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Coherent scattering of an optically modulated electron beam by atoms
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Recent technological advances allowed the coherent optical manipulation of high-energy electron wave
packets with attosecond precision. Here we theoretically investigate the collision of optically modulated pulsed
electron beams with field-free atomic targets and reveal a quantum interference associated with different
momentum components of the incident broadband electron pulse, which coherently modulates both the elastic
and inelastic scattering cross sections. We show that the quantum interference has a high spatial sensitivity at the
level of angstroms, offering potential applications in high-resolution ultrafast electron microscopy. Our findings

are rationalized by a simple model.
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I. INTRODUCTION

When a free electron interacts with an optical field in
the presence of a third body, the electron exchanges energy
and momentum with the field [1-12]. The photon-electron
coupling in the vicinity of nanomaterials forms the ba-
sis of photon-induced near-field electron microscopy [7,13]
and chip-scale dielectric laser accelerators [14—16]. Because
electrons of different kinetic energies travel with different
velocities, the temporal density of the optically modulated
beam is reshaped during the propagation in vacuum, leading
to the generation of attosecond electron pulse trains [17-24].

In contrast to previously considered ultrashort electron
pulses with broad Gaussian energy spectra [25-29], the en-
ergy and momentum distributions of optically modulated
electron beams consist of coherent discrete photon peaks,
which might lead to unique phenomena. For example, it has
been predicted that when an optically modulated beam is em-
ployed for the excitation of a two-level system located outside
the beam, the excitation probability may be enhanced when
the transition energy matches an integer times the photon
energy of the modulating laser beam [30-33]. Recent studies
showed that this process can be described by the classical elec-
tric and magnetic fields associated with the temporal density
of the modulated beam [31,32].

In this work, we investigate quantum mechanical effects in
the scattering of an optically modulated high-energy (keV to
tens of ke V) electron wave packet by a field-free atomic target.
By using a time-dependent quantum mechanical theory [34]
with projectile wave packets [35] adapted from Refs. [27,28],
which is beyond the standard plane wave approximation, and
taking hydrogen as an example of a target, we show that a
quantum interference occurs through the coherent contribu-
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tions of different momentum components of the incident beam
enabled by the momentum transfer to the target. This inter-
ference modulates the elastic and inelastic cross sections by
more than 30%. We also show that the strongest modulation
of cross sections is induced when the target atom is located at
the center of the electron beam. The sign of the modulation is
reversed when the target is several angstroms away from the
beam center, which can be used for subnanometer imaging.
We hence expect applications in attosecond imaging, atomic
collisions, or radiology based on the insights into the funda-
mental quantum mechanical interaction between the optically
shaped electrons and atoms, as laid out in this work.

The paper is organized as follows. The theoretical model
is formulated in Sec. II. The results are discussed in Sec. III.
Section IV draws the conclusions. The Appendix gives a de-
tailed account of the derivations leading to the theory results
of the main text.

II. THEORETICAL MODEL

The physical system of this work is illustrated in Fig. 1(a).
A nonrelativistic electron wave packet propagating along the
z axis with group velocity v, and central longitudinal mo-
mentum 7k, is coherently accelerated or decelerated in the
presence of a modulation element by an optical field of wave-
length A and angular frequency w. As in many experiments
[10,18-20,22,36], we consider a modulation field whose du-
ration is longer than that of the electron wave packet so that
the electric field amplitude (Fj) is constant over the entire
wave packet. Examples of the modulation element include
membranes [6,9,11,18-20,24,36,37], nanomaterials [3,7,10],
nanofabricated dielectrics [14-16,22,23], and prisms [12,38].
Regardless of its type, the strength of the optical modula-
tion is characterized by a dimensionless coupling parameter
g x eFpk,/(m.w?), where e is the unit charge and m, is the
electron rest mass [10,11,36,39-41]. The information on the
three-body interaction between the electron, the optical field,

©2021 American Physical Society


https://orcid.org/0000-0003-4918-2709
https://orcid.org/0000-0003-4757-5410
https://orcid.org/0000-0001-7403-2070
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.103.043110&domain=pdf&date_stamp=2021-04-14
https://doi.org/10.1103/PhysRevA.103.043110

MORIMOTO, HOMMELHOFF, AND MADSEN

PHYSICAL REVIEW A 103, 043110 (2021)

a
( )X Optical control
F A

Y

Free electron %
i

Target atom
(H atom)
b

wave packet

(b) {‘ oy

-

Modullation
element

s (1

30)

w S 0.1

é-ceu 8*2 ..-..1.3::?}.))(

T —0.01 lo»ls

= 0 5 10
b, (nm)

FIG. 1. Concept and scattering geometry. (a) A free electron wave packet (blue) is modulated longitudinally by an optical field (red) with
a modulation element such as a membrane or a nanofabricated dielectric, depicted as a square. After the free-space propagation of distance
L, and duration t,, the electron wave packet is scattered by a field-free target (a hydrogen atom in the present study). The target is located
at the spatial focal plane of the pulsed electron beam (z = 0). (b) Mechanism of quantum interference. Different momentum components of
the incident electron wave packet (k; and k;) contribute to the scattering probability to the same final momentum (k;), which induces the
interference. (c) The total scattering cross sections as a function of the impact parameter b, at b, = 0. The cross sections decrease rapidly

with b,.

and the modulation element is captured by g. Larger |g|
yields broader energy and momentum spectra. The modulated
electron wave packet collides with an atom located at z = 0
where the electron beam is transversally focused. The target
is placed outside the laser field. We express the target posi-
tion as b = (by, by, 0). We control the distance between the
modulation stage and the target, L, = v.t,, where t, is the
corresponding propagation duration. Because different energy
and momentum components have different phase velocities,
the free-space propagation shifts the relative phase between
them, which reshapes the temporal density of the electron
wave packet (see below for details). The momenta of the
incident and scattered electrons, 7ik; and ik, are described
by their lengths 7ik; and /iks, and polar and azimuthal angles
6i, @) and (Of, @r). As illustrated in Fig. 1(b), quantum
interference occurs when different momentum components of
the incident beam, fik; and sz;, contribute to the same final
momentum /iks.

A. Time-dependent perturbation theory

To consider the scattering of the broadband electron
beam including its spatiotemporal structure, we adopt a
time-dependent S-matrix formalism [27,28,34] with three-
dimensional electron wave packets [35,42,43], which is
beyond the standard theory using a plane wave for the asymp-
totic incoming state. Here we consider the scattering of an
electron wave packet by an atom (A):

e(ki) + Alka,i, n) — e(ky) + Alka,r, m), 6]

where k4 ; and ks s are wave vectors of the target before
and after the scattering, respectively. The quantum numbers
n and m represent the initial and final electronic states of
the field-free target atom. The incident electron is assumed to
be nonrelativistic. In order to obtain the scattering amplitude
and probability, we first consider the time-dependent wave
functions of the system before and after the scattering. The

wave function before the scattering is given by
Wit xron) = [[dki [ dkos o) e

X XA,i(xAv t)l//n(rv t)v (2)

where a,(k;) and as (k4 ;) are complex amplitudes describing
the distributions over the momenta of the projectile electron
and the target atom, respectively. The wave function y;(x,, t)
is the plane wave part of the electron wave function,

1 " iE;t 3
Wexp(li'xe_7>a 3)
with E; = i‘zzki2 /(2m,), where & is the reduced Planck con-
stant. x, is the spatial coordinate of the incident electron
beam. We note that the integral of a,(k;) x;(x., t) over k; gives
the time-dependent propagating electron wave packet in real
space,

Xi(xev t) =

mmw=/ﬁmmmmn. @

The wave function x4 ;(x4, t) describes the external state
of the field-free target and is given by a plane wave,

1 . I.EA,il‘

Xa.i(Xa, 1) = e exp [lkA,i “(xa —b) — A
with E4 ; = h2kfu/(2MA), where M, is the mass of the tar-
get. Here x4 is the center-of-mass coordinate of the atom.

/b2 + bg, is the
impact parameter. The wave function v,(r, t) describes the

initial electronic bound state of the target characterized by the
quantum number n. We specify this target state as

Yn(r, 1) = gu(r)e™ ", (6)

where r is the internal spatial coordinate that denotes the set of
all target electrons, ¢, (r) is the spatial part of the eigenfunc-
tion, and 7w, is the eigenenergy of the state n. The atom is
located outside of the laser field and ¥,,(r, t) is the field-free
eigenstate.

| ®

The transversal component of b, i.e., b, =
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Second, the wave function of the system after the scattering
is given by

Wi(Xe, X4, 1, 1) = XX, )X (X4, OYn(r, 1),  (7)

where

.t
———75 €Xp (zkf X, — l—f> ®)

67t -
XrXe, 1) h

with Ef = Fzzkj%~ /(2m,) the plane wave for the scattered elec-
tron, and

lEA’fl‘
h

g (. 1) = exp [ ika,s - (ea = b) = | ®

(2 )'5/2

describes the external state of the target with E4 , =
Fzzki 7 /(2M,). The internal final state of the target is ex-
pressed by

¢m(", t) = ¢m(r)e—iw,,,l7 (10)

where /iw,, is the eigenenergy of the internal final target
eigenstate ¢,,(r). Within the first Born approximation and
considering only the direct scattering, the transition amplitude
is given by

Tﬁ(Ef,l}f,kA,f,b) = /// dxedxAdr/dt\IJ}‘-(xe,xA,r, t)
XV(xe_xA’r)qu(xeva’rvt)9 (11)

where V (x, — x4, r) is the electron-target interaction poten-
tial,

Ve ) A 1
Xo — XA, 1) = — -
A dmeg |x, — x4l
2 Z
1
‘ . (12
dmeg ‘= [xe — x4 — 1}l

where Z is the total number of electrons in the target, and &g
is the vacuum permittivity. We here assume that the target is
neutral. In Eq. (12), r; denotes the coordinates of the individ-
ual target electrons. Experimentally, the optical modulation
was demonstrated for electrons of the energy of tens and
hundreds of keV [3,7,9-12,14,18-23,36-38], which validates
the use of the first Born approximation [44] and allows us to
safely neglect the exchange scattering [45—47]. We note that
the use of a perturbative approach for the description of the
target-electron interaction (Born approximation) still accounts
accurately for the time dependence of the system [34], as
is also familiar from the theory of laser-assisted scattering
[1] and strong-field ionization [48-50]. We note that a full
numerical solution of the time-dependent scattering problem
[25,51] might be an alternative approach but it is neither
computationally attractive for the high-energy electrons prop-
agating in three or four space-time dimensions nor necessarily
given the accuracy of the Born approximation. Correction by
higher-order Born terms might improve the accuracy espe-
cially for cases of lower-energy projectile electrons or heavier
targets, whose discussion is beyond the scope of this work. By
inserting the explicit expressions of the wave functions given

above into Eq. (11), we obtain

Tyi(Ef. ks . ka p. b)
— 2nh / dk; / ks ay (i )an (s )

x ek abs(K . — K)8(ep — e0)Tyn(ki, kyp), (13)

where K;= kf —‘rkA!f, Ki=ki+kas, er=Ey+Esz5+
hwy, & = E; + E5 ; + ho, and

1 ’ * 7’
Touthio k) = 5 / dx [ / dre? () (x ,r)¢>n(r)]
x exp [i(k; —ky) - x'] (14)

is the first Born scattering amplitude for the plane-wave
incident electron, i.e., the elastic or inelastic atomic form
factor for electron scattering [52]. The two delta functions in
Eq. (13) represent the energy and momentum conservation of
the scattering process. A detailed derivation and the explicit
form of T,,, are given in Appendix Secs. 1 and 2, respectively.

The transition amplitude in Eq. (13) is the fundamental
quantity from which all observables can be constructed. If
we assume that we do not resolve the final momentum of the
target (fiky ), the scattering angle of electrons (i( r), and the
kinetic energy of the scattered electrons (Ey), then the total
scattering probability P,,,(b) from the target state n to m which
is located at b is given by

P
Pon(®) = f d ;Z(b) dk;. (15)
f

where the differential probability APy (b)/dk ¢ in the time-
dependent S-matrix theory is given by [4]

dPun(b)
dk ¢

Q) m? .
= /dkA,f/dEf-T|Tf-i(Ef,kf,kA,f,b)|2.

(16)

Here we work in a regime where the kinetic energy of the
electron beam is much higher than the electronic excitation
energies of the target giving |ks|/|k;| ~ 1. The solid angle
describing the propagation direction of the final wave vector
of the scattered electron is given by dk; = sin 6;d6dg;. The
steps detailed in Appendix Sec. 3 lead to

Pon(®) = Pon(b, ) = / Ty b g Pdky,  (7)
X a:(kiv ’E:’ g)ae(kiv ’Eiv g)

I}f)Tmn (kia I}iv I}f)eiki(i(lii‘;)b’
(18)

x T* (ki k,,

where
. 7 1 ’ * ’
Tun(kis ki k) = Wfdx [/ drg,, (r)V(x ,r)¢n(r)]

x expli(kik; — kpkys) - x'], (19)
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with k; satisfiying

%—%—hw + hw, (20)
2m,  2m, " "

Equation (20) reflects that a possible decrease in the
final kinetic energy of the outgoing electron is accompa-
nied by an excitation in the target atom. Py in Eq. (18)
is a constant. Equation (18) contains the coherent term
a:(ki,ic;, g)ag(ki,ﬁi, g). Because of the momentum transfer
to the target atom, different momentum components of the
incident beam (hk,-l:r; and hkilAci) can contribute to the same
final momentum /ik s [see Fig. 1(b)] and, accordingly, quan-
tum interference occurs depending on the amplitudes and the
relative phase of a,(k;, l:’,:., g) and a,(k;, IAc,-, g). Importantly the
term  aj(k;, lAc;, ga.(k;, ki, g) is absent in conventional elec-
tron scattering with plane waves but key in the case of the
wave packets [35,42,43] and especially so for the optically
modulated electron beams of this study.

B. Optically modulated electron beam

We consider an axially symmetric optically modulated
electron beam whose momentum distribution is expressed by

ac(ki, 0, 8) = e (ki 6;, 8)a, 1 (ki, 0;)e Pron®i0ite) (21

The transversal momentum distribution a, , (k;, 6;) is given
by
2

K2 )
—————5 exp (—— L@
Qro})'? 4o}

where k; = k;sin6; and %o, is the root-mean-square (rms)
transversal momentum width. For simplicity, we introduce
the angular width oy = o, /k,. In electron microscopes, the
typical value of oy is in the range of 1-10 mrad. The rms
spatial size at the focus (z = 0) in the transverse direction is
given by 1/(20,).

The optically modulated longitudinal momentum distribu-
tion a., | (k;, 0, g) is expressed as a superposition of Gaussians
of slightly different central momentum /ik, 4+ Nhdk associated
with the absorbed photon number N [10,11,13,33,39],

e, 1 (ki 0;) =

+00

1 ,
e (kiy 6, 8) = ——7 > In(2lghe™
(2710” Ne—oo
(ky — k, — N8k)?
X CXp (—”T . (23)
II

where k| = k; cos 6;, fioy is the rms momentum width and Jy
is the Bessel function of the first kind. Negative N corresponds
to the emission of photons. The momentum shift 7§k corre-
sponds to the one-photon energy gain and is approximately
given by
Mew
ke
According to classical mechanics, the maximal number
of photons absorbed or emitted by the electron is N = 2|g|.
Therefore, the maximal velocity shift is given by Avp.x =
2|g|hék/m, = 2|g|lw/k.. The photon-exchange number (N)

hék =

(24)

dependent phase ¢y = N arg(—g) [11] is set to zero, since
this choice makes the temporal density after the optical
modulation match experimental observations [18-24]. The
longitudinal rms spatial width is ~1/(20y), which corre-
sponds to the rms temporal duration of ~1/(2v.0)). We
note that membranes [9,20,37] and nanofabricated dielectrics
[22,23] are ideal modulation elements for the longitudinally
directional momentum modulation. The phase ¢pop(ki, 0, 2,)
in Eq. (21) represents the momentum-dependent phase shift
due to the free-space propagation of duration of ¢, from the
optical modulation to the target, and is given by

hkﬁ
¢prop(ki, 0i, l‘,,) =1 vekH - om, 5 (25)
see Appendix Sec. 4 for its derivation. The free-space prop-
agation reshapes the real-space density of the electron beam.
An interesting case is the density bunching into attosecond
pulses occurring at [20,53]
e hik; e
- e T (2
2|g|Adk>
More details of the free-space propagation and the attosec-
ond bunching are discussed in the next section (Sec. IIC).
Below, for convenience, #, is expressed in units of #yynch.

Tounch = =
O Avnax  2|glmea?

C. Numerical parameters and real-space density modulation

In this work, we assume a 10-keV electron beam (v, =
5.9 x 107 m/s, k, =51 A~"), with o) corresponding to a
duration of 100 fs [full width at half maximum (FWHM)]
similar to an experiment [11], A = 2 um [22,23], and atomic
hydrogen [Z = 1 in Eq. (12)] in the 1s state as target, unless
otherwise specified.

Before reporting results on the scattering, we briefly
discuss the temporal dynamics of the optically modulated in-
cident electron beam. Figure 2(a) shows the real-space density
of the propagating 10-keV electron wave packet, without the
influence of the target atom. The five panels are the snapshots
of the density |1/.(x.,?)|> given by Egs. (4) and (21) for
tp = fpunch, 1.€., the case where the attosecond bunching occurs
at the focal position of the electron beam, oy = 1 mrad and
2|g| = 5. Att = 0 (left panel), the energy and momentum of
the electron wave packet are modulated by an optical field.
After a propagation duration of #, (t = t,, middle panel), the
transversal size reaches its minimum. At ¢ > £, (two panels
on the right side), the beam is diverging. Simultaneously with
the transversal focusing dynamics, the longitudinal (or tem-
poral) density modulation can also be seen. Right after the
optical energy modulation (r = 0, left panel), the longitudi-
nal density is still a Gaussian. However, after the free-space
propagation (¢ > 0), the longitudinal density is modulated.
Att = t, = tyunch (middle panel), sharp peaks appear in the
density.

Figure 2(b) compares the real-space temporal density of
the incident electron beam |, (x,,?)|*> of Eq. (4) at the
transversal focus (r = 1,), i.e., at the position of the target
(z = 0), as a function of the propagation time (z,) for the cases
of 2|g| = 1,2, and 5. In contrast to Fig. 2(a), the attosecond
bunching occurs not only at the transversal focal position of
the electron beam (fpunch = 1) but also before (fpunch < )
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FIG. 2. Free-space propagation dynamics of the electron wave packet |1, (x., t)|* after the optical modulation. (a) Evolution of the optically
modulated 10-keV electron beam, calculated using Egs. (4) and (21). At# = 0 (left panel), the energy and longitudinal momentum distributions
are modulated by a laser field of 2-um wavelength but the real-space density has a Gaussian profile. After some free-space propagation (t > 0),
the longitudinal (temporal) density modulation can be seen. Simultaneously with the longitudinal density modulation, the transversal focusing
and divergence occurs with the propagation. (b) Temporal density at the target position (z = 0) at the modulation strengths of 2|g| = 1 (left
panel), 2 (middle panel), and 5 (right panel), the three cases for the results in Fig. 4. Vertical profile at each ¢, corresponds to the longitudinal
density profile. The propagation time #, from the optical modulation to the target, or equivalently, the location of the optical modulation,

controls the temporal density and the scattering probabilities.

and after (fyunch > 1,) the focus. Following the change of
the propagation time ?, from the optical modulation to the
target, the temporal density of the electron beam at the target
changes. The sharp density peaks separated by an optical
cycle (6.7 fs here) can be seen at #, = fyunpch in each panel.
At larger t,, the bunched peaks are temporally dispersed
and overlap with the neighboring peaks. These overlaps in-
duce interference among the peaks and produce the complex
temporal density profile. The calculated temporal density evo-
lutions in Fig. 2(b), especially the one in the right panel
(2|gl =5), are consistent with previous experimental [18-24]
and theoretical [10,31,39] reports, showing the validity of the
wave function and the propagation phase used in this study.

III. RESULTS: MODULATION OF SCATTERING
CROSS SECTIONS

A. Cross sections at zero impact parameter

Figure 1(c) shows the total cross sections without optical
modulation P, (b, g = 0) [Eq. (17) with g = 0] of the elastic
and inelastic [2s and 2p, final states, where the x axis is
defined in the lab frame in Fig. 1(a)] scatterings as a function
of the impact parameter b, calculated at oy =5 mrad and
b, = 0. The cross sections decrease significantly with by, by
a factor of 10% at b, = 10 nm. Therefore, we first focus on
the case of b, = 0, where the target is located at the center of
the electron beam. Below, we discuss the modulation of the

043110-5



MORIMOTO, HOMMELHOFF, AND MADSEN

PHYSICAL REVIEW A 103, 043110 (2021)

(a) 02 T atom ) bl - g (b) 1.0
§ 0.1- gl= =
= | L og=5mrad| 85
c 0.0 -;1S->2px; i O © 4
_(% o..' '''' ". ...................... E EOS
= '01 = g -
o = O
2 -0.2- 3 3 <
1s»1s ad w1sP2pre
-0.3 — T T 0.0+ — —
0 2 4 6 8 10 0o 1 2 3 4 5
ty / toynch Scattering angle 6; (deg)
(C) - H atom 0 (d) Bod
£ —0.34 exp(—Oklk,0¢°)+
S S 4
- cS
S £ 902+
B ek
g §50.1-
= =5
0.0+ | 1 1 |
0 1 2 3 4 5 6
0y (mrad)

FIG. 3. Modulation of total scattering probability at zero impact parameter, M,,,(b = 0, g). (a) Comparison of three scattering processes.
Qualitatively identical modulations are observed for these processes. (b) Differential cross sections for the three scattering processes. (c),(d)
Beam focusing angle dependence. (c) Modulations of the total elastic scattering cross section for four different focusing angles. (d) Comparison
with an exponential function (black dotted curve) and the simple model prediction (black curve). See text for details.

scattering probability associated with the optical shaping. For
convenience, we define the amount of modulation as
Poun(b, ) — Pun(b, g =0)

P (b, 8= 0) ’

M (b, g) = 27)

Hence, we compare the scattering probability of the optically
shaped electron wave packets to that without shaping. Fig-
ure 3(a) compares the modulation, M,,,(b =0, g), for the
three processes calculated with 2|g| =5 and oy = 5 mrad,
as a function of the propagation time f,. At zero free-space
propagation (t, = 0), we do not observe any modulations; see
Appendix Sec. 5 for a formal proof of this property. How-
ever, we observe a clear modulation at #, > 0, in particular
~20% suppression at ¢, ~ 1.7tpunch and ~10% enhancement
at 1, ~ 3.8tpunch- All three curves are qualitatively identical,
suggesting that the modulation and interference appearing in
Fig. 3(a) originate from the incident electron beam rather than
the scattering processes. Equation (18) shows that different

k; and I},Z contribute to the same final momentum by virtue of
momentum transfer to the target atom [Fig. 1(b)]. Hence quan-
tum interference occurs when the momentum components
with different incident angles (6;, ¢;) and (6;, ¢;) contribute
to the cross section at the same scattering angle (6r, ¢r). A
wider angular distribution, i.e., a larger momentum transfer,
therefore leads to stronger interference. As shown in Fig. 3(b),
the dipole-allowed transition of 1s — 2p, is dominated by
forward scattering and shows a narrower angular distribution,
which reduces the modulation contrast in Fig. 3(a) by 60%.
We now investigate the modulation dependence on the fo-
cusing angle of the electron beam (o). Figure 3(c) compares

the modulation of the total elastic cross section (1s — 1s)
calculated with four different angular widths, oy =1, 3, 5,
and 7 mrad. We observe less than 3% modulation at oy < 3
mrad, but up to 30% at 7 mrad. Figure 3(d) summarizes the
results. Red circles in Fig. 3(d) show the modulation am-
plitudes |M,,,(b =0, g)| at 1, ~ 1. Ttyynch. At 09 = 0, which
corresponds to the infinitely large beam size, there is no
modulation. At this limit, the transversal momentum distribu-
tion of Eq. (22) becomes a, | — \/%8[(/(,- sin 8[)2]. Thus only
0; = 0] = 0 is allowed in Eq. (18) and accordingly the coher-
ence and associated interference effect are lost. On the other
hand, the modulation amplitudes increase exponentially up to
oy ~ 4 mrad, as seen by comparison with the black dotted
curve (the formula is derived below). The larger angular width
allows the coupling of a wider range of ¢; and 6/, leading to
the stronger modulation.

We also investigate the dependence on the optical coupling
strength |g|. We plot and compare M,,,(b =0, g) [Eq. (27)
with b = 0] for the three cases of 2|g| =1, 2, and 5 as
red circles in Figs. 4(a)—4(c) at oy =5 mrad, all for the
total elastic (1s — 1s) cross section. The curve of 2|g| =1
[Fig. 4(a)] shows a sinusoidal oscillation while the other two
[Figs. 4(b) and 4(c)] show nonsinusoidal shapes, suggesting
that the modulation of 2|g| = 1 can be described by a single
sinusoidal function, however those of 2|g| = 2 and 5 contain
multiple contributions. At 2|g| = 1 and 2, we observe only
negative modulations [M,,,(b =0, g) < 0] while at 2|g| =
5, we observe a positive modulation as well. We note that
|g|-dependent modulations are also found in the inelastic scat-
tering channels (not shown).
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FIG. 4. Modulation of the total elastic cross section (red circles) for b = 0 at the optical coupling strength of 2|g| = 1 (a), 2 (b), and 5 (c).
The amplitudes and the shapes of the modulations are well reproduced by the simple model calculation (black curves). See text for details.

B. Simple model

In order to understand the above results, we invoke a simple
target-independent model. By considering the limit of very
small oy (o < 8k), by assuming 7;,,, = 1 (uniform scatterer)
and by taking sets of (k;, 6;, ¢;, 6}, ¢;) giving dominant con-
tributions, we obtain the following approximation to Eq. (18):

) +00 +00
T B, 9 = PP Y In@lgl) D In(2lgh)

N=—o00 N'=—o00

IN — N'|8k
X exp _—2ke092

x e~ W =NDuty j( /OIN — N'|Skkob ),

(28)

where P°%l is a constant, ws = iSk?/(2m,) =
1/(4|gltounch); see Appendix Sec. 6 for the derivation.
This model captures the essence of the coherent term
ar(ki, k;, @)a.(k;, k:, ) of Eq. (18) for the optically modulated
electron beam. The numerical results of Eq. (28) are plotted
in Figs. 3(d) and 4(a)-4(c) as black curves. Even though
there is no free parameter in Eq. (28), all the curves
reproduce the results of the full simulations surprisingly well.
Equation (28) shows that the quantum interference and the
modulation of the scattering probabilities can be described
by the combinations of two different photon-exchange
channels with amplitude weights Jy and Jy. Since the
absolute values of the Bessel functions significantly decrease
for |N|, |N’| > 2|g|, it suffices to consider the limited
range of N and N’ (see Appendix Sec. 7 for detailed
discussion). Moreover, because of the symmetry of the
Bessel function, J_y(x) = (—1)"Jy(x), most combinations
of Jy and Jy. vanish after the sum over N and N’ except
for IN—N'| =0,2,4.... Because the terms of [N—N'| =0
are independent of #,, the modulations seen in Figs. 3 and
4 are given by the terms satisfying [IN—N’| = 2,4, .... The
strength of the coupling is determined by the exponential
term exp(—|N—N’|8k/(2k6092)), showing that a larger
difference between N and N’ gives a smaller contribution.
The black dotted curve in Fig. 3(d) shows this exponential
term with [N—N’| = 2 and is in good agreement with the full
simulations (red circles). The deviation at large oy is due to
contributions from |[N—N'| > 4.

In order to explain the observed oscillations of
M,,(b=0, g0 [Eq. (27) with b=0] in Fig. 4, we
consider the combinations of (N, N') yielding the dominant
effects. At 2|g| =1 [Fig. 4(a)], we find them to be
(N,N')=(2,0),(—2,0),(0,2), and (0, —2). The other
combinations vanish or give negligibly small contributions;
see Appendix Sec. 7 and Table I for detailed discussion.
Equation (28) shows that the phase associated with
the free-space propagation is proportional to N> — N’
The above combinations give N2> —N?=4 or —4.
Using e +e ™ =2cosx, where x is a real number,
M, (b =0, g) within the model of Eq. (28) is reduced
to the form of —A + Acos(4ws t,) with A > 0, which
explains the sinusoidal oscillation observed in Fig. 4(a) and
M, (b=0, g) <0 at any 7,. When we apply the same
discussion to the cases of 2|g| = 2 and 5 [Figs. 4(b) and 4(c),
respectively], we find that M,,,(b =0, g) is simplified to
the forms of —B; — B, + B cos(4wsy t,) + Ba cos(8wsy t,)
and C; —C, — C3 — Cycos(8wsy t,) + C; cos(16wsy tp) +
C3 cos(20wsi t,), respectively, with real positive numbers
B;,C;>0 (I=1,2,...), expressed in terms of Bessel
functions; see Appendix Sec. 7 and Tables II and III
The largest frequencies 4wsi, 8wsk, and 20ws; with
wsr = 1/(4|gltbunch), for 2|g| =1, 2, and 5, respectively,
suggest the appearance of the first negative peaks at
tp/tounch = /2 = 1.6 for all three cases. In the case of
2|g| = 2 [Fig. 4(b)], the signs of the two cosine functions are
both positive, which give M,,,(b =0, g) < 0. On the other
hand, in the case of 2|g| = 5 [Fig. 4(c)], the term cos(8wsy ;)
has a negative coefficient, which leads to M,,,(b = 0, g) > 0.
The frequency 8ws; suggests the positive peak appearing at
tp/tounch = 57 /4 = 3.9 (see Appendix Sec. 7) which agrees
with the full simulation.

TABLE I. Combinations of (N, N’) at 2|g| = 1 with their contri-
bution to the scattering probability in the simple model.

IN>~N"?| [IN=N'| (N,N") Net contribution
1 1 (1,0), (—1,0), (0,1), (0,—1) 0
3 1 2,1, (—-2,-1),(1,2), (—1,-2) 0
3 3 2,—1),(-2,1),(-1,2),(1,-2) 0
4 2 (2,0), (—2,0), (0,2), (0,—2) 4Jo(1)J2(1) >0
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TABLE II. As caption of Table I, but for 2|g| = 2.

IN2—N?| [IN—N'| (N,N'") Net contribution
1 1 (1,0), (—1,0), (0,1), (0,—1) 0
3 1 @D, (=2,-D,(1,2), (—1,-2) 0
3 3 @2,=1), (=21, (=1.2),(1,-2) 0
4 2 (2,0), (=2,0), (0,2), (0,—2)  4Jy(2)J>(2) > 0
5 1 (3.2),(=3,-2),2.3), (—2,-3) 0
5 5 (3,-2),(=3.2), (=2.3), (2,=3) 0
8 2 (3,1, (=3,—1,(1,3), (=1,=3) 4J;(2)J5(2) > 0
8 4 (3,=1),(=3,1), (=1,3), (1,=3) 4J_;(2)/;(2) < 0
9 3 (3,0), (=3,0),(0,3), (0,—3) 0

C. Cross sections at nonzero impact parameters

Next, we consider the modulation of the scattering proba-
bilities at nonzero b , i.e., for a target displaced from the focus
of the electron beam. According to Eq. (18), the parameter b
induces a phase term of e~k {ts physical interpretation
is illustrated in Fig. 5(a) for the case of b = (b,, 0, 0). For
an electron wave with an angle 6;, one can find the difference
in the geometrical path length from the source as compared
to the case of b = 0 (green circle without filling), which is
given by b, sin6; = k; - b, shown by the red arrow. This path
difference corresponds to a phase shift of k;-b. We note
that the same discussion is applied to electron diffraction by
molecules in which case the path length difference occurs in
the scattered waves. The sign and the magnitude of the coher-
ent term a; (k;, ’};, g)a.(k;, ki, g) in Eq. (18) is now modified by
the relative phase for k; and k), that is ¢ &—%)% in Eq. (18).

The simulation results M,,,(b, g) [Eq. (27)] for the elas-
tic scattering using Eqgs. (17)—(19) are shown in Fig. 5(d)
with red filled circles. As in Figs. 3(a) and 4(c), we choose

TABLE III. As caption of Table I, but for 2|g| = 5 and [N—N'| < 4.

IN2=N"| IN=N'| (N,N") Net contribution
1 1 (1,0), (—1,0), (0,1), (0,—1) 0
3 1 2,1), (-2,—1),(1,2), (—1,=2) 0
3 3 2,—1),(-2,1),(—1,2), (1,-2) 0
4 2 (2,0), (—=2,0), (0,2), (0,—2) 4Jy(5)J>,(5) <O
5 1 3.,2), (—3,-2),(2,3), (—2,-3) 0
7 1 4,3),(—4,-3),(3,4),(—3,—4) 0
8 2 @3,1), (=3,—1),(1,3), (—=1,-3) 4J,(5)J5(5) <0
8 4 3,—1), (-=3,1),(1,-3),(—1,3) 4J_1(5)J5(5) >0
9 3 (3,0), (—3,0),(0,3), (0,—3) 0
9 1 5,4), (—=5,—4), (4,5), (—4,-5) 0
11 1 (6,5), (—6,-5), (5,6), (—5,—6) 0
12 2 4,2), (—4,-2), (2,4), (—2,—4) 4J,(5)J4(5) >0
15 3 “,1),(—4,—-1),(1,4), (—1,—4) 0
16 2 (5,3), (—5,-3),(3,5), (—3,=5) 4J5(5)J5(5) >0
16 4 (4,0), (—4,0), (0,4), (0,—4), 4Jy(5)J4(5) <0
20 2 (6,4), (—6,—4), (4,6), (—4,—6) 4J4(5)Js(5) >0
21 3 (5,2), (—5,-2),(2,5),(—2,-5) 0
24 4 5,1), (—=5,—1), (1,5),(—1,-5) 4J:;(5)J5(5) <O
27 3 (6,3),(—6,—3),(3,6),(—3,—6) 0
32 4 (6,2),(—6,—2),(2,6),(—2,—6) 4J,(5)Js(5) > 0

2|gl =35, 0g = 5 mrad and ¢, = 1.5¢ypcn, Which gives a neg-
ative modulation at b; = 0. We observe an oscillation with
b, the strongest negative peak at b, = 0, the highest positive
peak at around b, = 0.7 nm, and the second negative peak at
around b, = 1.5 nm. Nearly the same oscillation is observed
for 1s — 2s (black open squares). We therefore set 7, = 1
(uniform scatterer) and simulate the dependence both on b,
and b,. The result shown in Fig. 5(b) shows a circular pattern.
The vertical slice at b, = 0 is shown in Fig. 5(d) as the green
curve, well reproducing the results of 1s — 1s (red circles)
and ls — 2s (black open squares). On the other hand, at
tp = 4tpunch, Which gives a positive modulation at b, = 0 [see
Fig. 4(c)], we obtain the result shown in Fig. 5(c). The radii of
the circular patterns are nearly identical to those in Fig. 5(b),
but the sign of the modulation is opposite. The oscillation for
1s — 2p, [blue diamonds in Fig. 5(d)] has a longer period
because the narrower angular distribution [Fig. 3(b)] gives
smaller relative phase (IAci — lAc:») - b; see discussion above.

In both cases of Figs. 5(c) and 5(d), the incoherent av-
eraging over the target positions b, and b, gives net zero
modulation. When we consider an ensemble of target atoms
whose spatial distribution is given by p(b), the total scattering
probability is given by

P = [ p®Pub. 915 (29)

When target atoms are uniformly distributed in the x-y
plane, i.e., p(b) = p.(b;), the impact parameter dependence
of Eq. (18) is expressed as

too L,
/ / G E—EDb g b
—00 V

= (278 (kik; — k;) )8 (kitki — k),). (30)

where (k; — IAc:.)x and (k; — I:::)y are the x and y components of
ki — IAc; The product of the two delta functions is equivalent to
8(6; — 6/)8(¢; — ¢!). Under this condition, the coherent term
of Eq. (18) becomes a’(k;, 0}, g)ac(ki, 6;, 8) = |ac(k:, 6;, g)|*.
Therefore, the scattering probability is independent on the
phase of a, and no modulation occurs, i.e., M,,, = 0. The
target atoms uniformly distributed along the z axis, i.e.,
p(b) = pxy(by, by) also gives zero net modulation. We note
that

+oo .
/ SMEED Gy, = 2ms(lh —K)). (D)

o0

where (k; —lAc;)Z is the z component of k: —lAc;. The delta
function § ((IAc; — I};)Z) is equivalent to §(6; — 6;). Therefore,
M,,, = 0 and no modulation is observed when incoherent
averaging occurs. Thus, in order to observe the coherent
effects shown in Fig. 5, one needs spatially fixed samples
such as two-dimensional crystals or optically trapped atoms
or nanoparticles.

We now investigate how the impact parameter dependence
is scaled with the optical coupling strength |g| and wave-
length XA. To this end, we define the parameter by which is
the minimum impact parameter giving M,,,(b, g) = 0; see
Fig. 5(d). The simulated dependences for |g| and A are plotted
as green circles in Figs. 5(e) and 5(f), respectively. While
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FIG. 5. Nonzero impact parameter and the angstrom-level spatial dependence. (a) Impact parameter and the associated phase. Depending
on the angle 6; (6), a path length difference (red arrow) arises, which induces the relative phase of the two interfering components (k; and
k). The distance between the electron beam and the target is exaggerated for ease of illustration. (b),(c) Two-dimensional impact parameter
dependence at f,, = 1.5tpunch (b) and ¢, = 4tpunch (¢) assuming 7,,, = 1. (d) Slice at b, = 0 and comparison with the three collisional processes
of the hydrogen atom. (e),(f) Zero-modulation impact parameter (by) as a function of the optical modulation strength (e) and wavelength (f).

there is almost no dependence of by on |g| [Fig. 5(e)], we
observe a monotonic increase with A [Fig. 5(f)]. To un-
derstand these results, we return to the simple model and
Eq. (28). In Eq. (28), the b dependence is given solely by
the term Jo(~/2|N—N'|6kk.b ), which is independent of |g|.
By using Jo(x) = 0 at x = 2.4 and by recalling that the domi-
nant contribution stems from [N—N’| = 2, the model predicts
by = 2.4/s/46kk, = 0.42 nm at A =2 um and for 10-keV
electrons [black line in Fig. 5(e)], which agrees well with
the simulation (green circles). The wavelength dependence
of 8k = mew/(lik,) o 1/ gives by o +/A. In Fig. 5(f), the
/A dependence (black curve) reproduces well the simulated
results (green circles) at A < 5 um. The deviation between
the exact results and the model at large A, i.e., small 8k, is
caused by the consideration of just the dominant contributions
in the simple model; see Appendix Sec. 6. The wavelength
dependence can also be understood from Eq. (23) which
suggests that for small wavelength, i.e., larger §k, a wider
range of 6; is required to cover different N components. A
larger 6; gives a longer path length difference [Fig. 5(a)],
giving stronger impact parameter dependence and smaller by.
The dependence of 8k o 1/k, suggests a weak dependence
on the central velocity of the electron beam; see Sec. IIIE
below.

D. High energy approximation

Before concluding, we discuss two more aspects for future
theoretical and experimental studies, namely, (i) an approxi-
mation which reduces computational complexity (Sec. III D)
and (ii) the generality of our findings for other electron beam
parameters (Sec. IITE).

First, we introduce an approximation which speeds up the
numerical evaluation of P,,(b, g) [Eq. (17)] and M,,,(b, g)
[Eq. (27)]. The results shown in Figs. 1 and 3-5 are ob-
tained with Egs. (17)-(19), which contain integrals over seven
parameters in total. We introduce here a high-energy ap-
proximation which allows us to perform the integral over k;
analytically and to reduce computational time significantly.
When the central energy of the electron beam is much
higher than the energy bandwidth after the optical modula-
tion, i.e., k. > 8k, and k, > o), which is the case for all
the reported experiments [17-24], the transversal momentum
distribution a,  (k;, 6;) [Eq. (22)] and the scattering form
factor T,,,(k;, l}i, k ) [Eq. (19)] are nearly constant over the
variation of k; within the momentum distribution of the elec-
tron beam. Therefore, they can be represented by their values
at ki = ke,

e, 1 (ki, 0;) ~ ae 1 (ki = k., 0;), (32)
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FIG. 6. Validity of the high-energy approximation. (a) Simulation result for 10-keV electrons with the high-energy approximation with
Eq. (34) (purple curve) compared to that of full simulation with Eq. (18) (red circles). The two results match well. (b) Impact parameter
dependence at t,, = 1.5#,,cn for the three collisional processes of the hydrogen atom. Curves show the results of the high-energy approximation
with Eq. (34). Circles, squares, and diamonds show the simulation results with Eq. (18), the same as in Fig. 5(d). The results of the full

simulations are well reproduced.

and

Ton(kis iy ) ~ T (ki = ke, ki e ). (33)

Under this approximation, the differential scattering prob-
ability |Ty:(ky, b, g)* in Eq. (18) can be expressed as
| Tyitks, b, o)
= & [ dh [ d a2 = ke 60 = ko)

X T (ki = ko, ko k)T (ki = ko b, Ko p)
+00 +0o0

x>y vl InQIgDkn v 6:. 6] b, 1)),

N'=—o00 N=—o0

(34)
where
T (05, 0. b. 1,) = / Kdkexpliki(k; — k) - b]
X exp (ikive ty(cosb; — cos b))
k% t
_ P (cos?0; — coszei’)>
M
( (k; cos 6; — k, —N(Sk)z)
xexp | — 3
40”
( (ki cos 0] — k, —N/(Sk)z)
xexp | — 5 .
40”
(35)

This integral over k; can be performed analytically. Be-
cause we consider 6; and 6/ of the order of mrad, we can
consider the Taylor expansions of cos6; and cos 6/ and take
the leading orders cos 6; = 1—6?/2 and cos 6] = 1—6;%/2. By

using k, > 8k, oy, we obtain approximately

Linn (6, 6],b,t,)

A/ 27‘[ 0’||k3
(1 - ’.‘7\\22_;1?:(91‘2 - 91‘/2))
( (k. (67 — 0) — 25k(N' — N)}2>
xexp|—

3207 (1 - ia‘f%’g(ef —0/%)

~

72

x expliko(k; — k) - b]. (36)

In order to confirm the validity of this high-energy
approximation, we compare in Fig. 6(a) the modulations
M., (b =0, 2|g| =5) of elastic scattering calculated with
Egs. (18) and (34). Because the absolute values of the Bessel
functions decrease significantly for |N|, [N’| > 2|g|, the sums
over the range of —6 < N, N’ < 6 are sufficient to obtain re-
sults that do not change qualitatively with increasing |N|, |[N’|;
see discussion in Appendix Sec. 7 and Table III. The two
curves are almost identical. In Fig. 6(b), we show the mod-
ulation at nonzero impact parameter, M,,,(b # 0, 2|g| = 5).
The results given by the full simulation with Eq. (18) depicted
by circles, squares, and diamonds are well reproduced by
the results with the high-energy approximation of Eq. (34)
shown in lines. These results demonstrate the validity of the
high-energy approximation. The high-energy approximation
speeds up the computations by more than an order of magni-
tude compared to the evaluation of the full integrals. The good
agreement facilitates its application in future works.

E. Beam parameter dependence

All the results so far were obtained by assuming 10-keV
electrons of 100-fs duration. We here consider to which extent
our findings are robust against wave packet duration and elec-
tron kinetic energy. First, we consider the dependence on the
wave packet duration, i.e., the longitudinal momentum width
hoy [see Eq. (23)]. Figure 7(a) compares the modulation of
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FIG. 7. Beam parameter dependence. (a) Modulations M,,,(b = 0, 2|g| = 5) of total elastic scattering probability at 10 keV for five
different longitudinal momentum widths /o). The corresponding FWHM durations are shown. At durations longer than 50 fs, the modulation
is nearly identical. At shorter durations, the dispersion of each N-photon component becomes significant and the deviations from the results
with longer durations become noticeable at large f,,. (b) Zero-modulation impact parameter by (see Fig. 5) as a function of the kinetic energy
of the incident electron beam. Black curve shows the prediction of the simple model. Below 20 keV, by is almost constant at by ~ 0.4 nm, in

agreement with the model prediction.

elastic scattering probabilities at b = 0 and at five different
values of fio}. The corresponding FWHM initial wave packet

durations +/21n2/(v.0|) are shown next to the curves. For
the durations longer than 50 fs (red, black, and green curves),
the modulations are nearly identical. However, at 25 fs (blue
curve), some deviation is observed especially at large prop-
agation time f, > 4#yunch. This deviation can be attributed to
the dispersion occurring in each N-photon component, which
becomes stronger at shorter duration, i.e., larger fio). At the
very short duration of 10 fs (purple curve), which is compara-
ble to the laser cycle (6.7 fs at 2 um wavelength), significant
deviation occurs already at t, = 2fpunch-

We then consider the dependence on the kinetic energy
of the incident electron beam Fzzke2 /(2m,). The green circles
in Fig. 7(b) show the zero-impact parameter by (compare to
Fig. 5) as a function of the electron-beam kinetic energy,
calculated with 7,,, = 1. At oy = 5 mrad, we observe notice-
able modulations at energies only above 3 keV. Below that,
the coupling of different N-photon components are negligibly
small at the angular divergence. At the energies below 20 keV,
bg is almost constant at around 0.4 nm, in good agreement
with the simple model prediction (black curve). However, at
energies higher than 50 keV, deviation from 0.4 nm can be
seen. This is because the approximation used in the simple
model Eqgs. (A44) and (A45) (see Appendix Sec. 6) is not
perfectly accurate at high kinetic energy, i.e., large k.. The
approximation is also not fully accurate for long wavelength,
i.e., small 8k, which can be seen in Fig. 5(f). Both cases yield
by larger than 0.4 nm but still at around 1 nm.

In short, our findings are robust over the wide range of
electron-beam energy and pulse durations. Some quantitative
deviations occur at high kinetic energy (>50 keV), short du-
rations (< 10 fs), and long optical wavelength, but can be
estimated accurately and simply by the approximated form of
Egs. (34) and (36).

IV. CONCLUSION

In summary, we have investigated the scattering of an
optically modulated electron wave packet by a field-free

atomic target with the time-dependent perturbative S-matrix
approach. By virtue of the spatial focusing, the discrete longi-
tudinal momentum components of the electron wave packet
couple with each other via the scattering process and the
associated coherent interference results in a modulation of the
scattering probability. The sign and the amplitude of the mod-
ulations were controlled by the longitudinal and transversal
momentum distributions as well as the dispersion of the pro-
jectile electron wave packets, i.e., the relative phases between
different photon-exchange channels. This suggests the possi-
bility to characterize an optically modulated electron beam
with unknown temporal and momentum structures through its
scattering with a field-free target. Stronger modulations were
observed in elastic scattering and dipole-forbidden inelastic
scattering than in dipole-allowed inelastic scattering, which
might be applied to electronic state-selective excitation. The
scattering probability modulation has a strong impact param-
eter dependence and is hence very sensitive to the position
of the target atom with respect to the focus of the electron
beam. The largest enhancement (suppression) is predicted
for a target at the center of the electron beam while the
suppression (enhancement) occurs for a target only a few
angstroms away. Combined with the ability to control the spa-
tial dependence of the scattering probability modulation with
the optical wavelength of the electron beam modulation, the
quantum interference reported here might facilitate spatially
selective excitation or probe of, for example, optically trapped
atoms or two-dimensional solids, or even provide an opportu-
nity towards damage-reduced microscopy and high-resolution
imaging with attosecond electron pulses.
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APPENDIX
1. Derivation of Eq. (13)

By inserting the explicit expressions of the wave functions given by Eqgs. (2)—(10) into Eq. (11), we obtain
Tyi(Ep ky ko, b) = / f f dx.dxadr f dt / dk; / dka; ac(ki)as(ka,;)
X Xf (e )X (a, OV (r, DV (e — X4, 1) Xi(Xe, ) Xa,i(Xa, DYn(r, 1),
- ﬁ [ b [ s acranten st [ ar g
X (f dxa /der(xe —xa,r)explitk; —ky) - x.Jexp[i(ka; —ka r) -xA]> Gu(r)
8 /:Odt exp (lETft 4 iE;l,ft B IET,t B iEg’it>exp (ih:mt B ih:nt>. (AD)

We first consider the integrals over x4 and x,,

/ dx, f dx.V(x, —xs,r)explitk; —ky) - x.]exp[itka; — kas) - x4l

= /dxA explitki —ks+ka; —ka ) x4l /dx'V(x', ryexp[i(k; —ky) - x'], (A2)
where x’ = x, — x4. The integral over x4 gives a delta function,
/ dxA exp [l(k, — kf + kA’,‘ — kA’f) . xA] = (27[)%8(Kf — K,) (A3)

This delta function represents the momentum conservation in the scattering process.
We then perform the integral over ¢ in Eq. (A1) and obtain

/*+OO " <lEfl " l.EA7f[ iE;t l'EA,il) ihw,,t ihw,t 27 h 8( ) (Ad)
€X _— _— = €X — = Er —&;).
_ P i i n )P\ T 7 /

This delta function represents the energy conservation. By inserting Eqs. (A2)-(A4) into Eq. (A1), we obtain Eq. (13).

o0

2. Atomic form factor

We here give the explicit expression of the scattering form factor [7,,,,,, Eq. (19)] for the atomic hydrogen target. The spatial
part of the eigenfunctions of the 1s, 2s, 2p, states are known analytically and given by

11\ r
P15(r) = —<—> eXP(__)’ ()

T \ ag ap
_\/T 1 3/21 r r A6
$2,(r) = ;(2—%) (—z—ao)exp(‘%)’ o
_\/T 1\ 9 r A7
¢2px(r) = ;(2_(10> r COst exp (_2_610)’ ( )

respectively, where r and 6 are the length and the polar angle of r with respect to the x axis in the laboratory frame [see Fig. 1(a)].
The transition amplitudes 7,,, of the elastic and inelastic scatterings are given by [52]

—e* aj(adq* + 8)

Ts' s = B A8
15,15(q) 87260 (ang +4)2 (A8)
2 4.2 2
Toa@) = 55— {“09 3 (A9)
7780 (agq? + 3)
&2 62ia N
Tisop(q) = 0d (A10)

2 3’
8mw2eg (g + %)
where fig = fi(k; — k) is the momentum transfer, g, is the x component of ¢, and qy is the Bohr radius.
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3. Derivation of Eq. (18)
By using Eq. (13), the magnitude square of the transition amplitude |T7;(Ef, k #.ka.r,b)|? is given by

|Tfi(Ef,i€f,kA,f,b)|2 =47'[2F12/dki/dkA,i/dk',-/dk'A,,- a.(k;) a’ (k) aA(kA,,')aj(k'A,i)e_i(kA<‘_k’A~f)'b

x 8Ky —K)S(K; — K)3(er —€)8(er — &' DT (K, k)T (ki K p), (A11)
where k4 r is included in the delta functions §(Ky — K;) and §(K s — k;). Using the formula
S(x —y)8(x —2) = 8(y — 2)8(x — 2), (A12)
the delta functions in Eq. (A11) become
5Ky — KoKy — K = 8(K' — K)d(Ky — Ki) = 81(K; + K a.) — (ki + ka DISIKy +Ka ) — (ki +ka )], (A13)
and
S(ep —&)8(er —€;) = 8(e; — €)8(ef — &1). (A14)

We first perform an integral over k4 s in Eq. (16) with §[(ky + k4 s) — (ki + ka ;)]. The differential probability then becomes

dP,,(b) / 27 ) m? . 5
= = dE————<|Tr(Ef, kr,b)|", AlS
dk; A |T¢i(Ef, kg, b)| (A15)
with
\TEy Ry )P = 4R / dk; f dky, / dK, / Ky s aus) @ (k) ap (k) () e ®n koD
X ST, + K) — (s + K 18(E) — 6086 — )T (Ko ke ) T K ), (AL6)
where

Rk +ka; — ky)?
2M 4

e =Ef+ + hwy,. (A17)

Second, we perform an integral over k;t ; with §[(K’; + k'4,;) — (k; + k4 ;)] and obtain

\TE Ry, )P = 4R / dk; / dky, / Ak, ayk) @ (K an (k) (s + s — K))

x KK (sl — e)8(ep — eT (K k)T (ki ke f), (A18)
where
Rk +ka; — K|
= E/ : fiw,. A19
gl l+ 2MA + C() ( )

Third, we perform an integral over k4 ;. To this end, by using M4 >> m, and by assuming that the momentum distribution of
the electron is narrow enough to satisfy |k}| + |k;|= 2|k;|, we obtain an approximated form of §(¢} — ;) as

sl oy o TIRE | Ptk =K KPRkl
& — &)= n — - - n
i 2m, 2M, T om, o,
~ s PIKE R
o 2m, 2m,
me ’
~ SCIK)| — i), A20
T (Clk;| — 1k:]) (A20)
Similarly,
S(ey — &) = 8(Ef — E; + iy — hiwy,). (A21)
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In addition, we introduce one more approximation. Because the target atom is well localized in space, its momentum
distribution a4 is much wider than that of projectile electrons [27]. Then we can use the following approximation:

ay(ki +ka; — ki) = aj(ka). (A22)
We can now perform the integral over k, ; in Eq. (A18),
Ty g B =i [ ki [ s auth) et

me

X
12 |k;|

S| — |kiS(Ef — E; + hay, — Ry )T, (K, k)T (ki K g ), (A23)
where we introduced the shorthand notation I4 for the integral,
Ih= f e laen ). (A24)

For convenience, we use spherical coordinates in the evaluation of the integrals, that is, k; is expressed by its length k; and the
polar and azimuthal angles (6;, ¢;),

Ty (Ef, kp, b)* = 4n?R* Iy / k2dk; / sin 0;d6; / do; / k;dk, / sin 0/ d6) / dola,(k;, 6;, ;) a’(k], 6], ¢})

x e""‘f—"’f)"';—;a(k; — k)S(E; — E; + hwop, — ho,) T,

i

(ki k)T (ki Kep). (A25)
We perform the integral over k; by using the presence of §(k; — k;) and obtain

\Ti(Ef, ks, b)* = 4m*m, Iy f I dk; f sin 6;d6; / do; / sin 6/d6) f dg;

% ao(ki, knyar (ki k) e EFDP S(E, — B+ havy, — o, )T

mn

(ko ke k)T ki i K ), (A26)

where k; and l::: are unit vectors along k; and k|, respectively. Finally, we perform the integral over E; in Eq. (A15) with
8(Ef — E; + hiw,, — liw,) and obtain Eq. (18).

4. Propagation phase

The propagation phase ¢prop(ki, 6;,2,) [Eq. (25)] is obtained by the following procedure. The evolution of the real-space
amplitude of the electron wave packet is given by the Fourier transform of the momentum-space amplitude [39] given by Eq. (4).
For convenience we repeat it here:

iEt

1 .
We(xe, t) = W /dk ag(k) exp (lk *Xe — T)’ (A27)

where the norm squared of v, (x,, t) gives the probability distribution of the electron in real-space, and the energy is given by
E; = I*k*/(2m,). We now consider the propagation of the electron wave packet over a distance of L, = v.t, = lkt,/m,, where

v, 1s the group velocity of the electron wave packet taken to be along the z axis; see Fig. 1(a). The phase term associated with
the propagation can be expressed by

ikt p )
h b
where k| = k; cos 6;. This expression, however, needs to be modified as we will now discuss. The kinetic energy term E contains
not only the longitudinal component but also the transversal component. The transversal component changes the electron beam
diameter at the position of the target depending on the value of f,. In other words, depending on the value of #,, the location
of the transversal beam focus moves along the z axis with respect to the target. In order to compensate this contribution and to
obtain the beam focus at the target plane b, = 0, we define the propagation phase as

exp (ik” Vel — (A28)

. . iEt iEp 1 (—tp) . iEg )t
exp [i@prop(ki, 0i, 1,)] = €xp (zk” Vet — ;; p) exp (—%) = exp (zk” Velp — %), (A29)

where E; | = hzki /@2m,), ki =k;sin6;, and Ey ) = hzkH2 /(2m,). The temporal evolution of the wave packet and the corre-

sponding change of the temporal density calculated with ¢pp(k;, ;, t,) are consistent with experiment results [18-24]; see the
main text.

043110-14



COHERENT SCATTERING OF AN OPTICALLY MODULATED ... PHYSICAL REVIEW A 103, 043110 (2021)

5. Modulation at zero propagation duration

We consider the differential scattering probability |Tfi(i€ 7> b, 2)|? [Eq. (18)] at t, = 0. The numerical results in Figs. 3(a),
3(c), and 4 show that M,,,(b = 0, g) = 0 [Eq. (27)] at 1, = 0. This suggests that even though the energy and momentum spectra
of the electron beam are already broad at ¢, = 0, some free-space propagation is required to give a nonzero modulation. With
the high-energy approximation, whose accuracy is shown above, the integral I, y x'(6;, 6/, b, t,,) of Eq. (36) becomes

k(6% — 677) — 28k(N' — N)}* .
Ik,N,N’(Oi’ eg,b, tp=0)=\/27TO'HkSCXp (—{ ( ! ! ) ( )} )

3207 exp [ike (k; — k;) - b]- (A30)

Equation (A30) shows that the integral I, y x/(6;, 6/, b, t, = 0) depends only on the difference of N and N, i.e., N' — N, not
the absolute numbers. We therefore express the above integral as I y—n(6;, 6/, b, t, = 0) and consider the sum over N and N’ in
Eq. (34),

+00 +00

DD InQlgh IvQIghhn - (6;, 6, b, 1, = 0)

N'=—00 N=—0c0

+00 +00 +00
= Lo(0:.0/.b.1,=0) > JZQID+ > Lm0 6/.b.1,=0) Y Jyim(2lgh In(2lg)). (A31)
N=—00 =—00 N=—00
m##0
By using > 7% __ J2(x) = 1 and
+oo
>INy m(x) =0, (A32)
N=—o0
for m # 0, Eq. (A31) becomes

+o00 +00

DT v Qlgh Iv@IghIn-n(6i. 6], b. 1, = 0) = L o(6:. 6. b, 1, = 0). (A33)

N'=—00 N=—00
We therefore obtain the approximate form of the differential scattering probably at ¢, = 0 as
Ty b = sty [ dls [ ke G = ke 06 = ke,
X Tt (ki = ke Jep k) Tk = key i, o) (61, 6], b, 1, = 0). (A34)

Notably, |Tf;|* is now independent on the optical modulation strength |g|. Therefore, the modulation of the scattering
probability for any b is approximately zero, M,,(b, g) = 0, at ¢, = 0.

6. Target independent model

Here we derive a simple model given by Eq. (28). For simplicity, we consider the case 7,,, = 1. We refer to this case as the
case of a uniform scatterer. Since we take 7,,, = 1, scattering effects related to the detailed nature of the target are neglected. In
this sense this model highlights physical effects related directly to the optically modulated electron beam. The validity of this
assumption is illustrated in Fig. 5(d). We consider the integrals over ¢; and ¢/ in Eq. (18),

I, = f d; f dgjeii (k)b (A35)
For b = (b,, by, b;) and using spherical coordinates, we obtain
2
I, = explik;b,(cos §; — cos 6])] f/ did; exp [—ikib,(sin ; cos ¢; — sin 6] cos ¢!)]
0

x exp [—ik;by(sin 6; sin ¢; — sin ; sin ¢;)]. (A36)
By using

2m
/ efiA smxfchosxdx — 2ﬂ]0(\/m)a (A37)
0
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we obtain
I, = 47 explikib-(cos 6; — cos 6;)1Jo (kisinb;, /b2 + b2)Jo (KisinG] /b2 + b2). (A38)
Equation (18) now becomes

| T, g)|2 = 47°P, / kdk; / sin 6;d0; / sin@/d0/a’ (k;, 6], g)a.(ki, 6;, 8)

x explikib,(cos 0; — cos 0))1Jo (k;sind;, /b2 + bg)]o (kisin®; /b2 + b%) (A39)

In order to further simplify the above equation, we focus on the sets of (k;, 6;, 6/) that maximize the values of a.(k;, 6;, g) and
a’(k;, 0!, g) of Eq. (A39). Specifically, we first consider only values of §; and 6 which give zero arguments in the exponential
functions in a | (k;, 6;, g) and aj’” (ki, 6/, g), that is [see Eq. (23)]

kicos0; — k., — N6k = 0, (A40)
and
kicos® — k, —N'8k =0 (A41)
The coherent term in a’(k;, 6/, g)a.(k;, ;, g) in Eq. (A39) becomes

1 +o00 +00 ) ) )
as ki, 0], O)ac(ki, 0;, 8) = aj | (kir 0))a L (ki 0)——— Y > Iy (2lgl) Iy (2lgl)ePrrnt =ikl i) (A42)
(27tc7H2)i N'——o0 N=——oo

’

By denoting the angles 6; and 6; that satisty Eqs. (A40) and (A41) 6y and 6,,, which are functions of k;, the term for the
propagation phase in Eq. (A42) becomes

ih(k; cos Oy )2 .

. ‘ . L ) ) ifi(k; cos 0),)*
e/ mon ki, 1)~ idpeop (ki 62 1) = exp <lk,~ cos Oy v, t, — ,,) exp (—zk,- cos Op v ty + ———L 1,

2me 2me

= exp[—i(N?> — N")w 1,]. (A43)

As a second approximation, we only consider values of k; which give zero arguments in the exponential function in @, ; or
ay |, thatis, sinfy =0 (N" < N)orsinf), =0 (N’ > N). In the case of siny = 0, we obtain from Eqs. (A40) and (A41)

ki = k, + Nék, (A44)

kicosOy, = k. + N8k, (A45)

and a; | (k;, 0))ac, 1 (ki 6;) in Eq. (A42) becomes

. Q1 / i 2 - '
Y o (VK (a16)

@ | (k)aes (ki) = exp<
. 407 2%k,02

where 8k? is neglected. The term for the impact parameter dependence I, of Eq. (A38) becomes
1, = 47 *explik;b, (cos Oy — cos Oy,)1Jo(0)Jo (k; sin 63, /b2 + b?)

~ 4” exp [ib;(N — N')8k1Jo (v 2(N — N')8kk,,/b? + b?). (A47)

On the other hand, in the case of sin 6y, = 0 (N’ > N), we obtain from Eqs. (A40) and (A41) and following the procedure in
Eqgs. (Ad44)-(A47):

(A48)

i (N' — N)k
a, | (kiae 1 (ki) =~ exp <——)

2k.07
and
I, = 477 exp [ikib.(cos 6; — cos ;)] Jo (kisin6; /b2 + b2)J(0)

~ 4” exp [ib,(N — N')8k] Jo(v/2(N' — N)8kk, /b2 + b2). (A49)
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In total, we obtain Eq. (28). For convenience, we repeat it here:

+o0 +00

2 . /
(TR, )" = Py x> IyQlgh Y v (2lgl) expl—itN? — N™)wst,]
N=—00 N'=—00
N — N'|8k
X exp < %) exp [ib.(N — N')8k] Jo(v/2IN — N'|8kk,/b? + b2 (A50)
eag

where P! is a constant. This equation shows that the scattering probability can be estimated by considering sums of products
of Jy and Jy, reflecting different photon-exchange channels. The strength of the coupling between different channels is given by

the term of exp(— w) The propagation effect, i.e., the dependence on 1,, is given by exp[—i(N 2_N ’z)a)gktp]. The impact

parameter dependence is given by I, = 4w 2exp[ib,(N—N")8k]Jo(/2IN—N'[5kk, /b2 + bf).
In the case of no optical modulation, the laser-electron coupling vanishes, 2|g| = 0, and

+o0
|Tfr?0del(b, g= 0)’2 — Pé'node] X Z |JN(0)|2 — P(;nodell (ASI)
N=—0o0
The modulation of the scattering probability is therefore given by
2 2
|Tm0del(b’ g)| _ ’Tfr?odel(b’ g= O)|
2
T, 5 =0)

Mo (b, g) =

+00 ~+00
=—1+ Y InQigh Y Jv(2lg) expl—i(N* = N"*)oud,]

N=—o0 N'=—0o0

N — N'|8k
X exp (—%) exp (ib,(N — N’)Bk)]o( 2IN — N'|8kk,/b% + bf) (A52)

2k.0;

We next consider |T;§‘°del (b, g)|*> and M™%l (b, g) at zero propagation duration t, = 0. We can rewrite Eq. (A50) as

mn

| Tdel )|/ pyrodel = Z InQ2lg)) Z In (2l f(N = N',b)

N=—o00 N'=—00
400 —+00
Z TRQleD+ Y > In@IghnQlgl) f(N — N, b)
N=—00 N'#N N=—00
400 400 “+00
YO ORQID+ D fnb) D IvIghIy-m(2lgh. (A53)
N=—o00 N=—00
m#0

where  f(N—N',b) = exp(— =20 explib,(N—N')5k] Jo(v/2IN-N'[8kk, /b2 + b?) and  f(0,b)=1. By using
eYg 7

;:’700 J3(x) = 1 and Eq. (A32) for m # 0, we obtain

| Tm model (b ) | P(t)nodel , (A54)

and

MMl (p, g) = 0, (A55)

at 1, = 0. Therefore, the simple target independent model yields zero modulation at #, = 0, which is consistent with the
scattering theory; see Appendix Sec. 5.

7. Explicit examples of the simple model

Here we consider a few examples using the simple model above. For simplicity, we limit our considerations to the cases
of b = 0, where the b-dependent scattering probabilities attain their maxima [see main text and Fig. 1(c)]. Equation (A50) is
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simplified to
+o00
IN — N'|5k
T p = 0, )| = Z InQlgh > Jv(2lgl) expl—i(N> — N’ )wskt,,lexp< i) (A56)
N=— N'=—o0 €70

where the constant Pg“"del in Eq. (A50) is set to 1, because we are interested only in the relative quantities and the modulation in
Eq. (A52) is given by
Mmodel(b — 0’ g) — |Tfr';10del(b — O, g)|2 —1. (A57)

mn

The black curves in Figs. 3(d) and 4 are calculated using Eq. (A57).

First, at 2|g| = 1 [Fig. 4(a)], because of the symmetry of the Bessel function J_y (x) = (—1)"Jy (x), many of the combinations
of N and N’ cancel with each other; see Table I. Since the absolute values of the Bessel functions significantly decrease for
IN| > 2|gl, it suffices to consider the range of —2 < N, N’ < 2. In this case we obtain

+2
mode! 2 k . .
T B =0,2lgl = D" ~ Y In(DP +4Jo(1)a(1) exp (——2)[exp (—idwsy 1) + exp (i4 wsity)]

N=-2 %
+2 Sk

= Z |JN(1)|2 + 8Jo(1)J2(1) exp <_k 02) cos (4wsity). (AS8)
N=-2 €ro

Because we here consider the range of —2 < N, N’ < 2, Eq. (A58) does not satisfy Egs. (A54) and (A55). In order
to be consistent with these equations, we take only the modulation term, i.e., the second term of Eq. (A58), and assume
Mg,‘,’dd(b =0, 2|g| =1) =0at t, = 0. We then obtain

Mmodel(b — 0 2|g| = 1) = —A+ Acos (4w5kt,,) (A59)

where A = SJo(l)Jz(l)exp(— ) > 0. This equation suggests that the modulation M,,,(b =0, 2|g| = 1) oscillates sinu-

soidally with the propagation t1me t, and with a period given by 27 /(4ws;) = 7itpunch. Therefore, the first negative peak in
the modulation Mm"del (b =0, 2|g| =1) is expected to appear at ¢, = Ttpunch/2 = 1.6fpunch, Which is consistent with the result
of the full quantum 51mulation in Fig. 4(a).

Next, at 2|g| = 2 [Fig. 4(b)], when we consider the combinations of (N, N’) in the range of —3 < N, N’ < 3, there are three
combinations giving nonzero contributions (see Table II),

+3
mode. 2 Sk
’Tfi d l(b =0, 2lgl = 2)] o Z |JN(2)|2 + 8J0(2)J2(2) exp <_k 2) cos (4wsity)

N=-3 %
k 28k
+8J1(2)J3(2)exp | — " cos (Bwsit,) +8 J_1(2)J3(2)exp | — ol cos (8wsity).  (A60)
<O <O
However, when oy is not very large and exp(—— > exp(—ﬁ) is satisfied, which is the case at 0y = 5 mrad used in this

work, we can neglect the last term and obtain

+3 sk
|70 (b — 0, 2] = 2)’2 ~ Z )12 + Sexp(—m){fo(@fz@) cos (4wsity) + J1(2)J3(2) cos (Bwsity)},  (A61)
N=-3 €-o

and
M™% (p = 0, 2|g| =2) = —By — B, + By cos (4wwt,) + By cos (Bwgit), (A62)

with By = 8 Jo(2)/2(2) exp(— 15> %k Yy~ 0 and B, = 8 11(2)Jq(2)exp(— ») > 0. The faster oscillation period is 27 /(8wsi) =
T tyunch- Because the signs of the “two cosine functions B, and B, are botil positive, the modulation M} m"del Bb=0, 2lgl=2)is
always negative.

As a third example, we consider the case of 2|g| = 5 [Fig. 4(c)]. In Table III, we show all the combinations of (N, N') but now
in the range of —6 < N, N’ < 6 and [N—N’| < 4. Using the symmetry of the Bessel function J_y(x) = (—1)VJy(x), we find
in total nine combinations giving nonzero contributions. When we take the terms of [N—N’| = 0 and 2, and neglect the terms
containing J, and J_,, which are relatively smaller than the other terms (| J>(5)| = | J—2(5)| = 0.047), we obtain

+6

2 Sk

TRl B =0, 2lgl =5 ~ Y In(5)I* + 8exp (—m>{h (5)J3(5) cos (8wsitp)
N=—6 €0

+ J3(5)J5(5) cos (16wsktp) + J4(5)Js(5) cos (20wskt,)} (A63)
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and

MR (B =0, 2|gl =5) = C) — C2 — C3 — Cy cos (Bwsit,) + Ca cos (16wsit,) + Cs cos (20wsit,y)

mn

(A64)

with C; = =8 Ji(5)/3(5) exp(—2%;) > 0, Cy = 8 J5(5)J5(5) exp(—:25) > 0, and Cs =8 J4(2)J5(2) exp(—:2%5) > 0. The
e erg e

2
0

fastest oscillation period is 27 /(20wsi) = Ttounch- Because the coefficient of cos(8wsity,), —Ci, is negative while the other
two coefficients +C, and 4+Cj3 are positive, the modulation M,,,,(b = 0, 2|g| = 5) can be positive. A positive peak is expected to
appear atf, = 1/2 x 27 /(8wsk) = 3.9tpunch, Which is consistent with the result in Fig. 4(c).
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