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We study ultracold color fermions with three internal states, red, green, and blue, with SU(3) symmetry
in optical lattices, when color-orbit coupling and color-flip fields are present. This system corresponds to a
generalization of two internal state fermions with SU(2) symmetry in the presence of spin-orbit coupling
and spin-flipping Zeeman fields. We investigate the eigenspectrum and Chern numbers to describe different
topological phases that emerge in the phase diagrams of color-orbit coupled fermions in optical lattices. We
obtain the phases as a function of artificial magnetic, color-orbit, and color-flip fields that can be independently
controlled. For fixed artificial magnetic flux ratio, we identify topological quantum phases and phase transitions
in the phase diagrams of chemical potential versus color-flip fields or color-orbit coupling, where the chirality
and number of midgap edge states changes. The topologically nontrivial phases are classified in three groups:
The first group has total nonzero chirality and exhibits only the quantum charge Hall effect; the second group has
total nonzero chirality and exhibits both quantum charge and quantum color Hall effects; and the third group has
total zero chirality but exhibits the quantum color Hall effect. These phases are generalizations of the quantum
Hall and quantum spin Hall phases for charged spin-1/2 fermions. Lastly, we also describe the color density of
states and a staircase structure in the total and color filling factors versus chemical potential for fixed color-orbit
coupling, color-flip field, and magnetic flux ratio. We show the existence of incompressible states at rational
filling factors precisely given by a gap labelling theorem that relates the filling factors to the magnetic flux ratio
and topological quantum numbers.
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I. INTRODUCTION

Ultracold fermions loaded in optical lattices have become
ideal systems to study related electronic phase diagrams and
transport properties, because they provide a clean and well-
controlled playground to change various lattice parameters
and external fields at the turn of a knob. While several exper-
imental groups have worked mostly with Fermi isotopes 6Li
and 40K using two internal states to study various aspects of
interacting SU(2) fermions, there has been a growing interest
in studying SU(N) generalizations of these systems. Examples
of atomic SU(N) fermions found in nature are fermionic iso-
topes of closed-shell atoms with two electrons in their outer
electronic configuration. Two systems have been studied by
several groups: One of them is 173Yb, a fermionic isotope
of ytterbium, and the other is 87Sr, a fermionic isotope of
strontium.

The fermionic isotope 173Yb has electronic shell struc-
ture [Xe]4 f 146s2, with electronic spin S = 0 and nuclear
spin I = 5/2. The electronic ground state of 173Yb is 1S0,
which is sixfold degenerate because of its nuclear spin. The
six degenerate states have nuclear spin projections mI =
{±5/2,±3/2,±1/2}. Atoms in any selected state can be ma-
nipulated out of a trap or transformed into a desired nuclear
spin state, so that the ground state of trapped 173Yb can be up
to sixfold degenerate [1–6].

The fermionic isotope 87Sr has electronic shell struc-
ture [Kr]5s2, with electronic spin S = 0 and nuclear spin

I = 9/2. The electronic ground state of 87Sr is 1S0, which
is tenfold degenerate because of its nuclear spin. The
ten degenerate states have nuclear spin projection mI =
{±9/2,±7/2,±5/2,±3/2,±1/2}. Again, atoms in any se-
lected state can be manipulated out of a trap or transformed
into a desired nuclear spin state, so that the ground state
of trapped 87Sr can be up to tenfold degenerate [7–10]. In
addition, interactions between these closed-shell atoms are
independent of their nuclear spin states at the atomic en-
ergy scales of interest, and therefore interactions are SU(N)
symmetric. Since experiments are conducted at very low
temperatures, the collisional properties of these atoms are
dominated by s-wave scattering, and the interactions are local
in space; that is, they are contact interactions described by
a delta function potential that is independent of the nuclear
spin states of the atoms. As a result, 173Yb can be up to
SU(6) symmetric while 87Sr can be up to SU(10) symmetric
in their nuclear spin projections. In addition, orbital Feshbach
resonances can be used to control the strength of the SU(N)-
symmetric interactions from weak to strong [11,12]. Since
any three nuclear states of 173Yb or 87Sr can be selected and
trapped in an optical lattice, we label these nuclear states by
color {R, G, B} or pseudospin {↑, 0,↓} to describe a Fermi
system with SU(3) symmetry.

The creation of artificial gauge fields in the context of
ultracold atoms has been discussed in recent reviews [13,14].
It is now possible to create artificial magnetic fields [15] in
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optical lattices [16,17] that mimic electronic materials ex-
hibiting integer [18] and fractional [19] quantum Hall effects.
The synthetic magnetic flux values created in optical lattices
[16,17] are sufficiently large to allow for the experimental
exploration of the intricacies of Harper’s model [20] and the
Hofstadter butterfly [21], as well as the experimental determi-
nation of Chern numbers [22]. In addition, artificial magnetic
fields for SU(2) fermions in optical lattices could be used to
simulate the phenomenon of magnetic field induced reentrant
superfluidity, as discussed in the context of superconductivity
in condensed matter physics for spin-1/2 fermions in standard
lattices [23–26]. Furthermore, the creation of artificial spin-
orbit coupling for ultracold atoms [27] also allows for the
simulation of electronic materials exhibiting the quantum spin
Hall effect [28–30].

For ultracold fermions in optical lattices, artificial mag-
netic fields enable studies of topological insulators that break
time-reversal symmetry, such as quantum Hall systems, while
artificial spin-orbit fields allow for studies of topological in-
sulators that do not break time-reversal symmetry, such as
quantum spin Hall systems. Both types of topological in-
sulators are characterized by Berry curvatures and Chern
numbers, which have been measured experimentally using
time-of-flight techniques [31], inspired by theoretical propos-
als [32,33], and using dynamics of the center of mass of the
atomic cloud [34], also motivated by theoretical work [35,36].
However, studies of ultracold fermions may go beyond the
quantum simulation of spin-1/2 topological insulators under
typical condensed matter conditions [37], because artificial
magnetic, spin-orbit, and Zeeman fields may be adjusted in-
dependently [38].

Artificial magnetic, spin-orbit, and Zeeman fields in spin-
1/2 ultracold Fermi atoms may be independently tuned via a
combination of experimental techniques that produce artificial
magnetic fluxes without using internal states, such as laser-
assisted tunneling [16,17], and that produce spin-orbit and
Zeeman fields using internal states, such as Raman processes
[27] or radio-frequency atom chips [39,40]. These techniques
can also be applied to SU(3) fermions with three internal
states (colors) and allow for the investigation of exotic topo-
logical insulating phases that arise in optical lattices when
artificial magnetic, color-orbit, and color-flip fields are varied.
The present system in optical lattices expands the realm of
phases beyond Fermi liquid and superfluid for SU(3) fermions
in the presence of color-orbit and color-flip fields analyzed in
the continuum or in harmonic traps [41,42].

In this paper, we study the interplay of artificial magnetic,
color-orbit, and color-flip fields for ultracold SU(3) fermions
with three internal states (colors) and their effects on topolog-
ical insulators in regimes that cannot be reached or found in
condensed matter physics. We investigate the eigenspectrum
and Chern numbers to describe different topological phases
that emerge in the phase diagrams of color-orbit-coupled
fermions in optical lattices. We obtain the phases as a function
of artificial magnetic, color-orbit, and color-flip fields that
can be independently controlled. For a fixed artificial mag-
netic flux ratio, we identify the topological quantum phases
and phase transitions in the phase diagrams of chemical po-
tential versus color-flip fields or color-orbit coupling, where
the chirality and number of midgap edge states change. The

topologically nontrivial phases are classified in three groups:
The first group has total nonzero chirality and exhibits only
the quantum charge Hall effect, the second group has total
nonzero chirality and exhibits both quantum charge and quan-
tum color Hall effects, and the third group has total zero
chirality but exhibits the quantum color Hall effect. These
phases are generalizations of the quantum Hall and quan-
tum spin Hall phases for charged spin-1/2 fermions. Lastly,
we also describe the color density of states and a staircase
structure in the total and color filling factors versus chemical
potential for fixed color-orbit coupling, color-flip field, and
magnetic flux ratio. We show the existence of incompressible
states at rational filling factors precisely given by a gap label-
ing theorem that relates the filling factors to the magnetic flux
ratio and topological numbers.

The remainder of this paper is organized as follows. In
Sec. II, we describe the three-color Hamiltonian for ultracold
fermions loaded into a square optical lattice and in the pres-
ence of artificial magnetic, color-orbit, and color-flip fields.
In Sec. III, we analyze the energy spectrum obtained from a
generalized Harper’s matrix with open boundary conditions
and obtain the energy dispersions for bulk and edge states. In
Sec. IV, we discuss the color Chern numbers to classify the
insulating phases in the charge sector. We compute the Chern
numbers via the Berry curvatures associated with the eigen-
states of the Hamiltonian with periodic boundary conditions.
We confirm the existence of a bulk-edge correspondence by
comparing the Chern number calculated via periodic bound-
ary conditions to the number of chiral edge states obtained
via open boundary conditions. In Sec. V, we discuss the gap
labeling theorem and give a physical interpretation to the
topological quantum numbers. In Sec. VI, we describe the
phase diagrams of chemical potential versus color-flip field
(Sec. VI A) and the phase diagrams of chemical potential ver-
sus color-orbit coupling (Sec. VI B). We identify phases that
exhibit quantum charge Hall and quantum color Hall effects
in analogy to the quantum Hall effect and quantum spin Hall
effect for spin-1/2 systems, and we find phases that exhibit
simultaneously quantum charge and color Hall effects, which
do not exist in spin-1/2 systems. These phases are topological
insulators. In Sec. VII, we analyze the color density of states
for the system with periodic boundary conditions and show
that the bulk gaps match precisely with the gaps obtained for
open boundary conditions. Furthermore, we compute directly
the filling factor as a function of the chemical potential and
reveal the existence of filling factor steps at the precise values
given by the gap labeling theorem discussed in Sec. V to
describe insulating states. In Sec. VIII, we discuss the effects
of weak interactions on topological insulating phases and their
edge states. Finally, in Sec. IX, we summarize our results and
state our conclusions.

II. THREE-COLOR HAMILTONIAN

To discuss the phase diagrams and Chern numbers of col-
ored fermions with three internal states red (R), green (G),
and blue (B) in optical lattices, we consider a lattice extension
of the continuum color Hamiltonian with color-dependent mo-
mentum transfer kT and color-flip fields hx [41,42], which also
includes a Peierls substituted [43] artificial vector potential
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(0,Ay, 0). As described in Sec. I, the vector potential Ay may
be generated by laser-assisted tunneling [16,17], while the
color-dependent momentum transfer kT and color-flip field hx

may be created via counterpropagating Raman beams [27] or
via radio-frequency atom chips [39,40].

We assume that the fermions are trapped in a two-
dimensional square optical lattice and are described by the
Hamiltonian operator matrix of ultracold atoms with three
internal states

Ĥ =
⎛
⎝ εR(k̂) −hx/

√
2 0

−hx/
√

2 εG(k̂) −hx/
√

2
0 −hx/

√
2 εB(k̂)

⎞
⎠, (1)

when written in first quantization. In Eq. (1), the term

εR(k̂) = −2t{cos[(k̂x − kT )a] + cos[(k̂y − Ay)a]} (2)

corresponds to the kinetic energy of the R state including the
momentum transfer +kT along the x direction, arising from
counterpropagating Raman beams [27] or radio-frequency
atom chips [39,40], and the vector potential Ay along the y
direction, arising from laser-assisted tunneling [16,17]. The
term

εG(k̂) = −2t{cos(k̂xa) + cos[(k̂y − Ay)a]} (3)

corresponds to the kinetic energy of the G state, which experi-
ences no momentum transfer but feels the presence of Ay, and

εB(k̂) = −2t{cos[(k̂x + kT )a] + cos[(k̂y − Ay)a]} (4)

corresponds to the kinetic energy of the B state, including the
momentum transfer −kT along the x direction and the vector
potential Ay along the y direction.

In Eqs. (2), (3), and (4), the parameter t is the hopping
amplitude, a is the lattice spacing, kT is the color-dependent
momentum transfer along the x direction (artificial unidirec-
tional color-orbit coupling), and Ay = eHx/h̄c plays the role
of the y component of the artificial vector potential, where H is
identified as a synthetic magnetic field along the z axis. Notice
that Ay has dimensions of inverse length. It is important to em-
phasize that the system is neutral, so there is no charge e, that
is, Aya should be just viewed as a position-dependent phase
φ(x) = Aya. Lastly, hx represents a color-flip field along the
x direction, whose physical origin is a Rabi term that couples
the red and green as well as the green and blue internal states
of the atom.

The Hamiltonian matrix in Eq. (1) acts on a three-color
wave function �(r) = [�R(r), �G(r), �B(r)]T , where T in-
dicates transposition and r = (x, y) labels the coordinates in
the square lattice. An analogy to pseudospin-1 fermions or
spin-1 bosons in optical lattices can be made by rewriting
Eq. (1) in terms of spin-1 matrices J�, with � = {x, y, z} as

Ĥ = εG(k̂)1 − hxJx − hz(k̂)Jz + gz(k̂)J2
z , (5)

where hx plays the role of a Zeeman field along the x
axis in spin space, hz(k̂) = [εB(k̂) − εR(k̂)]/2 represents
momentum-dependent Zeeman field along the z axis in spin
space, and gz(k̂) = [εB(k̂) + εR(k̂)]/2 − εG(k̂) describes a
momentum-dependent quadratic Zeeman shift along the z
axis in spin space, and thus can be viewed as a spin (color)

quadrupolar effect. The color states {R, G, B} are directly
mapped into pseudospin-1 states {↑, 0,↓}. Notice that the
presence of the color fields hx, hz(k̂), and gz(k̂) breaks
the SU(3) symmetry of otherwise degenerate color bands.
To make some connections to quantum chromodynamics
(QCD), we note that the independent-particle Hamiltonian
described in Eqs. (1) or (5) in general does not commute with
the Gell-Mann matrices λ j , which are the eight generators
of SU(3). To visualize this clearly, it is sufficient to recall
that the angular momentum matrices J� can be written in
terms of λ j as Jx = (λ1 + λ6)/2, Jy = (λ2 + λ7)/2, and
Jz = (λ3 + √

3λ8)/2 and to show that the commutator
[Ĥ,λ j] �= 0. The Hamiltonian in Eqs. (1) or (5) becomes
SU(3) invariant only when the fields hx = hz(k̂) = gz(k̂) = 0,
rendering Ĥ diagonal and proportional to the unit matrix 1;
that is, all color states become degenerate.

The Hamiltonian given in Eq. (1) is formally the Fourier-
transformed operator of a tight-binding real-space lattice
Hamiltonian with Nx sites along the x direction and Ny sites
along the y direction in the presence of a Peierls substituted
[43] vector potential Ay, and color-orbit momentum shifts
±kT a along the x direction. The boundary conditions are not
directly reflected on that operator but are explicitly required
on its wave functions depending on geometrical constraints.
Generally, there are three types of geometrical constraints that
one can use. The first geometry is a two-dimensional sheet
of dimensions Lx = Nxa and Ly = Nya with open boundaries
along the x and y directions. The second one is a cylindrical
geometry, where periodic boundary conditions are imposed in
one direction and open boundaries in the other. The third one
is a toroidal geometry, where periodic boundary conditions
are imposed in both directions.

It is important to emphasize that, under standard ex-
perimental conditions, two-dimensional optical lattices are
created in the sheet geometry mentioned above. In this case,
the system has open boundaries both along the x and y direc-
tions and can develop edge states in all four edges. However,
throughout the paper, we will be using the other two types
of boundary conditions, as they offer calculational advan-
tages without compromising the physics that we would like
to elucidate. When we are interested solely in bulk properties,
we use a real-space toroidal geometry with periodic bound-
ary conditions along the x and y directions. However, when
we are curious about edge-state properties, we work with a
cylindrical geometry having finite number of sites Nx along
the x direction but periodic boundary conditions along the y
direction.

Having described the Hamiltonian of our system in this
section, we discuss next the eigenspectrum associated with the
Hamiltonian matrix described in Eqs. (1) or (5).

III. HARPER’S EIGENSPECTRUM

In this section, we obtain the eigenspectrum of the Hamil-
tonian in Eqs. (1) or (5), for the cylindrical geometry, as we
would like to analyze the emergence of edge states. Given that
the gauge potential Ay depends only on x, the momentum ky

is a good quantum number while kx is not. Thus, we impose
periodic boundary conditions along the y direction and con-
sider a finite lattice along the x direction with Nx sites. In this
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case, we can transform the Hamiltonian from Eq. (1) into the
color-dependent Harper’s matrix

H =

⎛
⎜⎜⎜⎜⎜⎝

. . . B 0 0 0
B∗ Am−1 B 0 0
0 B∗ Am B 0
0 0 B∗ Am+1 B

0 0 0 B∗ . . .

⎞
⎟⎟⎟⎟⎟⎠

, (6)

which has a tridiagonal block structure that couples neigh-
boring sites (m − 1, m, m + 1) along the x direction and
possesses discrete translational invariance along the y axis.
This is a generalization of the Harper’s matrix for spin-1/2
fermions with two internal states [20]. The matrices A and B
and the null matrix 0 consist of 3 × 3 blocks with entries la-
beled by internal color states {R, G, B} or pseudospin-1 states
{↑, 0,↓}. The size of the space labeled by the site index m is
Nx, and thus the total dimension of the matrix H in Eq. (6) is
3Nx × 3Nx. The matrix indexed by position x = ma is

Am =
⎛
⎝ AmR −hx/

√
2 0

−hx/
√

2 AmG −hx/
√

2
0 −hx/

√
2 AmB

⎞
⎠,

with AmR = AmG = AmB = −2t cos(kya − 2πmα), where the
parameter α = �/�0 represents the ratio between the mag-
netic flux through a lattice plaquette � = Ha2 and the flux
quantum �0 = hc/e, or the ratio between the plaquette area
a2 and the square of the magnetic length �M = √

hc/eH ,
that is, α = (a/�M )2. The matrix that contains the color-orbit
coupling is

B =
⎛
⎝−te−ikT a 0 0

0 −t 0
0 0 −teikT a

⎞
⎠,

where kT (−kT ) corresponds to the momentum transfer along
the x direction for state R (B), while the momentum transfer
for state G is zero.

The full Hofstadter spectrum [21] of energy E versus flux
ratio α = �/�0 for colored fermions can be obtained from
the eigenvalues of the Harper’s matrix defined in Eq. (6).
However, in this work, we focus on a fixed value of α and
discuss the energy spectrum as a function of the color-orbit
coupling kT and color-flip field hx. We consider Nx = 50 sites
along the x direction, with three states {R, G, B} per site,
but periodic boundary conditions along the y direction. The
eigenvalues Enβ

(ky) are labeled by a discrete band index nβ

and by momentum ky and are functions of the color-orbit
coupling kT , color-flip field hx, and flux ratio α = �/�0. The
index β in nβ is a reminder that the resulting bands carry a
mixed-color index β; when color is conserved, the index β

labels {R, G, B} states.
In Fig. 1, we show Enβ

(ky) for flux ratio α = 1/3 in the
cases (a) kT a = 0 and hx/t = 0, where there are three sets
of color-degenerate bulk bands connected by color-degenerate
midgap edge bands (there are three sets because the magnetic
flux ratio is α = 1/3); (b) kT a = π/8 and hx/t = 0, which is
identical to case (a) because of a color-gauge symmetry that
allows gauging away the color-orbit coupling; (c) kT a = 0
and hx/t = 2.0, where there are nine sets of bulk bands with

FIG. 1. Eigenvalues Enβ
(ky )/t of the color-dependent Harper’s

matrix vs kya for magnetic flux ratio α = 1/3. The parameters are
(a) kT a = 0 and hx/t = 0, (b) kT a = π/8 and hx/t = 0, (c) kT a = 0
and hx/t = 2.0, and (d) kT a = π/8 and hx/t = 2.0. The vertical
dashed lines located at kya = ±π/3 indicate the boundaries of the
magnetic Brillouin zone. The bulk bands have periodicity 2π/3a,
and the midgap edge bands have periodicity 2π/a along the ky

direction.

regions of overlap (because color degeneracies are only par-
tially lifted by the color-flip field), as well as color-dependent
midgap edge bands connecting bulk bands; and (d) kT a =
π/8 and hx/t = 2.0, where there are nine sets of bulk bands
connected by color-dependent midgap edge states, but resid-
ual bulk band overlaps are lifted by the additional presence
of color-orbit coupling. All bulk bands have momentum space
periodicity of 2π/3a, while all edge bands have period 2π/a
along the ky direction. It is important to point out that there
are potential experimental techniques to image edge states
directly [44] in the context of ultracold atoms. The periodicity
of the bulk states is determined by the denominator q of the
rational magnetic flux ratio α = p/q, which for α = 1/3 cor-
responds to q = 3. In Fig. 1, the vertical dashed lines specify
the boundaries of the magnetic Brillouin zone at kya = ±π/3.

Now that we have obtained the eigenspectrum of the
system and identified the existence of midgap edge states
connecting different mixed-color bands, we discuss next the
associated Chern numbers for the colored fermions.

IV. COLOR CHERN NUMBERS

The computation of the Chern numbers for color fermions
can be performed in two different ways, either as bulk topo-
logical invariant for the toroidal geometry, or by analyzing the
total chirality of edge states in the cylindrical geometry and
relying on the bulk-edge correspondence [45] to extract the
Chern numbers. In this section, we obtain the Chern numbers
in both ways independently to guarantee that we obtain the
correct results.

First, we calculate the Chern numbers as a bulk topological
invariant. We impose periodic boundary conditions along the
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x and y directions, and compactify the cylinder into a torus.
To identify topologically nontrivial mixed-color bands and
extract their Chern indices, we fix the flux ratio to the ratio-
nal number α = p/q, and write the color-dependent Harper’s
Hamiltonian as a 3q × 3q matrix

H(kx, ky) =
⎛
⎝ HRR HRG HRB

HGR HGG HGB

HBR HBG HBB

⎞
⎠ (7)

in momentum (kx, ky) space, by taking advantage of the mag-
netic translation group. We define q × q block matrices Hcc′ ,
where c and c′ label the three color states {R, G, B}. The
color-diagonal q × q block matrices Hcc are⎛
⎜⎜⎝


1 −teikxca 0 . . . −te−ikxca

−te−ikxca 
2 −teikxca . . . 0
...

...
...

. . .
...

−teikxca 0 . . . −te−ikxca 
q

⎞
⎟⎟⎠,

where kxc = kx − γckT is the color-dependent momentum
along the x direction, including the color-dependent mo-
mentum transfer γckT , with γR = +1, γG = 0, and γB = −1.
The kinetic energy terms are 
m = −2t cos(kya − 2παm),
where the magnetic flux ratio is α = p/q and m takes val-
ues (1, ..., q). The color-off-diagonal q × q block matrices
are HRB = HBR = 0 and HRG = HGR = HGB = HBG = Hflip,
where

Hflip =

⎛
⎜⎜⎜⎝

−hx/
√

2 0 0 0 0
0 −hx/

√
2 0 0 0

...
...

...
. . .

...

0 0 . . . 0 −hx/
√

2

⎞
⎟⎟⎟⎠

(8)

describes color flips between R and G states, as well as be-
tween G and B states, via the color-flip field hx.

Next, we analyze the Chern numbers for different values of
color-orbit coupling and color-flip fields, but fixed flux ratio
α = p/q. The energy spectrum associated with the Hamilto-
nian H(kx, ky) in Eq. (7) has 3q color-magnetic bands E�γ

(k)
that are labeled by a magnetic band number �γ with general-
ized color index γ corresponding to mixed color states, which
we identify as cyan (C), magenta (M ), and yellow (Y ) or
via a pseudospin basis {C, M,Y } → {⇑, 0,⇓}. The minimum
number of gaps between bulk bands is q − 1, when the bands
are triply degenerate and the maximum is 3q − 1, when there
is no overlap between the bands.

The Chern index for the �th
γ band with generalized color

index γ is

C�γ
= 1

2π i

∫
∂


d2kF
(�γ )

xy (k), (9)

where the domain of integration ∂
 in momentum space
corresponds to the magnetic Brillouin zone, that is,
∂
x = [−π/a, π/a] along the kx direction and ∂
y =
[−π/qa, π/qa] along the ky direction. The function

F
(�γ )

xy (k) = ∂xA
(�γ )
y (k) − ∂yA

(�γ )
x (k) (10)

is the Berry curvature expressed in terms of the Berry con-
nection A

(�γ )
j (k) = 〈u�γ

(k)|∂ j |u�γ
(k)〉, where |u�γ

(k)〉 are the

eigenstates of the Hamiltonian H(kx, ky) defined in Eq. (7).
In the limit of zero color-orbit coupling (kT = 0) and zero
color-flip field (hx = 0), the energy spectrum for flux ratio
α = p/q has triply degenerate q magnetic bands and q − 1
gaps, such that the Chern index from Eq. (9) acquires a similar
form to that found in the quantum Hall effect literature for
spin-1/2 systems [46,47].

Chern indices are properties of bands E�γ
(k) or band bun-

dles with degeneracy D and are computed using a discretized
version of Eq. (9) via a generalization of the method used for
spin-1/2 systems [48]. However, Chern numbers are defined
within band gaps and depend on which gap the chemical
potential is located. If the chemical potential μ is located in
a band gap labeled by index r and corresponding to filling
factor ν = r/q, then the Chern number at this value of μ is

Cr =
ν=r/q∑

�γ ,E<μ

C�γ
, (11)

that is, the sum of Chern indices of bands with energies E <

μ, which characterize the insulating state labeled by the gap
index r and filling factor ν = r/q. Using our normalization,
the maximum filling factor is νmax = 3, indicating that the
maximum number of color states per site is three.

We have also investigated the Chern numbers by analyzing
the total chirality of the midgap edge states that arise in
the cylindrical geometry. We found that they coincide with
the Chern numbers Cr calculated from the toroidal geometry
(bulk system without edges), as expected due to the bulk-edge
correspondence [45]. The fact that these results agree for all
insulating phases reassures us that the Chern numbers are
calculated correctly.

From an analysis of the energy spectrum in Fig. 1 and
the Chern numbers above, it is clear that the filling factor
ν = r/q associated with the bulk gap r is a good label for
the insulating phases in conjunction with Chern numbers Cr .
Thus, we discuss next a gap labeling theorem that connects ν

and Cr .

V. GAP LABELLING THEOREM

For spin-1/2 fermions in condensed matter systems, a gap
labeling theorem that relates the filling factor ν = r/q and
the magnetic flux parameter α = �/�0 = p/q was found by
Wannier and Claro [49,50]. In that case, the Zeeman field hx

was neglected and the theorem covered only couplings to the
charge degrees of freedom of the system. However, in the
present case, it is clear that the color-flip fields hx play an
important role in creating additional gaps, as we have seen
in the discussion of Fig. 1. As hx/t varies from hx/t 
 1 to
hx/t � 1, the number of gaps grows from two to eight.

We can establish a relation between the Chern numbers Cr ,
the magnetic ratio α = p/q and the filling factor ν = r/q by
rewriting the Diophantine equation

r = qSr + pCr, (12)

where the integer index r labels the gaps in the energy spec-
trum E�γ

(kx, ky) of the toroidal geometry, Cr is the Chern
number for the rth gap, and Sr is a supplementary topological
invariant. This equation can be expressed in terms of the filling
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factor ν = r/q and the magnetic ratio α = p/q as

ν = Sr + αCr . (13)

The relation shown above generalizes the gap labeling the-
orem [49,50] used in the context of the integer quantum
Hall effect, because the topological quantum numbers (Sr, Cr )
change not only as a function of the magnetic ratio α but
also as a function of the color-flip field hx/t and color-orbit
parameter kT a, that is, Sr (hx/t, kT a) and Cr (hx/t, kT a). Notice
that the maximal value of Sr for a given gap labeled by r is
linked to the minimum value of Cr and vice versa, that is,
Sr,max = ν − αCr,min and Sr,min = ν − αCr,max.

For three color states, the integer values of r range from
0 to 3q, when ν = 0 and ν = 3, respectively. We can use
particle-hole symmetry (PHS) to relate the invariants Sr, Cr ,
and S3q−r, C3q−r . Applying PHS to the gap-labeling relation in
Eq. (13) means making the transformation ν → (3 − ν) and
r → (3q − r). For fixed α, hx/t , and kT a, due to total charge
conservation, PHS requires that

C3q−r = −Cr, (14)

which then leads to the relation

S3q−r = 3 − Sr . (15)

These two relations can also be verified independently via the
direct calculation of Chern numbers Cr and filling factors ν

for fixed α, hx/t , and kT a.
The physical interpretation of the topological invariants Cr

and Sr are as follows. The Chern number Cr was shown [46] to
be directly related to the quantization of the Hall conductance

σ̃yx = e2

h
Cr, (16)

when the chemical potential μ lies in energy gap r. The
physical interpretation of Sr reflects the quantization of the
induced charge density

ρ̃i = e

a2
Sr (17)

due to screening originating from the lattice potential modu-
lation.

The relation between ρ̃i and Sr is best understood as fol-
lows. Let us consider the action of the Lorentz force caused
by the magnetic field H ẑ on a particle with band velocity vy

and the compensating effect of the induced electric field Ex in
the cylindrical geometry with length Lx along the x direction
and periodic boundary conditions along the y direction. When
these forces are balanced, we have evyH/c = eEx. We can
express the Hall current density Jy as the flow of the transport
charge density ρ̃t = ρ̃ − ρ̃i, where ρ̃ is the charge density and
ρ̃i is the induced charge density due to screening by the lattice
potential, via

Jy = ρ̃tvy. (18)

Next, we use the Hall electric field Ex to write the Hall con-
ductance as

σ̃yx = Jy

Ex
= c

ρ̃t

H
. (19)

We define the transport charge density ρ̃t = ent in terms of
the transport particle density nt = Nt/LxLy, where the product

LxLy, with Lx = Nxa and Ly = Nya, is the area of the sample
and Nt is the transport particle number. Substituting this defi-
nition into Eq. (19), we obtain the Hall conductance

σ̃yx = c
eNt

LxLyH
= Nt

NxNy

ce

�
, (20)

where the usual magnetic flux per lattice plaquette is � =
Ha2. Notice that Nt = N − Ni, where N is the particle number
and Ni is the induced particle number due to screening of
the lattice potential. This means that νt = Nt/NxNy is noth-
ing but the fraction of transported particles per site, that is,
νt = ν − νi, where ν is the filling factor and νi is the induced
filling factor due to the lattice potential screening. Compar-
ing the two relations in Eqs. (16) and (20), we can write
νt = [�/�0]Cr , which immediately gives the relation

ν = νi + αCr, (21)

where α = �/�0. This is the same expression written in
Eq. (13), with the identification that the induced filling factor
νi = Sr . Since, νi = Ni/NxNy, the induced charge density is

ρ̃i = eNi

LxLy
= e

a2
νi, (22)

leading to the quantization of the induced charge density an-
nounced in Eq. (17).

We would like to note that when the lattice potential is
zero, there is no induced charge ρ̃i and Sr = 0 in the con-
tinuum limit at every bulk gap. However, in the presence of
lattice potentials, Sr can take nonzero integer values. Thus,
to identify each insulating phase in optical lattices, we use
not only the Chern number Cr , but also the filling factor ν

or the supplementary topological invariant Sr , as discussed
above. Having introduced the gap labeling relation that con-
nects filling factors ν, magnetic flux ratio α, and topological
numbers (Sr, Cr ), we will use this ordered pair to classify
the topological phases in the charge sector, noting that ad-
ditional topological numbers may arise in the color sector, as
discussed next.

VI. PHASE DIAGRAMS OF COLOR FERMIONS

Since we are interested in the effects of color-orbit cou-
pling kT and color-flip field hx, we focus on phase diagrams
for constant flux ratio α = p/q, and choose the particular
value of α = 1/3, where nontrivial topological properties
emerge. We use the Chern numbers defined in Eq. (11) and
the gap labeling theorem of Eq. (13) to classify the topolog-
ical phases in the phase diagrams of chemical potential μ

versus color-flip field hx and μ versus color-orbit coupling
kT . In some situations, we need to refine the topological clas-
sification to distinguish phases with the same charge Chern
numbers and include an analysis of the color degrees of free-
dom together with the monitoring of the properties of midgap
edge states.

A. Chemical potential versus color-flip field

In Fig. 2, we show phase diagrams of chemical potential
μ/t versus the color-flip field hx/t for fixed value of the
magnetic flux ratio α = 1/3 with four values of the color-orbit
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(a) (b)

(c) (d)

FIG. 2. Phase diagrams of chemical potential μ/t vs color-flip
field hx/t are shown for spin-orbit coupling parameters: (a) kT a = 0,

(b) kT a = π/8, (c) kT a = π/2, and (d) kT a = π . The white re-
gions correspond to gapless (conducting) phases, where the chemical
potential lies within a band of states, while the nonwhite regions
correspond to insulating phases. The Chern numbers of the insulating
phases are shown in the color palette.

parameter: kT a = 0, kT a = π/8, kT a = π/2, and kT a = π .
From the figures, it is clear that phase diagrams are quite
complex, in particular for values of hx/t > 1. But, before we
embark on the description of the phase diagrams, we discuss
first the labeling of the regions indicated in the legend of the
figure.

In Fig. 2, the white regions correspond to gapless (conduct-
ing) phases, where the chemical potential lies within a band
of states, while the nonwhite (colored) regions correspond to
insulating phases, where the chemical potential lies within the
gaps between bands of states. The legend in this figure is a
color palette describing the Chern numbers for each colored
region.

Given that certain regions with different colors have the
same Chern numbers, it is clear that additional properties are
needed to distinguish them. Before we discuss important as-
pects of the phase diagrams, we describe first the color palette.
The magenta (cyan) regions with Chern number +3 (−3)
possess three chiral midgap edge states with positive (neg-
ative) chirality, while the blue (green) regions with Chern
number +2 (−2) possess two chiral midgap edge states with
positive (negative) chirality. The red (yellow) regions with
Chern number +1 (−1) possess one chiral midgap edge state
with positive (negative) chirality; the dark red (dark yellow)
regions with Chern number +1 (−1) possess not only one
chiral midgap edge state with positive (negative) chirality,

but also present achiral midgap edge states; nevertheless they
are not topologically distinct from their parent red (yellow)
regions. However, the regions that are red with black dots
(yellow with black dots) with Chern number +1 (−1) have
three chiral midgap edge states, two of which have positive
(negative) chirality and one of which has negative (positive)
chirality. Therefore, these insulating regions are topologically
distinct from the red (yellow) regions with the same Chern
numbers. The gray regions with Chern number 0 are topo-
logically trivial with no chiral or achiral midgap edge states.
The black regions with Chern number 0 are also topologically
trivial with no chiral midgap edge states but with achiral
midgap edge states. These black regions are not topologically
distinct from the gray regions. Lastly, the orange regions with
Chern number 0 are topologically nontrivial and possess two
chiral midgap edge states with opposite chirality, reminiscent
of the quantum spin Hall effect in spin-1/2 fermions.

There are a few general properties of the phase diagrams
of Fig. 2 that we would like to highlight below. The first
thing to notice is that Chern numbers for fixed hx/t have odd
symmetry upon reflection through μ = 0. A change in charge
from particle-like to hole-like leads to a flip in the chirality of
the edge states, that is, a change in sign of the Chern number
defined in Eq. (11). This property of the Chern number spec-
trum is a consequence of the particle-hole symmetry (PHS) of
Hamiltonians Eqs. (1) or (5) about the line μ = 0.

For fixed flux ratio α = 1/3 and color-orbit parameter kT a,
the number of insulating phases, where gaps between energy
bands exist, grows from two to eight with increasing color-flip
parameter hx/t from hx/t 
 1 to hx/t � 1. This situation
does not occur in electronic systems with spin-1/2 since the
Zeeman field hx cannot be tuned independently from the mag-
netic ratio α as they have the same origin, and typically hx

has very small values in comparison to the hopping parameter
t , such that hx/t 
 1. However, for ultracold fermions, since
hx is a synthetic field that can be tuned independently from
the magnetic ratio α, it can attain high values in comparison
to t and provide access to phases that are not encountered in
standard condensed matter systems.

In the regime hx/t 
 1, where the color splitting caused by
the color-flip field hx is small in comparison to the hopping t ,
we have essentially color unpolarized phases. In this case, the
energy spectrum has only two gaps, similar to the cases illus-
trated in Figs. 1(a) and 1(b). Thus, only two insulating phases
emerge: one with Chern number +3 (magenta) at the first
gap and the other −3 (cyan) at the second gap. These phases
are the color generalizations of the quantum Hall phases for
spin-1/2 systems.

In the regime hx/t � 1, where the color splitting caused
by the color-flip field hx is large in comparison to the hopping
t , the system is essentially polarized in a mixed-color basis
of the color (pseudospin) matrix Jx described in Eq. (5). In
this case, the color-orbit parameter kT a lifts band degenera-
cies and creates eight gapped phases. In Figs. 2(a) and 2(b),
where kT a 
 π , the eight color-insulating phases have Chern
numbers +1 (red), −1 (yellow), and 0 (gray), when hx/t � 1.
However, when color-orbit coupling kT a is sufficiently large,
the mixed color bands get strongly coupled and the nature of
the insulating phases changes dramatically. This can be seen
in Fig. 2(c) for kT a = π/2, where the insulating phases have
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(b)(a)

FIG. 3. Enlarged sections of the phase diagram shown in
Fig. 2(b), where kT a = π/8. The color code is the same used in the
palette of Fig. 2.

Chern numbers +1 (red), −1 (yellow), 0 (gray), −2 (green),
and +2 (blue) as well as in Fig. 2(d) for kT a = π , where the
insulating phases have Chern numbers −2 (green), +2 (blue),
0 (gray), +1 (red), and −1 (yellow).

In Fig. 3, we show enlarged sections of Fig. 2(b) to il-
lustrate the most interesting aspects of the phase diagrams
discussed so far. First, notice in Fig. 3(a) the very narrow
regions with Chern numbers +6 at ν = 1 and −6 at ν = 2,
reflecting the existence of six chiral edge states. These phases
with high value of the Chern number exhibit the standard
quantum Hall effect, which we name from now on as the
quantum charge Hall (QChH) effect. There is nothing corre-
sponding to the aforementioned phases for SU(2) fermions,
since the latter systems possess a maximum of two chiral
edge states throughout their phase diagrams. Second, notice
in Figs. 3(a) and 3(b) the orange regions with zero Chern
number at filling factors ν = 1 and ν = 2. This region has two
chiral midgap edge states with opposite chiralities, producing
a phase that we name quantum color Hall (QCoH) insulator,
in analogy to the quantum spin Hall (QSH) insulator that ex-
hibits the quantum spin Hall effect. These orange regions are
the color versions of the QSH phases for spin-1/2 fermions
[28–30]. Third, in Fig. 3(a), notice the region that is red
with black dots (yellow with black dots) with Chern number
+1 (−1) at ν = 4/3 (ν = 5/3), which contains three midgap
edge states, two with positive (negative) chirality and one
with negative (positive) chirality, thus possessing the QChH
effect. However, two of the midgap edge states with opposite
chirality have different mixed-color indices leading also to a
quantum color Hall (QCoH) effect. The simultaneity of QChH
and QCoH in these phases is unique, since there is nothing
corresponding to this for SU(2) fermions, that is, in spin-1/2
systems there are no phases that exhibit simultaneously the
quantum Hall and the quantum spin Hall effect, unless they
are fully spin polarized. These QCoH phases manifested in
the analysis of midgap edge states suggest the need to estab-
lish bulk topological invariants (color-Hall Chern numbers)
related to color-Hall conductances, whenever appropriate.
Lastly, notice the existence of direct phase transitions between
insulating states, namely the blue (green) and yellow (red)
phases, occuring at ν = {2/3, 5/3} (ν = {4/3, 7/3}), where
the bulk gap closes only at one point in the phase diagram.
This is also a special situation, as most phase transitions
seen in Fig. 2 occur between an insulating (colored) and a
conducting (white) phase.

FIG. 4. Tables illustrating the gap labeling theorem for two cuts
in the phase diagram of Fig. 2(b). The table at left is for kT a = π/8
and hx/t = 2.0, while the table at right is for kT a = π/8 and hx/t =
3.0. The filling factor is ν = r/3, where r is an integer from the set
{1, 2, 3, 4, 5, 6, 7, 8}.

To illustrate the gap labeling theorem for the charge de-
grees of freedom, we show two tables in Fig. 4 corresponding
to two cuts in Fig. 2(b), where kT a = π/8 and α = 1/3. The
first cut is at hx/t = 2.0 and the second is at hx/t = 3.0. Both
tables describe eight insulating phases located at band gaps
labeled by r = {1, 2, 3, 4, 5, 6, 7, 8}. Each phase is labeled by
the order pair (Sr, Cr ) or (ν, Cr ) as described in Sec. V. Theses
tables also summarize some of the phases encountered in
Fig. 2 and illustrate the symmetry relations S9−r = 3 − Sr and
C9−r = −Cr under the particle-hole symmetry operation ν →
(3 − ν) or r → (9 − r) when q = 3, as given in Eqs. (14) and
(15).

B. Chemical potential versus color-orbit coupling

In Fig. 5, we show phase diagrams of chemical poten-
tial μ/t versus spin-orbit parameter kT a for fixed magnetic
ratio α = 1/3 and changing color-flip fields: (a) hx/t = 0,
(b) hx/t = 1.0, (c) hx/t = 2.0, and (d) hx/t = 3.0. The color
palette for insulating phases is the same used in Fig. 2. There
are several general properties Fig. 5 that we would like to
point out. We notice that the phase diagram of μ/t versus
kT a has periodicity of 2π , inversion symmetry with respect to
kT a = π , and particle-hole symmetry with respect to μ = 0.
All these properties arise directly from symmetries of the
Hamiltonian of the system discussed in Sec. II. Notice also
that the lower and upper gray regions are topologically trivial
and correspond to ν = 0 with (S0,C0) = (0, 0) and ν = 3
with (S9,C9) = (+3, 0), respectively. Furthermore, for fixed
hx/t , there are a few additional phases with high Chern num-
ber and several topological quantum phase transitions that
occur between different insulating phases as kT a is changed.
These phases are highlighted next.
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(a) (b)

(c) (d)

FIG. 5. Chemical potential μ/t vs spin-orbit parameter kT a for
flux ratio α = 1/3 and color-flip fields: (a) hx/t = 0, (b) hx/t = 1.0,
(c) hx/t = 2.0, and (d) hx/t = 3.0. The color palette for insulating
phases is the same used in Fig. 2.

In Fig. 6, we show enlarged sections of phase diagrams
displayed in Figs. 5(b)–5(d). In Fig. 6(a), we show a region
from Fig. 5(b), where hx/t = 1.0. In Fig. 6(b), we display
a region from Fig. 5(c), where hx/t = 2.0. In Figs. 6(c) and
6(d), we illustrate regions of Fig. 5(d), where hx/t = 3.0. The
color code is the same as in Fig. 5. In Fig. 6(a), we highlight
the high Chern number phases (±6), which are hard to see in
Fig. 5(b) and that have direct topological phase transitions to

(b)(a)

(d)(c)

FIG. 6. Enlarged sections of phase diagrams shown in Figs. 5(b),
5(c) and 5(d). The section in panel (a) reflects a region of Fig. 5(b),
where hx/t = 1.0. The section in panel (b) reflects a region of
Fig. 5(c), where hx/t = 2.0. The sections in panels (c) and (d) show
regions of Fig. 5(d), where hx/t = 3.0. The color code is the same as
in Fig. 2.

FIG. 7. Tables illustrating the gap labeling theorem for two cuts
in the phase diagram of Fig. 5(c). The table at left is for kT a = 3π/4
and hx/t = 2.0, while the table at right is for kT a = π and hx/t =
2.0. The filling factor is ν = r/3, where r is an integer from the set
{1, 2, 3, 4, 5, 6, 7, 8} that labels a band gap.

the magenta and cyan phases. In Fig. 6(b), we can see clearly
direct topological phase transitions between the phases shown
as red with black dots (yellow with black dots) and those
shown as dark green (light blue) phases. The dark green (light
blue) phases are not topologically distinct from the green
(blue) phases, but in addition to two chiral edge states, they
also possess achiral midgap states. In Fig. 6(c), we highlight
the high Chern number (+5) phases, which are hard to see in
Fig. 5(d) and that have direct topological phase transitions to
blue phases. In Fig. 6(d), we can see clearly direct topological
phase transitions between the orange and magenta (orange and
cyan) as well as magenta and black (cyan and black) phases.
The direct phase transitions between topological insulating
phases occur only at one point in the phase diagrams, where
the band gap closes at the transition point, but immediately
reopens on either side of the transition with a new Chern
number.

In Fig. 7, we show tables illustrating the gap labeling
theorem for two cuts in the phase diagram of Fig. 5(c). The
table at left is for kT a = 3π/4 and hx/t = 2.0, while the
table at right is for kT a = π and hx/t = 2.0. The table at left
(right) describes eight (six) insulating phases corresponding
to eight (six) gaps labeled by r = {1, 2, 3, 4, 5, 6, 7, 8} (r =
{1, 3, 4, 5, 6, 8}). The insulating phases are identified by the
pairs (Sr, Cr ) or (ν, Cr ), where ν = r/3. The symmetry rela-
tions S9−r = 3 − Sr and C9−r = −Cr under the particle-hole
symmetry are again satisfied.

VII. COLOR DENSITY OF STATES

In conjunction with the energy spectrum Enβ
(ky) with open

boundary conditions or E�γ
(kx, ky) with periodic boundary

conditions for fixed magnetic flux α = p/q, the total color
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density of states ρ(E ) and the color density of states ρc(E ) for
color c are useful quantities to identify the location of gapped
phases as a function of color-flip fields hx/t and color-orbit
coupling kT a.

The density of states can be obtained from Green’s (resol-
vent) operator,

Ĝ(z) = 1

z1 − Ĥ
, (23)

whose matrix elements in the original color basis {R, G, B}
can be written as

Gcc′ (z) =
∑
nβ ky

unβ c(ky)u∗
nβ c′ (ky)

z − Enβ
(ky)

, (24)

where unβ c(ky) are the color components of the eigenvectors of
the Hamiltonian operator Ĥ with open boundary conditions
and eigenvalues Enβ

(ky). The summations over ky cover the
magnetic Brillouin zone [−π/qa, π/qa] for bulk states and
the range [−π/a, π/a] for midgap edge states, where a is
the square lattice unit cell length, and include all mixed-color
band indices nβ.

We can also use the appropriate spectral decomposition for
the case with periodic boundary conditions to obtain

Gcc′ (z) =
∑

�γ kxky

u�γ c(kx, ky)u∗
�γ c′ (kx, ky)

z − E�γ
(kx, ky)

, (25)

where u�γ c(kx, ky) are the color components of the eigenvec-
tors of the Hamiltonian operator Ĥ with periodic boundary
conditions and eigenvalues E�γ

(kx, ky). Here, �γ labels the
magnetic subbands for α = p/q. The momentum summations
are over [−π/a, π/a] for kx and over [−π/qa, π/qa] for ky,
that is, the summations over {�γ , kx, ky} cover the magnetic
Brillouin zone and all the mixed color bands labeled by �γ .

Within the magnetic Brillouin zone, the density of states of
color c at energy E is

ρ̄c(E ) = − 1

π
lim
δ→0

ImGcc(z = E + iδ), (26)

where δ is a small imaginary part. The color density of states
per site is

ρc(E ) = ρ̄c(E )

q
, (27)

since there are q unit cells in real space. The color density of
states ρ̄c(E ) in the magnetic unit cell integrates to q states over
all energies. The color density of states per site ρc(E ) always
integrates to 1, because we have a maximum of one state for a
given color c. Within the magnetic Brillouin zone, the number
of states of a given color c at the chemical potential μ is

Nc(μ) =
∫ μ

Emin

dE ρ̄c(E ), (28)

where Emin is the minimum energy in the spectrum. The maxi-
mum value of Nc(μ) is Nc,max = q, since there is maximum of
one color state c per site, and q is the number of sites contained
in the real space magnetic unit cell. The filling factor for color

FIG. 8. Spectroscopic properties and filling factor for parameters
α = 1/3, kT a = π/8, and hx/t = 1.85. This corresponds to a vertical
line across the phase diagram of Fig. 2(b). (a) Energy spectrum
Enβ

(ky )/t vs kya for the case of open boundary conditions, showing
explicitly midgap edge states. The panels (b), (c), and (d) refer to the
case of periodic boundary conditions. (b) Energy E/t vs total density
of states per site ρ(E ) to illustrate that the gaps between bulk bands
coincide with the gaps for the case of open boundary conditions.
(c) Filling factor ν vs chemical potential μ/t showing steps where
incompressible insulating phases occur. (d) Density of states per site
ρ(E ) vs energy E/t . The total color density states per site ρ(E ) is in
black, and the color density of states are in red for the red states, in
green for the green states, and in blue for the blue states.

c is defined as the ratio

νc(μ) = Nc(μ)

Nc,max
, (29)

which has a maximal value of one, that is, νc,max = 1.
The total density of states within the magnetic unit cell can

be written as

ρ̄(E ) =
∑

c

ρ̄c(E ), (30)

while the total density of states per site has the form

ρ(E ) = ρ̄(E )

q
. (31)

The total density of states ρ̄(E ), within the unit cell, integrates
to 3q states over all energies, while the density of states per
site ρ(E ) always integrates to 3, because we have a maximum
of three colors per site. The total filling factor at chemical
potential μ is

ν(μ) =
∑

c

νc(μ), (32)

having a maximum value νmax = 3.
In Fig. 8, we show spectroscopic information for partic-

ular values of parameters: the magnetic flux ratio α = 1/3,
the color-flip field hx/t = 1.85, and the color-orbit coupling
parameter kT a = π/8. All these parameters are the same for
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Figs. 8(a) through 8(d). The choice of these parameters illus-
trates a vertical scan at hx/t = 1.85 in Fig. 2(b). The vertical
line cuts through a wide variety of topological phases as the
chemical potential μ grows.

In Fig. 8(a), we show the energy eigenspectrum versus mo-
mentum kya for open boundary conditions, where eight gaps
can be seen in the spectrum corresponding to the insulating
phases of the vertical scan in Fig. 2(b) at hx/t = 1.85. The
energy dispersions of the midgap edge states are also shown.
The gaps are labeled by the index r = {1, 2, 3, 4, 5, 6, 7, 8}
and the insulating phases are exactly the same shown in Fig. 4
for the table at left.

In Fig. 8(b), we show a plot of energy E versus total
color density of states per site ρ(E ) for periodic boundary
conditions to indicate explicitly the location of the bulk gaps
in the energy spectrum. We use a small imaginary part (δ =
5 × 10−3t ) to calculate ρ(E ) from Gcc(z = E + iδ). The eight
energy gaps can be clearly seen at the locations where the
total color density of states in the bulk is zero. The regions
associated with these gaps correspond to the eight phases that
are crossed in a vertical scan in Fig. 2(b) at hx/t = 1.85 as the
chemical potential μ or filling factor ν grows. The sequence
of phases is the same as in the table at left for Fig. 4.

In Fig. 8(c), we show a plot of the color filling factors
νc and the total filling factor ν versus chemical potential μ,
calculated using the color density of states per site ρc(E ) and
the total color density of states per site ρ(E ), respectively.
Notice that when the chemical potential μ lies inside a band
gap, the filling factor ν is constant and take the exact form
ν = r/q as discussed in connection to the gap labeling the-
orem of Sec. V. When μ lies inside of a gap, the insulating
phase is incompressible because the filling factors ν and νc are
constant, that is, the color compressibility κc = dνc(μ)/dμ

is equal to zero. Naturally, the sequence of insulating phases
crossed as μ increases is exactly the same as that in Fig. 2(b),
and the sequence of phases is the same as shown in the table
at left of Fig. 4. Notice also that filling factors νR = νB reflect
a symmetry of the Hamiltonian operator in Eq. (1) via the
simultaneous exchange R ↔ B and kT ↔ −kT .

In Fig. 8(d), we show a plot of the color density of states
per site ρc and the total color density of states per site ρ versus
energy E . Notice that ρR(E ) = ρB(E ), reflecting a symmetry
of the Hamiltonian operator in Eq. (1) via the simultaneous
exchange R ↔ B and kT ↔ −kT . One can clearly see the
eight bands characterizing the insulating states discussed in
Fig. 8(c). The total color density states per site ρ(E ) is in
black, and the color density of states are in red for the red
states, in green for the green states, and in blue for the blue
states.

VIII. EFFECTS OF INTERACTIONS

As discussed in the introduction, the fermionic atoms 87Sr
and 173Yb have SU(N)-symmetric interactions. For 87Sr, the
atom-atom interactions are up to SU(10) symmetric, while
for 173Yb, the interactions are up to SU(6) symmetric. In this
discussion, we consider only SU(3)-symmetric interactions,
since it is experimentally possible to trap selectively any
three states from the SU(6) or SU(10) manifold. The SU(3)-
symmetric interactions between these closed-shell fermionic

atoms are local in space and given by the contact term

Ĥint = U
∑

r

∑
c �=c′

n̂c(r)n̂c′ (r), (33)

in the pure density-density channels. Notice that there are no
color-exchange interactions. Here, U > 0, that is, the interac-
tions are purely repulsive, and the density operators are simply
n̂c(r) = ψ†

c (r)ψc(r). The position r is the ordered pair (x, y)
indicating the position of the atoms in the two-dimensional
lattice considered, and the operator ψ†

c (r) creates a fermion
of color c at position r.

If the interactions are weak in comparison to insulating
gaps, there is no dramatic effect on the insulating nature of the
bulk states; however, the midgap edge states may be sensitive
to weak interactions. So, to test the robustness of edge states
with respect to interactions, we will consider next the limit
where the onsite interaction U is much smaller than the hop-
ping parameter t , that is, U/t 
 1. The regime of U/t 
 1 is
easily attainable experimentally in optical lattices for small
or moderate lattice depths [51], and it is sufficient for the
present purposes. However, we mention in passing that one
can reach also the limit of U/t � 1 for deeper lattices or by
using orbital-Feshbach techniques to control the strength of
the SU(N)-symmetric interactions [11,12].

To study the robustness of edge states to SU(3)-symmetric
interactions existent in 173Yb and 87Sr, it is more convenient
to write Eq. (33) in terms of the creation and annihilation op-
erators of the eigenstates of the Hamiltonian matrix operator
Ĥ(k̂) described in Eq. (5). We consider periodic boundary
conditions only along the y direction; that is, we use the cylin-
drical geometry that produces the spectrum in Fig. 1, where
edge states emerge. We note that the analysis performed below
is equally applicable to the SU(N)-symmetric interactions,
when more than three internal states are involved.

Since the interactions are local, only midgap edge states
residing on the same edge interact with each other. Thus, in
the basis of eigenstates of Ĥ(k̂) defined in Eq. (5), the SU(3)-
symmetric interactions become

Ĥint = U
∑
{χi}


{χi} f †
χ1

fχ2 f †
χ3

fχ4 , (34)

where {χi} = {χ1, χ2, χ3, χ4}. The operator f †
χ creates a

fermion in the edge state |χ〉 = |λ, ky, n〉, where λ = {R, L}
labels the boundary, ky labels the momentum along the y
direction, and n is the edge state band index. In addition, the
tensor


{χi} =
∑

i

∑
c �=c′

φ∗
χ1

(i, c)φχ2 (i, c)φ∗
χ3

(i, c′)φχ4 (i, c′) (35)

is expressed in terms of eigenstate projections φχ (i, c) =
〈i, c|χ〉, where we wrote the color index c explicitly to make
it evident in the summations over colors.

Since momentum is conserved along the y direction, it
is clear that the tensor 
{χi} is proportional to δky1 +ky3 ,ky2 +ky4

.
Furthermore, given that the interactions are local, the only
nonvanishing contribution comes from λ1 = λ2 = λ3 = λ4 =
λ, that is, when the interacting states are on the same edge.
Therefore, we may write


{χi} = γ (λ, {ni})δky1 +ky3 ,ky2 +ky4
, (36)
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FIG. 9. Enlargements of energy dispersions vs momentum ky to
illustrate edge bands and their locations on the right (R) or left (L)
boundaries along the x direction. All panels refer to phases shown in
Fig. 2(b), where kT a = π/8. In panel (a), we show the edge bands of
the red phase edge for hx/t = 2.0. In panel (b), we show edge bands
of the blue phase for hx/t = 1.2. In panel (c), we show the edge bands
of the orange phase for hx/t = 2.5. In panel (d), we show the edge
bands of the phase marked in red with black dots for hx/t = 1.5

where {ni} = {n1, n2, n3, n4} and the coupling between edge
states on the same boundary is

γ (λ, {ni}) =
∑

x

∑
c �=c′

Rλ,n1,n2 (x, c)Rλ,n3,n4 (x, c′), (37)

with Rλ,n,n′ (x, c) = φ∗
λ,n(x, c)φλ,n′ (x, c). Finally, we can write

the SU(3)-symmetric interaction Hamiltonian for the edge
states as

Ĥint =U
∑
λ,{ni}

∑
ky1 ,ky3 ,qy

γ (λ, {ni}) f †
λ,n1

(ky1 )

× fλ,n2 (ky1 + qy) f †
λ,n3

(ky3 ) fλ,n4 (ky3 − qy). (38)

From the expression above, it is clear that backscattering
between two edge states on the same boundary is possible,
and its strength depends on the precise values of the inter-
action parameters γ (λ, {ni}). From the theory of interacting
one-dimensional fermions [52], backscattering can produce
density wave (DW) instabilities facilitated by momentum
space nesting. This means that minigaps may arise in the
excitation spectrum of edge states and color density waves
(CoDW) may emerge at the boundaries.

In Fig. 9, we show edge bands for four enlarged regions of
the phase diagram found in Fig. 2(b). Boundaries exist only
along the x direction, so we label R and L as the right and left
boundaries respectively, where edge states are located. The
red phase with one chiral edge state and Chern number +1 is
shown in Fig. 9(a). The blue phase with two chiral edge states
and Chern number +2 is shown Fig. 9(b). The orange phase
with two chiral edge states and Chern number 0 is shown

in Fig. 9(c). The red-with-black-dots phase with three chiral
edge states (two with chirality +1 and one with chirality −1)
and Chern number +1 is shown in Fig. 9(d).

The only edge state in the red phase cannot exhibit
backscattering, so there are no minigaps induced by weak
SU(3) interactions, and the edge state is fully protected. The
two edge states in the blue phase are also protected against
backscattering as they have velocities with the same sign
in a given boundary, so the local SU(3) interactions cannot
open up minigaps and change the topological nature of these
phases by inducing a color density wave. Thus, for weak local
SU(3) interactions, the red and blue phases continue to exhibit
quantized charge Hall conductances and their Chern numbers
remain unchanged. By contrast, the edge states in the orange
phase can exhibit backscattering since the states on the same
boundary have opposite velocities. Therefore, minigaps can
develop and a CoDW can emerge but the Chern number is
unaffected, that is, it remains zero. However, the color-Hall
conductance may not be quantized but would still have a
nonzero value. The red-with-black dots phase is also sensitive
to backscattering. The two outermost states with higher posi-
tive or lower negative momenta can backscatter each other and
lead to minigaps, thus affecting the strict quantization of the
color-Hall conductance but still producing a nonzero value.
However, the innermost states with small positive or negative
momenta are protected from backscattering, and as a result
the phase shown by red with black dots continues to exhibit
quantized charge Hall conductance and preserves its Chern
number. In contrast, the color Hall conductance may not be
quantized but still has a nonzero value.

Before concluding, we would like to point out that the
regime of strong interactions (U/t � 1) in the presence of
artificial gauge, color-orbit, and color-flip fields is also very
interesting, since it may lead to novel physics beyond the
traditional fractional quantum Hall effects and fractionally
charged quasiparticles [53] encountered in SU(2) systems
without considering spin degrees of freedom and their cou-
plings to orbital motion. However, the regime of U/t � 1 is
beyond the scope of this paper.

IX. SUMMARY AND CONCLUSIONS

We investigated the eigenspectrum, Chern numbers,
and phase diagrams of ultracold color-orbit-coupled SU(3)
fermions in optical lattices, having in mind possible experi-
mental systems, such as fermionic isotopes 137Yb and 87Sr.
We labeled the internal states of the atoms by colors red (R),
green (G), and blue (B), and analyzed the quantum phases as a
function of artificial magnetic, color-orbit, and color-flip fields
that can be independently controlled.

For fixed artificial magnetic flux ratio, we identified topo-
logical quantum phases and phase transitions in the phase
diagrams of chemical potential versus color-flip fields or
color-orbit coupling, where the chirality and number of
midgap edge states change. We established a gap labeling
theorem to characterize the insulating phases by their filling
factors and topological quantum numbers.

The topologically nontrivial phases were classified in
three groups: The first group has total nonzero chirality and
exhibits only the quantum charge Hall effect; the second
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group has total nonzero chirality and exhibits both quan-
tum charge and quantum color Hall effects; and the third
group has total zero chirality but exhibits the quantum color
Hall effect. These phases are generalizations of the quantum
Hall and quantum spin Hall phases for charged spin-1/2
fermions.

We described the color density of states per site and a
staircase structure in the total and color filling factors versus
chemical potential for fixed color-orbit coupling, color-flip
field, and magnetic flux ratio. We showed the existence
of incompressible states at rational filling factors precisely
given by a gap labeling theorem, which related the filling
factors to the magnetic flux ratio and topological quantum
numbers.

Lastly, we also analyzed the robustness of the topological
insulating phases and their edge states with respect to weak
SU(3) interactions and found that their topological properties
remain largely intact in most cases.

Our theoretical findings pave the way for the experimen-
tal discovery of topological insulating phases that present

simultaneously a quantum charge Hall effect (QChH) and a
quantum color Hall effect (QCoH) in SU(3) fermions such
as 173Yb or 87Sr. This particular phase has no correspon-
dence for spin-1/2 fermions in condensed matter or ultracold
atomic physics, where the quantum Hall and the quantum
spin Hall phases are mutually exclusive. Furthermore, our
work suggests the exploration of the effects of strong SU(3)
interactions in the presence of artificial gauge, color-orbit,
and color-flip fields, which may lead to novel physics beyond
the fractional quantum Hall effect and fractionally charged
quasiparticles encountered in SU(2) systems.
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