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Coherent scattering of an optically modulated electron beam by atoms
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Recent technological advances allowed the coherent optical manipulation of high-energy electron wave
packets with attosecond precision. Here we theoretically investigate the collision of optically modulated pulsed
electron beams with field-free atomic targets and reveal a quantum interference associated with different
momentum components of the incident broadband electron pulse, which coherently modulates both the elastic
and inelastic scattering cross sections. We show that the quantum interference has a high spatial sensitivity at the
level of angstroms, offering potential applications in high-resolution ultrafast electron microscopy. Our findings
are rationalized by a simple model.
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I. INTRODUCTION

When a free electron interacts with an optical field in
the presence of a third body, the electron exchanges energy
and momentum with the field [1–12]. The photon-electron
coupling in the vicinity of nanomaterials forms the ba-
sis of photon-induced near-field electron microscopy [7,13]
and chip-scale dielectric laser accelerators [14–16]. Because
electrons of different kinetic energies travel with different
velocities, the temporal density of the optically modulated
beam is reshaped during the propagation in vacuum, leading
to the generation of attosecond electron pulse trains [17–24].

In contrast to previously considered ultrashort electron
pulses with broad Gaussian energy spectra [25–29], the en-
ergy and momentum distributions of optically modulated
electron beams consist of coherent discrete photon peaks,
which might lead to unique phenomena. For example, it has
been predicted that when an optically modulated beam is em-
ployed for the excitation of a two-level system located outside
the beam, the excitation probability may be enhanced when
the transition energy matches an integer times the photon
energy of the modulating laser beam [30–33]. Recent studies
showed that this process can be described by the classical elec-
tric and magnetic fields associated with the temporal density
of the modulated beam [31,32].

In this work, we investigate quantum mechanical effects in
the scattering of an optically modulated high-energy (keV to
tens of keV) electron wave packet by a field-free atomic target.
By using a time-dependent quantum mechanical theory [34]
with projectile wave packets [35] adapted from Refs. [27,28],
which is beyond the standard plane wave approximation, and
taking hydrogen as an example of a target, we show that a
quantum interference occurs through the coherent contribu-
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tions of different momentum components of the incident beam
enabled by the momentum transfer to the target. This inter-
ference modulates the elastic and inelastic cross sections by
more than 30%. We also show that the strongest modulation
of cross sections is induced when the target atom is located at
the center of the electron beam. The sign of the modulation is
reversed when the target is several angstroms away from the
beam center, which can be used for subnanometer imaging.
We hence expect applications in attosecond imaging, atomic
collisions, or radiology based on the insights into the funda-
mental quantum mechanical interaction between the optically
shaped electrons and atoms, as laid out in this work.

The paper is organized as follows. The theoretical model
is formulated in Sec. II. The results are discussed in Sec. III.
Section IV draws the conclusions. The Appendix gives a de-
tailed account of the derivations leading to the theory results
of the main text.

II. THEORETICAL MODEL

The physical system of this work is illustrated in Fig. 1(a).
A nonrelativistic electron wave packet propagating along the
z axis with group velocity ve and central longitudinal mo-
mentum h̄ke is coherently accelerated or decelerated in the
presence of a modulation element by an optical field of wave-
length λ and angular frequency ω. As in many experiments
[10,18–20,22,36], we consider a modulation field whose du-
ration is longer than that of the electron wave packet so that
the electric field amplitude (F0) is constant over the entire
wave packet. Examples of the modulation element include
membranes [6,9,11,18–20,24,36,37], nanomaterials [3,7,10],
nanofabricated dielectrics [14–16,22,23], and prisms [12,38].
Regardless of its type, the strength of the optical modula-
tion is characterized by a dimensionless coupling parameter
g ∝ eF0ke/(meω

2), where e is the unit charge and me is the
electron rest mass [10,11,36,39–41]. The information on the
three-body interaction between the electron, the optical field,
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FIG. 1. Concept and scattering geometry. (a) A free electron wave packet (blue) is modulated longitudinally by an optical field (red) with
a modulation element such as a membrane or a nanofabricated dielectric, depicted as a square. After the free-space propagation of distance
Lp and duration tp, the electron wave packet is scattered by a field-free target (a hydrogen atom in the present study). The target is located
at the spatial focal plane of the pulsed electron beam (z = 0). (b) Mechanism of quantum interference. Different momentum components of
the incident electron wave packet (ki and k′

i) contribute to the scattering probability to the same final momentum (k f ), which induces the
interference. (c) The total scattering cross sections as a function of the impact parameter bx at by = 0. The cross sections decrease rapidly
with bx .

and the modulation element is captured by g. Larger |g|
yields broader energy and momentum spectra. The modulated
electron wave packet collides with an atom located at z = 0
where the electron beam is transversally focused. The target
is placed outside the laser field. We express the target posi-
tion as b = (bx, by, 0). We control the distance between the
modulation stage and the target, Lp = vetp, where tp is the
corresponding propagation duration. Because different energy
and momentum components have different phase velocities,
the free-space propagation shifts the relative phase between
them, which reshapes the temporal density of the electron
wave packet (see below for details). The momenta of the
incident and scattered electrons, h̄ki and h̄k f , are described
by their lengths h̄ki and h̄k f , and polar and azimuthal angles
(θi, ϕi) and (θ f , ϕ f ). As illustrated in Fig. 1(b), quantum
interference occurs when different momentum components of
the incident beam, h̄ki and h̄k′

i, contribute to the same final
momentum h̄k f .

A. Time-dependent perturbation theory

To consider the scattering of the broadband electron
beam including its spatiotemporal structure, we adopt a
time-dependent S-matrix formalism [27,28,34] with three-
dimensional electron wave packets [35,42,43], which is
beyond the standard theory using a plane wave for the asymp-
totic incoming state. Here we consider the scattering of an
electron wave packet by an atom (A):

e(ki ) + A(kA,i, n) → e(k f ) + A(kA, f , m), (1)

where kA,i and kA, f are wave vectors of the target before
and after the scattering, respectively. The quantum numbers
n and m represent the initial and final electronic states of
the field-free target atom. The incident electron is assumed to
be nonrelativistic. In order to obtain the scattering amplitude
and probability, we first consider the time-dependent wave
functions of the system before and after the scattering. The

wave function before the scattering is given by

�i(xe, xA, r, t ) =
∫

dki

∫
dkA,i ae(ki )aA(kA,i ) χi(xe, t )

× χA,i(xA, t )ψn(r, t ), (2)

where ae(ki ) and aA(kA,i ) are complex amplitudes describing
the distributions over the momenta of the projectile electron
and the target atom, respectively. The wave function χi(xe, t )
is the plane wave part of the electron wave function,

χi(xe, t ) = 1

(2π )3/2 exp
(

iki · xe − iEit

h̄

)
, (3)

with Ei = h̄2k2
i /(2me), where h̄ is the reduced Planck con-

stant. xe is the spatial coordinate of the incident electron
beam. We note that the integral of ae(ki )χi(xe, t ) over ki gives
the time-dependent propagating electron wave packet in real
space,

ψe(xe, t ) =
∫

dkiae(ki )χi(xe, t ). (4)

The wave function χA,i(xA, t ) describes the external state
of the field-free target and is given by a plane wave,

χA,i(xA, t ) = 1

(2π )3/2 exp
[
ikA,i · (xA − b) − iEA,it

h̄

]
, (5)

with EA,i = h̄2k2
A,i/(2MA), where MA is the mass of the tar-

get. Here xA is the center-of-mass coordinate of the atom.

The transversal component of b, i.e., b⊥ =
√

b2
x + b2

y, is the

impact parameter. The wave function ψn(r, t ) describes the
initial electronic bound state of the target characterized by the
quantum number n. We specify this target state as

ψn(r, t ) = φn(r)e−iωnt , (6)

where r is the internal spatial coordinate that denotes the set of
all target electrons, φn(r) is the spatial part of the eigenfunc-
tion, and h̄ωn is the eigenenergy of the state n. The atom is
located outside of the laser field and ψn(r, t ) is the field-free
eigenstate.
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Second, the wave function of the system after the scattering
is given by

� f (xe, xA, r, t ) = χ f (xe, t )χA, f (xA, t )ψm(r, t ), (7)

where

χ f (xe, t ) = 1

(2π )3/2 exp
(

ik f · xe − iE f t

h̄

)
, (8)

with E f = h̄2k2
f /(2me) the plane wave for the scattered elec-

tron, and

χA, f (xA, t ) = 1

(2π )3/2 exp
[
ikA, f · (xA − b) − iEA, f t

h̄

]
(9)

describes the external state of the target with EA, f =
h̄2k2

A, f /(2MA). The internal final state of the target is ex-
pressed by

ψm(r, t ) = φm(r)e−iωmt , (10)

where h̄ωm is the eigenenergy of the internal final target
eigenstate φm(r). Within the first Born approximation and
considering only the direct scattering, the transition amplitude
is given by

Tf i(E f , k̂ f , kA, f , b) =
∫∫∫

dxedxAdr
∫

dt�∗
f (xe, xA, r, t )

× V (xe− xA, r)�i(xe, xA, r, t ), (11)

where V (xe − xA, r) is the electron-target interaction poten-
tial,

V (xe − xA, r) = − e2Z

4πε0

1

|xe − xA|

+ e2

4πε0

Z∑
j=1

1

|xe − xA − r j | , (12)

where Z is the total number of electrons in the target, and ε0

is the vacuum permittivity. We here assume that the target is
neutral. In Eq. (12), r j denotes the coordinates of the individ-
ual target electrons. Experimentally, the optical modulation
was demonstrated for electrons of the energy of tens and
hundreds of keV [3,7,9–12,14,18–23,36–38], which validates
the use of the first Born approximation [44] and allows us to
safely neglect the exchange scattering [45–47]. We note that
the use of a perturbative approach for the description of the
target-electron interaction (Born approximation) still accounts
accurately for the time dependence of the system [34], as
is also familiar from the theory of laser-assisted scattering
[1] and strong-field ionization [48–50]. We note that a full
numerical solution of the time-dependent scattering problem
[25,51] might be an alternative approach but it is neither
computationally attractive for the high-energy electrons prop-
agating in three or four space-time dimensions nor necessarily
given the accuracy of the Born approximation. Correction by
higher-order Born terms might improve the accuracy espe-
cially for cases of lower-energy projectile electrons or heavier
targets, whose discussion is beyond the scope of this work. By
inserting the explicit expressions of the wave functions given

above into Eq. (11), we obtain

Tf i
(
E f , k̂ f , kA, f , b

)
= 2π h̄

∫
dki

∫
dkA,i ae(ki )aA(kA,i )

× ei(kA, f −kA,i )·bδ(K f − K i )δ(ε f − εi )Tmn(ki, k f ), (13)

where K f = k f + kA, f , K i = ki + kA,i ε f = E f + EA, f +
h̄ωm, εi = Ei + EA,i + h̄ωn and

Tmn(ki, k f ) = 1

(2π )3

∫
dx′

[∫
drφ∗

m(r)V (x′, r)φn(r)

]

× exp [i(ki − k f ) · x′] (14)

is the first Born scattering amplitude for the plane-wave
incident electron, i.e., the elastic or inelastic atomic form
factor for electron scattering [52]. The two delta functions in
Eq. (13) represent the energy and momentum conservation of
the scattering process. A detailed derivation and the explicit
form of Tmn are given in Appendix Secs. 1 and 2, respectively.

The transition amplitude in Eq. (13) is the fundamental
quantity from which all observables can be constructed. If
we assume that we do not resolve the final momentum of the
target (h̄kA, f ), the scattering angle of electrons (k̂ f ), and the
kinetic energy of the scattered electrons (E f ), then the total
scattering probability Pmn(b) from the target state n to m which
is located at b is given by

Pmn(b) =
∫

dPmn(b)

d k̂ f

d k̂ f , (15)

where the differential probability dPmn(b)/d k̂ f in the time-
dependent S-matrix theory is given by [4]

dPmn(b)

d k̂ f

=
∫

dkA, f

∫
dE f

(2π )4m2
e

h̄4 |Tf i(E f , k̂ f , kA, f , b)|2.

(16)

Here we work in a regime where the kinetic energy of the
electron beam is much higher than the electronic excitation
energies of the target giving |k f |/|ki| ≈ 1. The solid angle
describing the propagation direction of the final wave vector
of the scattered electron is given by d k̂ f = sin θ f dθ f dϕ f . The
steps detailed in Appendix Sec. 3 lead to

Pmn(b) = Pmn(b, g) =
∫

|Tf i(k̂ f , b, g)|2d k̂ f , (17)

|Tf i(k̂ f , b, g)|2 = P0

∫
k3

i dki

∫
d k̂i

∫
d k̂

′
i

× a∗
e (ki, k̂

′
i, g)ae(ki, k̂i, g)

× T ∗
mn(ki, k̂

′
i, k̂ f )Tmn(ki, k̂i, k̂ f )eiki (k̂i−k̂

′
i )·b,
(18)

where

Tmn(ki, k̂i, k̂ f ) = 1

(2π )3

∫
dx′

[∫
drφ∗

m(r)V (x′, r)φn(r)

]

× exp[i(kik̂i − k f k̂ f ) · x′], (19)
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with k f satisfiying

h̄2k2
f

2me
= h̄2k2

i

2me
− h̄ωm + h̄ωn. (20)

Equation (20) reflects that a possible decrease in the
final kinetic energy of the outgoing electron is accompa-
nied by an excitation in the target atom. P0 in Eq. (18)
is a constant. Equation (18) contains the coherent term
a∗

e (ki, k̂
′
i, g)ae(ki, k̂i, g). Because of the momentum transfer

to the target atom, different momentum components of the
incident beam (h̄kik̂

′
i and h̄kik̂i) can contribute to the same

final momentum h̄k f [see Fig. 1(b)] and, accordingly, quan-
tum interference occurs depending on the amplitudes and the
relative phase of ae(ki, k̂

′
i, g) and ae(ki, k̂i, g). Importantly the

term a∗
e (ki, k̂

′
i, g)ae(ki, k̂i, g) is absent in conventional elec-

tron scattering with plane waves but key in the case of the
wave packets [35,42,43] and especially so for the optically
modulated electron beams of this study.

B. Optically modulated electron beam

We consider an axially symmetric optically modulated
electron beam whose momentum distribution is expressed by

ae(ki, θi, g) = ae,‖(ki, θi, g)ae,⊥(ki, θi )e
iφprop(ki,θi,tp). (21)

The transversal momentum distribution ae,⊥(ki, θi ) is given
by

ae,⊥(ki, θi ) = 1

(2πσ 2
⊥)1/2 exp

(
− k2

⊥
4σ 2

⊥

)
, (22)

where k⊥ = ki sin θi and h̄σ⊥ is the root-mean-square (rms)
transversal momentum width. For simplicity, we introduce
the angular width σθ = σ⊥/ke. In electron microscopes, the
typical value of σθ is in the range of 1–10 mrad. The rms
spatial size at the focus (z = 0) in the transverse direction is
given by 1/(2σ⊥).

The optically modulated longitudinal momentum distribu-
tion ae,‖(ki, θi, g) is expressed as a superposition of Gaussians
of slightly different central momentum h̄ke + Nh̄δk associated
with the absorbed photon number N [10,11,13,33,39],

ae,‖(ki, θi, g) = 1

(2πσ 2
‖ )1/4

+∞∑
N=−∞

JN (2|g|)eiφN

× exp

(
− (k‖ − ke − Nδk)2

4σ 2
‖

)
, (23)

where k‖ = ki cos θi, h̄σ‖ is the rms momentum width and JN

is the Bessel function of the first kind. Negative N corresponds
to the emission of photons. The momentum shift h̄δk corre-
sponds to the one-photon energy gain and is approximately
given by

h̄δk ∼= meω

ke
. (24)

According to classical mechanics, the maximal number
of photons absorbed or emitted by the electron is N = 2|g|.
Therefore, the maximal velocity shift is given by �vmax =
2|g|h̄δk/me = 2|g|ω/ke. The photon-exchange number (N)

dependent phase φN = N arg(−g) [11] is set to zero, since
this choice makes the temporal density after the optical
modulation match experimental observations [18–24]. The
longitudinal rms spatial width is ∼1/(2σ‖), which corre-
sponds to the rms temporal duration of ∼1/(2veσ‖). We
note that membranes [9,20,37] and nanofabricated dielectrics
[22,23] are ideal modulation elements for the longitudinally
directional momentum modulation. The phase φprop(ki, θi, tp)
in Eq. (21) represents the momentum-dependent phase shift
due to the free-space propagation of duration of tp from the
optical modulation to the target, and is given by

φprop(ki, θi, tp) = tp

(
vek‖ − h̄k2

‖
2me

)
; (25)

see Appendix Sec. 4 for its derivation. The free-space prop-
agation reshapes the real-space density of the electron beam.
An interesting case is the density bunching into attosecond
pulses occurring at [20,53]

tbunch = ve

ω �vmax
= h̄k2

e

2|g|meω2
= me

2|g|h̄δk2
. (26)

More details of the free-space propagation and the attosec-
ond bunching are discussed in the next section (Sec. II C).
Below, for convenience, tp is expressed in units of tbunch.

C. Numerical parameters and real-space density modulation

In this work, we assume a 10-keV electron beam (ve =
5.9 × 107 m/s, ke = 51 Å−1), with σ‖ corresponding to a
duration of 100 fs [full width at half maximum (FWHM)]
similar to an experiment [11], λ = 2 μm [22,23], and atomic
hydrogen [Z = 1 in Eq. (12)] in the 1s state as target, unless
otherwise specified.

Before reporting results on the scattering, we briefly
discuss the temporal dynamics of the optically modulated in-
cident electron beam. Figure 2(a) shows the real-space density
of the propagating 10-keV electron wave packet, without the
influence of the target atom. The five panels are the snapshots
of the density |ψe(xe, t )|2 given by Eqs. (4) and (21) for
tp = tbunch, i.e., the case where the attosecond bunching occurs
at the focal position of the electron beam, σθ = 1 mrad and
2|g| = 5. At t = 0 (left panel), the energy and momentum of
the electron wave packet are modulated by an optical field.
After a propagation duration of tp (t = tp, middle panel), the
transversal size reaches its minimum. At t > tp (two panels
on the right side), the beam is diverging. Simultaneously with
the transversal focusing dynamics, the longitudinal (or tem-
poral) density modulation can also be seen. Right after the
optical energy modulation (t = 0, left panel), the longitudi-
nal density is still a Gaussian. However, after the free-space
propagation (t > 0), the longitudinal density is modulated.
At t = tp = tbunch (middle panel), sharp peaks appear in the
density.

Figure 2(b) compares the real-space temporal density of
the incident electron beam |ψe(xe, t )|2 of Eq. (4) at the
transversal focus (t = tp), i.e., at the position of the target
(z = 0), as a function of the propagation time (tp) for the cases
of 2|g| = 1, 2, and 5. In contrast to Fig. 2(a), the attosecond
bunching occurs not only at the transversal focal position of
the electron beam (tbunch = tp) but also before (tbunch < tp)
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FIG. 2. Free-space propagation dynamics of the electron wave packet |ψe(xe, t )|2 after the optical modulation. (a) Evolution of the optically
modulated 10-keV electron beam, calculated using Eqs. (4) and (21). At t = 0 (left panel), the energy and longitudinal momentum distributions
are modulated by a laser field of 2-μm wavelength but the real-space density has a Gaussian profile. After some free-space propagation (t > 0),
the longitudinal (temporal) density modulation can be seen. Simultaneously with the longitudinal density modulation, the transversal focusing
and divergence occurs with the propagation. (b) Temporal density at the target position (z = 0) at the modulation strengths of 2|g| = 1 (left
panel), 2 (middle panel), and 5 (right panel), the three cases for the results in Fig. 4. Vertical profile at each tp corresponds to the longitudinal
density profile. The propagation time tp from the optical modulation to the target, or equivalently, the location of the optical modulation,
controls the temporal density and the scattering probabilities.

and after (tbunch > tp) the focus. Following the change of
the propagation time tp from the optical modulation to the
target, the temporal density of the electron beam at the target
changes. The sharp density peaks separated by an optical
cycle (6.7 fs here) can be seen at tp = tbunch in each panel.
At larger tp, the bunched peaks are temporally dispersed
and overlap with the neighboring peaks. These overlaps in-
duce interference among the peaks and produce the complex
temporal density profile. The calculated temporal density evo-
lutions in Fig. 2(b), especially the one in the right panel
(2|g| = 5), are consistent with previous experimental [18–24]
and theoretical [10,31,39] reports, showing the validity of the
wave function and the propagation phase used in this study.

III. RESULTS: MODULATION OF SCATTERING
CROSS SECTIONS

A. Cross sections at zero impact parameter

Figure 1(c) shows the total cross sections without optical
modulation Pmn(b, g = 0) [Eq. (17) with g = 0] of the elastic
and inelastic [2s and 2px final states, where the x axis is
defined in the lab frame in Fig. 1(a)] scatterings as a function
of the impact parameter bx calculated at σθ = 5 mrad and
by = 0. The cross sections decrease significantly with bx, by
a factor of 102 at bx = 10 nm. Therefore, we first focus on
the case of bx = 0, where the target is located at the center of
the electron beam. Below, we discuss the modulation of the
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FIG. 3. Modulation of total scattering probability at zero impact parameter, Mmn(b = 0, g). (a) Comparison of three scattering processes.
Qualitatively identical modulations are observed for these processes. (b) Differential cross sections for the three scattering processes. (c),(d)
Beam focusing angle dependence. (c) Modulations of the total elastic scattering cross section for four different focusing angles. (d) Comparison
with an exponential function (black dotted curve) and the simple model prediction (black curve). See text for details.

scattering probability associated with the optical shaping. For
convenience, we define the amount of modulation as

Mmn(b, g) = Pmn(b, g) − Pmn(b, g = 0)

Pmn(b, g = 0)
. (27)

Hence, we compare the scattering probability of the optically
shaped electron wave packets to that without shaping. Fig-
ure 3(a) compares the modulation, Mmn(b = 0, g), for the
three processes calculated with 2|g| = 5 and σθ = 5 mrad,
as a function of the propagation time tp. At zero free-space
propagation (tp = 0), we do not observe any modulations; see
Appendix Sec. 5 for a formal proof of this property. How-
ever, we observe a clear modulation at tp > 0, in particular
∼20% suppression at tp ∼ 1.7tbunch and ∼10% enhancement
at tp ∼ 3.8tbunch. All three curves are qualitatively identical,
suggesting that the modulation and interference appearing in
Fig. 3(a) originate from the incident electron beam rather than
the scattering processes. Equation (18) shows that different
k̂i and k̂

′
i contribute to the same final momentum by virtue of

momentum transfer to the target atom [Fig. 1(b)]. Hence quan-
tum interference occurs when the momentum components
with different incident angles (θi, ϕi) and (θ ′

i , ϕ
′
i) contribute

to the cross section at the same scattering angle (θ f , ϕ f ). A
wider angular distribution, i.e., a larger momentum transfer,
therefore leads to stronger interference. As shown in Fig. 3(b),
the dipole-allowed transition of 1s → 2px is dominated by
forward scattering and shows a narrower angular distribution,
which reduces the modulation contrast in Fig. 3(a) by 60%.

We now investigate the modulation dependence on the fo-
cusing angle of the electron beam (σθ ). Figure 3(c) compares

the modulation of the total elastic cross section (1s → 1s)
calculated with four different angular widths, σθ = 1, 3, 5,
and 7 mrad. We observe less than 3% modulation at σθ � 3
mrad, but up to 30% at 7 mrad. Figure 3(d) summarizes the
results. Red circles in Fig. 3(d) show the modulation am-
plitudes |Mmn(b = 0, g)| at tp ∼ 1.7tbunch. At σθ = 0, which
corresponds to the infinitely large beam size, there is no
modulation. At this limit, the transversal momentum distribu-
tion of Eq. (22) becomes ae,⊥ → 1√

2
δ[(ki sin θi )

2]. Thus only
θi = θ ′

i = 0 is allowed in Eq. (18) and accordingly the coher-
ence and associated interference effect are lost. On the other
hand, the modulation amplitudes increase exponentially up to
σθ ≈ 4 mrad, as seen by comparison with the black dotted
curve (the formula is derived below). The larger angular width
allows the coupling of a wider range of θi and θ ′

i , leading to
the stronger modulation.

We also investigate the dependence on the optical coupling
strength |g|. We plot and compare Mmn(b = 0, g) [Eq. (27)
with b = 0] for the three cases of 2|g| = 1, 2, and 5 as
red circles in Figs. 4(a)–4(c) at σθ = 5 mrad, all for the
total elastic (1s → 1s) cross section. The curve of 2|g| = 1
[Fig. 4(a)] shows a sinusoidal oscillation while the other two
[Figs. 4(b) and 4(c)] show nonsinusoidal shapes, suggesting
that the modulation of 2|g| = 1 can be described by a single
sinusoidal function, however those of 2|g| = 2 and 5 contain
multiple contributions. At 2|g| = 1 and 2, we observe only
negative modulations [Mmn(b = 0, g) � 0] while at 2|g| =
5, we observe a positive modulation as well. We note that
|g|-dependent modulations are also found in the inelastic scat-
tering channels (not shown).
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FIG. 4. Modulation of the total elastic cross section (red circles) for b = 0 at the optical coupling strength of 2|g| = 1 (a), 2 (b), and 5 (c).
The amplitudes and the shapes of the modulations are well reproduced by the simple model calculation (black curves). See text for details.

B. Simple model

In order to understand the above results, we invoke a simple
target-independent model. By considering the limit of very
small σ‖ (σ‖ � δk), by assuming Tmn = 1 (uniform scatterer)
and by taking sets of (ki, θi, ϕi, θ

′
i , ϕ

′
i ) giving dominant con-

tributions, we obtain the following approximation to Eq. (18):

∣∣T model
f i (b, g)

∣∣2 = Pmodel
0

+∞∑
N=−∞

JN (2|g|)
+∞∑

N ′=−∞
JN ′ (2|g|)

× exp

(
−|N − N ′|δk

2keσ
2
θ

)

× e−i(N2−N ′2 )ωδktpJ0(
√

2|N − N ′|δkkeb⊥),
(28)

where Pmodel
0 is a constant, ωδk = h̄δk2/(2me) =

1/(4|g|tbunch ); see Appendix Sec. 6 for the derivation.
This model captures the essence of the coherent term
a∗

e (ki, k̂
′
i, g)ae(ki, k̂i, g) of Eq. (18) for the optically modulated

electron beam. The numerical results of Eq. (28) are plotted
in Figs. 3(d) and 4(a)–4(c) as black curves. Even though
there is no free parameter in Eq. (28), all the curves
reproduce the results of the full simulations surprisingly well.
Equation (28) shows that the quantum interference and the
modulation of the scattering probabilities can be described
by the combinations of two different photon-exchange
channels with amplitude weights JN and JN ′ . Since the
absolute values of the Bessel functions significantly decrease
for |N |, |N ′| > 2|g|, it suffices to consider the limited
range of N and N ′ (see Appendix Sec. 7 for detailed
discussion). Moreover, because of the symmetry of the
Bessel function, J−N (x) = (−1)N JN (x), most combinations
of JN and JN ′ vanish after the sum over N and N ′ except
for |N−N ′| = 0, 2, 4 . . .. Because the terms of |N−N ′| = 0
are independent of tp, the modulations seen in Figs. 3 and
4 are given by the terms satisfying |N−N ′| = 2, 4, . . .. The
strength of the coupling is determined by the exponential
term exp(−|N−N ′|δk/(2keσ

2
θ )), showing that a larger

difference between N and N ′ gives a smaller contribution.
The black dotted curve in Fig. 3(d) shows this exponential
term with |N−N ′| = 2 and is in good agreement with the full
simulations (red circles). The deviation at large σθ is due to
contributions from |N−N ′| � 4.

In order to explain the observed oscillations of
Mmn(b = 0, g) [Eq. (27) with b = 0] in Fig. 4, we
consider the combinations of (N, N ′) yielding the dominant
effects. At 2|g| = 1 [Fig. 4(a)], we find them to be
(N, N ′) = (2, 0), (−2, 0), (0, 2), and (0, −2). The other
combinations vanish or give negligibly small contributions;
see Appendix Sec. 7 and Table I for detailed discussion.
Equation (28) shows that the phase associated with
the free-space propagation is proportional to N2 − N ′2.
The above combinations give N2 − N ′2 = 4 or −4.
Using eix + e−ix = 2 cos x, where x is a real number,
Mmn(b = 0, g) within the model of Eq. (28) is reduced
to the form of −A + A cos(4ωδk tp) with A > 0, which
explains the sinusoidal oscillation observed in Fig. 4(a) and
Mmn(b = 0, g) � 0 at any tp. When we apply the same
discussion to the cases of 2|g| = 2 and 5 [Figs. 4(b) and 4(c),
respectively], we find that Mmn(b = 0, g) is simplified to
the forms of −B1 − B2 + B1 cos(4ωδk tp) + B2 cos(8ωδk tp)
and C1 − C2 − C3 − C1 cos(8ωδk tp) + C2 cos(16ωδk tp) +
C3 cos(20ωδk tp), respectively, with real positive numbers
Bl ,Cl > 0 (l = 1, 2, . . .), expressed in terms of Bessel
functions; see Appendix Sec. 7 and Tables II and III.
The largest frequencies 4ωδk , 8ωδk , and 20ωδk with
ωδk = 1/(4|g|tbunch ), for 2|g| = 1, 2, and 5, respectively,
suggest the appearance of the first negative peaks at
tp/tbunch = π/2 = 1.6 for all three cases. In the case of
2|g| = 2 [Fig. 4(b)], the signs of the two cosine functions are
both positive, which give Mmn(b = 0, g) � 0. On the other
hand, in the case of 2|g| = 5 [Fig. 4(c)], the term cos(8ωδk tp)
has a negative coefficient, which leads to Mmn(b = 0, g) > 0.
The frequency 8ωδk suggests the positive peak appearing at
tp/tbunch = 5π/4 = 3.9 (see Appendix Sec. 7) which agrees
with the full simulation.

TABLE I. Combinations of (N, N ′) at 2|g| = 1 with their contri-
bution to the scattering probability in the simple model.

|N2−N ′2| |N−N ′| (N, N ′) Net contribution

1 1 (1,0), (−1,0), (0,1), (0,−1) 0
3 1 (2,1), (−2,−1),(1,2), (−1,−2) 0
3 3 (2,−1), (−2,1), (−1,2), (1,−2) 0
4 2 (2,0), (−2,0), (0,2), (0,−2) 4J0(1)J2(1) > 0
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TABLE II. As caption of Table I, but for 2|g| = 2.

|N2−N ′2| |N−N ′| (N, N ′) Net contribution

1 1 (1,0), (−1,0), (0,1), (0,−1) 0
3 1 (2,1), (−2,−1),(1,2), (−1,−2) 0
3 3 (2,−1), (−2,1), (−1,2), (1,−2) 0
4 2 (2,0), (−2,0), (0,2), (0,−2) 4J0(2)J2(2) > 0
5 1 (3,2), (−3,−2),(2,3), (−2,−3) 0
5 5 (3,−2), (−3,2), (−2,3), (2,−3) 0
8 2 (3,1), (−3,−1),(1,3), (−1,−3) 4J1(2)J3(2) > 0
8 4 (3,−1), (−3,1), (−1,3), (1,−3) 4J−1(2)J3(2) < 0
9 3 (3,0), (−3,0),(0,3), (0,−3) 0

C. Cross sections at nonzero impact parameters

Next, we consider the modulation of the scattering proba-
bilities at nonzero b⊥, i.e., for a target displaced from the focus
of the electron beam. According to Eq. (18), the parameter b
induces a phase term of eiki (k̂i−k̂

′
i )·b. Its physical interpretation

is illustrated in Fig. 5(a) for the case of b = (bx, 0, 0). For
an electron wave with an angle θi, one can find the difference
in the geometrical path length from the source as compared
to the case of b = 0 (green circle without filling), which is
given by bx sin θi = k̂i · b, shown by the red arrow. This path
difference corresponds to a phase shift of ki · b. We note
that the same discussion is applied to electron diffraction by
molecules in which case the path length difference occurs in
the scattered waves. The sign and the magnitude of the coher-
ent term a∗

e (ki, k̂
′
i, g)ae(ki, k̂i, g) in Eq. (18) is now modified by

the relative phase for ki and k′
i, that is eiki (k̂i−k̂

′
i )·b in Eq. (18).

The simulation results Mmn(b, g) [Eq. (27)] for the elas-
tic scattering using Eqs. (17)–(19) are shown in Fig. 5(d)
with red filled circles. As in Figs. 3(a) and 4(c), we choose

TABLE III. As caption of Table I, but for 2|g| = 5 and |N−N ′| � 4.

|N2−N ′2| |N−N ′| (N, N ′) Net contribution

1 1 (1,0), (−1,0), (0,1), (0,−1) 0
3 1 (2,1), (−2,−1),(1,2), (−1,−2) 0
3 3 (2,−1), (−2,1), (−1,2), (1,−2) 0
4 2 (2,0), (−2,0), (0,2), (0,−2) 4J0(5)J2(5) < 0
5 1 (3,2), (−3,−2),(2,3), (−2,−3) 0
7 1 (4,3),(−4,−3),(3,4),(−3,−4) 0
8 2 (3,1), (−3,−1),(1,3), (−1,−3) 4J1(5)J3(5) < 0
8 4 (3,−1), (−3,1),(1,−3), (−1,3) 4J−1(5)J3(5) > 0
9 3 (3,0), (−3,0),(0,3), (0,−3) 0
9 1 (5,4), (−5,−4), (4,5), (−4,−5) 0

11 1 (6,5), (−6,−5), (5,6), (−5,−6) 0
12 2 (4,2), (−4,−2), (2,4), (−2,−4) 4J2(5)J4(5) > 0
15 3 (4,1), (−4,−1), (1,4), (−1,−4) 0
16 2 (5,3), (−5,−3),(3,5), (−3,−5) 4J3(5)J5(5) > 0
16 4 (4,0), (−4,0), (0,4), (0,−4), 4J0(5)J4(5) < 0
20 2 (6,4), (−6,−4), (4,6), (−4,−6) 4J4(5)J6(5) > 0
21 3 (5,2), (−5,−2),(2,5),(−2,−5) 0
24 4 (5,1), (−5,−1), (1,5),(−1,−5) 4J1(5)J5(5) < 0
27 3 (6,3),(−6,−3),(3,6),(−3,−6) 0
32 4 (6,2),(−6,−2),(2,6),(−2,−6) 4J2(5)J6(5) > 0

2|g| = 5, σθ = 5 mrad and tp = 1.5tbunch, which gives a neg-
ative modulation at b⊥ = 0. We observe an oscillation with
bx: the strongest negative peak at bx = 0, the highest positive
peak at around bx = 0.7 nm, and the second negative peak at
around bx = 1.5 nm. Nearly the same oscillation is observed
for 1s → 2s (black open squares). We therefore set Tmn = 1
(uniform scatterer) and simulate the dependence both on bx

and by. The result shown in Fig. 5(b) shows a circular pattern.
The vertical slice at by = 0 is shown in Fig. 5(d) as the green
curve, well reproducing the results of 1s → 1s (red circles)
and 1s → 2s (black open squares). On the other hand, at
tp = 4tbunch, which gives a positive modulation at bx = 0 [see
Fig. 4(c)], we obtain the result shown in Fig. 5(c). The radii of
the circular patterns are nearly identical to those in Fig. 5(b),
but the sign of the modulation is opposite. The oscillation for
1s → 2px [blue diamonds in Fig. 5(d)] has a longer period
because the narrower angular distribution [Fig. 3(b)] gives
smaller relative phase (k̂i − k̂

′
i ) · b; see discussion above.

In both cases of Figs. 5(c) and 5(d), the incoherent av-
eraging over the target positions bx and by gives net zero
modulation. When we consider an ensemble of target atoms
whose spatial distribution is given by ρ(b), the total scattering
probability is given by

Pincoh
mn (g) =

∫
ρ(b)Pmn(b, g)db. (29)

When target atoms are uniformly distributed in the x-y
plane, i.e., ρ(b) = ρz(bz ), the impact parameter dependence
of Eq. (18) is expressed as∫ ∫ +∞

−∞
eiki (k̂i−k̂

′
i )·bdbxdby

= (2π )2δ(ki(k̂i − k̂
′
i )x )δ(ki(k̂i − k̂

′
i )y), (30)

where (k̂i − k̂
′
i )x and (k̂i − k̂

′
i )y are the x and y components of

k̂i − k̂
′
i. The product of the two delta functions is equivalent to

δ(θi − θ ′
i )δ(ϕi − ϕ′

i ). Under this condition, the coherent term
of Eq. (18) becomes a∗

e (ki, θ
′
i , g)ae(ki, θi, g) = |ae(ki, θi, g)|2.

Therefore, the scattering probability is independent on the
phase of ae and no modulation occurs, i.e., Mmn = 0. The
target atoms uniformly distributed along the z axis, i.e.,
ρ(b) = ρx,y(bx, by) also gives zero net modulation. We note
that ∫ +∞

−∞
eiki (k̂i−k̂

′
i )·bdbz = 2πδ(ki(k̂i − k̂

′
i )z ), (31)

where (k̂i − k̂
′
i )z is the z component of k̂i − k̂

′
i. The delta

function δ((k̂i − k̂
′
i )z ) is equivalent to δ(θi − θ ′

i ). Therefore,
Mmn = 0 and no modulation is observed when incoherent
averaging occurs. Thus, in order to observe the coherent
effects shown in Fig. 5, one needs spatially fixed samples
such as two-dimensional crystals or optically trapped atoms
or nanoparticles.

We now investigate how the impact parameter dependence
is scaled with the optical coupling strength |g| and wave-
length λ. To this end, we define the parameter b0 which is
the minimum impact parameter giving Mmn(b, g) = 0; see
Fig. 5(d). The simulated dependences for |g| and λ are plotted
as green circles in Figs. 5(e) and 5(f), respectively. While
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FIG. 5. Nonzero impact parameter and the angstrom-level spatial dependence. (a) Impact parameter and the associated phase. Depending
on the angle θi (θ ′

i ), a path length difference (red arrow) arises, which induces the relative phase of the two interfering components (ki and
k′

i). The distance between the electron beam and the target is exaggerated for ease of illustration. (b),(c) Two-dimensional impact parameter
dependence at tp = 1.5tbunch (b) and tp = 4tbunch (c) assuming Tmn = 1. (d) Slice at by = 0 and comparison with the three collisional processes
of the hydrogen atom. (e),(f) Zero-modulation impact parameter (b0) as a function of the optical modulation strength (e) and wavelength (f).

there is almost no dependence of b0 on |g| [Fig. 5(e)], we
observe a monotonic increase with λ [Fig. 5(f)]. To un-
derstand these results, we return to the simple model and
Eq. (28). In Eq. (28), the b dependence is given solely by
the term J0(

√
2|N−N ′|δkkeb⊥), which is independent of |g|.

By using J0(x) = 0 at x = 2.4 and by recalling that the domi-
nant contribution stems from |N−N ′| = 2, the model predicts
b0 = 2.4/

√
4δkke = 0.42 nm at λ = 2 μm and for 10-keV

electrons [black line in Fig. 5(e)], which agrees well with
the simulation (green circles). The wavelength dependence
of δk = meω/(h̄ke) ∝ 1/λ gives b0 ∝ √

λ. In Fig. 5(f), the√
λ dependence (black curve) reproduces well the simulated

results (green circles) at λ � 5 μm. The deviation between
the exact results and the model at large λ, i.e., small δk, is
caused by the consideration of just the dominant contributions
in the simple model; see Appendix Sec. 6. The wavelength
dependence can also be understood from Eq. (23) which
suggests that for small wavelength, i.e., larger δk, a wider
range of θi is required to cover different N components. A
larger θi gives a longer path length difference [Fig. 5(a)],
giving stronger impact parameter dependence and smaller b0.
The dependence of δk ∝ 1/ke suggests a weak dependence
on the central velocity of the electron beam; see Sec. III E
below.

D. High energy approximation

Before concluding, we discuss two more aspects for future
theoretical and experimental studies, namely, (i) an approxi-
mation which reduces computational complexity (Sec. III D)
and (ii) the generality of our findings for other electron beam
parameters (Sec. III E).

First, we introduce an approximation which speeds up the
numerical evaluation of Pmn(b, g) [Eq. (17)] and Mmn(b, g)
[Eq. (27)]. The results shown in Figs. 1 and 3–5 are ob-
tained with Eqs. (17)–(19), which contain integrals over seven
parameters in total. We introduce here a high-energy ap-
proximation which allows us to perform the integral over ki

analytically and to reduce computational time significantly.
When the central energy of the electron beam is much
higher than the energy bandwidth after the optical modula-
tion, i.e., ke  δk, and ke  σ‖, which is the case for all
the reported experiments [17–24], the transversal momentum
distribution ae,⊥(ki, θi ) [Eq. (22)] and the scattering form
factor Tmn(ki, k̂i, k̂ f ) [Eq. (19)] are nearly constant over the
variation of ki within the momentum distribution of the elec-
tron beam. Therefore, they can be represented by their values
at ki = ke,

ae,⊥(ki, θi ) ≈ ae,⊥(ki = ke, θi ), (32)
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FIG. 6. Validity of the high-energy approximation. (a) Simulation result for 10-keV electrons with the high-energy approximation with
Eq. (34) (purple curve) compared to that of full simulation with Eq. (18) (red circles). The two results match well. (b) Impact parameter
dependence at tp = 1.5tbunch for the three collisional processes of the hydrogen atom. Curves show the results of the high-energy approximation
with Eq. (34). Circles, squares, and diamonds show the simulation results with Eq. (18), the same as in Fig. 5(d). The results of the full
simulations are well reproduced.

and

Tmn(ki, k̂i, k̂ f ) ≈ Tmn(ki = ke, k̂i, k̂ f ). (33)

Under this approximation, the differential scattering prob-
ability |Tf i(k̂ f , b, g)|2 in Eq. (18) can be expressed as

|Tf i(k̂ f , b, g)|2

= P0

∫
d k̂i

∫
d k̂

′
i a∗

e,⊥(ki = ke, θ
′
i )ae,⊥(ki = ke, θi )

× T ∗
mn(ki = ke, k̂

′
i, k̂ f )Tmn(ki = ke, k̂i, k̂ f )

×
+∞∑

N ′=−∞

+∞∑
N=−∞

JN ′ (2|g|) JN (2|g|)Ik,N,N ′ (θi, θ
′
i , b, tp),

(34)

where

Ik,N,N ′ (θi, θ
′
i , b, tp) =

∫
k3

i dkiexp[iki(k̂i − k̂
′
i ) · b]

× exp

(
ikive tp(cos θi − cos θ ′

i )

− ih̄k2
i tp

2me
(cos2θi − cos2θ ′

i )

)

× exp

(
− (ki cos θi − ke − Nδk)2

4σ 2
‖

)

× exp

(
− (ki cos θ ′

i − ke − N ′δk)2

4σ 2
‖

)
.

(35)

This integral over ki can be performed analytically. Be-
cause we consider θi and θ ′

i of the order of mrad, we can
consider the Taylor expansions of cos θi and cos θ ′

i and take
the leading orders cos θi = 1−θ2

i /2 and cos θ ′
i = 1−θ ′2

i /2. By

using ke  δk, σ‖, we obtain approximately

Ik,N,N ′ (θi, θ
′
i , b, tp)

≈
√

2π σ‖k3
e(

1 − iσ 2
‖

h̄ tp

2me

(
θ2

i − θ ′
i
2))7/2

× exp

(
−

{
ke

(
θ2

i − θ ′
i
2) − 2δk(N ′ − N )

}2

32σ 2
‖
(
1 − iσ 2

‖
h̄ tp

2me

(
θ2

i − θ ′
i
2))

)

× exp[ike(k̂i − k̂
′
i ) · b]. (36)

In order to confirm the validity of this high-energy
approximation, we compare in Fig. 6(a) the modulations
Mmn(b = 0, 2|g| = 5) of elastic scattering calculated with
Eqs. (18) and (34). Because the absolute values of the Bessel
functions decrease significantly for |N |, |N ′| > 2|g|, the sums
over the range of −6 � N, N ′ � 6 are sufficient to obtain re-
sults that do not change qualitatively with increasing |N |, |N ′|;
see discussion in Appendix Sec. 7 and Table III. The two
curves are almost identical. In Fig. 6(b), we show the mod-
ulation at nonzero impact parameter, Mmn(b �= 0, 2|g| = 5).
The results given by the full simulation with Eq. (18) depicted
by circles, squares, and diamonds are well reproduced by
the results with the high-energy approximation of Eq. (34)
shown in lines. These results demonstrate the validity of the
high-energy approximation. The high-energy approximation
speeds up the computations by more than an order of magni-
tude compared to the evaluation of the full integrals. The good
agreement facilitates its application in future works.

E. Beam parameter dependence

All the results so far were obtained by assuming 10-keV
electrons of 100-fs duration. We here consider to which extent
our findings are robust against wave packet duration and elec-
tron kinetic energy. First, we consider the dependence on the
wave packet duration, i.e., the longitudinal momentum width
h̄σ‖ [see Eq. (23)]. Figure 7(a) compares the modulation of
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FIG. 7. Beam parameter dependence. (a) Modulations Mmn(b = 0, 2|g| = 5) of total elastic scattering probability at 10 keV for five
different longitudinal momentum widths h̄σ‖. The corresponding FWHM durations are shown. At durations longer than 50 fs, the modulation
is nearly identical. At shorter durations, the dispersion of each N-photon component becomes significant and the deviations from the results
with longer durations become noticeable at large tp. (b) Zero-modulation impact parameter b0 (see Fig. 5) as a function of the kinetic energy
of the incident electron beam. Black curve shows the prediction of the simple model. Below 20 keV, b0 is almost constant at b0 ∼ 0.4 nm, in
agreement with the model prediction.

elastic scattering probabilities at b = 0 and at five different
values of h̄σ‖. The corresponding FWHM initial wave packet
durations

√
2 ln 2/(veσ‖) are shown next to the curves. For

the durations longer than 50 fs (red, black, and green curves),
the modulations are nearly identical. However, at 25 fs (blue
curve), some deviation is observed especially at large prop-
agation time tp � 4tbunch. This deviation can be attributed to
the dispersion occurring in each N-photon component, which
becomes stronger at shorter duration, i.e., larger h̄σ‖. At the
very short duration of 10 fs (purple curve), which is compara-
ble to the laser cycle (6.7 fs at 2 μm wavelength), significant
deviation occurs already at tp = 2tbunch.

We then consider the dependence on the kinetic energy
of the incident electron beam h̄2k2

e /(2me). The green circles
in Fig. 7(b) show the zero-impact parameter b0 (compare to
Fig. 5) as a function of the electron-beam kinetic energy,
calculated with Tmn = 1. At σθ = 5 mrad, we observe notice-
able modulations at energies only above 3 keV. Below that,
the coupling of different N-photon components are negligibly
small at the angular divergence. At the energies below 20 keV,
b0 is almost constant at around 0.4 nm, in good agreement
with the simple model prediction (black curve). However, at
energies higher than 50 keV, deviation from 0.4 nm can be
seen. This is because the approximation used in the simple
model Eqs. (A44) and (A45) (see Appendix Sec. 6) is not
perfectly accurate at high kinetic energy, i.e., large ke. The
approximation is also not fully accurate for long wavelength,
i.e., small δk, which can be seen in Fig. 5(f). Both cases yield
b0 larger than 0.4 nm but still at around 1 nm.

In short, our findings are robust over the wide range of
electron-beam energy and pulse durations. Some quantitative
deviations occur at high kinetic energy (>50 keV), short du-
rations (� 10 fs), and long optical wavelength, but can be
estimated accurately and simply by the approximated form of
Eqs. (34) and (36).

IV. CONCLUSION

In summary, we have investigated the scattering of an
optically modulated electron wave packet by a field-free

atomic target with the time-dependent perturbative S-matrix
approach. By virtue of the spatial focusing, the discrete longi-
tudinal momentum components of the electron wave packet
couple with each other via the scattering process and the
associated coherent interference results in a modulation of the
scattering probability. The sign and the amplitude of the mod-
ulations were controlled by the longitudinal and transversal
momentum distributions as well as the dispersion of the pro-
jectile electron wave packets, i.e., the relative phases between
different photon-exchange channels. This suggests the possi-
bility to characterize an optically modulated electron beam
with unknown temporal and momentum structures through its
scattering with a field-free target. Stronger modulations were
observed in elastic scattering and dipole-forbidden inelastic
scattering than in dipole-allowed inelastic scattering, which
might be applied to electronic state-selective excitation. The
scattering probability modulation has a strong impact param-
eter dependence and is hence very sensitive to the position
of the target atom with respect to the focus of the electron
beam. The largest enhancement (suppression) is predicted
for a target at the center of the electron beam while the
suppression (enhancement) occurs for a target only a few
angstroms away. Combined with the ability to control the spa-
tial dependence of the scattering probability modulation with
the optical wavelength of the electron beam modulation, the
quantum interference reported here might facilitate spatially
selective excitation or probe of, for example, optically trapped
atoms or two-dimensional solids, or even provide an opportu-
nity towards damage-reduced microscopy and high-resolution
imaging with attosecond electron pulses.
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APPENDIX

1. Derivation of Eq. (13)

By inserting the explicit expressions of the wave functions given by Eqs. (2)–(10) into Eq. (11), we obtain

Tf i(E f , k̂ f , kA, f , b) =
∫∫∫

dxedxAdr
∫

dt
∫

dki

∫
dkA,i ae(ki )aA(kA,i )

× χ∗
f (xe, t )χ∗

A, f (xA, t )ψ∗
m(r, t )V (xe − xA, r) χi(xe, t )χA,i(xA, t )ψn(r, t ),

= 1

(2π )6

∫
dki

∫
dkA,i ae(ki )aA(kA,i ) ei(kA, f −kA,i )·b

∫
dr φ∗

m(r)

×
(∫

dxA

∫
dxeV (xe − xA, r) exp [i(ki − k f ) · xe] exp [i(kA,i − kA, f ) · xA]

)
φn(r)

×
∫ +∞

−∞
dt exp

( iE f t

h̄
+ iEA, f t

h̄
− iEit

h̄
− iEA,it

h̄

)
exp

(
ih̄ωmt

h̄
− ih̄ωnt

h̄

)
. (A1)

We first consider the integrals over xA and xe,∫
dxA

∫
dxeV (xe − xA, r) exp [i(ki − k f ) · xe] exp [i(kA,i − kA, f ) · xA]

=
∫

dxA exp [i(ki − k f + kA,i − kA, f ) · xA]
∫

dx′V (x′, r) exp [i(ki − k f ) · x′], (A2)

where x′ = xe − xA. The integral over xA gives a delta function,∫
dxA exp [i(ki − k f + kA,i − kA, f ) · xA] = (2π )3δ(K f − K i ). (A3)

This delta function represents the momentum conservation in the scattering process.
We then perform the integral over t in Eq. (A1) and obtain∫ +∞

−∞
dt exp

( iE f t

h̄
+ iEA, f t

h̄
− iEit

h̄
− iEA,it

h̄

)
exp

(
ih̄ωmt

h̄
− ih̄ωnt

h̄

)
= 2π h̄ δ(ε f − εi ). (A4)

This delta function represents the energy conservation. By inserting Eqs. (A2)–(A4) into Eq. (A1), we obtain Eq. (13).

2. Atomic form factor

We here give the explicit expression of the scattering form factor [Tmn, Eq. (19)] for the atomic hydrogen target. The spatial
part of the eigenfunctions of the 1s, 2s, 2px states are known analytically and given by

φ1s(r) =
√

1

π

(
1

a0

)3/2

exp
(
− r

a0

)
, (A5)

φ2s(r) =
√

1

π

(
1

2a0

)3/2(
1 − r

2a0

)
exp

(
− r

2a0

)
, (A6)

φ2px (r) =
√

1

π

(
1

2a0

)5/2

r cosθ exp
(
− r

2a0

)
, (A7)

respectively, where r and θ are the length and the polar angle of r with respect to the x axis in the laboratory frame [see Fig. 1(a)].
The transition amplitudes Tmn of the elastic and inelastic scatterings are given by [52]

T1s,1s(q) = −e2

8π2ε0

a2
0

(
a2

0q2 + 8
)

(
a2

0q2 + 4
)2 , (A8)

T1s,2s(q) = e2

8π2ε0

4
√

2a2
0(

a2
0q2 + 9

4

)3 , (A9)

T1s,2px (q) = e2

8π2ε0

6
√

2 i a0qx

q2
(
a2

0q2 + 9
4

)3 , (A10)

where h̄q = h̄(ki − k f ) is the momentum transfer, qx is the x component of q, and a0 is the Bohr radius.
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3. Derivation of Eq. (18)

By using Eq. (13), the magnitude square of the transition amplitude |Tf i(E f , k̂ f , kA, f , b)|2 is given by

|Tf i(E f , k̂ f , kA, f , b)|2 = 4π2h̄2
∫

dki

∫
dkA,i

∫
dk′

i

∫
dk′

A,i ae(ki ) a∗
e (k′

i ) aA(kA,i )a
∗
A(k′

A,i )e
−i(kA,i−k′

A,i )·b

× δ(K f − K i )δ(K f − K ′
i )δ(ε f − εi )δ(ε f − ε′

i )T
∗

mn(k′
i, k f )Tmn(ki, k f ), (A11)

where kA, f is included in the delta functions δ(K f − K i ) and δ(K f − k′
i ). Using the formula

δ(x − y)δ(x − z) = δ(y − z)δ(x − z), (A12)

the delta functions in Eq. (A11) become

δ(K f − K i )δ(K f − K ′
i ) = δ(K ′

i − K i )δ(K f − K i ) = δ[(k′
i + k′

A,i ) − (ki + kA,i )]δ[(k f + kA, f ) − (ki + kA,i )], (A13)

and

δ(ε f − εi )δ(ε f − ε′
i ) = δ(ε′

i − εi )δ(ε f − εi ). (A14)

We first perform an integral over kA, f in Eq. (16) with δ[(k f + kA, f ) − (ki + kA,i )]. The differential probability then becomes

dPmn(b)

d k̂ f

=
∫

dE f
(2π )4m2

e

h̄4 |Tf i(E f , k̂ f , b)|2, (A15)

with

|Tf i(E f , k̂ f , b)|2 = 4π2h̄2
∫

dki

∫
dkA,i

∫
dk′

i

∫
dk′

A,i ae(ki ) a∗
e (k′

i ) aA(kA,i )a
∗
A(k′

A,i ) e−i(kA,i−k′
A,i )·b

× δ[(k′
i + k′

A,i ) − (ki + kA,i )]δ(ε′
i − εi )δ(ε f − εi )T

∗
mn(k

′
i, k f )Tmn(ki, k f ), (A16)

where

ε f = E f + h̄2|ki + kA,i − k f |2
2MA

+ h̄ωm. (A17)

Second, we perform an integral over k
′
A,i with δ[(k′

i + k′
A,i ) − (ki + kA,i )] and obtain

|Tf i(E f , k̂ f , b)|2 = 4π2h̄2
∫

dki

∫
dkA,i

∫
dk′

i ae(ki ) a∗
e (k′

i )aA(kA,i )a
∗
A(ki + kA,i − k′

i )

× ei(ki−k′
i )·bδ(ε′

i − εi )δ(ε f − εi )T
∗

mn(k′
i, k f )Tmn(ki, k f ), (A18)

where

ε′
i = E ′

i + h̄2|ki + kA,i − k′
i|2

2MA
+ h̄ωn. (A19)

Third, we perform an integral over kA,i. To this end, by using MA  me and by assuming that the momentum distribution of
the electron is narrow enough to satisfy |k′

i| + |ki|∼= 2|ki|, we obtain an approximated form of δ(ε′
i − εi ) as

δ(ε′
i − εi ) = δ

(
h̄2|k′i|2
2me

+ h̄2|ki + kA,i − k′
i|2

2MA
+ h̄ωn − h̄2|ki|2

2me
− h̄2|kA,i|2

2MA
− h̄ωn

)

∼= δ

(
h̄2|k′

i|2
2me

− h̄2|ki|2
2me

)

∼= me

h̄2|ki|
δ( |k′

i| − |ki|), (A20)

Similarly,

δ(ε f − εi ) ∼= δ(E f − Ei + h̄ωm − h̄ωn). (A21)
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In addition, we introduce one more approximation. Because the target atom is well localized in space, its momentum
distribution aA is much wider than that of projectile electrons [27]. Then we can use the following approximation:

a∗
A(ki + kA,i − k′

i ) ∼= a∗
A(kA,i ). (A22)

We can now perform the integral over kA,i in Eq. (A18),

|Tf i(E f , k̂ f , b)|2 = 4π2h̄2IA

∫
dki

∫
dk′

i ae(ki ) a∗
e (k′

i )e
i(ki−k′

i )·b

× me

h̄2|ki|
δ(|k′

i| − |ki|)δ(E f − Ei + h̄ωm − h̄ωn)T ∗
mn(k′

i, k f )Tmn(ki, k f ), (A23)

where we introduced the shorthand notation IA for the integral,

IA =
∫

dkA,i|aA(kA,i )|2. (A24)

For convenience, we use spherical coordinates in the evaluation of the integrals, that is, ki is expressed by its length ki and the
polar and azimuthal angles (θi, ϕi ),

|Tf i(E f , k̂ f , b)|2 = 4π2h̄2IA

∫
k2

i dki

∫
sin θidθi

∫
dϕi

∫
k

′2
i dk′

i

∫
sin θ ′

i dθ ′
i

∫
dϕ′

iae(ki, θi, ϕi ) a∗
e (k′

i, θ
′
i , ϕ

′
i )

× ei(ki−k′
i )·b me

h̄2ki
δ(k′

i − ki )δ(E f − Ei + h̄ωm − h̄ωn)T ∗
mn(k′

i, k f )Tmn(ki, k f ). (A25)

We perform the integral over k′
i by using the presence of δ(k′

i − ki ) and obtain

|Tf i(E f , k̂ f , b)|2 = 4π2meIA

∫
k3

i dki

∫
sin θidθi

∫
dϕi

∫
sin θ ′

i dθ ′
i

∫
dϕ′

i

× ae(ki, k̂i )a
∗
e (ki, k̂

′
i ) eiki(k̂i−k̂

′
i )·b δ(E f − Ei + h̄ωm − h̄ωn)T ∗

mn(ki, k̂
′
i, k f )Tmn(ki, k̂i, k f ), (A26)

where k̂i and k̂
′
i are unit vectors along ki and k′

i, respectively. Finally, we perform the integral over E f in Eq. (A15) with
δ(E f − Ei + h̄ωm − h̄ωn) and obtain Eq. (18).

4. Propagation phase

The propagation phase φprop(ki, θi, tp) [Eq. (25)] is obtained by the following procedure. The evolution of the real-space
amplitude of the electron wave packet is given by the Fourier transform of the momentum-space amplitude [39] given by Eq. (4).
For convenience we repeat it here:

ψe(xe, t ) = 1

(2π h̄)3/2

∫
dk ae(k) exp

(
ik · xe − iEkt

h̄

)
, (A27)

where the norm squared of ψe(xe, t ) gives the probability distribution of the electron in real-space, and the energy is given by
Ek = h̄2k2/(2me). We now consider the propagation of the electron wave packet over a distance of Lp = vetp = h̄ketp/me, where
ve is the group velocity of the electron wave packet taken to be along the z axis; see Fig. 1(a). The phase term associated with
the propagation can be expressed by

exp
(

ik‖vetp − iEktp

h̄

)
, (A28)

where k‖ = ki cos θi. This expression, however, needs to be modified as we will now discuss. The kinetic energy term Ek contains
not only the longitudinal component but also the transversal component. The transversal component changes the electron beam
diameter at the position of the target depending on the value of tp. In other words, depending on the value of tp, the location
of the transversal beam focus moves along the z axis with respect to the target. In order to compensate this contribution and to
obtain the beam focus at the target plane bz = 0, we define the propagation phase as

exp [iφprop(ki, θi, tp)] = exp
(

ik‖ve tp − iEktp

h̄

)
exp

(
− iEk,⊥(−tp)

h̄

)
= exp

(
ik‖vetp − iEk,‖ tp

h̄

)
, (A29)

where Ek,⊥ = h̄2k2
⊥/(2me), k⊥ = ki sin θi, and Ek,‖ = h̄2k‖2/(2me). The temporal evolution of the wave packet and the corre-

sponding change of the temporal density calculated with φprop(ki, θi, tp) are consistent with experiment results [18–24]; see the
main text.
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5. Modulation at zero propagation duration

We consider the differential scattering probability |Tf i(k̂ f , b, g)|2 [Eq. (18)] at tp = 0. The numerical results in Figs. 3(a),
3(c), and 4 show that Mmn(b = 0, g) ∼= 0 [Eq. (27)] at tp = 0. This suggests that even though the energy and momentum spectra
of the electron beam are already broad at tp = 0, some free-space propagation is required to give a nonzero modulation. With
the high-energy approximation, whose accuracy is shown above, the integral Ik,N,N ′ (θi, θ

′
i , b, tp) of Eq. (36) becomes

Ik,N,N ′ (θi, θ
′
i , b, tp = 0) =

√
2πσ‖k3

e exp

(
−

{
ke

(
θ2

i − θ ′
i
2) − 2δk(N ′ − N )

}2

32σ 2
‖

)
exp

[
ike

(
k̂i − k̂

′
i

) · b
]
. (A30)

Equation (A30) shows that the integral Ik,N,N ′ (θi, θ
′
i , b, tp = 0) depends only on the difference of N and N ′, i.e., N ′ − N , not

the absolute numbers. We therefore express the above integral as Ik,N ′−N (θi, θ
′
i , b, tp = 0) and consider the sum over N and N ′ in

Eq. (34),

+∞∑
N ′=−∞

+∞∑
N=−∞

JN ′ (2|g|) JN (2|g|)Ik,N ′−N (θi, θ
′
i , b, tp = 0)

= Ik,0(θi, θ
′
i , b, tp = 0)

+∞∑
N=−∞

J2
N (2|g|) +

+∞∑
m=−∞

m �=0

Ik,m(θi, θ
′
i , b, tp = 0)

+∞∑
N=−∞

JN+m(2|g|) JN (2|g|). (A31)

By using
∑+∞

N=−∞ J2
N (x) = 1 and

+∞∑
N=−∞

JN (x)JN+m(x) = 0, (A32)

for m �= 0, Eq. (A31) becomes

+∞∑
N ′=−∞

+∞∑
N=−∞

JN ′ (2|g|) JN (2|g|)Ik,N ′−N (θi, θ
′
i , b, tp = 0) = Ik,0(θi, θ

′
i , b, tp = 0). (A33)

We therefore obtain the approximate form of the differential scattering probably at tp = 0 as

|Tf i(k̂ f , b, g)|2 = 4π2meIA

∫
d k̂i

∫
d k̂

′
ia

∗
e,⊥(ki = ke, θ

′
i )ae,⊥(ki = ke, θi )

× T ∗
mn(ki = ke, k̂

′
i, k̂ f ) Tmn(ki = ke, k̂i, k̂ f )Ik,0(θi, θ

′
i , b, tp = 0). (A34)

Notably, |Tf i|2 is now independent on the optical modulation strength |g|. Therefore, the modulation of the scattering
probability for any b is approximately zero, Mmn(b, g) ∼= 0, at tp = 0.

6. Target independent model

Here we derive a simple model given by Eq. (28). For simplicity, we consider the case Tmn = 1. We refer to this case as the
case of a uniform scatterer. Since we take Tmn = 1, scattering effects related to the detailed nature of the target are neglected. In
this sense this model highlights physical effects related directly to the optically modulated electron beam. The validity of this
assumption is illustrated in Fig. 5(d). We consider the integrals over ϕi and ϕ′

i in Eq. (18),

Ib =
∫

dϕi

∫
dϕ′

ie
iki(k̂i−k̂

′
i )·b. (A35)

For b = (bx, by, bz ) and using spherical coordinates, we obtain

Ib = exp[ikibz(cos θi − cos θ ′
i )]

∫∫ 2π

0
dϕidϕ′

i exp [−ikibx(sin θi cos ϕi − sin θ ′
i cos ϕ′

i )]

× exp [−ikiby(sin θi sin ϕi − sin θ ′
i sin ϕ′

i )]. (A36)

By using ∫ 2π

0
e−iA sin x−iB cos xdx = 2πJ0(

√
A2 + B2), (A37)
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we obtain

Ib = 4π2 exp[ikibz(cos θi − cos θ ′
i )]J0

(
kisinθi

√
b2

x + b2
y

)
J0

(
kisinθ ′

i

√
b2

x + b2
y

)
. (A38)

Equation (18) now becomes

∣∣T model
f i (b, g)

∣∣2 = 4π2P0

∫
k3

i dki

∫
sin θidθi

∫
sin θ ′

i dθ ′
i a

∗
e (ki, θ

′
i , g)ae(ki, θi, g)

× exp[ikibz(cos θi − cos θ ′
i )]J0

(
kisinθi

√
b2

x + b2
y

)
J0

(
kisinθ ′

i

√
b2

x + b2
y

)
. (A39)

In order to further simplify the above equation, we focus on the sets of (ki, θi, θ
′
i ) that maximize the values of ae(ki, θi, g) and

a∗
e (ki, θ

′
i , g) of Eq. (A39). Specifically, we first consider only values of θi and θ ′

i which give zero arguments in the exponential
functions in ae,‖(ki, θi, g) and a∗

e,‖(ki, θ
′
i , g), that is [see Eq. (23)]

ki cos θi − ke − Nδk = 0, (A40)

and

ki cos θ ′
i − ke − N ′δk = 0 (A41)

The coherent term in a∗
e (ki, θ

′
i , g)ae(ki, θi, g) in Eq. (A39) becomes

a∗
e (ki, θ

′
i , g)ae(ki, θi, g) = a∗

e,⊥(ki, θ
′
i )ae,⊥(ki, θi )

1

(2πσ 2
‖ )

1
2

+∞∑
N ′=−∞

+∞∑
N=−∞

JN ′ (2|g|) JN (2|g|)eiφprop(ki,θi, tp)−iφprop(ki,θ
′
i , tp). (A42)

By denoting the angles θi and θ ′
i that satisfy Eqs. (A40) and (A41) θN and θ

′
N ′ , which are functions of ki, the term for the

propagation phase in Eq. (A42) becomes

eiφprop(ki,θN , tp)−iφprop(ki,θ
′
N ′ , tp) = exp

(
iki cos θNve tp − ih̄(ki cos θN )2

2me
tp

)
exp

(
−iki cos θ ′

N ′ve tp + ih̄(ki cos θ ′
N ′ )2

2me
tp

)

= exp[−i(N2 − N ′2)ωδk tp]. (A43)

As a second approximation, we only consider values of ki which give zero arguments in the exponential function in ae,⊥ or
a∗

e,⊥, that is, sin θN = 0 (N ′ � N ) or sin θ ′
N ′ = 0 (N ′ � N). In the case of sin θN = 0, we obtain from Eqs. (A40) and (A41)

ki = ke + Nδk, (A44)

ki cos θ ′
N ′ = ke + N ′δk, (A45)

and a∗
e,⊥(ki, θ

′
i )ae,⊥(ki, θi ) in Eq. (A42) becomes

a∗
e,⊥(ki )ae,⊥(ki ) = exp

(
− (ki sin θ ′

N ′ (ki ))
2

4σ 2
⊥

)
≈ exp

(
− (N − N ′)δk

2keσ
2
θ

)
, (A46)

where δk2 is neglected. The term for the impact parameter dependence Ib of Eq. (A38) becomes

Ib = 4π2exp[ikibz(cos θN − cos θ ′
N ′ )]J0(0)J0

(
ki sin θ ′

N ′

√
b2

x + b2
y

)
≈ 4π2 exp [ibz(N − N ′)δk]J0

(√
2(N − N ′)δkke

√
b2

x + b2
y

)
. (A47)

On the other hand, in the case of sin θ ′
N ′ = 0 (N ′ � N), we obtain from Eqs. (A40) and (A41) and following the procedure in

Eqs. (A44)–(A47):

a∗
e,⊥(ki )ae,⊥(ki ) ≈ exp

(
− (N ′ − N )δk

2keσ
2
θ

)
, (A48)

and

Ib = 4π2 exp [ikibz(cos θi − cos θ ′
i )] J0

(
kisinθi

√
b2

x + b2
y

)
J0(0)

≈ 4π2 exp [ibz(N − N ′)δk] J0
(√

2(N ′ − N )δkke

√
b2

x + b2
y

)
. (A49)
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In total, we obtain Eq. (28). For convenience, we repeat it here:

∣∣T model
f i (b, g)

∣∣2 = Pmodel
0 ×

+∞∑
N=−∞

JN (2|g|)
+∞∑

N ′=−∞
JN ′ (2|g|) exp[−i(N2 − N ′2)ωδktp]

× exp

(
−|N − N ′|δk

2keσ
2
θ

)
exp [ibz(N − N ′)δk] J0

(√
2|N − N ′|δkke

√
b2

x + b2
y

)
, (A50)

where Pmodel
0 is a constant. This equation shows that the scattering probability can be estimated by considering sums of products

of JN and JN ′ , reflecting different photon-exchange channels. The strength of the coupling between different channels is given by
the term of exp(−|N−N ′|δk

2keσ
2
θ

). The propagation effect, i.e., the dependence on tp, is given by exp[−i(N2 − N ′2)ωδktp]. The impact

parameter dependence is given by Ib = 4π2exp[ibz(N−N ′)δk]J0(
√

2|N−N ′|δkke

√
b2

x + b2
y ).

In the case of no optical modulation, the laser-electron coupling vanishes, 2|g| = 0, and

∣∣T model
f i (b, g = 0)

∣∣2 = Pmodel
0 ×

+∞∑
N=−∞

|JN (0)|2 = Pmodel
0 . (A51)

The modulation of the scattering probability is therefore given by

Mmodel
mn (b, g) =

∣∣T model
f i (b, g)

∣∣2 − ∣∣T model
f i (b, g = 0)

∣∣2

∣∣T model
f i (b, g = 0)

∣∣2

= −1 +
+∞∑

N=−∞
JN (2|g|)

+∞∑
N ′=−∞

JN ′ (2|g|) exp[−i(N2 − N ′2)ωδktp]

× exp

(
−|N − N ′|δk

2keσ
2
θ

)
exp (ibz(N − N ′)δk)J0

(√
2|N − N ′|δkke

√
b2

x + b2
y

)
. (A52)

We next consider |T model
f i (b, g)|2 and Mmodel

mn (b, g) at zero propagation duration tp = 0. We can rewrite Eq. (A50) as

∣∣T model
f i (b, g)

∣∣2
/Pmodel

0 =
+∞∑

N=−∞
JN (2|g|)

+∞∑
N ′=−∞

JN ′ (2|g|) f (N − N ′, b)

=
+∞∑

N=−∞
J2

N (2|g|) +
+∞∑

N ′ �=N

+∞∑
N=−∞

JN (2|g|)JN ′ (2|g|) f (N − N ′, b)

=
+∞∑

N=−∞
J2

N (2|g|) +
+∞∑

m=−∞
m �=0

f (m, b)
+∞∑

N=−∞
JN (2|g|)JN−m(2|g|), (A53)

where f (N−N ′, b) = exp(−|N−N ′|δk
2keσ

2
θ

) exp[ibz(N−N ′)δk] J0(
√

2|N−N ′|δkke

√
b2

x + b2
y ) and f (0, b) = 1. By using∑+∞

N=−∞ J2
N (x) = 1 and Eq. (A32) for m �= 0, we obtain∣∣T model

f i (b, g)
∣∣2 = Pmodel

0 , (A54)

and

Mmodel
mn (b, g) = 0, (A55)

at tp = 0. Therefore, the simple target independent model yields zero modulation at tp = 0, which is consistent with the
scattering theory; see Appendix Sec. 5.

7. Explicit examples of the simple model

Here we consider a few examples using the simple model above. For simplicity, we limit our considerations to the cases
of b = 0, where the b-dependent scattering probabilities attain their maxima [see main text and Fig. 1(c)]. Equation (A50) is
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simplified to

∣∣T model
f i (b = 0, g)

∣∣2 =
+∞∑

N=−∞
JN (2|g|)

+∞∑
N ′=−∞

JN ′ (2|g|) exp[−i(N2 − N ′2)ωδktp] exp

(
−|N − N ′|δk

2keσ
2
θ

)
, (A56)

where the constant Pmodel
0 in Eq. (A50) is set to 1, because we are interested only in the relative quantities and the modulation in

Eq. (A52) is given by

Mmodel
mn (b = 0, g) = ∣∣T model

f i (b = 0, g)
∣∣2 − 1. (A57)

The black curves in Figs. 3(d) and 4 are calculated using Eq. (A57).
First, at 2|g| = 1 [Fig. 4(a)], because of the symmetry of the Bessel function J−N (x) = (−1)N JN (x), many of the combinations

of N and N ′ cancel with each other; see Table I. Since the absolute values of the Bessel functions significantly decrease for
|N | > 2|g|, it suffices to consider the range of −2 � N, N ′ � 2. In this case we obtain

∣∣T model
f i (b = 0, 2|g| = 1)

∣∣2 ≈
+2∑

N=−2

|JN (1)|2 + 4J0(1)J2(1) exp

(
− δk

keσ
2
θ

)
[exp (−i4ωδk tp) + exp (i4 ωδktp)]

=
+2∑

N=−2

|JN (1)|2 + 8J0(1)J2(1) exp

(
− δk

keσ
2
θ

)
cos (4ωδktp). (A58)

Because we here consider the range of −2 � N, N ′ � 2, Eq. (A58) does not satisfy Eqs. (A54) and (A55). In order
to be consistent with these equations, we take only the modulation term, i.e., the second term of Eq. (A58), and assume
Mmodel

mn (b = 0, 2|g| = 1) = 0 at tp = 0. We then obtain

Mmodel
mn (b = 0, 2|g| = 1) = −A + A cos (4ωδktp), (A59)

where A = 8J0(1)J2(1) exp(− δk
keσ

2
θ

) > 0. This equation suggests that the modulation Mmn(b = 0, 2|g| = 1) oscillates sinu-

soidally with the propagation time tp and with a period given by 2π/(4ωδk ) = πtbunch. Therefore, the first negative peak in
the modulation Mmodel

mn (b = 0, 2|g| = 1) is expected to appear at tp = πtbunch/2 = 1.6tbunch, which is consistent with the result
of the full quantum simulation in Fig. 4(a).

Next, at 2|g| = 2 [Fig. 4(b)], when we consider the combinations of (N, N ′) in the range of −3 � N, N ′ � 3, there are three
combinations giving nonzero contributions (see Table II),

∣∣T model
f i (b = 0, 2|g| = 2)

∣∣2 ≈
+3∑

N=−3

|JN (2)|2 + 8J0(2)J2(2) exp

(
− δk

keσ
2
θ

)
cos (4ωδktp)

+ 8 J1(2)J3(2) exp

(
− δk

keσ
2
θ

)
cos (8ωδktp) + 8 J−1(2)J3(2) exp

(
− 2δk

keσ
2
θ

)
cos (8ωδktp). (A60)

However, when σθ is not very large and exp(− δk
keσ

2
θ

)  exp(− 2δk
keσ

2
θ

) is satisfied, which is the case at σθ = 5 mrad used in this

work, we can neglect the last term and obtain

∣∣T model
f i (b = 0, 2|g| = 2)

∣∣2 ≈
+3∑

N=−3

|JN (2)|2 + 8 exp

(
− δk

keσ
2
θ

)
{J0(2)J2(2) cos (4ωδktp) + J1(2)J3(2) cos (8ωδktp)}, (A61)

and

Mmodel
mn (b = 0, 2|g| = 2) = −B1 − B2 + B1 cos (4ωδktp) + B2 cos (8ωδktp), (A62)

with B1 = 8 J0(2)J2(2) exp(− δk
keσ

2
θ

) > 0 and B2 = 8 J1(2)J3(2) exp(− δk
keσ

2
θ

) > 0. The faster oscillation period is 2π/(8ωδk ) =
πtbunch. Because the signs of the two cosine functions B1 and B2 are both positive, the modulation Mmodel

mn (b = 0, 2|g| = 2) is
always negative.

As a third example, we consider the case of 2|g| = 5 [Fig. 4(c)]. In Table III, we show all the combinations of (N, N ′) but now
in the range of −6 � N, N ′ � 6 and |N−N ′| � 4. Using the symmetry of the Bessel function J−N (x) = (−1)N JN (x), we find
in total nine combinations giving nonzero contributions. When we take the terms of |N−N ′| = 0 and 2, and neglect the terms
containing J2 and J−2, which are relatively smaller than the other terms (| J2(5)| = | J−2(5)| = 0.047), we obtain

∣∣T model
f i (b = 0, 2|g| = 5)

∣∣2 ≈
+6∑

N=−6

|JN (5)|2 + 8 exp

(
− δk

keσ
2
θ

)
{J1(5)J3(5) cos (8ωδktp)

+ J3(5)J5(5) cos (16ωδktp) + J4(5)J6(5) cos (20ωδktp)} (A63)

043110-18



COHERENT SCATTERING OF AN OPTICALLY MODULATED … PHYSICAL REVIEW A 103, 043110 (2021)

and

Mmodel
mn (b = 0, 2|g| = 5) = C1 − C2 − C3 − C1 cos (8ωδktp) + C2 cos (16ωδktp) + C3 cos (20ωδktp) (A64)

with C1 = −8 J1(5)J3(5) exp(− δk
keσ

2
θ

) > 0, C2 = 8 J3(5)J5(5) exp(− δk
keσ

2
θ

) > 0, and C3 = 8 J4(2)J5(2) exp(− δk
keσ

2
θ

) > 0. The

fastest oscillation period is 2π/(20ωδk ) = πtbunch. Because the coefficient of cos(8ωδktp), −C1, is negative while the other
two coefficients +C2 and +C3 are positive, the modulation Mmn(b = 0, 2|g| = 5) can be positive. A positive peak is expected to
appear at tp = 1/2 × 2π/(8ωδk ) = 3.9tbunch, which is consistent with the result in Fig. 4(c).
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