state (10), the standard perturba-
tive mean-field theory is applicable. For odd filling factors,
extensions are required for the degenerate ground state (12).

To describe the first-order SF-MI phase transition predicted
in Ref. [14], it is necessary to expand the ground-state energy
up to sixth order. Applying the standard perturbation theory,
the ground-state energy per site can be calculated as

E = E0(0, n) + C2nc + C4n2
c + C′

4n2
c〈F〉2

+C6n3
c + C′

6n3
c〈F〉2, (17)

where 	ζ = (ζ1, ζ0, ζ−1)T and 〈F〉 = ∑
α,β ζ ∗

α Fαβζβ . The de-
tails of the calculations and the explicit forms of C2, C4, C′

4,
C6, and C′

6 are given in Appendix B. The fourth-order term
with C′

4 > 0 lifts the degeneracy in spin-space and the polar
state is realized in the SF phase [11]: 〈F〉2 takes its minimum
in the ground state, i.e., 〈F〉 = 0.

Since all spinors are related to each other by gauge
transformation eiθ and spin rotations R(α, β, γ ) =
e−iαFz e−iβFy e−iγ Fz , where (α, β, γ ) are the Euler angles,
the general form of the order parameter for the polar state is
given as [44]

	ζ = eiθ R(α, β, γ )

⎡
⎣0

1
0

⎤
⎦ = eiθ

⎡
⎢⎣− e−iα√

2
sin β

cos β
eiα√

2
sin β

⎤
⎥⎦. (18)

Since 	ζ in Eq. (18) is invariant under shift of γ as well
as the discrete transformation (β, θ ) → (β + π, θ + π ), the
polar state has the symmetry characterized by the isotropy
group H = U(1)γ ⊗ (Z2)β,θ [8]. The symmetry of the spin-
singlet state in Eq. (10) is characterized by the isotropy group
G = U(1)θ ⊗ SO(3)α,β,γ . The order parameter manifold for
the polar state is thus given by [45]

M = G/H = U(1)θ ⊗ SO(3)α,β,γ

U(1)γ ⊗ (Z2)β,θ

= U(1)θ ⊗ S2
α,β

(Z2)β,θ

. (19)

It is convenient to introduce the d-vector defined as [46]

d =
⎡
⎣dx

dy

dz

⎤
⎦ =

⎡
⎢⎣

1√
2
(−ψ1 + ψ−1)

1√
2i

(ψ1 + ψ−1)

ψ0

⎤
⎥⎦. (20)

Note that the d-vector transforms as a vector under rotations
in spin-space. From Eq. (18), the polar state is characterized
by the d vector,

d = √
nceiθ

⎡
⎣sin β cos α

sin β sin α

cos β

⎤
⎦, (21)

where α and β, respectively, represent the polar and azimuthal
angles that parametrize the surface of the unit sphere S2.
Due to the invariance of 	ζ under (β, θ ) → (β + π, θ + π ),
d specifies a preferred axis, not a preferred direction along
that axis.

C. Second-order SF-MI phase transition

In the case of the second-order SF-MI phase transition,
where U2/U0 > 0.32 [14], it is enough to expand the ground-
state energy up to fourth order as

E = E0(0, n) + C2nc + C4n2
c . (22)

Note that we have assumed the polar state and set 〈F〉 = 0
in Eq. (22). The right-hand side of Eq. (22) is plotted as
a function of

√
nc in Fig. 1(b). From the standard Landau

theory for second-order phase transitions [47], the phase
boundary between the MI and SF phases is determined by
the condition C2 = 0. Figure 1(a) shows the resulting phase
diagram [11].

The ground-state energy can be calculated by numerically
diagonalizing Eq. (15), as shown in Fig. 1(b). The phase
boundary can be determined by nc that minimizes the nu-
merically calculated ground-state energy. It precisely agrees
with that of the perturbative mean-field theory, as shown in
Fig. 1(a).

D. First-order SF-MI phase transition

It has been found that the SF-MI phase transition is of first
order in the vicinity of the tip of the Mott lobe (see Fig. 2)
when U2/U0 < 0.32 [14]. The metastable SF and MI phases
appear inside the MI and SF regions, respectively, in the phase
diagram [17]. We need in this case the ground-state energy
expanded up to sixth order,

E = E0(0, n) + C2nc + C4n2
c + C6n3

c . (23)

Note that C4 is negative on the first-order part of the phase
boundary. The right-hand side of Eq. (23) is plotted as a
function of

√
nc in Fig. 2(c).

In the SF phase, the equation for nc,

C2nc + C4n2
c + C6n3

c = 0, (24)

has a positive solution as shown in Fig. 2(c) (see the curves
with green inverted triangles and red diamonds). The ground
state is thus in the SF phase if C2

4 − 4C2C6 > 0. In the MI
phase, i.e., C2

4 − 4C2C6 < 0, Eq. (24) has a single solution
nc = 0 [see the curves with orange circles and blue squares
in Fig. 2(c)]. The phase boundary is, therefore, determined by
the condition C2

4 − 4C2C6 = 0.
If C2 > 0 in the SF phase, since the ground-state energy

has a local minimum at
√

nc = 0, the metastable MI state
appears. On the other hand, the ground-state energy has a
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FIG. 1. (a) Phase diagram of the second-order SF-MI phase
transition. We set U2/U0 = 0.33. The dotted line represents the
phase boundary between the spin-singlet insulator with n = 2 and
the polar state determined by the perturbative mean-field the-
ory. The red crosses represent the phase boundary obtained by
numerically diagonalizing Eq. (15). The blue dash-dotted line in-
dicates the particle-hole symmetry line determined by K = 0 (see
Appendix D). (b) Ground-state energy as a function of

√
nc in the MI

phase (squares), the SF phase (triangles), and at the phase boundary
(PB) (diamonds). The solid lines plot Eq. (22). The dotted lines are
obtained by diagonalizing Eq. (15).

local minimum at
√

nc > 0 in the MI phase, if the metastable
SF state exists. From the condition for a local minimum
∂E/∂

√
nc = 0, we obtain

nc = 0,
−C4 ±

√
C2

4 − 3C2C6

3C6
. (25)

The positive solution (nc > 0) in Eq. (25) corresponds to
the metastable SF state. The metastable SF state thus ap-
pears if C2

4 − 3C2C6 > 0. Consequently, the conditions for the
existence of the metastable SF and MI states are given as
3C2C6 < C2

4 < 4C2C6 and 0 < 4C2C6 < C2
4 , respectively.

Figures 2(a) and 2(b) show the regions of the metastable SF
and MI phases in the phase diagram when U2/U0 = 0.31. The
phase boundary obtained by diagonalizing Eq. (15) agrees
well with that of the perturbative mean-field theory, as shown
in Fig. 2(a), as far as U2/U0 � 0.32. If 0 < U2/U0 � 0.32,
since the SF order parameter is large even in the vicinity
of the phase boundary, the perturbative expansion of the

FIG. 2. (a) Phase diagram of the first-order SF-MI phase tran-
sition. We set U2/U0 = 0.31. The dotted line represents the phase
boundary between the spin-singlet insulator with n = 2 and the
polar state determined by the perturbative mean-field theory. The
red crosses represent the phase boundary obtained by numerically
diagonalizing Eq. (15). The blue dash-dotted line indicates the
particle-hole symmetry line determined by K = 0 (see Appendix D).
The solid black line indicates the phase boundary of the first-order
phase transition. (b) Magnification of the tip of the Mott lobe in (a).
The solid line is the phase boundary. The metastable SF (MI) state
exists in the thick (thin) gray region, in which the condition 3C2C6 <

C2
4 < 4C2C6 (0 < 4C2C6 < C2

4 ) is satisfied. (c) Ground-state energy
as a function of

√
nc. The solid lines plot Eq. (23). The dotted lines

are calculated by diagonalizing Eq. (15). zt/U0 and μ/U0 for each
line are set to the values for the same symbols in (b).

ground-state energy by the SF order parameter breaks down.
The correct phase boundary is obtained by diagonalizing
Eq. (15) [17].
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FIG. 3. (a) Dispersion relations for the collective modes in
Eqs. (33), (34), and (35). We set U2/U0 = 0.33, zt/U0 = 0.3834, and
μ/U0 = 0.9831.

III. COLLECTIVE MODES

We study collective modes in the SF phase based on the
TDGL equation,

iK∂t�α − J∂2
t �α = − ∇2

2m∗ �α + C2�α + 2c4(�†�)�α

+ 2c′
4〈〈F〉〉 ·

∑
β

Fαβ�β

+ 3c6(�†�)2�α + c′
6〈〈F〉〉2�α

+ 2c′
6(�†�)〈〈F〉〉 ·

∑
β

Fαβ�β, (26)

where � = (�1, �0, �−1)T denotes the SF order parame-
ter. (The derivation of the TDGL equation is summarized in
Appendix C). Here 〈〈F〉〉 = ∑

α,β �∗
αFαβ�β is the spin aver-

age.
Neglecting the sixth-order terms, we first examine the basic

characters of collective modes within the fourth-order TDGL
equation. We assume a commensurate filling and set K = 0
for simplicity [see Eq. (D9) in Appendix D].

We set (α, β, θ ) = (0, π/2, 0) for the static order parame-
ter,

�0 =
√

ρ

2

⎡
⎣−1

0
1

⎤
⎦, (27)

where ρ = (�0)†�0 = −C2/2c4 is the SF density. The d vec-
tor for Eq. (27) d = √

ρ(1, 0, 0)T is shown in Fig. 4. We
introduce fluctuation of the order parameter around the static
solution �0 as

� =
√

ρ + δρeiδθ R(δα, π/2 + δβ, δγ )

⎡
⎣0

1
0

⎤
⎦ ∼�0 + δ�,

(28)

where

δ� =
⎡
⎣ δ�1

δ�0

δ�−1

⎤
⎦ = √

ρ

⎡
⎢⎣− 1√

2

(
δρ

2ρ
+ iδθ − iδα

)
−δβ

1√
2

(
δρ

2ρ
+ iδθ + iδα

)
⎤
⎥⎦. (29)

FIG. 4. Schematic representation of the spin-nematic modes ωα

and ωβ in Eqs. (38) and (39). ωα (ωβ ) indicates fluctuation of α (β).

The d vector that corresponds to Eq. (28) is given by

d = √
ρ

⎡
⎣1

0
0

⎤
⎦ + √

ρ

⎡
⎣ δρ

2ρ
+ iδθ
δα

−δβ

⎤
⎦. (30)

Linearizing the fourth-order TDGL equation by
fluctuation δ� and Fourier transforming by δ�μ =∑

k,ω ei(k·r−ωt )δ�μ(k, ω) (μ = 0,±1), we obtain⎡
⎢⎣

εk + c+ρ c+ρ c−ρ c−ρ

c+ρ εk + c+ρ c−ρ c−ρ

c−ρ c−ρ εk + c+ρ c+ρ

c−ρ c−ρ c+ρ εk + c+ρ

⎤
⎥⎦
⎡
⎢⎣

δ�1

δ�∗
1

δ�−1

δ�∗
−1

⎤
⎥⎦

= Jω2

⎡
⎢⎣

δ�1

δ�∗
1

δ�−1

δ�∗
−1

⎤
⎥⎦, (31)

[
εk + 2c′

4ρ −2c′
4ρ−2c′

4ρ εk + 2c′
4ρ

][
δ�0

δ�∗
0

]
= Jω2

[
δ�0

δ�∗
0

]
, (32)

where εk ≡ k2

2m∗ and c± ≡ c4 ± c′
4. Solving Eqs. (31) and (32),

we obtain the three degenerate gapless modes with the same
dispersion,

ωθ (k) = ωα (k) = ωβ (k) =
√

εk/J. (33)

In addition, we obtain the three gapful modes that have the
dispersions,

ωρ (k) =
√

[εk + 4c4ρ]/J, (34)

ωy(k) = ωz(k) =
√

[εk + 4c′
4ρ]/J. (35)

Figure 3 shows the dispersions in Eqs. (33), (34), and (35).The
amplitudes of the normal modes for ωθ and ωρ are given,
respectively, as

δ�1 − δ�∗
1 − δ�−1 + δ�∗

−1 ∝ δθ, (36)
δ�1 + δ�∗

1 − δ�−1 − δ�∗
−1 ∝ δρ. (37)

They represent the phase and amplitude modes that arise due
to the spontaneous breaking of U(1)θ in Eq. (19) [48].
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The amplitudes of the normal modes for ωα (k), ωβ (k),
ωy(k), and ωz(k) are given, respectively, as

δ�1 − δ�∗
1 + δ�−1 − δ�∗

−1 ∝ δ〈〈Qxy〉〉 ∝ δα, (38)

δ�0 + δ�∗
0 ∝ δ〈〈Qzx〉〉 ∝ δβ, (39)

δ�0 − δ�∗
0 ∝ δ〈〈Fy〉〉, (40)

δ�1 + δ�∗
1 + δ�−1 + δ�∗

−1 ∝ δ〈〈Fz〉〉. (41)

Here, we introduce the nematic tensor [49],

Qμν ≡ 1

2
(FμFν + FνFμ) − δμν

F2

3
. (42)

Qμν characterizes the spin-nematic order [50] and 〈〈Qμν〉〉 =∑
α,β �∗

α (Qμν )αβ�β . ωy and ωz represent spin-wave modes
associated with fluctuations of magnetization, while ωα and
ωβ represent spin-nematic modes associated with fluctuations
of the nematic tensor [51]. They induce fluctuations of the
polar and azimuthal angles of the d vector α and β, as shown
in Fig. 4. The spin-nematic modes ωα and ωβ arise due to the
spontaneous breaking of S2

α,β in Eq. (19).
In the case of the first-order phase transition, dynamics

of the SF order parameter is governed by the sixth-order
TDGL equation (26). In the same manner as the fourth-order
TDGL equation, the dispersions of the collective modes can
be derived as

ωρ (k) =
√

[εk + 4(c4 + 3c6ρ ′)ρ ′]/J, (43)

ωy(k) = ωz(k) =
√

[εk + 4(c′
4 + c′

6ρ
′)ρ ′]/J, (44)

ωθ (k) = ωα (k) = ωβ (k) =
√

εk/J, (45)

where the superfluid density is given by

ρ ′ =
−c4 +

√
c2

4 − 3C2c6

3c6
. (46)

Figures 5(a) and 5(b) plot the energy gap of the gapful
modes �ρ = ωρ (0) and �y = ωy(0) = ωz(0) as functions of
U0 near the phase boundary. �ρ and �y vanish at the second-
order phase boundary, whereas they are finite at the first-order
phase boundary. The finite energy gap at the phase boundary
reflects the existence of the metastable SF phase. �ρ vanishes
at U0 = U ′

0c simultaneously with the disappearance of the
metastable SF state.

The TDGL method is valid in the vicinity of the MI phase,
where the order parameter is so small that the perturbative
mean-field expansion is allowed. It describes low energy su-
perfluid dynamics, in which the order parameter varies slowly
in space and time. Thus, the analytical expressions for the
collective modes derived by the TDGL equation should be
correct in the low energy regime for small momenta.

To check the validity of the TDGL equation, we also eval-
uate the excitation spectrum of collective modes numerically
using the time-dependent Gutzwiller ansatz [7,52]. The time-
dependent Gutzwiller ansatz approximates the many-body
wave function as a product of single-site wave functions,
each of which is expanded by finite number of Fock states.
The validity of the time-dependent Gutzwiller ansatz depends

FIG. 5. (a) Energy gap of the gapful modes in Eqs. (34) and
(35) normalized by the spin-independent interaction at the second-
order SF-MI phase boundary U0c. We set U2/U0 = 0.33 and μ/U0 =
0.9831. (b) Energy gap of the gapful modes in Eqs. (43) and (44)
normalized by U0c. The metastable SF phase disappears at U0 = U ′

0c.
We set U2/U0 = 0.31 and μ/U0 = 1.008.

crucially on the number of Fock states involved in the expan-
sion. This restriction to the number of Fock states as well
as the approximation for the many-body wave function as a
product of single-site wave functions limits the validity of
the time-dependent Gutzwiller ansatz within the low energy
regime near the phase boundary, because large numbers of
Fock states are required to describe the SF phase in highly
excited states and/or away from the phase boundary. The
collective modes calculated by the TDGL equation and the
time-dependent Gutzwiller ansatz, therefore, should agree in
the low energy regime for small momenta in the vicinity of
the MI phase.

Figure 6 shows a comparison of the excitation spectrum
calculated by the TDGL equation and the time-dependent
Gutzwiller ansatz. They agree well in the low energy regime
for small k as expected.

IV. DYNAMICAL INSTABILITY OF SUPERCURRENTS

A. Mass currents

To examine the stability of mass currents, we consider
a current carrying state, in which m = ±1 components are
flowing in the same direction with momentum p, as

�0
m =

√
ρ̄

2
eip·r

⎡
⎣−1

0
1

⎤
⎦, (47)
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FIG. 6. (a) Dispersion relations for the collective modes in
Eqs. (43), (44), and (45). We set U2/U0 = 0.50, zt/U0 = 0.451, and
μ/U0 = 0.775. The red crosses are the dispersion relations calcu-
lated using the time-dependent Gutzwiller ansatz. We expand the
single-site wave function by the Fock state |n1, n0, n−1〉 with 0 �
n1 + n0 + n−1 � 10.

where ρ̄ = −(εp + C2)/2c4 is the SF density. Note that
p ≡ |p| should be smaller than the maximum value pmax =√−2m∗C2 for ρ̄ > 0. The mass and spin currents for Eq. (47)
are given by

jm = ρ̄
p

m∗ , (48)

jn
s = 0, (49)

respectively. Here, mass and spin currents are defined, respec-
tively, as

jm = 1

2im∗ [�†∇� − (∇�†)�], (50)

jμs = 1

2im∗ [�†Fμ∇� − (∇�†)Fμ�]. (51)

jμs denotes a spin current for the μth component of magne-
tization 〈〈Fμ〉〉 (μ = x, y, z). [We derive Eqs. (50) and (51) in
Appendix D.] We introduce fluctuation of the order parameter
around the static solution �0

m as

� = eip·r√ρ̄ + δρeiδθ R(δα, π/2 + δβ, δγ )

⎡
⎣0

1
0

⎤
⎦

∼ �0
m + δ�, (52)

where

δ� = eip·r

⎡
⎣ δ�1

δ�0

δ�−1

⎤
⎦

= √
ρ̄eip·r

⎡
⎢⎣− 1√

2

(
δρ

2ρ̄
+ iδθ − iδα

)
−δβ

1√
2

(
δρ

2ρ̄
+ iδθ + iδα

)
⎤
⎥⎦. (53)

Substituting Eq. (52) into the fourth-order TDGL equation
with K = 0 and linearizing with respect to δ�, we obtain

⎡
⎢⎢⎢⎣

εk + p·k
m∗ + c+ρ̄ c+ρ̄ c−ρ̄ c−ρ̄

c+ρ̄ εk − p·k
m∗ + c+ρ̄ c−ρ̄ c−ρ̄

c−ρ̄ c−ρ̄ εk + p·k
m∗ + c+ρ̄ c+ρ̄

c−ρ̄ c−ρ̄ c+ρ̄ εk − p·k
m∗ + c+ρ̄

⎤
⎥⎥⎥⎦
⎡
⎢⎣

δ�1

δ�∗
1

δ�−1

δ�∗
−1

⎤
⎥⎦ = Jω2

⎡
⎢⎣

δ�1

δ�∗
1

δ�−1

δ�∗
−1

⎤
⎥⎦, (54)

[
εk + p·k

m∗ + 2c′
4ρ̄ −2c′

4ρ̄

−2c′
4ρ̄ εk − p·k

m∗ + 2c′
4ρ̄

][
δ�0

δ�∗
0

]
= Jω2

[
δ�0

δ�∗
0

]
. (55)

From Eqs. (54) and (55), we obtain the three gapless modes with the dispersions,

ωθ,ρ (k, p) =

√√√√√
⎡
⎣εk + 2c4ρ̄ −

√
(2c4ρ̄)2 +

(
p · k
m∗

)2
⎤
⎦/J, (56)

ωα,z(k, p) = ωβ,y(k, p) =

√√√√√
⎡
⎣εk + 2c′

4ρ̄ −
√

(2c′
4ρ̄ )2 +

(
p · k
m∗

)2
⎤
⎦/J. (57)

The amplitudes of the normal modes for ωθ,ρ , ωα,z, and ωβ,y

are given, respectively, as

Lθ,ρ

δρ

ρ̄
+ Lθ,θ δθ, (58)

Lα,z
δ〈〈Fz〉〉

ρ̄
+ Lα,α

δ〈〈Qxy〉〉
ρ̄

, (59)

Lβ,y
δ〈〈Fy〉〉

ρ̄
+ Lβ,β

δ〈〈Qxy〉〉
ρ̄

, (60)

where

Lθ,θ = 1

2

⎡
⎣1 − p · k

2c4ρ̄m∗ +
√

1 +
(

p · k
2c4ρ̄m∗

)2
⎤
⎦, (61)

Lθ,ρ = i

4

⎡
⎣1 + p · k

2c4ρ̄m∗ −
√

1 +
(

p · k
2c4ρ̄m∗

)2
⎤
⎦, (62)
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FIG. 7. Dispersion relations for the collective modes in Eqs. (56)
and (57) in the presence of a mass current with momentum p. We
set U2/U0 = 0.33, zt/U0 = 0.3834, and μ/U0 = 0.9831. The solid
lines in (a) and (b) denote the real parts of Eqs. (56) and (57),
respectively. The dashed lines in (a) and (b) indicate the imaginary
parts of Eqs. (56) and (57), respectively.

Lα,α = Lβ,β = 1

2

⎡
⎣1 − p · k

2c′
4ρ̄m∗ +

√
1 +

(
p · k

2c′
4ρ̄m∗

)2
⎤
⎦,

(63)

Lα,z = Lβ,y = i

4

⎡
⎣1 + p · k

2c′
4ρ̄m∗ −

√
1 +

(
p · k

2c′
4ρ̄m∗

)2
⎤
⎦.

(64)

Since the phase factor eip·r in Eq. (47) breaks the particle-
hole symmetry, a pair of gapful mode and a gapless mode
in Eqs. (33), (34), and (35) are coupled in the presence of a
mass current and yields a single gapless mode. ωρ and ωθ are
coupled, for example, and yield ωθ,ρ .

Figure 7 shows the evolution of the dispersions in Eqs. (56)
and (57), as p is increased. Here, we set k being antiparallel to
p. If p exceeds the critical momenta for dynamical instabili-
ties, the dispersion of collective modes acquires an imaginary
part. The critical momenta pc

θ and pc
α for the onset of the

FIG. 8. Critical momenta for mass currents pc
θ and pc

α in
Eqs. (65) and (66) as functions of U0/U0c for the second-order
phase transition. U0c is the critical value of the spin-independent
interaction for the SF-MI phase transition. We set U2/U0 = 0.33 and
μ/U0 = 0.9831.

dynamical instabilities induced by ωθ,ρ and ωα,z are given,
respectively, by

pc
θ =

√
−2

3
C2m∗ = pmax√

3
, (65)

pc
α =

√
−2C2c′

4m∗

2c′
4 + c4

= pmax

√
c′

4

2c′
4 + c4

. (66)

The critical momentum for ωβ,y is equivalent to pc
α . Figure 8

shows the critical momenta pc
θ and pc

α as functions of U0 in the
vicinity of the second-order phase transition. The dynamical
instability induced by ωθ,ρ for p > pc

θ leads to exponential
growth of δθ and δρ in time. Meanwhile, the dynamical
instabilities induced by ωα,z and ωβ,y for p > pc

α lead to expo-
nential growth of δ〈〈Fy〉〉, δ〈〈Fz〉〉, δ〈〈Qxy〉〉, and δ〈〈Qzx〉〉 in time.

In the case of the first-order phase transition, using the
sixth-order TDGL equation (26), the dispersions for the gap-
less modes are obtained as

ωθ,ρ (k, p) = [εk + 2(c4 + 3c6ρ̄
′)ρ̄ ′

−
√

(k · p/m∗)2 + 4(c4 + 3c6ρ̄ ′)2ρ̄ ′2]1/2, (67)

ωα,z(k, p) = ωβ,y(k, p)

= [εk + 2(c′
4 + c′

6ρ̄
′)ρ̄ ′

−
√

(k · p/m∗)2 + 4(c′
4 + c′

6ρ̄
′)2ρ̄ ′2]1/2, (68)

where the superfluid density is given by

ρ̄ ′ =
−c4 +

√
c2

4 − 3c6(C2 + εp)

3c6
. (69)

The maximum value of the momentum p′
max, which satisfies

ρ̄ ′ > 0, is given by

p′
max =

√
2m∗

(
c2

4

3c6
− C2

)
. (70)

043305-8



STABILITY OF SUPERCURRENTS IN A SUPERFLUID … PHYSICAL REVIEW A 103, 043305 (2021)

FIG. 9. Critical momentum for mass currents p′
θ

c in Eq. (71)
as a function of U0/U0c for the first-order phase transition. U0c is
the critical value of the spin-independent interaction for the SF-MI
phase transition. U ′

0c is the value of the spin-independent interaction
at the boundary, at which the metastable SF phase disappears. We set
U2/U0 = 0.31 and μ/U0 = 1.008.

From Eq. (67), the critical momentum p′
θ

c for the onset of
dynamical instabilities induced by ωθ,ρ is

p′
θ

c =

√√√√m∗

4

[
c2

4

c6
− 4C2 +

√
c2

4

c6

(
c2

4

c6
− 8

3
C2

)]
. (71)

Figure 9 shows the critical momenta pc
θ and p′

θ
c as functions

of U0.
In the case of the second-order phase transition, we find

pc
θ → 0 as U0 → U0c, as shown in Fig. 8. In fact, from

Eq. (65), one finds pc
θ = 0 due to C2 = 0 at the phase

boundary. This can be understood as follows: The dynam-
ical instability is expected to occur if the phase gradient
per healing length ξ exceeds π/2, i.e., pξ > π/2, due to
negative effective mass [39]. Since the healing length ξ =
1/

√
4|C2|m∗ diverges as |C2| → 0 at the phase boundary, pc

θ

also vanishes at U0 = U0c [53]. Meanwhile, in the case of
the first-order phase transition, Fig. 9 shows that p′

θ
c
> 0 at

the phase boundary reflecting the finite healing length ξ =
1/

√
8m∗(|c4|ρ ′ − C2) [53]. Furthermore, it is finite through-

out the metastable SF phase and vanishes at U0 = U ′
0c, at

which C2
4 = 3C2C6 holds from Eq. (25) and the healing length

ξ diverges. The finite critical momentum means that the
metastable SF state can sustain a mass current without dis-
sipation as far as p < p′

θ
c and therefore exhibits superfluidity.

In contrast to the case of the second-order phase transition,
the dispersions of ωα,z and ωβ,y exhibit very little change in
the presence of a finite mass current. Thus, in the case of
the first-order phase transition, ωα,z and ωβ,y do not cause
dynamical instabilities.

B. Spin currents

To study the stability of spin currents, we assume a static
solution, in which m = ±1 components flowing in the oppo-
site direction with the same momenta p, as

�0
s =

√
ρ̄

2

⎡
⎣−e−ip·r

0
eip·r

⎤
⎦, (72)

where ρ̄ = −(εp + C2)/2c4 is the SF density. Since m = ±1
components flow in the opposite direction with the same
momenta, the net mass current vanishes ( jm = 0). The spin
current for Eq. (72) is given as

jμs = − p
m∗ δμ,z. (73)

We introduce fluctuation of the order parameter around the
static solution as

� = �0
s + δ�, (74)

where

δ� =
⎡
⎣δ�1e−ip·r

δ�0

δ�−1eip·r

⎤
⎦

= √
ρ̄

⎡
⎢⎣− e−ip·r√

2

(
δρ

2ρ̄
+ iδθ − iδα

)
−δβ

eip·r√
2

(
δρ

2ρ̄
+ iδθ + iδα

)
⎤
⎥⎦. (75)

Substituting Eq. (74) into the fourth-order TDGL equa-
tion with K = 0 and linearizing with respect to fluc-
tuation δ�, we obtain the equations for the Fourier
components as

⎡
⎢⎢⎢⎣

εk + p·k
m∗ + c+ρ̄ c+ρ̄ c−ρ̄ c−ρ̄

c+ρ̄ εk − p·k
m∗ + c+ρ̄ c−ρ̄ c−ρ̄

c−ρ̄ c−ρ̄ εk − p·k
m∗ + c+ρ̄ c+ρ̄

c−ρ̄ c−ρ̄ c+ρ̄ εk + p·k
m∗ + c+ρ̄

⎤
⎥⎥⎥⎦
⎡
⎢⎣

δ�1

δ�∗
1

δ�−1

δ�∗
−1

⎤
⎥⎦ = Jω2

⎡
⎢⎣

δ�1

δ�∗
1

δ�−1

δ�∗
−1

⎤
⎥⎦, (76)

[
εk − εp + 2c′

4ρ̄ −2c′
4ρ̄−2c′

4ρ̄ εk − εp + 2c′
4ρ̄

][
δ�0

δ�∗
0

]
= Jω2

[
δ�0

δ�∗
0

]
. (77)

From Eq. (75), we find that ωβ takes the form,

ωβ (k, p) = √
(εk − εp)/J. (78)

Figure 3 shows the dispersions in Eqs. (33), (34), and (35).
The amplitude of the normal mode for ωβ is

δ�0 + δ�∗
0 ∝ δβ (∝ δ〈〈Qzx〉〉). (79)
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Equation (78) shows that ωβ (k < p, p) has an imaginary part
for any p �= 0. This indicates that even an infinitesimally small
amount of spin current induces dynamical instabilities and
leads to exponential growth of the long wave length spin-
nematic fluctuation. We also find that ωβ derived from the
sixth-order TDGL equation (26) with K = 0 has the same
dispersion relation as Eq. (78). The critical momentum is thus
also zero. The zero critical velocity for spin currents has been
also reported in the study of a spin-1 BEC [54,55].

V. STABILITY OF SPIN CURRENTS

To understand the origin of the dynamical instability of
spin currents, we consider the static solution,

�p,β = √
ρ

⎡
⎢⎣− e−ip·r√

2
sin β

cos β
eip·r√

2
sin β

⎤
⎥⎦, (80)

where �p,β=π/2 = �0
s . The d vector for Eq. (80) is given by

d = Rz(p · r)
√

ρ

⎡
⎣sin β

0
cos β

⎤
⎦, (81)

where Rz(θ ) represents the rotation matrix by angle θ about
the z axis.

The SF density ρ and spin currents jμs for Eq. (80) are given
as

ρ = −C2 + εp sin2 β

2c4
, (82)

jx
s = p

m∗ ρ sin β cos β cos(p · r), (83)

jy
s = p

m∗ ρ sin β cos β sin(p · r), (84)

jz
s = − p

m∗ sin2 β. (85)

Equations (83)–(85) demonstrate that spatial variation of the
d vector induces a spin current. When β = π/2, for example,
as one moves in the direction of p, the d vector rotating in the
xy plane induces a spin current jz

s||p, as shown in Fig. 10.
We focus on the case of the second-order phase transition.

Substituting Eq. (80) into Eq. (C24) with c6 = c′
6 = 0, the

FIG. 10. Schematic illustration of the spatial variation of the d
vector in Eq. (81) and the spin current jz

s in Eq. (85). We set β = π/2
and p = (p, 0, 0)T .

FIG. 11. (a) Energy functional (86) as a function of β. We set
U2/U0 = 0.33, zt/U0 = 0.3834, and μ/U0 = 0.9831. (b), (c), and
(d) are the schematic drawings of d vectors (81) for β = 0, π/2, and
π , respectively.

energy functional for Eq. (80) can be calculated as

K({�p,β}) = − V

4c4
(εp sin2 β − |C2|)2, (86)

where V = Nsad is the volume of the system. Figure 11 shows
K({�p,β}) as a function of β and the configuration of the d
vector (81) for each value of β. We find that the degeneracy of
the energy functional with respect to β due to S2

α,β is lifted by
a spin current: β = 0 and π correspond to the energy minima
and β = π/2 to the maximum. In the former, since Rz(p · r)
does not change the d vector that is in parallel with the z
axis, no spin currents are induced and thus K({�p,β}) takes
the minima. In the latter, since the d vector is in the xy plane,
spatial variation of the d vector by Rz(p · r) is maximized and
thus K({�p,β}) takes the maximum. The dynamical instability
at β = π/2, therefore, occurs because it corresponds to an
energetically unstable point. Even infinitesimally small fluctu-
ations of the order parameter around β = π/2 grow and drive
the system away from β = π/2 towards the stable states at
β = 0 or π .

We note that the energy functional for the first-order phase
transition also exhibits the maximum at β = π/2 and minima
at β = 0 and π . The origin of the dynamical instability is,
therefore, the same as explained above.

Our results do not exclude the possibility of stable spin
currents in general. We expect that spin currents can be
stabilized by the quadratic Zeeman effect. In fact, stable spin
currents have been observed in a spin-1 antiferromagnetic
Bose-Einstein condensate (BEC) of 23Na atoms in the pres-
ence of the quadratic Zeeman effect [41], despite the fact
that spin currents are predicted to be unstable in this system
without the quadratic Zeeman effect [54,55].

In the above argument, we have revealed that the instability
of spin currents originates from the fact that the energy func-
tional takes its maximum for a superfluid state carrying a spin
current (see Fig. 11) that results in the dynamical instability
of the spin nematic mode ωβ . The spin nematic mode ωβ
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involves small population of m = 0 hyperfine state as indi-
cated in Eq. (39). In the presence of the quadratic Zeeman
effect, since populating m = 0 state from the polar state in
Eq. (27) costs finite energy due to the quadratic Zeeman effect,
it is expected that the spin nematic mode may be stabilized
and the energy functional takes minimum for a state carrying
a spin current. However, it is beyond the scope of the paper to
confirm this possibility using the TDGL equation, because it is
necessary to derive the TDGL equation taking into account the
quadratic Zeeman effect from scratch. Note that the insulating
state in the presence of the quadratic Zeeman effect is different
from the spin-singlet state in Eq. (10). We examine the pos-
sibility of stabilizing spin currents by the quadratic Zeeman
effect using the discrete Gross-Pitaevskii (DGP) equation,
which is valid in the weakly interacting regime deep in the
superfluid phase.

The spin-1 Bose-Hubbard model with the quadratic Zee-
man effect [26] is given by

Ĥq = Ĥ − q
∑
i,α,β

b̂†
iα

(
F 2

z

)
αβ

b̂iβ, (87)

where q > 0. In the weakly interacting regime (t � U0), in-
troducing the mean-field ψiα = 〈b̂iα〉, we obtain the energy
functional,

〈Ĥq〉 = −q
∑

i

(|ψi1|2 + |ψi−1|2) − t
∑

〈i, j〉,α
(ψ∗

iαψ jα + c.c.)

−μ
∑
i,α

|ψiα|2 + U0

2

∑
i

(∑
α

|ψiα|2
)2

+ U2

2

∑
i

(∑
α,β

ψ∗
iαFαβψiβ

)2

. (88)

From i∂tψiα = δ〈Ĥq〉/δψ∗
iα , the discrete Gross-Pitaevskii

(DGP) equation can be derived as

i∂tψiα = −t
∑

j∈V (i)

ψ jα − qψiα (δα,1 + δα,−1)

−μψiα + U0ψiα

∑
β

|ψiβ |2

+U2

∑
β,γ ,δ

ψ∗
iβFβγ ψiγ · Fαδψiδ, (89)

where j ∈ V (i) denotes the summation over the nearest neigh-
boring sites of site i. We consider the static solution that
corresponds to Eq. (80):

	ψ0
i (β ) = √

nc

⎡
⎢⎣− e−ip·ri√

2
sin β

cos β
eip·ri√

2
sin β

⎤
⎥⎦. (90)

Setting β = π/2, Eq. (90) reduces to

	ψ0
i (π/2) =

√
nc

2

⎡
⎣−e−ip·ri

0
eip·ri

⎤
⎦, (91)

which corresponds to Eq. (72). We introduce fluctuation of the
order parameter around 	ψ0

i (π/2) as

	ψi = 	ψ0
i (π/2) + δ 	ψi, (92)

where

δ 	ψi =
⎡
⎣δψi1e−ip·ri

δψi0

δψi−1eip·ri

⎤
⎦. (93)

Substituting Eq. (92) into the DGP equation (89) and lineariz-
ing with respect to fluctuation, we obtain

ω

[
ϕk,0

ϕ∗
k,0

]
=

[
εk − εp + U2nc − q −U2nc

U2nc −(εk − εp + U2nc − q)

]

×
[
ϕk,0

ϕ∗
k,0

]
, (94)

where ϕk,0 is the Fourier component of δψi0 and εk is given in
Eq. (C22). Solving Eq. (94), we obtain the dispersion relation
for the spin nematic mode corresponding to ωβ as

ω̃β (k, p) =
√

(εk − εp + U2nc + q)2 − (U2nc)2. (95)

Without the quadratic Zeeman effect (q = 0), ω̃β (k, p) be-
comes pure imaginary at k = 0 for finite p, which means that
spin currents are dynamically unstable. This demonstrates that
the absence of spin supercurrents is not restricted within the
TDGL equation, which is valid in the vicinity of the Mott
insulating (MI) phase. Our results suggest that spin supercur-
rents are unstable in the entire superfluid phase without the
quadratic Zeeman effect.

In the presence of the quadratic Zeeman effect (q > 0),
one finds that ω̃β does not exhibit dynamical instability for p
smaller than the critical momentum pc. For small p (pa � 1),
the critical momentum pc for the onset of the dynamical
instability is obtained as

pca =
√

q/t . (96)

The quadratic Zeeman effect thus stabilizes spin currents.
Substituting Eq. (90) into the energy functional (88), we

obtain

〈Ĥq〉
ncNs

= εp

2
− zt cos2 β − μ − q

2
sin2 β. (97)

For small p, Eq. (97) reduces to

〈Ĥq〉
ncNs

= −μ − zt − ta2

2

(
p2

c − p2
)

sin2 β. (98)

Equation (98) shows that β = π/2 corresponds to an energy
minimum for p < pc and therefore the static solution (91)
carrying a finite spin current is stable as expected.

VI. CONCLUSION

To summarize, we have studied the stability of supercur-
rents in the polar phase of antiferromagnetically interacting
spin-1 bosons in an optical lattice using the TDGL equation.
We have calculated the critical momenta for supercurrents
in the vicinity of the MI phase with even filling factors. We
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found that the critical momentum for mass currents is finite
throughout the metastable SF phase, which demonstrates the
superfluidity of the metastable SF state. The critical momen-
tum for spin currents was found to be zero. We have found that
this instability of spin currents originates from the fact that the
polar state with a spin current corresponds to an energy saddle
point, thereby an infinitesimal spin current causes a dynamical
instability.

Although we set U2/U0 optimal values for validity of the
theory that is not realistic in the present experimental status,
the obtained results may be applicable to 23Na with U2/U0 =
0.04. The first-order phase transition dominates the larger part
of the phase boundary and the region of the metastable SF
phase in the phase diagram gets larger for smaller U2/U0

[14,17]. The effect of the first-order phase transition, there-
fore, may be remarkable and easy to study experimentally
for 23Na.

Our predictions for the stability of supercurrents can be
verified experimentally with current technologies. As for mass
currents, we propose a similar setup with Ref. [33], where
a mass current is induced by a moving optical lattice. Spin
currents can be induced by applying a linear magnetic field
gradient that induces counterflow of two spin components as
in the experiment for spinor gases [41].
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APPENDIX A: MATRIX ELEMENTS OF CREATION
AND ANNIHILATION OPERATORS

We present the details of the derivation of the matrix
elements of creation and annihilation operators summarized
in Table I that are necessary for the calculation of the
ground-state energy (17). The following derivation is based
on Ref. [56].

If one operates b̂†
α (α = 0,±1) on the state |S, m, n〉, the

magnetic quantum number m and particle number n change
as m → m + α and n → n + 1. Meanwhile, the total spin
quantum number S changes as S → S ± 1 by adding a spin-1
particle. Thus, b̂†

α|S, m, n〉 can be written as

b̂†
α|S, m, n〉 = Mα,S,m,n|S + 1, m + α, n + 1〉

+ Nα,S,m,n|S − 1, m + α, n + 1〉. (A1)

Analogously, b̂α|S, m, n〉 can be written as

b̂α|S, m, n〉 = Oα,S,m,n|S + 1, m − α, n − 1〉
+ Pα,S,m,n|S − 1, m − α, n − 1〉. (A2)

TABLE I. Matrix elements.

S m M1,S,m,n M0,S,m,n M−1,S,m,n N1,S,m,n N0,S,m,n N−1,S,m,n

0 0
√

n+3
3

√
n+3

3

√
n+3

3 0 0 0

1 1
√

2(n+4)
5

√
n+4

5

√
n+4
15 0 0 −

√
n+1

3

1 0
√

n+4
5 2

√
n+4
15

√
n+4

5 0
√

n+1
3 0

1 −1
√

n+4
15

√
n+4

5

√
2(n+4)

5 −
√

n+1
3 0 0

2 2
√

3(n+5)
7

√
n+5

7

√
3(n+5)

105 0 0 −
√

2n
5

2 1
√

2(n+5)
7 2

√
6(n+5)

105 3
√

n+5
105 0

√
n
5 −√

n
5

2 0 3
√

2(n+5)
105 3

√
3(n+5)

105 3
√

2(n+5)
105 −√

n
15 2

√
n
15 −√

n
15

2 −1 3
√

n+5
105 2

√
6(n+5)

105

√
2(n+5)

7 −√
n
5

√
n
5 0

2 −2
√

3(n+5)
105

√
n+5

7

√
3(n+5)

7 −
√

2n
5 0 0

3 3 2
3

√
n + 6 1

3

√
n + 6 1

3

√
n+6

7 0 0 −
√

3(n−1)
7

3 2
√

n+6
3 2

√
n+6
21

√
n+6
21 0

√
n−1

7 −
√

2(n−1)
7

3 1
√

5(n+6)
21

√
5(n+6)

21

√
2(n+6)

21 −
√

n−1
35 2

√
2(n−1)

35 −
√

6(n−1)
35

3 0
√

10(n+6)
63

√
16(n+6)

63

√
10(n+6)

63 −
√

3(n−1)
35 3

√
n−1
35 −

√
3(n−1)

35

3 −1
√

2(n+6)
21

√
5(n+6)

21

√
5(n+6)

21 −
√

6(n−1)
35 2

√
2(n−1)

35 −
√

n−1
35

3 −2
√

n+6
21 2

√
n+6
21

√
n+6

3 −
√

2(n−1)
7

√
n−1

7 0

3 −3 1
3

√
n+6

7
1
3

√
n + 6 2

3

√
n + 6 −

√
3(n−1)

7 0 0
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We derive the recurrence formulas for Mα,S,m,n, Nα,S,m,n,

Oα,S,m,n, and Pα,S,m,n. From −S � m � S, they satisfy

N1,S,S,n = N0,S,S,n = P0,S,S,n = P−1,S,S,n = 0. (A3)

Then, we obtain

b̂†
1|S, S, n〉 = M1,S,S,n|S + 1, S + 1, n + 1〉, (A4)

where M1,S,S,n is given as [11]

M1,S,S,n =
√

(S + 1)(n + S + 3)

2S + 3
. (A5)

Other matrix elements can be derived by operating the
ladder operators Ŝ± = Ŝx ± iŜy. By simple calculations, one
can show

[Ŝ+, b̂1] = −
√

2b̂0, [Ŝ+, b̂0] = −
√

2b̂−1, [Ŝ+, b̂−1] = 0,

[Ŝ−, b̂1] = 0, [Ŝ−, b̂0] = −
√

2b̂−1, [Ŝ−, b̂−1] = −
√

2b̂0,

[Ŝz, b̂1] = −b̂1, [Ŝz, b̂0] = 0, [Ŝz, b̂−1] = b̂−1,

[b̂1, �̂
†] = −2b̂†

−1, [b̂0, �̂
†] = 2b̂†

0, [b̂−1, �̂
†] = −2b̂†

1.

Using the above commutation relations, we obtain

Ŝ+b̂†
1|S, m, n〉

=
√

(S − m)(S + m + 3)M1,S,m,n|S + 1, m + 2, n + 1〉
+
√

(S − m − 2)(S + m + 1)N1,S,m,n|S − 1,

m + 2, n + 1〉 (A6)

= b̂†
1Ŝ+|S, m, n〉

=
√

(S − m)(S + m + 1)M1,S,m+1,n|S + 1, m + 2, n + 1〉
+
√

(S − m)(S + m + 1)N1,S,m+1,n|S − 1, m + 2, n + 1〉.
(A7)

Comparing Eqs. (A6) and (A7), we obtain the recurrence
formula for M1,S,m,m as

M1,S,m,n =
√

S + m + 1

S + m + 3
M1,S,m+1,n. (A8)

In the same manner, we can derive other recurrence formulas,

M0,S,m,n =
√

(S − m)(S + m + 1)

(S − m + 1)(S + m + 2)
M0,S,m+1,n

+
√

2

(S − m + 1)(S + m + 2)
M1,S,m,n, (A9)

M−1,S,m,n =
√

(S − m)(S + m + 1)

(S − m + 2)(S + m + 1)
M−1,S,m+1,n

+
√

2

(S − m + 2)(S + m + 1)
M0,S,m,n,

(A10)

N−1,S,m,n =
√

S(S + 1) − m(m − 1)

S(S − 1) − (m − 1)(m − 2)
N−1,S,m−1,n,

(A11)

N0,S,m,n =
√

S(S + 1) − m(m − 1)

S(S − 1) − m(m − 1)
N−1,S,m−1,n

+
√

2

S(S − 1) − m(m − 1)
N−1,S,m,n, (A12)

N1,S,m,n =
√

S(S + 1) − m(m − 1)

S(S − 1) − m(m + 1)
N1,S,m−1,n

+
√

2

S(S + 1) − m(m − 1)
N0,S,m,n. (A13)

Here, Mα,S,S,n and Nα,S,S,n satisfy

n =
∑

α

〈S, S, n|b̂†
α b̂α|S, S, n〉 =

∑
α

[
M2

α,S,S,n + N2
α,S,S,n

] − 3.

(A14)

From Eq. (A14) and N1,S,S,n = N0,S,S,n = 0, the initial value of
Nα,S,m,n is given by

N−1,S,S,n = −
√

3 + n −
∑

α

M2
α,S,S,n. (A15)

The sign of N−1,S,S,n is set to be consistent with Ref. [11].
Solving the recurrence formulas (A9)–(A11) and (A13), one
obtains Table I [57].

One can calculate Oα,S,m,n and Pα,S,m,n as [56]

〈S, m, n|b̂†
α|S − 1, m − α, n〉 = Mα,S−1,m−α,n−1 = Pα,S,m,n,

(A16)

〈S, m, n|b̂†
α|S + 1, m − α, n〉 = Mα,S+1,m−α,n−1 = Oα,S,m,n.

(A17)

APPENDIX B: PERTURBATIVE MEAN-FIELD
CALCULATION

In this Appendix, we present the details of the perturbative
mean-field calculation in Sec. II B. Since the ground-state en-
ergy should be invariant under the U(1) gauge transformation
and spin rotations, it is convenient to expand the ground-state
energy by the d vector that transforms as a vector under spin
rotations as

E = E (2) + E (4) + E (6), (B1)

E (2) = C2(d†d ) = C2nc, (B2)

E (4) = D4(d†d )2 + D′
4|d · d|2 = C4n2

c + C′
4n2

c〈F〉2, (B3)

E (6) = D6(d†d )3 + D′
6|d · d|2(d†d ) = C6n3

c + C′
6n3

c〈F〉2,

(B4)

where Cm = Dm + D′
m, C′

m = −D′
m (m = 4, 6). Note that

d†d = nc, d · d = nc(ζ 2
0 − 2ζ1ζ−1), and |d · d|2 = n2

c (1 −
〈F〉2). To reduce the number of terms that need to be cal-
culated, we set ζ0 = 0 in Eqs. (B2), (B3), (B4), and (13).

043305-13



YAMASHIKA, YOSHII, AND TSUCHIYA PHYSICAL REVIEW A 103, 043305 (2021)

We thus obtain

E (2) = C2nc(|ζ1|2 + |ζ−1|2), (B5)

E (4) = D4n2
c (|ζ1|4 + |ζ−1|4) + (2D4 + 4D′

4)n2
c |ζ1|2|ζ−1|2, (B6)

E (6) = D6n3
c (|ζ1|6 + |ζ−1|6) + (3D6 + 4D′

6)n3
c |ζ1|2|ζ−1|2(|ζ1|2 + |ζ−1|2), (B7)

V̂ = −zt (ψ1b̂†
1 + ψ−1b̂†

−1 + H.c.). (B8)

We employ the formulas of the standard perturbation theory [58]:

E (2) = −
∑
α �=g

|〈α|V̂ pert|g〉|2
�Eα

, (B9)

E (4) = −
∑

αβγ �=g

〈g|V̂ pert|α〉 〈α|V̂ pert|β〉
�Eα

〈β|V̂ pert|γ 〉
�Eβ

〈γ |V̂ pert|g〉
�Eγ

− E (2)
∑
α �=g

|〈α|V̂ pert|g〉|2
�E2

α

, (B10)

E (6) = −
∑

αβγ δε �=g

〈g|V̂ pert|α〉 〈α|V̂ pert|β〉
�Eα

〈β|V̂ pert|γ 〉
�Eβ

〈γ |V̂ pert|δ〉
�Eγ

〈δ|V̂ pert|ε〉
�Eδ

〈ε|V̂ pert|g〉
�Eε

+
∑

αβγ δ �=g

〈g|V̂ pert|α〉 〈α|V̂ pert|β〉
�Eα

〈β|V̂ pert|γ 〉
�Eβ

〈γ |V̂ pert|δ〉
�Eγ

〈δ|V̂ pert|g〉
�Eδ

×
(

1

�Eα

+ 1

�Eβ

+ 1

�Eγ

+ 1

�Eδ

)
−
∑
α �=g

|〈α|V̂ pert|g〉|6
�E5

α

, (B11)

where |g〉 is an unperturbative state, V̂ pert represents the perturbation, |α〉, |β〉, |γ 〉, |δ〉, and |ε〉 are the intermediate states, and
�Eα, �Eβ, �Eγ , �Eδ , and �Eε denote the excitation energy for |α〉, |β〉, |γ 〉, |δ〉, and |ε〉 from |g〉. Using the formulas (B9),
(B10), (B11), and Table I, the coefficients C2, D4, D′

4, D6, and D′
6 can be calculated as

C2 = (zt )2 − (zt )2

3

[
n + 3

�E1,n+1
+ n

�E1,n−1

]
, (B12)

D4 = (zt )4

9

[
−6

5

n(n − 2)

�E2
1,n−1�E2,n−2

− 1

5

n(n + 3)

�E2,n

(
1

�E1,n+1
+ 1

�E1,n−1

)2

− 6

5

(n + 3)(n + 5)

�E2
1,n+1�E2,n+2

+
(

n + 3

�E1,n+1
+ n

�E1,n−1

)(
n + 3

�E2
1,n+1

+ n

�E2
1,n−1

)]
, (B13)

D′
4 = − (zt )4

9

[
n(n + 1)

�E2
1,n−1�E0,n−2

+ (n + 2)(n + 3)

�E2
1,n+1�E0,n+2

− 2

5

n(n − 2)

�E2
1,n−1�E2,n−2

+ 3

5

n(n + 3)

�E2,n

(
1

�E1,n+1
+ 1

�E1,n−1

)2

− 2

5

(n + 3)(n + 5)

�E2
1,n+1�E2,n+2

]
, (B14)

D6 =
[
− 2

35

(n + 7)(n + 5)(n + 3)

�E3,n+3�E2
2,n+2�E2

1,n+1

− 2

35

(n − 4)(n − 2)n

�E3,n−3�E2
2,n−2�E2

1,n−1

− 2

525

n(n + 3)(n + 5)

�E3,n+1

(
1

�E2,n+2�E1,n+1
+ 1

�E2,n�E1,n+1
+ 1

�E2,n�E1,n−1

)2

− 2

525

n(n − 2)(n + 3)

�E3,n−1

(
1

�E2,n−2�E1,n−1
+ 1

�E2,n�E1,n+1
+ 1

�E2,n�E1,n−1

)2

− 1

3

(n + 3)

�E1,n+1

(
2(n + 5)

5

1

�E2,n+2�E1,n+1
+ n

15

1

�E2,n�E1,n+1
+ n

15

1

�E2,n�E1,n−1

)2

− 1

3

n

�E1,n−1

(
(n + 3)

15

1

�E2,n�E1,n+1
+ (n + 3)

15

1

�E2,n�E1,n−1
+ 2(n − 2)

5

1

�E2,n−2�E1,n−1

)2

+
{

2

15

(n + 3)(n + 5)

�E2,n+2�E2
1,n+1

+ 1

45

n(n + 3)

�E2,n

(
1

�E1,n+1
+ 1

�E1,n−1

)2
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+ 2

15

(n − 2)n

�E2,n−2�E2
1,n−1

}(
(n + 3)

3

1

�E2
1,n+1

+ n

3

1

�E2
1,n−1

)

+
{

4

15

(n + 3)(n + 5)

�E2,n+2�E3
1,n+1

+ 2

45

n(n + 3)

�E2,n

(
1

�E2
1,n+1

+ 1

�E2
1,n−1

)(
1

�E1,n+1
+ 1

�E1,n−1

)

+ 4

15

(n − 2)n

�E2,n−2�E3
1,n−1

}(
(n + 3)

3�E1,n+1
+ n

3�E1,n−1

)

+
{

2

15

(n + 3)(n + 5)

�E2
2,n+2�E2

1,n+1

+ 1

45

n(n + 3)

�E2
2,n

(
1

�E1,n+1
+ 1

�E1,n−1

)2

+ 2

15

(n − 2)n

�E2
1,n−1�E2

2,n−2

}(
(n + 3)

3�E1,n+1
+ n

3�E1,n−1

)

−
(

(n + 3)

3�E3
1,n+1

+ n

3�E3
1,n−1

)(
(n + 3)

3�E1,n+1
+ n

3�E1,n−1

)2

−
(

(n + 3)

3�E1,n+1
+ n

3�E1,n−1

)(
n + 3

3�E2
1,n+1

+ n

3�E2
1,n−1

)2]
(zt )6,

D′
6 = (zt )6

4

[
− 46

525

n(n + 3)(n + 5)

�E3,n+1

(
1

�E1,n−1�E2,n
+ 1

�E1,n+1�E2,n
+ 1

�E1,n+1�E2,n+2

)2

− 46

525

(n − 2)n(n + 3)

�E3,n−1

(
1

�E1,n−1�E2,n
+ 1

�E1,n+1�E2,n
+ 1

�E1,n−1�E2,n−2

)2

− 18

525

(n + 3)(n + 5)(n + 7)

�E3,n+3�E2
1,n+1�E2

2,n+2

− 18

525

(n − 4)(n − 2)n

�E3,n−3�E2
1,n−1�E2

2,n−2

− 1

3

(n + 2)(n + 3)(n + 5)

�E1,n+3

(
8

15�E2,n+2�E1,n+1
+ 2

3�E0,n+2�E1,n+1

)2

− 2

3

(n + 3)

�E1,n+1

(
7n

15�E2,n�E1,n+1
+ 7n

15�E2,n�E1,n−1
+ 2(n + 5)

15�E2,n+2�E1,n+1
+ 2(n + 2)

3�E0,n+2�E1,n+1

)

×
(

2(n + 5)

5�E2,n+2�E1,n+1
+ n

15�E2,n�E1,n+1
+ n

15�E2,n�E1,n−1

)

− 1

3

n

�E1,n−1

(
7(n + 3)

15�E2,n�E1,n+1
+ 7(n + 3)

15�E2,n�E1,n−1
+ 2(n − 2)

15�E2,n−2�E1,n−1
+ 2(n + 1)

3�E0,n−2�E1,n−1

)2

− 1

3

(n + 3)

�E1,n+1

(
2(n + 5)

15�E2,n+2�E1,n+1
+ 2(n + 2)

3�E0,n+2�E1,n+1
+ 7n

15�E2,n�E1,n−1
+ 7n

15�E2,n�E1,n+1

)2

− 2

3

n

�E1,n−1

(
(n + 3)

15�E2,n�E1,n+1
+ (n + 3)

15�E2,n�E1,n−1
+ 2(n − 2)

5�E2,n−2�E1,n−1

)

×
(

7(n + 3)

15�E2,n�E1,n+1
+ 7(n + 3)

15�E2,n�E1,n−1
+ 2(n − 2)

15�E2,n−2�E1,n−1
+ 2(n + 1)

3�E0,n−2�E1,n−1

)

− 1

3

(n − 2)n(n + 1)

�E1,n−3

(
8

15�E2,n−2�E1,n−1
+ 2

3�E0,n−2�E1,n−1

)2

+
{

4

9

n(n + 1)

�E2
1,n−1�E0,n−2

+ 4

9

(n + 2)(n + 3)

�E2
1,n+1�E0,n+2

+ 2

9

n(n − 2)

�E2
1,n−1�E2,n−2

+ 1

3

n(n + 3)

�E2,n

(
1

�E1,n+1
+ 1

�E1,n−1

)2

+2

9

(n + 3)(n + 5)

�E2
1,n+1�E2,n+2

}(
(n + 3)

3�E2
1,n+1

+ n

3�E2
1,n−1

)

+ 2

{
4

9

n(n + 1)

�E3
1,n−1�E0,n−2

+ 4

9

(n + 2)(n + 3)

�E3
1,n+1�E0,n+2

+ 2

9

n(n − 2)

�E3
1,n−1�E2,n−2

+ 2

9

(n + 3)(n + 5)

�E3
1,n+1�E2,n+2

+ 1

3

n(n + 3)

�E2,n

(
1

�E1,n+1
+ 1

�E1,n−1

)(
1

�E2
1,n+1

+ 1

�E2
1,n−1

)}(
(n + 3)

3�E1,n+1
+ n

3�E1,n−1

)

+
{

4

9

n(n + 1)

�E2
1,n−1�E2

0,n−2

+ 4

9

(n + 2)(n + 3)

�E2
1,n+1�E2

0,n+2

+ 2

9

n(n − 2)

�E2
1,n−1�E2

2,n−2
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+ 1

3

n(n + 3)

�E2
2,n

(
1

�E1,n+1
+ 1

�E1,n−1

)2

+ 2

9

(n + 3)(n + 5)

�E2
1,n+1�E2

2,n+2

}(
(n + 3)

3�E1,n+1
+ n

3�E1,n−1

)

− 3

(
(n + 3)

3�E3
1,n+1

+ n

3�E3
1,n−1

)(
(n + 3)

3�E1,n+1
+ n

3�E1,n−1

)2

− 3

(
(n + 3)

3�E1,n+1
+ n

3�E1,n−1

)(
n + 3

3�E2
1,n+1

+ n

3�E2
1,n−1

)2]
− 3

4
D6.

Here, �ES,n+a = E0(S, n + a) − E0(0, n).

APPENDIX C: DERIVATION OF THE TDGL EQUATION

In this Appendix, we summarize the derivation of the
TDGL equation (C25). Using the coherent-state path integral
[59], the grand partition function for the spin-1 Bose-Hubbard
model can be written as

� =
∫ ∏

α

Db∗
iαDbiαe−S({biα}), (C1)

where the action S({biα}) is given by

S({biα}) =
∫ β

0
dτ

[∑
i,α

(b∗
iα∂τ biα − μb∗

iαbiα )

−
∑
i, j,α

ti jb
∗
iαb jα + U0

2

∑
i,α,β

b∗
iαb∗

iβbiβbiα

+ U2

2

∑
i,α,β,γ ,δ

b∗
iαb∗

iγ Fαβ · Fγ δbiβbiδ

]
. (C2)

Here, the creation and annihilation operators in Eq. (1) are re-
placed by the c-number field biα (τ ) that depends on imaginary
time τ and site i. β = 1/T is the inverse temperature and ti j is
an element of the hopping matrix t̂ . For the nearest-neighbor
hopping term, ti j is given as

ti j =
{

t, if i and j are nearest neighboring,

0, otherwise. (C3)

We introduce the auxiliary fields φiα and φ∗
iα via the Hubbard-

Stratonovich transformation [60]:∫
Dφ∗

iαDφiα exp

[
−
∫

dτ ( 	φ†
α − 	b†

α t̂ )(t̂ )−1( 	φα − t̂ 	bα )

]
= const, (C4)

where 	φα = ({φiα})T and 	bα = ({biα})T . Multiplying Eq. (C4)
to Eq. (C2), we obtain

� =
∫ ∏

α

Dφ∗
iαDφiα

∏
α

Db∗
iαDbiαe−S({biα},{φiα}), (C5)

where

S =
∫ β

0
dτ

∑
i, j,α

φ∗
iα (t̂−1)i jφ jα + S0 + Spert, (C6)

S0 =
∫ β

0
dτ

[∑
i,α

(b∗
iα∂τ biα − μb∗

iαbiα ) + U0

2

∑
i,α,β

b∗
iαb∗

iβbiβbiα

+ U2

2

∑
i,α,β,γ ,δ

b∗
iαb∗

iγ Fαβ · Fγ δbiβbiδ

]
, (C7)

Spert = −
∫ β

0
dτ

∑
i,α

(φiαb∗
iα + c.c.). (C8)

Integrating out biα and b∗
iα , we obtain

� =
∫ ∏

α

Dφ∗
iαDφiαe−Seff ({φiα}), (C9)

where the effective action Seff is given by

Seff = E0(0, n)Nsβ− log〈e−Spert 〉0 +
∫ β

0
dτ

∑
i, j,α

(t̂−1)i jφ
∗
iαφ jα.

(C10)

Here, 〈Ô〉0 denotes the expectation value of the operator Ô
with respect to S0:

〈Ô〉0 ≡
∫ ∏

α DbiαDb∗
iαÔe−S0∫ ∏

α DbiαDb∗
iαe−S0 . (C11)

We perform the cumulant expansion in the second term in
Eq. (C10) as [61]

log〈e−Spert 〉0 ∼ 1

2!
〈(Spert )2〉c + 1

4!
〈(Spert )4〉c + 1

6!
〈(Spert )6〉c,

(C12)

where 〈Ô〉c denotes the cumulant average of Ô defined as

log〈eÔ〉0 =
∞∑

n=1

〈(Ô)n〉c

n!
. (C13)

We note that, since Eq. (C6) is invariant under the U(1) gauge
transformation biα → eiθ biα and φiα → eiθφiα , all the odd-
order terms in the cumulant expansion (C12) vanish. Each
term in the right-hand side of Eq. (C12) can be written as

〈(Spert )2〉c = 〈(Spert )2〉0, (C14)

〈(Spert )4〉c = 〈(Spert )4〉0 − 3〈(Spert )2〉2
0, (C15)

〈(Spert )6〉c = 〈(Spert )6〉0 − 15〈(Spert )2〉0〈(Spert )4〉0

+ 30〈(Spert )2〉3
0. (C16)

To describe the critical behavior of the SF phase, it is suffi-
cient to retain the first- and second-order time-derivative terms
[59]. Using Eqs. (C14)–(C16) and taking the zero-temperature
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limit β → ∞, we obtain

Seff ∼
∫ ∞

0
dτ

{
E0(0, n)Ns +

∑
i, j,α

(t̂−1)i jφ
∗
iαφ jα

+
∑
i,α

[
K

φ∗
iα

zt

∂τφiα

zt
+ J

∣∣∣∣∂τφ
∗
iα

zt

∣∣∣∣
2

+ (C2 − zt )

∣∣∣∣φiα

zt

∣∣∣∣
2

+ C4

∣∣∣∣φiα

zt

∣∣∣∣
4

+ C6

∣∣∣∣φiα

zt

∣∣∣∣
6]

+
∑

i

[
C′

4

(∑
α,β

φ∗
iα

zt
Fαβ

φiβ

zt

)2

+ C′
6

(∑
α,β

φ∗
iα

zt
Fαβ

φiβ

zt

)2 ∑
α

∣∣∣∣φiα

zt

∣∣∣∣
2
]}

, (C17)

where K and J are given by

K = (zt )2

3

[
n + 3

�E2
1,n+1

− n

�E2
1,n−1

]
, (C18)

J = (zt )2

3

[
n + 3

�E3
1,n+1

+ n

�E3
1,n−1

]
. (C19)

By the Fourier transform, the second term in Eq. (C17) can be
written as∫ ∞

0
dτ

∑
i, j,α

(t̂−1)i jφ
∗
iαφ jα

= −
∑
k,ω,α

|φ̄α (k, ω)|2
εk

∼
∑
k,ω,α

∣∣∣∣ φ̄α (k, ω)

zt

∣∣∣∣
2

[zt + (ka)2],

(C20)

where

φiα (τ ) =
∑
k,ω

φ̄α (k, ω)ei(k·ri−ωτ ), (C21)

εk = −2t
d∑

l=1

cos(kla). (C22)

Here, ri ≡ (xia, yia, zia)T and a is the lattice constant.
We have taken the long-wavelength limit, i.e., ka � 1 in
Eq. (C20). In the continuum limit that is effective in
the vicinity of the phase boundary, making replacements
φiα (τ )/(ad/2zt ) → �α (τ, r), Seff reduces to the Ginzburg-
Landau (GL) action SGL:

SGL =
∫ ∞

0
dτ

∫
dd x

[
E0(0, n) + K�†∂τ� + J (∂τ�

†)(∂τ�) + 1

2m∗ (∇�†) · (∇�)

+C2(�†�) + c4(�†�)2 + c6(�†�)3 + c′
4〈〈F〉〉2 + c′

6〈〈F〉〉2(�†�)

]
. (C23)

Here, c4 = adC4, c′
4 = adC′

4, c6 = a2dC6, c′
6 = a2dC′

6, � = (�1, �0, �−1)T is the SF order parameter, 〈〈F〉〉 =∑
α,β �∗

αFαβ�β is the spin average, and m∗ = 1/(2ta2) is the effective mass. Setting ∂τ�α = 0 in Eq. (C23), the energy
functional for a static solution � can be written as

K({�}) =
∫

dd x

[
1

2m∗ (∇�†) · (∇�) + C2(�†�) + c4(�†�)2 + c6(�†�)3 + c′
4〈〈F〉〉2 + c′

6〈〈F〉〉2(�†�)

]
. (C24)

From δSGL

δ�∗
α

= 0, we finally obtain the TDGL equation,

iK∂t�α − J∂2
t �α = − ∇2

2m∗ �α + C2�α + 2c4(�†�)�α + 3c6(�†�)2�α + c′
6〈〈F〉〉2�α

+2c′
4〈〈F〉〉 ·

∑
β

(Fαβ�β ) + 2c′
6(�†�)〈〈F〉〉 ·

∑
β

(Fαβ�β ). (C25)

Note that Eq. (C25) is valid for low energy dynamics, in which
slow temporal variation of � is allowed. If K �= 0, the first-
order time-derivative term is dominant and the second-order
one should be neglected.

APPENDIX D: CONSERVATION LAWS

In this Appendix, we derive the conservation laws asso-
ciated with the U(1) gauge and spin rotational symmetries.
We also derive the expressions for mass current (50) and spin
current (51) from the GL action (C23).

We first study the conservation law associated with the
U(1) gauge symmetry. The following argument is based on
Refs. [38,62]. Under an infinitesimal U(1) gauge transforma-

tion �α → eiδθ (r)�α ∼ �α + iδθ (r)�α , the variation of the
GL action (C23) is given as

δSGL = iδθ
∫ ∞

0
dτ

∫
dd x

{
K∂τ (�†�)

+ J∂τ [(∂τ�
†)� − �†∂τ�]

+ 1

2m∗ ∇ · [(∇�†)� − �†∇�]

}
. (D1)

From δSGL = 0 for arbitrary δθ , we obtain the continuity
equation,

∂t (Kρ + Jq) + ∇ · jm = 0, (D2)
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where ρ and jm denote the superfluid density and superfluid
mass current, respectively, defined as

ρ = �†�, (D3)

q = 1

i
[(∂t�

†)� − �†(∂t�)], (D4)

jm = 1

2im∗ [�†∇� − (∇�†)�]. (D5)

We clarify the physical meaning of q below. If K �= 0, neglect-
ing q, Eq. (D2) reduces to

∂tρ + 1

K
∇ · jm = 0. (D6)

Equation (D6) represents the conservation of superfluid den-
sity.

If K = 0, keeping q, Eq. (D6) reduces to

∂t q + 1

J
∇ · jm = 0. (D7)

Before discussing the interpretation of q, we show that
K = 0 holds for a commensurate filling in the SF phase. We
first note that Eq. (C6) is invariant under the following local
gauge transformation:

biα → eiη(τ )biα, φiα → eiη(τ )φiα, μ → μ + i∂τη(τ ).

(D8)

The GL action (C23) should be invariant under the corre-
sponding transformation �α → eiη(τ )�α , which requires the
condition,

K = −∂C2

∂μ
. (D9)

We can directly confirm Eq. (D9) from Eqs. (B11) and (C18).
On the other hand, in the vicinity of the phase boundary, the
ground-state energy can be expanded by the superfluid density
nc as

E = E0(0, n) + C2nc + O
(
n2

c

)
. (D10)

The expectation value of the filling number is given by

〈n̂〉 = −∂E

∂μ
∼ n − ∂C2

∂μ
nc. (D11)

In the MI phase, 〈n̂〉 is an integer because nc = 0 as expected.
Meanwhile, since nc �= 0, 〈n̂〉 takes an integer value only if
−∂C2/∂μ = 0 in the SF phase. Thus, K = 0 holds for a com-
mensurate filling in the SF phase. Furthermore, when K = 0,
the TDGL equation (C25) is invariant under the transforma-
tion �α ↔ �∗

α , i.e., particle-hole symmetric [38,59,63].
Equation (D8) implies that the transformation biα → eiηbiα

and φiα → eiηφiα is equivalent to the shift of μ: μ → μ −
i∂τη [59]. The infinitesimal shift of the chemical potential
μ → μ + i∂δη is, therefore, equivalent to the transformation
of �α:

�α → e−iδη(τ )�α ∼ �α − iδη(τ )�α. (D12)

The variation of SGL under Eq. (D12) is given by

δSGL = −δμ

∫
dd x(Kρ + Jq), (D13)

where δμ = i∂τη(τ ). Comparing Eq. (D13) with δSGL =
(δSGL/δμ(τ ))δμ(τ ), we obtain

− δSGL

δμ(τ )
=

∫
dd x(Kρ + Jq). (D14)

The left-hand side of Eq. (D14) represents the deviation of
particle number from the static value. For a commensurate
filling, setting K = 0, Eq. (D14) reduces to

− δSGL

δμ(τ )
=

∫
dd xJq. (D15)

We thus find that q means the deviation of particle density
from a commensurate filling.

We next derive the conservation law associated with the
spin rotational symmetry. We introduce an infinitesimal spin
rotation about a unit vector n:

� → e−i(n·F )δλ� ∼ � − i(n · F )δλ�. (D16)

The variation of the GL action (C23) under Eq. (D16) is given
by

δSGL = −iδλ
∫ ∞

0
dτ

∫
dd x

{
K∂τ [�†(n · F )�]

+ J∂τ [(∂τ�
†)(n · F )� − �†(n · F )∂τ�]

+ 1

2m∗ ∇ · [(∇�†)(n · F )� − �†(n · F )∇�]

}
.

(D17)

δSGL = 0 for arbitrary δλ yields the continuity equation,

∂t
(
Kρn

s + Jqn
s

) + ∇ · jn
s = 0, (D18)

where ρn
s denotes the magnetization density for the compo-

nent along n and jn
s the spin current for ρn

s . They are defined
as

ρn
s = �†(n · F )�, (D19)

qn
s = 1

i
[(∂t�

†)(n · F )� − �†(n · F )∂t�)], (D20)

jn
s = 1

2im∗ [�†(n · F )∇� − (∇�†)(n · F )�]. (D21)

We clarify the physical meaning of qn
s below. If K �= 0,

neglecting qn
s , Eq. (D18) represents the conservation of mag-

netization for the component along n.
Analogous to Eq. (D8), we consider the following trans

formation under a spin rotation:

	bi → e−i(n·F )ν(τ )	bi, 	φi → e−i(n·F )ν(τ ) 	φi, (D22)

where 	bi = (bi1, bi0, bi−1)T and 	φi = (φi1, φi0, φi−1)T . Under
the transformation (D22), Eq. (C6) is transformed as

S → S −
∫ β

0
dτH (τ ) ·

∫
dd x〈F〉b. (D23)

Here, H = i∂τ νn and 〈F〉b = ∑
α,β b∗

iα (eiF·nνFe−iF·nν )αβbiβ .
Equation (D23) shows that the transformation (D22) is equiv-
alent to application of magnetic field H in the directio
n of n.
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The transformation of � that corresponds to Eq. (D22) is
� → e−i(n·F )ν(τ )�. Under an infinitesimal spin rotation � →
e−i(n·F )δν� ∼ � − i(n · F )δν�, the variation of Eq. (C23) is
given by

δSGL = −δH (τ ) ·
∫

dd x(K〈〈F〉〉 + Jqs), (D24)

where δH (τ ) = iδ∂τ ν(τ )n. Comparing Eq. (D24) and

δSGL = δSGL

δH
· δH, (D25)

we obtain

−δSGL

δH
=

∫
dd x(K〈〈F〉〉 + Jqs), (D26)

where n · qs = qn
s . The left-hand side of Eq. (D26) represents

the magnetization along H . In the case of a commensurate
filling, i.e., K = 0, we obtain

−δSGL

δH
=

∫
dd xJqs. (D27)

We thus find that the qn
s represents the deviation of magneti-

zation density from the value for a commensurate filling.
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