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Stability analysis and attractor dynamics of three-dimensional dark solitons
with localized dissipation
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We study the stability and the attractor dynamics of an elongated Bose-Einstein condensate (BEC) with dark
or gray kink solitons in the presence of localized dissipation. To this end, the three-dimensional Gross–Pitaevskii
equation with an additional imaginary potential is solved numerically. We analyze the suppression of the snaking
instability in dependence of the dissipation strength and extract the threshold value for the stabilization of the
dark soliton for experimentally realistic parameters. Below the threshold value, we observe the decay into a
solitonic vortex. Above the stabilization threshold, we observe the attractor dynamics towards the dark soliton
when initially starting from a gray soliton. We find that for all initial conditions the dark soliton is the unique
steady-state of the system—even when starting from the BEC ground state.

DOI: 10.1103/PhysRevA.103.043304

I. INTRODUCTION

Dissipative processes such as losses or decoherence are
usually considered as a nuisance in quantum systems be-
cause they tend to destroy the coherence and drive the system
from quantum to classical behavior [1]. This can become
relevant even in well-isolated quantum systems such as ultra-
cold atomic gases, where dissipative processes are strongly
suppressed, but never absent. In recent years, open-system
control of quantum matter has emerged as a new field of
research, which perceives dissipative processes as a resource
for quantum engineering and state preparation [2–10]. Such
an approach requires that the desired quantum state is the
dark state or steady-state of the system’s time evolution in the
presence of an engineered dissipative process. If the dark state
or steady state is unique, the system will evolve towards it,
independent of the initial condition. This results in an attractor
dynamics towards the steady state.

Here, we perform a realistic numerical experiment to study
the stabilization and attractor dynamics of a dark soliton in an
elongated, three-dimensional atomic Bose-Einstein conden-
sate. We focus on two central questions:

(1) Can the dissipation be engineered in such a way that
the dark soliton is stabilized under the system’s time evolu-
tion?

(2) Does the dissipation induce attractor dynamics to-
wards the steady-state, irrespective of the initial conditions?

We show in this paper that both questions can be answered
positively for experimentally realistic parameters. Our study
exemplifies the concept of open-system control on a specific
scenario and explicitly analyzes the emerging attractor dy-
namics.

The quantum system under consideration is a harmon-
ically trapped Bose-Einstein condensate (BEC) of atoms,
which we describe in the mean-field limit by means of the

three-dimensional (3D) Gross–Pitaevskii equation (GPE). We
focus on dark kink-solitons (DSs) [11–14], which are sta-
tionary solutions of the GPE but dynamically unstable for a
large variety of trapping frequencies [15,16]. Previous work
in cylindrical trapping geometries has shown that the DS
can decay into several different structures depending on the
chemical potential and the radial trapping frequency [17].
Adding a local loss process, which we describe by an imagi-
nary potential in the GPE, we study the time evolution of the
DS for different strengths of the imaginary potential. A sim-
ilar situation has been studied for the two-dimensional (2D)
GPE. Here it has been shown that adding a one-dimensional
(1D) Gaussian-shaped conservative repulsive potential can
lead to the suppression of the snaking instability [18]. In one
dimension, both studies in a 1D GPE system [5] and in a
Bose-Hubbard system [7] show the emergence of a stable
DS under these conditions. In addition, studies with parity-
time-symmetric (PT -symmetric) dipoles in 1D GPE systems
have shown that, for certain dissipation strengths, moving
light-gray solitons can be pinned [19]. For a PT -symmetric
Gaussian-shaped potential it has been shown that the DS
is only stable within a certain range of imaginary potential
heights. For too high imaginary potentials the interplay of gain
and loss drives the system back to the ground state [20].

The stabilization and formation of DS by dissipation is
not only relevant in the field of ultracold atoms as studied
here but also in nonlinear optics. Mode-locked lasers, i.e.,
lasers with a fixed phase relation among the modes of the
laser resonator, can be operated in a regime where they emit
dark or gray pulses on top of a cw background. For correctly
tuned parameters such as gain, loss, saturation energy and
saturation power it can be shown within the power energy
saturation model that the laser should emit dark pulses [21].
Experimentally, this has been observed for example with fiber
lasers [22] or quantum dot lasers [23].
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In this work, we map out the stability region for the DS,
classify the emergent instability modes and characterize the
attractor dynamics towards the DS. This work is inspired by
previous experiments in our group [4,24], which serve as a
guideline for the chosen parameters. Regarding the numerics,
we efficiently solve the GPE on a GPU.

II. SYSTEM: THREE-DIMENSIONAL GROSS-PITAEVSKII
EQUATION WITH IMAGINARY POTENTIAL

We consider a BEC subject to local losses within a
mean-field theory, where the condensate order parameter is
described by the Gross–Pitaevskii equation with imaginary
potential (IGPE):

ih̄
∂�

∂t
=

(
− h̄2

2m
∇2 + V (�r ) + g|�|2 − ih̄

2
γ (�r )

)
�, (1)

where g = 4π h̄2a
m is the interaction strength, a is the s-wave

scattering length,

V (�r ) = 1
2 m

(
ω2

x x2 + ω2
y y2 + ω2

z z2
)

(2)

is the 3D harmonic trapping potential, and γ (�r ) describes the
local particle losses. The number of particles N is given by the
normalization condition N = ∫

d�r |�|2.
Such a scenario can be studied experimentally with a

BEC and an additional scanning electron microscope [4,24]
where a tightly focused electron beam removes and ionizes
atoms from the BEC, which are subsequently extracted by
an electric field and detected. This technique allows for a
high-resolution manipulation of the BEC with—apart from
the losses—almost negligible back-action on the BEC for a
relatively long time. Previous studies [4,6] have shown that
the IGPE [Eq. (1)] is indeed an adequate model to describe
the system. To perform the numerical analysis with experi-
mentally realistic parameters, we set the number of particles
to N = 80 × 103 and the trap frequencies to (ωx, ωy, ωz ) =
2π × (12 Hz, 170 Hz, 170 Hz). We refer to the x coordinate
as the axial direction and to y and z as the radial directions.
We model the imaginary potential

γ (�r ) = γ0 exp

(
− (x − x0)2

2w2
diss

)
(3)

as a Gaussian profile along the x axis (width wdiss) and as
constant along the y and the z axis. Experimentally, this can
be realized by scanning the electron beam (propagation di-
rection z) along the y direction much faster than any intrinsic
timescale of the BEC.

We solve the IGPE [Eq. (1)] numerically. To this end,
we implement a time-splitting spectral method [25] in the
programming language Julia. We use the package CUDA.jl
[26,27] to run our simulations on a GPU (NVIDIA GeForce
RTX 2060 Super) which results in a speed-up by a factor of
about 20 compared with our CPU (HP Z620, 2x Intel XEON
E5-2670).

III. STABILITY OF STATIONARY KINK SOLITONS

Dark kink solitons are stationary and dynamically stable
solutions to Eq. (1) with γ (�r ) ≡ 0 in 1D systems. When the

system becomes 3D, i.e., when the mean-field interparticle in-
teraction exceeds the radial oscillation frequency by a critical
value, they are still stationary solutions but become dynami-
cally unstable. The so-called snaking instability then leads to
a bending of the nodal plane of the soliton and eventually to
its decay [15]. The stationary DS solutions can be written as
�(�r, t ) = e− i

h̄ μtψ (�r ) with the chemical potential μ. To find
such a solution ψ (�r ) we follow the idea given in Refs. [17,28]
and start with an ansatz

ψ (�r ) = χTF(�r ) tanh

(
x

ξ (�r )

)
(4)

in the Thomas-Fermi regime where χTF = √
μloc/g is the

Thomas-Fermi wave function with the local chemical po-
tential μloc = μ − V (�r ) and the local healing length ξ (�r ) =
h̄/

√
mμloc(�r ). Starting from Eq. (4) we find the DS solution to

Eq. (1) numerically by employing imaginary time evolution.
Having found the stationary DS, we first consider the time

evolution without localized dissipation. This has been stud-
ied already in Refs. [17,28] for a cylindrical trap. For the
elongated harmonic trap that we study here, we expect quali-
tatively similar results since the potential in the axial direction
does not change on the length scale of the soliton. Depending
on the ratio of the chemical potential to the vibrational energy
of the radial harmonic oscillator, the DS is either dynamically
stable or unstable [17]. In our case we have μ = h̄ × 6600 Hz
and thus a ratio μ

h̄ω⊥
= 6.2. According to Refs. [17,28] we

expect the DS to be dynamically unstable with two energet-
ically lower lying states: a dynamically unstable single vortex
ring (VR) and a dynamically stable solitonic vortex (SV).
Indeed, this is what we observe when evolving the DS in time.
Iso-surface plots of the density at characteristic points in time
are shown in Fig. 1.

As a next step, we switch on the dissipation. We
here restrict ourselves to experimentally accessible values
and choose wdiss = 130 nm and γ0 ∈ [0, 7100] Hz [4]. The
amount of particles removed from the system during the time
evolution is given by the overlap between the region of losses
with the atomic density:

Ṅ = −
∫

γ (�r )|ψ (�r )|2d�r. (5)

We can then identify the different stationary states (DS,
VR, and SV) from the loss rate of particles because each of
them has a characteristic density overlap with the loss region.
In Fig. 2 we show the number of particles N (t ) in the con-
densate and the loss rate Ṅ (t ) up to t = 100 ms for different
dissipation strength γ0. Looking at N (t ) we see phases of
linear decrease, connected by kinks. This behavior becomes
more obvious for Ṅ (t ), where this translates into plateaus. Up
to γ0 = 2.4 kHz two plateaus in Ṅ (or two kinks in N) are
visible. The first plateau with the lowest loss rate corresponds
to the DS which has the lowest density overlap with the
imaginary potential. The second plateau corresponds to the
VR, which shows a higher loss rate. The highest loss rate is
observed for the SV towards the end of the simulation time.
Between γ0 = 2.4 kHz and γ0 = 5.2 kHz we observe only the
decay into a VR within our computational time of 100 ms. For
γ0 > 5.2 kHz no decay is visible, which indicates the onset of
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FIG. 1. Iso-surface plots of the DS without dissipation after dif-
ferent times. We show the density at 10% of its maximum as contours
and the phase as color code. (top) Initial DS at t = 0 ms. After 9 ms
the central plane of the DS starts to bend. This is the beginning of the
snaking instability. After 20 ms the VR appears as an intermediate
stationary state. Being unstable itself (see the bending and shift after
40 ms), it eventually decays into a solitonic vortex (100 ms), which
is dynamically stable.

stabilization of the DS. This can also be seen in the behavior
of N (t ) [see Fig. 2(c)], where the remaining number of atoms
after t = 100 ms first decreases and then increases again for
increasing dissipation strength. The decrease of N (100 ms) for
γ0 > 5 kHz is due to the finite width of the loss potential. The
wings of the Gaussian overlap with regions of the BEC outside
of the soliton such that a stronger loss potential leads to higher
losses even with a DS. This is also visible in the final loss rate
Fig. 2(d).

To quantify the decay process of the DS and to determine
the threshold value of γ0 for its stabilization, we analyze
the minimum density in the center of the respective steady
state. To this end, we integrate the density along the z
direction, |ψ̃ (x, y)|2 = ∫ |ψ (x, y, z)|2dz and numerically de-
termine the axial position of the density minimum, xmin =
min(|ψ̃ (x, 0)|2). The result is shown in Fig. 3(a). We observe
that the DS remains at its position at the center of the BEC,
whereas the VR and the SV move away from the center. To

FIG. 2. (a) Number of particles N and (b) loss rate |Ṅ | over time
for characteristic dissipation strengths γ0 = 0 kHz (blue dashed line),
γ0 = 1.2 kHz (orange solid line), γ0 = 4.7 kHz (green dash-dotted
line) and γ0 = 7.1 kHz (red dotted line). The local maximum of Ṅ
at 83 ms is due to a density wave that is created due to the finite
extent of the dissipative potential [6]. It travels towards the edge
of the BEC gets reflected there and returns towards the imaginary
potential. (c) Number of particles N and (d) loss rate |Ṅ | at t = 0 ms
(blue points) and at t = 100 ms (red diamonds).

further quantify the dynamics of the decay of the DS, we
consider the integrated density of the slice at xmin, i.e., n =∫ |ψ (xmin, y, z)|2dydz and compare it to the integrated density
of such a slice at the axial center of the ground-state wave
function, i.e., n0 = ∫ |ψgs(0, y, z)|2dydz. The relative density
at the position of the soliton is then defined by nrel = n

n0
.

This is shown in Fig. 3(b). Again, we can identify the three
different solitary waves: the DS with the lowest density, the
VR with an intermediate density and the SV with the highest
density. To extract the decay time τ of the DS we fit the initial
dynamics of nrel(t ) with an exponential function A exp( t

τ
). We

restrict the time to tmax where nrel(tmax) = 1%. The result of
the fit is shown as a solid line in Fig. 3(d). One can clearly see
that the initial dynamics shows an exponential behavior. Note
the large dynamic range over which the density is changing.
The initial decrease of nrel for high γ0 where the DS is stabi-
lized in Fig. 3(d) originates from the fact that the DS and the
imaginary potential do not yet perfectly overlap. Thus, there is
an initial reduction of the density until the system has reached
its steady state.

The fitted decay time τ is shown in Fig. 4 over γ0. We see
that τ increases with increasing γ0 up to a critical point γcrit

before it drops. This is typical for a critical slowing down,
described by an algebraic behavior of the form

τ = a

( |γ − γcrit|
γcrit

)b

. (6)
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FIG. 3. Analysis of the decay of the DS. (a) Position of the
density minimum at t = 0 ms (blue points) and t = 100 ms (red
diamonds) for different γ . For large γ , the dark soliton is stable
and the density minimum does not move. For small γ , the final
structure (VR or SV) has moved away from the center. (b) Time
evolution of the radially integrated density in the density minimum
for characteristic dissipation strengths γ0 = 0 kHz (blue dashed line),
γ0 = 1.2 kHz (orange solid line), γ0 = 4.7 kHz (green dash-dotted
line), and γ0 = 7.1 kHz (red dotted line). The three solitary waves
have distinct values of the density. (c) Radially integrated relative
density in the density minimum after t = 0 ms (blue points) and
t = 100 ms (red diamonds) for different γ . As in panel (a) the initial
and final values overlap above γcrit . (d) Exponential fit of the initial
part of the dynamics from panel (b) to extract the decay time of the
DS.

Fitting this model to our data, we find γcrit = 5893 Hz, a =
3.60 × 10−4 s, and a critical exponent of b = −1.12. The data
and the fit are shown in Fig. 4(b).

So far we have only considered one set of parameters for
N and (ωx, ωy, ωz ) in our simulations. In a realistic experi-
ment, however, fluctuations of the particle number N occur
and the harmonic trap might not be radially isotropic. To
get an idea of how γcrit depends on these parameters we
conduct two additional sets of simulations. In the first one
we set N = 40 × 103 and keep the radially isotropic trap
frequencies at (ωx, ωy, ωz ) = 2π × (12 Hz, 170 Hz, 170 Hz).
In the second one we keep N = 80 × 103 and set a radi-
ally anisotropic trap with frequencies (ωx, ωy, ωz ) = 2π ×
(12 Hz, 160 Hz, 180 Hz). These frequencies are realistic val-
ues for the experiment of Refs. [4,24] if we add the influence
of gravity on the optical dipole trap. In both cases we also
observe the stabilization of the DS as shown in Fig. 4. For the
anisotropic trap with N = 80 × 103 we find γcrit = 5909 Hz,
a = 3.84 × 10−4 s, and b = −0.95. Here it is interesting to
point out that without dissipation and for low γ the DS first
decays into a deformed VR, then into two parallel vortices
which eventually merge to a single stable SV. For the isotropic

FIG. 4. (a) Refilling time extracted from an exponential fit to the
initial dynamics of nrel over dissipation γ [compare Fig. 3(d)] for
N = 80 × 103 particles in a radially isotropic trap. (b) Same data
(blue points) rescaled by γcrit = 5893 Hz and plotted logarithmically
together with a power-law fit (blue solid line). Additional simulations
with N = 80 × 103 particles in a radially anisotropic trap (orange
diamonds and dashed line, γcrit = 5909 Hz) and N = 40 × 103 par-
ticles in a radially isotropic trap (green crosses and dotted line,
γcrit = 4107 Hz).

trap with N = 40 × 103 we find γcrit = 4107 Hz, a = 4.88 ×
10−4 s, and b = −1.14. Since we have here a ratio μ

h̄ω⊥
= 4.7

we observe the same structures (i.e., VR and SV) to which the
DS decays for γ (�r ) ≡ 0, in agreement with Ref. [28].

IV. ATTRACTOR DYNAMICS TOWARDS THE DARK
KINK SOLITONS

Having established that the dark soliton is the steady state
of the system for γ > γcrit , we now analyze its attractor dy-
namics. To this end, we consider two different dissipation
strengths: γ0,< = 1200 Hz which is below the stabilization
threshold for the DS and γ0,> = 7100 Hz which is above the
stabilization threshold. As initial conditions, we chose differ-
ent gray kink solitons (GKSs) and study their time evolution
under the influence of dissipation. To construct proper initial
states, we start from the wave function of the ground state ψgs

in the harmonic trap. To obtain a wave function which is close
to the GKS we multiply the ground-state wave function by
the function which describes a moving DS in a homogenous
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units of units of

FIG. 5. Attractor dynamics towards the dark soliton. (a) Number
of particles N (t ) and (b) loss rate |Ṅ (t )| for different initial phase
difference �φ of the gray kink soliton, i.e., �φ = 0 (blue dashed
line), �φ = 0.2π [orange lower solid line in panel (a) and orange
upper solid line in panel (b)], �φ = 0.5π (green dash-dotted line),
�φ = 0.8π (red dotted line), and �φ = π [violet upper solid line
in panel (a) and violet lower solid line in panel (b)]. (c) Number of
particles N (t ) and (d) loss rate |Ṅ (t )| at t = 0 ms (blue points) and
t = 70 ms (red diamonds).

background, i.e.,

ψGKS(x, y, z) = ψgs(x, y, z)

×
[
ṽ−i

√
1−ṽ2 tanh

(
x

ξ (x, y, z)

√
1 − ṽ2

)]
,

(7)

where ṽ is the velocity of the GKS in units of the speed of
sound. This is related to the phase difference far away from
the kink by

�φ = φ(x → ∞) − φ(x → −∞) = −2 arccos (ṽ). (8)

The local healing length is denoted by ξ (x, y, z). In the fol-
lowing, we choose the full range of possible phase differences
between the two ends of the wave function, �φ ∈ [0, π ]. This
way, we can sample all initial states interpolating between the
BEC ground state and the DS. To be sensitive to instability
modes, we add for the evolution of the ground state 5% of
Gaussian noise before evolving in time.

For γ0,< we see qualitatively the same behavior as de-
scribed in Ref. [17]: The GKS oscillates in the trap and
eventually decays. No attractor dynamics is visible. The sit-
uation changes for γ0,>. In Fig. 5 the number of particles N (t )
and the loss rate Ṅ (t ) over time are shown for the different
initial phase differences �φ. The evolution of the atom num-
ber shows that the initial losses are reduced, if the GKS gets
closer to the DS, which features the lowest amount of losses.
We can also see that the total atom number shows a kink, after

units of

units of

units of

FIG. 6. Attractor dynamics towards the dark soliton. (a) Evo-
lution of the position of the density minimum at different initial
phase differences �φ = 0 (blue dashed line), �φ = 0.2π (orange
upper solid line), �φ = 0.5π (green dash-dotted line), �φ = 0.8π

(red dotted line), and �φ = π (violet lower solid line). The initial
motion of the gray soliton is damped and the DS is stabilized at the
central position, where the dissipation is located for all initial phase
differences as shown in (b) for the position at t = 0 ms (blue points)
and t = 70 ms (red diamonds). (c) The density in the minimum
approaches zero [color code as that of panel (a)] over time and for
all initial phase differences (d) [color code is the same as that of
panel (b)]. (e) The phase difference across the density minimum
approaches the characteristic value of π of the DS [color code is the
same as that of panel (a) but with the upper solid line for �φ = π

and the lower solid line for �φ = 0.2π ] over time and for all initial
phase differences (f) [color code is the same as that of panel (b)].

which the losses are reduced. This shows the appearance of a
stable DS, which becomes more visible if we look at the loss
rate |Ṅ (t )| in Fig. 5(b). For all initial �φ we observe the same
|Ṅ | after 70 ms, signaling the attraction to the same steady
state. This can be also seen in the initial and final number of
atoms and loss rate in Fig. 5(c) and 5(d).

To further verify the attraction towards a DS we find the
plane of minimal density in axial direction as described in
Sec. III and plot its position [Figs. 6(a) and 6(b)] and its
relative density [Figs. 6(c) and 6(d)]. We see that, for low
phase differences, the GKS moves away from the center
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and is attracted back towards the location of the dissipa-
tion at x = 0. Also, nrel approaches the minimum value of
the DS. Finally we consider the phase difference which we
define as �φ(t ) = arg(ψ (xmin + 1μm, 0, 0)) − arg(ψ (xmin −
1μm, 0, 0)). In Figs. 6(e) and 6(f) we see that this approaches
π for all �φ(t = 70 ms). That is, the wave function is at-
tracted towards the DS. Our results show that the DS is the
unique steady-state for a whole class of initial states and even
the condensate ground state is attracted towards it.

V. DISCUSSION AND CONCLUSIONS

We studied the dynamics of a 3D Bose-Einstein condensate
with a dark or a gray kink soliton in an elongated trap with lo-
calized dissipation. In the case of the dark soliton, we find that
the snaking instability is suppressed above a certain threshold
value of the dissipation strength. For the gray soliton, we
observe an attraction of the system towards the dark soliton.
We find that the dark soliton is the unique steady state for all
initial gray solitons, even when starting from the BEC ground

state. Performing numerical experiments, we cannot, however,
exclude, that another steady state exists for the given param-
eters. The existence of such a state would be intriguing, as
one could observe and study bistable behavior in the system.
To generalize our work, it would be interesting to perform a
linear stability analysis on the two situations presented here
within the framework of a Bogoliubov transformation and
see how the imaginary frequencies become suppressed with
increasing dissipation strength. This would help to establish
the full phase diagram of the system and to relate our findings
to dissipative phase transitions.
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