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Calculation of multiphoton ionization amplitudes and cross sections of few-electron atoms
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We present a theoretical method for calculating multiphoton ionization amplitudes and cross sections of few-
electron atoms. The present approach is based on an extraction of partial-wave amplitudes from a scattering
wave function, which is calculated by solving a system of driven Schrödinger equations. The extraction relies
on a description of partial waves in terms of a small number of Coulomb waves with fixed wave numbers.
The method can be used for photon energies below and above the ionization threshold and to treat resonance-
enhanced multiphoton ionization. We use it to calculate two-, three-, and four-photon ionization cross sections
of hydrogen and helium atoms for a wide range of photon energies and to determine the asymmetry parameters
of photoelectron angular distributions for two-, three-, and four-photon ionization of the helium atom.
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I. INTRODUCTION

Theoretical treatment of multiphoton ionization, specifi-
cally the calculation of multiphoton ionization rates and cross
sections, has been a recurring topic since the early experi-
ments on multiphoton ionization [1,2]. It remains an important
subject of recent theoretical and experimental studies based on
free-electron laser (FEL) and high-order harmonic generation
(HHG) sources [3–7]. Calculations of multiphoton ioniza-
tion amplitudes and cross sections are particularly demanding
when describing a process in which one or several photons are
absorbed at energies above the ionization threshold (above-
threshold ionization, ATI). When this is the case, dealing
with continuum-continuum transitions cannot be avoided. The
presence of resonance (quasibound) states which are embed-
ded in the continua makes the theoretical description even
more demanding; ionization rates may be seen to be strongly
modified when the photon energy lies close to a resonance, ei-
ther in the intermediate step (resonance enhanced multiphoton
ionization, REMPI) or the final step of a multiphoton process.

Over the last two decades, a theoretical description based
on exterior complex scaling (ECS) seems to have gained mo-
mentum. Using the ECS approach, one is able to efficiently
describe both resonant and nonresonant continua. As will be
discussed, the ECS method is based on a complex transfor-
mation of radial (electronic) coordinates outside a sphere of a
given radius (see Ref. [8] and references therein). This allows
one to calculate transition (scattering, ionization) amplitudes
from the part of the wave function which is contained inside
the unmodified region of the coordinate space. Theoretical
methods used in these calculations resemble those used with
bound (localized) states and real, square integrable basis sets.
Methods based on ECS have been used to calculate one- and
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two-photon single- and double-photoionization cross sections
[9–12]. ECS has also been used to study electron dynamics of
atoms and simple molecules driven by short, intense pulses.
The complex coordinate transformation prevents artifacts
which originate from the reflections of the wave packet on
the boundaries of the simulation volume, and thus eliminates
the need for special approaches, such as complex absorbing
potentials (CAPs) [13]. A very elegant method based on ECS
was used by Palacios et al. [14–17] to extract partial ioniza-
tion amplitudes and cross sections from the wave packet. A
particularly efficient implementation of the ECS method, the
infinite-range complex scaling (irECS) [13], was combined
with the time-dependent surface flux approach (tSurff) [18,19]
to solve the time-dependent Schrödinger equation in minimal
simulation volumes. It was used in combination with the
time-dependent complete-active-space self-consistent method
[20] to study strong-field ionization and high-order harmonic
generation in He, Be, and Ne atoms [21].

Despite the apparent shift in interest in the recent years
from the time-independent to the time-dependent treatment
of multiphoton processes, many experiments exist for which
solving the time-dependent Schrödinger equation may not be
feasible, for example, when the pulse duration exceeds a few
tens of femtoseconds. In these cases, reliable (multiphoton)
ionization cross sections are a valuable and efficient means of
assessing the ionization probabilities.

In this work, we describe an efficient method for the calcu-
lation of multiphoton ionization amplitudes and cross sections
which is based on the time-independent perturbation theory
and is applicable in the case of a single electron ejection. We
use it to calculate generalized two-, three- and four-photon
cross sections of the ground-state hydrogen and helium atoms
for a wide range of photon energies. Furthermore, we calcu-
late the asymmetry parameters which are used to characterize
photoelectron angular distributions in the case of two-, three-
and four-photon ionization of helium. To our knowledge, cal-
culations of neither the higher-order cross sections of helium
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in the ATI energy region nor the asymmetry parameters for
multiphoton ionization exist in the literature.

II. PARTIAL IONIZATION AMPLITUDES AND
CROSS SECTIONS

The discussion in this section is divided into two parts. In
Sec. II A, we briefly review the formalism used to calculate
transition amplitudes for one-photon ionization. In Sec. II B,
we show how the formalism can be modified to be applicable
for two- and multiphoton ionization. The method we present
here is based on the approach used in Refs. [9,11,22,23] to
calculate ionization amplitudes for double electron ejection
and extends the work described in Ref. [12]. Hartree atomic
units are used throughout this work unless stated otherwise.

A. One-photon ionization

Let us write the total Hamiltonian operator of an N-
electron atom as H = Hf + Vf , where Hf denotes the channel
Hamiltonian operator and Vf is the short-range perturbation.
The choice of Hf defines the final-state (post) arrangement
channels [24]. We describe the photoionization process in
terms of the channel wave functions � f , which are eigen
wave functions of Hf at specific energy E above the ionization
threshold,

Hf � f = E� f . (1)

Next, let D denote the dipole transition operator and let �0 be
an eigen wave function of H with energy E0 which describes
the initial (bound) atomic state. As we describe below, the par-
tial ionization amplitudes may be calculated from the solution
of a driven time-independent Schrödinger equation,

(E − H )�̂ = D�0, (2)

where E = E0 + ω and ω denotes the photon energy.
We write the total and channel Hamiltonian operators as

H = T + W and Hf = T + Wf , where T = −∇2/2 is the
kinetic energy operator and ∇ = (∇1, . . . ,∇N ) is the multi-
dimensional gradient operator. We use these forms to rewrite
Eq. (2) and the complex conjugate of Eq. (1) as{

E + ∇2

2
− W

}
�̂ = D�0, (3){

E + ∇2

2
− Wf

}
�∗

f = 0, (4)

where the asterisk denotes complex conjugation. By mul-
tiplying Eqs. (3) and (4) with �∗

f and �̂, respectively,
subtracting the results, and integrating over a volume V (a
3N-dimensional manifold) in which Vf is non-negligible, we
obtain the following relation:

〈� f |D|�0〉V + 〈� f |Vf |�̂〉V
= 1

2

∫
V

dτ
{
�∗

f ∇2�̂ − �̂∇2�∗
f

}
.

(5)

We have taken into account that W − Wf = H − Hf = Vf and
used a subscript to denote integration over V . In this section,
we assume that the integration volume is large enough, so that
the magnitude of the square-integrable driving term (D�0) is

negligibly small outside volume V . We will return to this point
in Sec. II B. The expression in the curly brackets in Eq. (5)
is equal to ∇ · {�∗

f ∇�̂ − �̂∇�∗
f }, and its volume integral

can be transformed to a surface integral using the divergence
theorem. By using Eq. (2), the left-hand side of Eq. (5) may
be shown to be equal to the partial photoionization amplitude
[24,25],

〈�−
f |D|�0〉V ≡ 〈� f |D|�0〉V + 〈� f |Vf G+(E )D|�0〉V . (6)

Here, G+(E ) = (E − H + i0+)−1 is used for retarded Green’s
operator. The final result thus reads

〈�−
f |D|�0〉V = 1

2

∫
∂V

dS · {
�∗

f ∇�̂ − �̂∇�∗
f

}
, (7)

where ∂V denotes the boundary of V .
In the case of a one-electron target (N = 1), the integration

volume V may be taken to be a sphere with radius r0. Let
Pf (r) denote the radial function of � f , which describes a spe-
cific ionization channel (partial wave), and P̂(r) is the radial
function associated with the corresponding partial wave of �̂.
In this case, the surface integral is proportional to Wronskian
W{P∗

f (r), P̂(r)}r=r0 , where

W{ f (r), g(r)}r=r0
= { f (r)g′(r) − f ′(r)g(r)}r=r0

. (8)

An elegant way of finding a solution to Eq. (2) satisfy-
ing the outgoing-wave boundary condition is to use exterior
complex scaling (ECS) [8]. The ECS method is based on the
complex transformation of radial coordinates,

R(r) =
{

r, r � R0

R0 + (r − R0)eiϑ , r > R0,
(9)

where ϑ and R0 are the scaling angle and radius. When ECS
is used, volume V is expected to lie inside the nonscaled
region of space. For a one-electron atom, the latter holds when
r0 < R0.

As an example, let us examine ionization of a hydrogen-
like atom with nuclear charge Z . Since the electron moves
in a pure Coulomb potential, we set Vf = 0 and H = Hf =
p2/2 − Z/r, where p = −i∇ is the electron momentum oper-
ator. Channel wave function �−

f = � f in this case describes
the chosen partial electron wave with orbital angular momen-
tum �, its projection on the quantization axis m, and energy
E = k2/2:

� f (r) = Pf (r)

r
Y�m(r̂), (10)

Pf (r) =
√

2

πk
i�e−iη�(k)F�(k; r). (11)

Here, r̂ = r/r, F�(k; r) is the regular Coulomb function for
charge Zc = Z , η�(k) = arg �(� + 1 − iZc/k) is the Coulomb
phase shift, and Y�m(r̂) is the spherical harmonic [26].
Let us write the corresponding spherical wave of �̂(r) as
r−1P̂(r)Y�m(r̂). As can be seen from Eqs. (7) and (8), the
partial ionization amplitude is equal to

Bγ = 1

2

√
2

πk
i−�eiη�(k)W{F�(k; r), P̂(r)}r=r0

, (12)

where γ = (�, m) has been used. In a converged ECS cal-
culation, the solution of the driven Schrödinger equation for

043108-2



CALCULATION OF MULTIPHOTON IONIZATION … PHYSICAL REVIEW A 103, 043108 (2021)

r < R0 does not depend on the scaling angle (see Ref. [8] and
references cited therein). Since, furthermore, the integration
volume V lies in the nonscaled spatial region (r0 < R0), non-
scaled channel wave functions are used to calculate ionization
amplitudes. As an alternative to Eq. (12), the amplitude may
also be calculated as

Bγ = 1

4

√
2

πk
i−�W{H∗

� (k; r), P̂(r)}r=r0
, (13)

where we have taken into account that, far away from the
origin, P̂(r) behaves as an outgoing Coulomb wave: the
asymptotic form of P̂(r) is

P̂(r) ∼ Aγ H�(k; r) = i�−1

√
2π

k
Bγ H�(k; r), (14)

where H�(k; r) = exp{−iη�(k)}{F�(k; r) + iG�(k; r)}. The
regular and irregular Coulomb functions behave asymptoti-
cally as F�(k; r) ∼ sin θ c

� (k; r) and G�(k; r) ∼ − cos θ c
� (k; r),

where θ c
� (k; r) = kr − �π/2 + (Zc/k) ln(2kr) + η�(k)

[24,26]. Equations (12) and (13) can also be obtained
directly from Eq. (14) if one takes into account that
W{F�, H�} = ik exp(−iη�) and W{H∗

� , H�} = 2ik [26].
Finally, the corresponding partial ionization cross section
reads

σγ (ω) = 4π2

c
gω|Bγ |2 = 2π

c
gωk|Aγ |2, (15)

where c = α−1 ≈ 137.036 is the speed of light in vacuum, and
gω = ω and gω = ω−1 for the length and velocity form of the
dipole operator, respectively.

As our next example, let us consider a two-electron atom,
e.g., the helium atom (N = Z = 2). In this case, single-
ionization channels are specified by the quantum numbers of
the bound atomic core (na and �a), the orbital angular mo-
mentum of the continuum electron (�), and the total angular
momentum, spin, and the corresponding projections (L, ML,
S, MS). Since at large radii, nuclear charge Z is screened by
the charge of the core electron, we may write the channel
Hamiltonian as

Hf = p2
1

2
+ p2

2

2
− Z

r1
− Z

r2
+ 1

r>

, (16)

where p1 and p2 are the electron momentum operators, r1

and r2 the radial electron coordinates, and r> = max{r1, r2}.
We can then calculate the channel wave functions � f by
solving Eq. (1) in the subspace of coupled two-electron ba-
sis functions with a fixed, hydrogen-like core (na, �a), and
for fixed �, L, ML, S, and MS . At energy E = Ina�a + k2/2,
which lies above ionization threshold Ina�a , the asymptotic
form of the radial function associated with channel γ =
(na, �a, �, L, ML, S, MS ) of � f is written as

F 0
γ (k; r) ∼ cos δ0

γ F�(k; r) − sin δ0
γ G�(k; r), (17)

where F�(k; r) and G�(k; r) are the Coulomb functions for a
screened Coulomb potential (Zc = Z − 1). At large r, where
the effect of Vf dies out, the radial function P̂(r) correspond-
ing to channel γ in �̂(r) behaves as described by Eq. (14). The
calculation of P̂ is discussed in more detail in the Appendix.

The partial ionization amplitude is thus calculated as

Bγ = 1

2

√
2

πk
i−�eiη�(k)eiδ0

γ W
{
F 0

γ (k; r), P̂(r)
}

r=r0
. (18)

An additional phase factor has been added to account for the
phase shift due to the part of the short-range potential which
has been accounted for in � f .

While formally correct, the calculation of F 0
γ (k; r) rep-

resents an unnecessary step. Instead of using Eq. (18), a
more direct approach is simply to use unmodified Eq. (12) or
Eq. (13) for Zc = Z − 1 to extract the partial amplitude. This
can be seen if one takes into account that r0 is large enough,
so that the asymptotic form of F 0

γ (k; r) [Eq. (17)] can be used
in Eq. (18). Note, however, that, in either case, the explicit
evaluation of the matrix elements of Vf is completely avoided;
the latter are only needed to solve Eq. (2).

B. Two- and multiphoton ionization

We expect that the procedure described in Sec. II A can be
generalized to the case of two-photon ionization by solving a
set of driven Schrödinger equations,

(E1 − H )�̂1 = D�0, (19)

(E2 − H )�̂2 = D�̂1, (20)

where E1 = E0 + ω and E2 = E0 + 2ω. Equations (12) and
(13) could then be used to extract partial ionization amplitudes
from the second-order solution (�̂2). This procedure works
as long as E1 lies below the ionization threshold, but fails in
the case of the above-threshold ionization (ATI). The reason
for this is that for energies above the ionization threshold, the
magnitude of the driving term in Eq. (20) does not become
negligibly small near r = r0, and a finite integration volume
cannot be used in the same way as for one-photon ionization
of the atom in a bound initial state. In the case of double
ionization, this problem has been addressed by replacing E1

with E1 + iβ (β > 0) in Eq. (19) [11,22,23], which results in
an exponentially damped (∼e−βr) driving term in Eq. (20).
Ionization amplitudes and cross sections are then calculated
by extrapolating the results to β → 0+. However, when the
energy in the intermediate step (E1) lies close to a resonance
state, the effect of the artificial damping cannot be completely
reversed by the numerical limiting procedure, and the magni-
tude of the extracted amplitude is too low.

Below we describe an alternative method which can also be
used to treat resonance-enhanced photoionization. We explain
its principles in the case of a one-electron atom but keep
in mind that it may also be used with few-electron atoms.
Henceforth, we limit our attention to the dipole operator in
the velocity form, D = ê · p, where ê is the polarization of the
incident light.

In the case of ATI, the second step of the two-photon
absorption process describes a continuum-continuum (CC)
transition. The corresponding dipole matrix element is seen
to be strongly peaked at E2 = E1 (the on-shell approximation)
[27,28]:

〈k2|ê · p|k1〉 ∼ δ(k2 − k1) ∝ δ(E2 − E1), (21)
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FIG. 1. Real and imaginary parts of P̂(r) for channel (�, m) =
(2, 0) for two-photon above-threshold ionization of the hydrogen
atom. The photon energy is ω = 1 a.u., and the light is linearly polar-
ized along the z axis. The scaled region of space starts at R0 = 100
(marked with dotted vertical lines). The result of a least-squares fit
with Coulomb functions with k1 = √

2E1 = 1 and k2 = √
2E2 = √

3
(see text) is plotted with dashed lines for comparison (the plot has
been extended beyond R0 for clarity).

where k1 and k2 are the wave vectors (momenta) of the
intermediate- and final-state Coulomb waves. In Eq. (21),
we have used the relations E1 = k2

1/2 and E2 = k2
2/2. While

Eq. (21) is exact for plane waves, it is approximately also
valid for continuum states of a hydrogen-like atom (i.e., for
Coulomb waves) [28]. We therefore expect that at large r,
radial function P̂(r) associated with channel γ = (�, m) of
�̂ can be written as a superposition of two Coulomb waves
with discrete wave numbers: k1 = √

2E1 and k2 = √
2E2. The

latter describes the Coulomb partial wave with the expected
energy of the photoelectron in the final state, as in the case of
a one-photon process. The former, however, is a direct conse-
quence of the “mapping” of energy E1 onto the second-order
solution, which is described by Eq. (21). In Fig. 1, we show
the radial function for channel (�, m) = (2, 0) and ω = 1 a.u.
(h̄ω ≈ 27.2114 eV), which has been calculated using Eq. (20)
for the hydrogen atom driven by linearly polarized light with
ê aligned along the z axis. Except near r = 0, where the
Coulomb functions describing outgoing waves are singular,
the characteristic beat-like pattern of P̂(r) is completely re-
produced with a superposition of a pair of outgoing Coulomb
waves with wave numbers equal to k1 = 1 and k2 = √

3:

P̂(r) ∼ A1H�(k1; r) + A2H�(k2; r). (22)

When the velocity form of the dipole operator is used
(D = ê · p1 + · · · + ê · pN ), a relation similar to Eq. (21) may
be seen to hold also in the case of a two- or many-electron
atom for CC transitions with initial and final continuum states
associated with the same parent ion [29]. In other cases, like
for the He atom, a similar relation may also be written when
the transition occurs in the atomic core [12,27,30]. When the
core has a complex electronic structure, several ionization
channels may be open in the intermediate step, and the num-
ber of terms (different Coulomb waves) in the superposition
[Eq. (22)] may be higher.

We finally arrive at the gist of the present method. We as-
sume that, at large radii, P̂(r)—the radial function associated
with channel γ —can be written as a sum of n Coulomb waves
with fixed wave numbers k1, . . . , kn,

P̂(r) ∼
n∑

q=1

Aγ ,qH�(kq; r). (23)

In Eq. (23), k1, . . . , kn−1 correspond to the open channels in
the intermediate step (energy E1 = I j + k2

j /2, j = 1, . . . , n −
1, where I j denotes the appropriate ionization threshold),
and kn corresponds to the chosen final-state channel (energy
E2 = In + k2

n/2). Although Eqs. (12) and (13) cannot be used
directly, we may extract the ionization amplitude for chan-
nel γ (Aγ ,n) in a straightforward way. We first calculate the
Wronskian of the left- and right-hand sides of Eq. (23) in
m radial points, which lie in the asymptotic region: rp < R0,
p = 1, . . . , m. We define vectors x = (Aγ ,1, . . . ,Aγ ,n) and
b = (b1, . . . , bm) and matrix M with matrix elements Mpq,
where

Mpq = W{F�(kn; r), H�(kq; r)}r=rp
, (24)

bp = W{F�(kn; r), P̂(r)}r=rp
. (25)

Alternatively, F� in Eqs. (24) and (25) may be be replaced
by H∗

� . In the present approach, we use Wronskians to avoid
accidental zeros between model functions H� at the chosen
points, which can be frequent due to their oscillatory nature,
and in this way increase the stability and usability of the
method. We consider this approach to be a natural extension
of the procedure by which we treat single-photon ionization.
We can then calculate coefficients Aγ ,q by minimizing the
norm of the residual, M · x − b. This translates to solving
the normal system: M† · M · x = M† · b. The two-photon
ionization amplitude and the corresponding generalized par-
tial ionization cross section are then calculated as [31]

Bγ = i−�+1

√
kn

2π
Aγ ,n, (26)

σ (2)
γ (ω) = 8π3

c2ω2
|Bγ |2. (27)

The above procedure can readily be extended to treat
higher-order (multiphoton) ionization. To calculate K-photon
ionization amplitudes, we solve the system of K driven
Schrödinger equations,

(E1 − H )�̂1 = D�0, (28)

(E2 − H )�̂2 = D�̂1, (29)

...

(EK − H )�̂K = D�̂K−1, (30)

where Ej = E0 + jω, j = 1, . . . , K , and extract the channel
amplitudes from �̂K . In this case, wave numbers k1, . . . , kn−1

and kn correspond to energies E1, . . . , EK−1 and EK , respec-
tively. The K-photon generalized ionization cross section is
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FIG. 2. Generalized two-, three-, and four-photon partial ioniza-
tion cross sections of the hydrogen atom (top to bottom). The partial
ionization cross sections from Ref. [32] (circles) and the total two-
photon ionization cross section from Ref. [33] (squares) are plotted
for comparison.

then calculated as [31]

σ (K )
γ (ω) = 2π

(
2π

cω

)K

|Bγ |2, (31)

where the relation between Aγ ,n and Bγ is given by Eq. (26).
The cross sections can be converted to SI units by multiplying
the right-hand side of Eq. (31) with a2K

0 tK−1
0 , where a0 ≈

5.291 77 × 10−11 m is the Bohr radius and t0 ≈ 2.418 88 ×
10−17 s is the atomic unit of time.

III. RESULTS AND DISCUSSION

A. One-electron atom

We used the method described in Sec. II B to calculate
two-photon ionization cross sections of the ground-state hy-
drogen atom shown in Fig. 2(a). The partial and total cross
sections (the sum of the � = 0 and � = 2 contributions) agree
perfectly with the results of the analytic treatment by Karule
[32,33] (circles and squares). These were calculated from
the tabulated values of the intensity-normalized cross section,
Q(2)

� /I ≡ (h̄ω)−1σ
(2)
� , where I is the intensity of the linearly

polarized incident light in W/cm2, h̄ω the photon energy,
and σ

(2)
� the generalized cross section in cm4 s. Below the

ionization threshold (h̄ω < 13.6 eV), a series of peaks due
to resonance-enhanced ionization through the np states is
accompanied by a series of minima. Strictly speaking, without
modifications, the present formalism is not suitable for photon
energies close to the 1s → np transition energies. When the
incident photon flux is low, this can be dealt with by consid-
ering the decay and ionization of excited bound states [31].

More general alternatives in this case are, for example, to
break up the overall process in steps which may not allow a
perturbative description in terms of transition rates [31] or to
use the nonperturbative Floquet approach [34].

In the ATI region (h̄ω > 13.6 eV), where single-photon
ionization of the atom is possible, the cross sections decrease
monotonically with photon energy.

The three- and four-photon ionization cross sections of
the ground-state hydrogen atom are shown in Figs. 2(b)
and 2(c). As can be seen, our results agree well with the
cross sections calculated from the values of Q(K )

� /IK−1 =
(h̄ω)−K+1σ

(K )
� tabulated in Ref. [32]. The energy thresholds

at approximately 6.8 and 13.6 eV in Fig. 2(b)—these can be
identified by the series of peaks whose positions converge
to these energies—correspond to the onsets of the (2 + 1)-
photon and (1 + 2)-photon ATI energy regions. Here, N in
N + W denotes the number of photons sufficient to ionize the
atom and W stands for the number of photons absorbed above
the threshold. Similarly, the thresholds at approximately 4.5,
6.8, and 13.6 eV mark the start of the (3 + 1)-, (2 + 2)-, and
(1 + 3)-photon ATI energy regions in Fig. 2(c).

The cross sections shown in Fig. 2 were calculated using
a radial basis of 612 modified B-spline functions [8] of order
seven for each orbital angular momentum �. The radial inte-
grals were evaluated on the ECS contour. The radial grid cov-
ered an interval up to Rmax = 250, and the radial coordinate
was scaled (ϑ = 0.70) beyond R0 = 200. Close to the origin
(r = 0) and for r � R0, a quadratic knot sequence was used;
a linear sequence was used elsewhere. The singular value
decomposition (SVD) was used to solve the normal system.

We calculated ionization amplitudes and generalized mul-
tiphoton cross sections up to order K = 6, but it should be
noted that a calculation of cross sections of higher orders
is possible. The lowest wave number which allows one to
extract the ionization amplitude from P̂(r) is of the order of
2π/R0. In this sense, R0 is one of the critical parameters of the
extraction procedure. Another critical parameter is the number
of basis functions (or, better, the density of collocation points
in the radial region where the amplitudes are extracted); it
determines the maximum energy (wave number) for which
an accurate description of the continuum wave functions is
possible [35,36].

B. Two-electron atom

As noted, the extraction procedure can also be used to cal-
culate multiphoton ionization amplitudes and cross sections of
two- and few-electron atoms. We tested it on the case of two-,
three-, and four-photon ionization of the ground-state helium
atom. In Fig. 3, we plot partial ionization cross sections for
linearly polarized (ê = ẑ) incident light, for which the final-
state channels with ML = S = MS = 0 are accessible. The
partial cross sections were calculated by summing over all
the remaining channel quantum numbers but the total orbital
angular momentum:

σ
(K )
L (ω) =

∑
na,�a,�

σ (K )
γ (ω), (32)

where γ = (na, �a, �, L, ML, S, MS ) has been used.
Figures 3(a), 3(c), and 3(e) show the below-threshold
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FIG. 3. Generalized two- (top), three- (middle), and four-photon (bottom) partial ionization cross sections of the helium atom. The below-
threshold ionization results from Ref. [37] are plotted with dotted lines in panels (a), (c), and (e).

ionization (BTI) energy region. There is generally good
overall agreement between our results and the results of
Saenz and Lambropoulos [37] (dashed black line), who used
the time-independent perturbation theory to calculate the
cross sections. Their continuum states were calculated by
solving the time-independent Schrödinger equation subject
to homogeneous boundary conditions in a basis of real B
splines [36]. Since the photon energy cannot be changed
independently of the final-state energy, the scan over the
photon energy interval was performed by varying Rmax (see
Ref. [36] for details). While two- and three-photon cross
sections from Ref. [37] match the present results rather
well [Figs. 3(a) and 3(c)], slightly larger differences are
present in the case of the four-photon partial cross sections
shown in Fig. 3(e). We have checked the validity of the
present results by increasing Rmax (R0) and the number
of basis functions. Except for the differences close to the
ionization thresholds arising due to additional bound and
resonance states with high principal quantum numbers, the
cross sections remained unchanged. The results in the BTI
region were obtained with single-particle angular momenta
up to �max = 6 and with the radial functions for each of the
two electrons written in a basis of 150 B splines of order
seven per �, with Rmax = 170 and R0 = 120. In the ATI
region, we used 85 B splines per �, Rmax = 85, and R0 = 50.
Partial ionization cross sections of channels with na � 5 were
included in the sum [Eq. (32)] to obtain the cross sections in
Fig. 3. In both energy regions (BTI and ATI), ϑ = 0.70 was
used.

Although not shown, the present results are in excel-
lent agreement with normalized rates w

(3)
1s /I3 ≡ (h̄ω)−3σ

(3)
1s

reported by Proulx et al. [27], where I is the intensity of the
incident light, σ

(3)
1s is the sum of partial three-photon cross

sections for ionization leading to the helium ion in the 1s
state (na = 1, �a = 0), and w

(3)
1s the corresponding ionization

rate. These authors used a basis of two-electron Sturmian
functions with complex radial scaling parameters and Padé
extrapolation to calculate ionization amplitudes.

A practical note on the implementation of the method is
in order. When some of the energies from the intermediate
steps (E1, . . . , EK−1) lie above the ionization threshold, wave
numbers k1, . . . , kn−1 may be (approximately) degenerate or
may differ by an amount too small to be “resolved” when
solving the normal system. This is especially true for higher
ionization thresholds. We avoid this by considering only those
wave numbers which differ by more than, say, �k ≈ 10−4.
Furthermore, when high ionization thresholds are reached (ei-
ther in the intermediate steps or the final step), bound states
of the atomic core can no longer be adequately represented in
a finite volume (r � R0). We therefore choose to additionally
limit the wave numbers in the intermediate steps by introduc-
ing an energy cutoff parameter. We have found the results
to be stable if (approximately) equal cutoff energy for the
atomic core was used to limit the intermediate- and final-state
ionization channels considered in the calculation.

In Fig. 3, energy thresholds for (N + W )-photon ATI may
again be identified by the series of peaks converging to these
energies. In the case of three-photon ionization, for example,
the (2 + 1)-photon and (1 + 2)-photon ATI thresholds lie at
12.3 eV [Fig. 3(c)] and 24.6 eV [Fig. 3(d)]. In some cases,
sharp jumps in σ

(K )
L mark higher ionization thresholds, i.e., the

thresholds for channels which describe ionization leading to
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the ion in an excited state, such as the 2�aε2� channels at 32.7,
21.8, and 16.35 eV in Figs. 3(b), 3(d), and 3(f), respectively.
In Fig. 3(b), the energy thresholds of the 2�aε2� channels are
preceded by a series of peaks with characteristic asymmetric
profiles [38] due to the 1Se (L = 0) and 1De (L = 2) autoion-
izing final states. Their asymmetric shapes are a consequence
of the interference between two ionization pathways: a direct
transition to the 1sε2s or 1sε2d continuum and an excitation
to a discrete state which is followed by an electron emission.
Asymmetric profiles are also present in the three- and four-
photon cross sections when either the intermediate-state or the
final-state continuum (or both) are resonant.

At h̄ω ≈ 40.8 eV (1.5 a.u.), an enhancement in the cross
sections is a signature of a shake-up like (core-excited) ion-
ization process [12,27,30]. This feature is sometimes referred
to as a “core-excited resonance” [30]. The enhancement is a
consequence of a strong laser coupling between the 1sε1�1

and 2pε2�2 channels. This can be understood if we consider
the following multiphoton ionization pathway:

g.s.
ω−→ · · · ω−→ 1sε1�1

ω−→ 2pε2�2
ω−→ · · · , (33)

where “g.s.” stands for the helium ground state. In Eq. (33),
the step written symbolically as 1sε1�1 → 2pε2�2 describes
a CC transition, for which Eq. (21) may be used. We thus
expect that the 1sε1�1 ionization channel is strongly coupled
to the 2pε2�2 channel when ε2�2 = ε1�1, i.e., when the contin-
uum electron acts as a spectator and the electronic transition
happens in the atomic core [12,27]. This is possible when
the photon energy is approximately equal to the transition
energy of the core (h̄ω ≈ I2p − I1s). For example, in the case
of two-photon ionization [Fig. 3(b)], the peak at 40.8 eV is
due to the laser coupling between the 1sε1 p and 1sε2 p ioniza-
tion channels (g.s. → 1sε1 p → 2pε2 p). Note that, although
the photon energy of 40.8 eV coincides with the 1s → 2p
transition energy in He+, Eq. (33) describes a multiphoton
process in a neutral atom, i.e., it does not correspond to a two-
part (“sequential”) process, in which the atom is first ionized
(He + γ → He+1s + e−) and the ground-state ion is then ex-
cited to a higher-lying state (He+1s + γ → 2p) [27]. Similar
enhancements also occur at photon energies h̄ω = Ina − I1s

(48.4, 51.0, 52.2 eV, etc.) [12,30], where na denotes the
principal quantum number of the excited state of the atomic
core. These peaks are associated with the 1sε1� → na pε2� CC
transitions.

As has been discussed in Ref. [12], the structure of the dif-
ferential equation for the radial part of the driven Schrödinger
equation describing the 2pε2�2 channels resembles the equa-
tion of motion of a driven harmonic oscillator in which r
(instead of time t) is the independent variable, and the fre-
quency of the oscillator and the driving frequency is replaced
by k2 and k1, respectively. When h̄ω = I2p − I1s (k1 = k2),
the situation corresponds to a resonantly driven, nondamped
harmonic oscillator. Exactly on resonance, the present method
will fail [12]. The reason for this is that no spontaneous decay
(of the core vacancy) or field-dressing effects have been in-
cluded in the present formalism [30]. As in the case of bound
intermediate states, this may be addressed in the framework
of the (nonperturbative) Floquet formalism [34].

FIG. 4. Three-photon ionization cross section in the region of
(1 + 2)-photon ATI. Results of two separate calculations are shown
in which ionization channels with na � 5 (dashed blue line) and
na � 10 (solid black line) have been included.

Photoionization which is accompanied by core excitation
can also be observed at lower photon energies. One such
example is (1 + 2)-photon ATI for photon energies between
25.2 and 27.2 eV [Fig. 3(d)]. An enlarged view of this en-
ergy interval is plotted in Fig. 4. The total three-photon cross
section from two separate calculations is shown: in the first,
channels with na � 5 have been included; in the second, R0 =
120, Rmax = 160, and a larger basis set (120 B splines per � for
each electron) were used to calculate partial ionization cross
sections for channels with na � 10. As can be seen, the peak
positions converge to the limit of 1 a.u. (27.2 eV), which is
marked with a dotted vertical line in Fig. 4. The dominant
ionization pathways underlying these enhancements are of
the form g.s. → 1sε1 p → 1sε2� → na pε3�, with na � 4 and
� = s, d .

The present method allows one to calculate partial ion-
ization amplitudes and cross sections also in the case of
resonance-enhanced multiphoton ionization (REMPI), i.e.,
when the driving is resonant with a bound or a quasibound
(resonance) state in the intermediate step. In Fig. 5, we show
partial two-photon ionization cross sections in the energy

FIG. 5. Partial two-photon generalized cross sections for the
na�aε�L ionization channels in the energy region of the lowest
intermediate 1Po autoionizing states: sp+

2 , sp−
3 , sp+

3 , and 2p3d (cor-
responding to peaks with increasing energy).
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region of the lowest 1Po autoionizing (doubly excited) res-
onance states: sp+

2 , sp−
3 , sp+

3 , and 2p3d . We have used the
notation of Cooper, Fano, and Pratts [39]. These autoioniz-
ing states, which lie below the second ionization threshold
(65.4 eV), can be described primarily with the 2s2p, 2p3s,
2s3p, and 2p3d configuration basis states. As seen in Fig. 5,
as well as in Figs. 2 and 3, the method introduces no additional
broadening, either below or above the ionization threshold.

C. Photoelectron angular distributions

Let us conclude the discussion by noting that it is possible
to calculate photoelectron angular distributions (PADs) of he-
lium from channel amplitudes Bγ [40–42], where, as before,
γ = (na, �a, �, L, ML, S, MS ) has been used as a short-hand
notation for the quantum numbers of the ionization channel.
We write the angle-dependent photoelectron amplitude as

Ga(k) =
∑
L,�,m

(�a, ma; �, m|LML )BγY ∗
�m

(
k̂
)
, (34)

where k denotes the wave vector of the ejected electron,
k̂ = k/k, ma is the projection of the orbital angular momentum
of the core, and (�a, ma; �, m|LML ) is the Clebsch-Gordan
(vector coupling) coefficient [43]. The K-photon differential
cross section is then proportional to

dσ (K )

d�k
∝

∑
na,�a,ma

|Ga(k)|2. (35)

By omitting the Clebsch-Gordan coefficient for the spin in
Eq. (34), we have implicitly summed (“averaged”) over the
spin quantum numbers of the target. In the present case (lin-
early polarized light, ê = ẑ), only partial waves with ML = 0
are accessible; the PADs will be axially symmetric in this
case. By using the addition theorem for the spherical harmon-
ics and the reduction formula for the 3 j symbols [43], Eq. (35)
simplifies to

∑
na,�a,ma

|Ga(k)|2 =
K∑

j=0

N2 jP2 j
(
ê · k̂

)
, (36)

where Pκ (ê · k̂) = √
4π/(2κ + 1)Yκ,0(k̂) is the Legendre

polynomial of order κ . The coefficients in Eq. (36) are

Nκ =
∑
na,�a

∑
L,L′

∑
�,�′

(−1)κ+�a+�+�′
κ̂2�̂�̂′L̂L̂′

×
(

� �′ κ

0 0 0

)(
L L′ κ

0 0 0

){
L L′ κ

�′ � �a

}
Bγ ′B∗

γ .

(37)

A shorthand notation â = √
2a + 1 has been introduced, and

it is to be understood that indices γ and γ ′ are used in place
of (na, �a, �, L) and (na, �a, �′, L′). We may now define the
asymmetry parameters as

βκ = Nκ/N0, (38)

where the expression for N0 reduces to

N0 =
∑
na,�a

∑
L,�

|Bγ |2 (39)

FIG. 6. Asymmetry parameters βκ for two-, three-, and four-
photon ionization of the He atom (top to bottom). The results
from the time-dependent calculation (TDSE) in panel (a) are from
Ref. [17].

after evaluating the 3 j and 6 j symbols for � = �′ and L =
L′. Equations (37)–(39) agree with the analogous expressions
given in Ref. [17].

In Fig. 6, we show the asymmetry parameters for two-,
three-, and four-photon ionization of He. The strong variation
of β2 and β4 in the energy region below the first ionization
threshold (24.6 eV) seen in Fig. 6(a) is a consequence of two-
photon ionization through the (bound) 1snp states. For photon
energies between 30 and 40 eV, autoionizing states whose en-
ergies converge to the second ionization threshold (65.4 eV),
as well as higher thresholds, can be reached; the resonant
nature of the final continuum states results in a strong energy
dependence of the asymmetry parameters. The parameters re-
main almost constant in the energy region where core-excited
ionization is dominant (roughly between 40.8 and 54.4 eV).
Finally, at even higher energies, for h̄ω � 60 eV, the changes
in the asymmetry parameters are due to two-photon ionization
which proceeds through the odd-parity autoionizing states
(REMPI), as shown in Fig. 5 and discussed above. The calcu-
lated asymmetry parameters are in good agreement with the
results of the recent time-dependent calculation by Boll et al.
[17], in which channel amplitudes have been extracted from
the wave packet at the end of the laser pulse. Note that the
main differences stem from the energy broadening due to the
finite duration of the laser pulse (a 2 fs long pulse was used in
Ref. [17]).

It may come as a surprise that the asymmetry parameters
in Fig. 6(a) vary weakly with photon energy in the region of
core-excited ionization. It has been checked that the phase
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shifts of the dominant 2pε2 p channels are indeed smooth in
this energy region. Furthermore, the values of the asymme-
try parameters in this region are very close to β2 = 2 and
β4 = 0, which describe the PADs in the case of single-photon
ionization for photon energies below the second ionization
threshold. This confirms that the enhancement of the cross
sections is a consequence of an “external” interaction (interac-
tion with the laser), which causes a transition inside the atomic
core, but does not alter the (phases of the) final-state partial
waves. Conversely, the phase shifts of the 1sε2� (� = s, d), as
well as the 2sε2� and 2pε2 f channels all exhibit abrupt jumps
at 40.8 eV. The latter are indicators of the coupling of these
channels with the optically accessible 2pε2 p channels, i.e.,
the jumps are a direct consequence of the electron-electron
(Coulomb) coupling in the final state. Note however, that the
cross sections corresponding to these channels are several
orders of magnitude lower than the 2pε2 p cross sections.

An analogous behavior may also be seen for the asymmetry
parameters in the case of three-photon [Fig. 6(b)] and four-
photon [Fig. 6(c)] ionization. The parameters vary strongly
when the photon energy is close to intermediate bound or
resonance states or when the final-state continuum is reso-
nant. In the region of core-excited ionization, the asymmetry
parameters again vary smoothly with photon energy.

IV. CONCLUSIONS

We have devised a theoretical method for the calcula-
tion of multiphoton ionization amplitudes and cross sections
of few-electron atoms. The method is based on extraction
of partial-wave amplitudes from the scattered part of a
wave function, which is obtained by solving a set of driven
Schrödinger equations, and works in the case of a single elec-
tron ejection. The extraction procedure relies on a description
of partial waves in terms of a small number of Coulomb waves
with fixed wave numbers. We have implemented the extrac-
tion procedure in the framework of exterior complex scaling.
One- and two-electron wave functions have been calculated in
a basis of B spline functions. The method has been tested by
calculating partial two-, three-, and four-photon generalized
cross sections of atomic hydrogen and helium and by cal-
culating the asymmetry parameters of photoelectron angular
distributions for two-, three-, and four-photon ionization of
the helium atom.

We have found the present method to be stable, robust, and
its implementation to be relatively straightforward. While the
method has only been tested on atomic systems, it could also
be used to treat multiphoton ionization of simple molecules.
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APPENDIX: CALCULATION OF RADIAL
FUNCTION P̂(r)

In this section, we provide additional details on the calcu-
lation of photoionization amplitudes for a two-electron atom.
In particular, we discuss one of the possible ways of calcu-
lating radial function P̂(r) associated with ionization channel
γ = (na, �a, �, L, ML, S, MS ) of �̂(r1, r2), the solution of
Eq. (2). We start by expressing �̂(r1, r2) as

�̂(r1, r2) =
∑

L′,ML′

∑
α,β

yL′ML′
αβ �

L′ML′
αβ

(r1, r2), (A1)

where �
L′ML′
αβ (r1, r2) denotes a coupled two-electron wave

function:

�
L′ML′
αβ

(r1, r2) = A
Pnα�α

(r1)

r1

Pnβ�β
(r2)

r2
Y�α�β

L′ML′ (r̂1, r̂2). (A2)

In Eq. (A2), Y�α�β

L′ML′ (r̂1, r̂2) is a bipolar harmonic [43] and
A stands for the antisymmetrizing operator. (The spin parts
have been omitted for brevity.) Radial functions Pnα�α

(r) are
obtained by calculating eigen wave functions of the complex-
scaled Hamiltonian operator of a one-electron atom with
nuclear charge Z . These functions can be used to repre-
sent both bound and continuum states. Next, we calculate
the projection by fixing the quantum numbers of the atomic
core (nα = na, �α = �a), the total angular momentum and its
projection (L′ = L, ML′ = ML), and the orbital angular mo-
mentum of the “outer” electron (�β = �):

�̂
LML
a�

(r1, r2) =
∑

β

�
LML
aβ

(r1, r2)
〈
�

LML
aβ

∣∣�̂〉
δ�,�β

, (A3)

where the overlap matrix element 〈�LML
aβ |�̂〉 is calculated on

the ECS contour. It has been assumed above that Pna�a (r) de-
scribes a bound state whose wave function is contained within
the nonscaled radial region, i.e., Pna�a (r) is taken to be negli-
gibly small for r > R0. Since wave functions �

LML
αβ (r1, r2) are

diagonal in all quantum numbers, Eq. (A3) may be written as

�̂
LML
a�

(r1, r2) =
∑

β

�
LML
aβ

(r1, r2)yLML
aβ δ�,�β

. (A4)

We may now immediately write the radial function describing
the continuum electron in channel γ as

P̂(r) =
∑

β

yLML
aβ Pnβ�β

(r)δ�,�β
. (A5)

Coefficients yLML
aβ are calculated in the following way: We

write �̂ and �
LML
αβ in a basis of two-electron functions

ϕi(r1, r2) = A
Bni (r1)

r1

Bνi (r2)

r2
Y�iλi

LiMLi
(r̂1, r̂2), (A6)

where Bni and Bνi are the modified B-spline functions [8], �i

and λi denote the orbital angular momenta of the two elec-
trons, and Li and Mi the total orbital angular momentum and
its projection. Coefficients yLML

aβ are then expressed as

yLML
aβ =

∑
i, j

v
aβ
i Si jw j, (A7)
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where Si j = 〈ϕi|ϕ j〉 is the overlap matrix element evaluated on the ECS contour, and w j and v
αβ
i denote the expansion

coefficients of �̂ and �
LML
αβ :

�̂(r1, r2) =
∑

j

w jϕ j (r1, r2), (A8)

�
LML
αβ

(r1, r2) =
∑

i

v
αβ
i ϕi(r1, r2). (A9)
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