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We find, for two-electron closed-shell systems (H2 molecule, He atom), symmetry-forbidden peaks in the
high-order harmonic spectra obtained by the time-dependent Kohn-Sham equations, and clarify their origin.
It turns out that fixation of the number of Kohn-Sham orbitals and their occupations gives rise to unphysical
transition paths and, therefore, incorrect populations of the one-electron excited states, which leads to even-
order harmonics in systems with inversion symmetry. We show that the time-dependent natural Kohn-Sham and
time-dependent configuration interaction equations do not suffer from this shortcoming.
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I. INTRODUCTION

Since the first observation of high-order harmonic genera-
tion (HHG) in gases [1], the field has developed tremendously
[2]. It is now well understood in terms of the semiclassi-
cal three-step model [3,4] and the more rigorous Lewenstein
model [5], which shows that the cutoff photon energy is pro-
portional to the intensity and wavelength of the driving laser.
To extend the cutoff, the duration of the laser pulse can be
decreased so that the intensity is increased [6,7]. A pulse as
short as 5 fs, approaching a single cycle, has been employed
in Ref. [8] to generate a 0.5 keV x-ray harmonic. However,
high intensity leads to strong ionization and therefore deco-
herence, which limits the usability of such harmonics [9].
Alternatively, the wavelength of the laser can be increased
[10]. Wavelengths ranging from 1.3 to 2.1 μm [11–17] and
even 3.9 μm [18] have been used to obtain cutoffs around
1 keV. Recent experimental [19–23] and theoretical [24–32]
efforts focus on HHG in solids. HHG has vast applications in
modern physics, such as high-resolution core level [33] and
plasma [34] spectroscopy, x-ray fluorescence analysis [35],
attosecond time-resolved measurement of electron dynam-
ics [36–40], extraction of higher-order nonlinear electronic
responses [41], measurement of Berry curvatures [42], and
characterization of topological phase transitions [43–46].

Numerical methods have been developed to simulate the
process of HHG [47]. Among them, real-time time-dependent
density functional theory was deemed to combine appropri-
ate accuracy with acceptable computational cost for large
systems. However, we find strong even-order harmonics in
two-electron closed-shell systems with inversion symmetry
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using the time-dependent Kohn-Sham (TDKS) equations; see
Fig. 1.

Theoretical works employing simplified models have ad-
dressed the failure to obtain clean odd-order harmonics in
periodic systems. In semimetals, disturbed interference can
generate a white spectrum that masks the odd-order harmon-
ics [48], high-order harmonics can be blurred by elastic and
inelastic scattering from impurities and phonons, respectively
[49], inversion symmetry breaking can enhance even-order
harmonics to the strength of odd-order harmonics [50], and
long dephasing times can bury odd-order harmonics in strong
background noise [51]. Out of these mechanisms, only a
lack of inversion symmetry could explain our observations;
however, the considered systems possess inversion symmetry.
Due to the apparent absence of physical reasons, we consider
a possible deficiency of the TDKS equations to explain the
appearance of even-order harmonics. This idea is also inspired
by the fact that unphysical two-electron excited states inherent
to the TDKS equations, due to fixation of the number of KS
orbitals and their occupations, lead to wrong electron density
and, therefore, failure to describe resonant Rabi oscillations
[52]. However, when a HHG spectrum is calculated, the sys-
tem is not driven far away from the ground state so that
two-electron excited states can be neglected.

In this paper, we demonstrate that the generation of
symmetry-forbidden even-order harmonics is caused by in-
correct populations of one-electron excited states when the
TDKS equations are used. Additionally, two-electron ex-
cited states alter these populations by opening unphysical
transition paths. This conclusion is further supported by com-
parison to HHG spectra obtained by time-dependent natural
Kohn-Sham (TDNKS) and time-dependent configuration in-
teraction (TDCI) simulations, and by fitting to the Lewenstein
model.
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FIG. 1. TDKS HHG spectra of (a) a H atom (only odd-order
harmonics) and (b) a H2 molecule (symmetry-forbidden even-order
harmonics) for h̄ω = 1.55 eV, σ = 2.67 × 10−14 s, and E0 = 0.5
V/Å. The inset shows the laser pulse.

II. RESULTS AND DISCUSSION

We use the TDKS implementation of the OCTOPUS code
[53] and implement the TDNKS equations in this code (Ap-
pendix A). We address a H atom as a prototypical one-electron
system, a H2 molecule (optimized bond length of 0.74 Å)
as a prototypical multielectron system with static correla-
tion, and a He atom as a prototypical multielectron system
without static correlation. For the H atom and H2 molecule
(He atom), the spherical simulation box has a radius of 20
(10.5) Å and is discretized in increments of 0.2 (0.15) Å.
We employ Troullier-Martins pseudopotentials and the lo-
cal density approximation (LDA) or Perdew-Burke-Ernzerhof
(PBE) generalized gradient approximation. The time step is
�t = 2.4 × 10−19 s in the TDCI and TDKS simulations, and
�t = 9.7 × 10−20 s in the TDNKS simulations (occupations
updated every 5�t while the laser pulse is applied). Tukey
windows are used to eliminate spectral leakage (Appendix B).

The dipole approximation is employed for the light-matter
interaction, H1 = �r · �E (t ), with electric field

�E (t ) =
{

E0 cos2
(

π (σ−t )
2σ

)
sin(ωt ) for t � 2σ

0 for t > 2σ,
(1)

where E0 and ω are the strength and frequency, respectively.
The inset of Fig. 1 gives �E (t ) with h̄ω = 1.55 eV, σ = 2.67 ×
10−14 s, and E0 = 0.5 V/Å. The TDKS HHG spectrum of the
H atom only shows odd-order harmonics, as expected from the
inversion symmetry of the H atom; see Fig. 1(a). The observa-
tion is confirmed for different sets of parameters of �E (t ). The
TDKS HHG spectrum of the H2 molecule, on the other hand,
also shows even-order harmonics, which physically should
not appear due to the inversion symmetry of the H2 molecule;
see Fig. 1(b). The TDKS equations therefore work well for
the one-electron system, but fail for the multielectron system.
As another peculiarity of the TDKS equations, it has been

known for a long time that resonant Rabi oscillations can
be generated only for one-electron systems. This recently has
been explained by large populations of unphysical multielec-
tron excited states that give rise to wrong electron density [52].
In the case of nonresonant Rabi oscillations, however, the
TDKS equations work well for multielectron systems, since
multielectron excited states play no relevant role. The fact that
for our H2 molecule the two-electron excited states can also be
neglected, as it stays close to the ground state, thus raises the
question of why the TDKS equations still fail to describe the
HHG.

To answer this question, we analyze the states contributing
to the HHG spectrum. We benefit from the simplicity of the
H2 molecule, as only the ground state, one-electron excited
states, and two-electron excited states need to be considered.
Describing the time-propagated multielectron state as a linear
combination of these states, we have the TDCI equations
(atomic units)

i
∂

∂t
Cmn(t ) = (εm + εn)Cmn(t ) +

M∑
m′=1

Cm′n(t )dmm′

+
M∑

n′=1

Cmn′ (t )dnn′ , (2)

where Cmn(t ) is the coefficient of the Slater determinant
|ψmψ̄n〉 (with |ψm〉 and |ψ̄n〉 being the KS orbitals at t = 0
for spin up and down, respectively), εm is the eigenenergy of
|ψm〉, M is the number of KS orbitals, and dmm′ = 〈ψm|y|ψm′ 〉
is the transition dipole. For the initial conditions C11(t = 0) =
1 and Cmn(t = 0) = 0 for m �= 1 or n �= 1, which correspond
to the ground state, we can solve Eq. (2) for Cmn(t ) to obtain
the dipole moment

dy(t ) =
M∑

n=1

M∑
m′,m=1

C∗
m′n(t )Cmn(t )dm′m

+
M∑

m=1

M∑
n′,n=1

C∗
mn′ (t )Cmn(t )dn′n. (3)

See Appendix C for further details on Eqs. (2) and (3). The
Fourier transform of dy(t ) (we show the decadic logarithm in
the following) gives rise to the HHG spectrum.

Using the time-propagated multielectron wave function
|	(t )〉 = |ψ1(t )ψ̄1(t )〉 obtained from the TDKS equations,
where |ψ1(t )〉 is the lowest KS orbital, the dipole moment is
given by (Appendix C)

dy(t ) = 2 〈ψ1(t )|y|ψ1(t )〉 . (4)

We can expand |ψ1(t )〉 in terms of the KS orbitals at t = 0
as |ψ1(t )〉 = ∑M

i=1 ai(t ) |ψi〉. Then, Cmn(t ) = am(t )an(t ) [54]
and Eq. (4) can be rewritten in the form of Eq. (3). Note,
however, that the TDCI equations provide an exact solution
of the KS system as long as M is sufficiently large, whereas
the TDKS equations are an approximation. Despite the equiv-
alence of Eqs. (3) and (4), the calculated dipole moments thus
will not be identical.

The TDKS and TDCI HHG spectra of a H2 molecule are
shown in Fig. 2(a). First, we observe that the TDCI HHG spec-
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FIG. 2. (a) TDKS and TDCI HHG spectra of a H2 molecule for
h̄ω = 1.55 eV, σ = 2.67 × 10−14 s, and E0 = 0.5 V/Å. The TDCI
HHG spectra show no symmetry-forbidden peaks. Considering only
one-electron excited states and considering all excited states results
in perfectly matching HHG spectra (both for the TDKS and TDCI
equations). (b) Red arrows: Transitions among one-electron excited
states and among two-electron excited states. Solid blue arrows:
Physical transitions (between ground state and one-electron excited
state; between one-electron excited state and two-electron excited
state). Dashed blue arrow: Unphysical transition (ground state to
two-electron excited state).

tra have no even-order harmonics, in contrast to the TDKS
HHG spectra. Second, for both methods, consideration of
two-electron excited states in the calculation has virtually
no influence on the HHG spectrum, implying that only the
one-electron excited states matter. Note that the TDCI HHG
spectrum without two-electron excited states is obtained by
setting the coefficients of all two-electron Slater determinants
in Eq. (2) to zero at all times, i.e., the HHG spectra with-
out and with two-electron excited states result from different
simulations. The TDKS HHG spectrum without two-electron
excited states is calculated by Eq. (3) after removing the
coefficients of all two-electron Slater determinants, i.e., it
results from the same simulation as the HHG spectrum with
two-electron excited states.

It is important to realize that the above findings do
not imply that two-electron excited states play no role at
all. They alter the populations of the one-electron excited
states and, therefore, must be considered to explain the
appearance of even-order harmonics in the TDKS HHG spec-
trum. Figure 2(b) illustrates the possible transitions. First,
there are transitions among one-electron excited states and
among two-electron excited states (red arrows). Second, there
are transitions between the ground state and one-electron
excited states, between one-electron excited states and two-
electron excited states, and between the ground state and
two-electron excited states (blue arrows). Since the HHG
spectrum is determined by one-electron excited states, we
are interested in paths leading from the ground state to
the one-electron excited states (e.g., 1, 1+2+4, 1+3+1).

--
dmn (bohr)

(a) (b)

(c)

TDCI

TDKS

FIG. 3. (a) Transition dipoles of a H2 molecule, showing that
d13 and d16 dominate for transitions from the ground state (m = 1).
(b) TDKS populations of the dominant one-electron excited states
P13 (green) and P16 (blue), which exceed the populations of all other
one-electron excited states by more than three orders of magnitude.
(c) TDKS and TDCI Fourier transforms of P13.
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FIG. 4. (a) TDNKS HHG spectrum of a H2 molecule for h̄ω =
1.55 eV, σ = 1.33 × 10−14 s, and E0 = 0.5 V/Å. Inset: Fourier trans-
form of P13. (b) Energy of the spectral cutoff vs laser intensity (data
points) with linear fits (colored lines), and Lewenstein model (black
line).
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FIG. 5. HHG spectra of a H2 molecule for h̄ω = 1.55 eV, σ = 1.33 × 10−14 s, and E0 = 0.5 (red), 1.0 (green), 1.5 (blue), 2.0 (black), and
2.5 (purple) V/Å. The spectral cutoffs are indicated by triangles. The pronounced TDCI peak at harmonic order 7 (10.85 eV) is explained by
proximity to the transition energy between the highest occupied and lowest unoccupied molecular orbitals (10.34 eV).

A path consisting of n transitions contributes to the dipole
moment proportional to E (t )n. Thus, the exponent n is
the harmonic order of the dipole moment after Fourier
transformation.

Transitions indicated by red arrows in Fig. 2(b) are not
to be considered since paths including such transitions give
rise to even-order harmonics, and the TDCI HHG spectrum,
which is expected to be accurate, does not show even-order
harmonics. As for each transition among one-electron excited
states there is an inverse transition and these contributions
cancel out each other, only the physical transitions indi-
cated by blue arrows in Fig. 2(b) need to be considered.
Therefore, we have only odd-order harmonics, consistent
with the TDCI HHG spectrum. The transition indicated by
a dashed blue arrow in Fig. 2(b) is an unphysical transition
(shortcoming of the TDKS equations [52]) that accompa-
nies transition 1 and opens the possibility of even-order
harmonics (e.g., path 5+4 corresponds to a second-order
harmonic).

While the unphysical two-electron excited states do not
directly modify the HHG spectrum of the H2 molecule, they
influence the populations of the one-electron excited states
(through paths such as 5+4). We use M = 20 KS orbitals at
t = 0 to expand the time-propagated KS orbitals. Figure 3(a)
indicates that there are two dominant transition dipoles, d13

and d16, for transitions from the ground state (m = 1). Their

populations Pmn = |Cmn|2 calculated by the TDKS equations
are shown in Fig. 3(b). The TDCI equations give qualitatively
the same result. We expect from Fig. 2(b) that C1n contains
only odd powers of sin(ωt ), and when we consider only C1n

we have dy(t ) = [C∗
1n(t )C11(t ) + C∗

11(t )C1n(t )]d1n. Since the
ground state is only weakly affected by the excitation, it can
be assumed that C11 does not depend on sin(ωt ). Thus, all
observable harmonics must be related to the dynamics of C1n.
This is confirmed by Fourier transformation of P13: Clean
even-order harmonics are visible in Fig. 3(c) for the TDCI
equations. They correspond to the odd powers of sin(ωt ) in
C13 and therefore to the odd-order harmonics in the HHG
spectrum. The odd-order harmonics visible in Fig. 3(c) for
the TDKS equations correspond to the symmetry-forbidden
even-order harmonics in the HHG spectrum. The model of
Fig. 2(b) to explain the failure of the TDKS equations is thus
confirmed.

To further verify that the origin of the symmetry-forbidden
harmonics in the TDKS HHG spectrum is the incorrect pop-
ulations of the one-electron excited states (due to fixation of
the number of KS orbitals and their occupations), we employ
the TDNKS equations, i.e., the number of KS orbitals and
their occupations are updated on the fly so that unphysical
two-electron excited states are avoided. To reduce the com-
putational cost, we use a shorter electric-field envelope of
σ = 1.33 × 10−14 s. The obtained HHG spectrum in Fig. 4(a)

043106-4



ORIGIN OF SYMMETRY-FORBIDDEN HIGH-ORDER HARMONIC … PHYSICAL REVIEW A 103, 043106 (2021)

bh

ha
rt

re
e

(b)

(a)

TDCI 

TDNKS
TDKS 

LDA
TDCI TDNKSTDKS 

a=0.9
a=1.3
a=0.8

FIG. 6. (a) HHG spectra of a He atom for h̄ω = 1.55 eV, σ =
1.33 × 10−14 s, and E0 = 0.5 V/Å. (b) Energy of the spectral cutoff
vs laser intensity (data points) with linear fits (colored lines), and
Lewenstein model (black line).

shows no even-order harmonics and the Fourier transform of
P13 in the inset shows only even-order harmonics, resembling
the TDCI results in Fig. 3(c). Therefore, both the TDCI and
TDNKS equations yield clean odd-order harmonics, in con-
trast to the TDKS equations. The fact that the even-order
harmonics become weaker and eventually disappear for in-
creasing laser intensity indicates that transitions from the
ground state dominate the populations of the one-electron
excited states over transitions from unphysical two-electron
excited states.

As the TDKS, TDCI, and TDNKS HHG spectra are rather
different, the question arises of how well the TDKS and
TDNKS equations perform as compared to the TDCI equa-
tions. To answer this question, we compare the energy of the
spectral cutoff (Ec) for the three methods using both the LDA
and PBE exchange-correlation functionals; see Fig. 5. The
spectral cutoff is defined as the highest attainable harmonic
order. While it is usually given by a steep drop after a plateau
in the HHG spectrum [5,55], for a short laser pulse it is deter-
mined as the end of the cutoff region [8,10]. Notice that we use
low intensity to avoid ionization [56,57]. While the TDCI and
TDKS HHG spectra show distinct plateaus, this applies to the
TDNKS HHG spectra only at low E0. The reason is that the
low-order harmonics are enhanced faster than the high-order
harmonics for increasing E0, which gives rise to an overall
monotonic decay of the TDNKS HHG spectra. We also note
that for increasing E0, the plateaus extend to higher harmonic
order in both the TDKS and the TDCI HHG spectra. We fit
our data as

Ec(E2
0 ) = 1.3Ip + 3.17

aE2
0

4ω2
, (5)

TDNKS (LDA)

TDKS (LDA)

TDCI (LDA)

FIG. 7. HHG spectra of a He atom for h̄ω = 1.55 eV, σ =
1.33 × 10−14 s, and E0 = 0.5 (red), 1.5 (green), 2.5 (blue), 3.5
(black), and 4.5 (purple) V/Å. The spectral cutoffs are indicated by
triangles.

where Ip = 15.4 eV is the ionization energy of the H2

molecule. The Lewenstein model, which is more accurate than
the three-step model [5], corresponds to a = 1. Figure 4(b)
shows that both the TDCI and TDNKS equations obey the
Lewenstein model rather well, in contrast to the TDKS equa-
tions. The fact that the TDCI equations are accurate for the
KS system and obey the Lewenstein model validates our
definition of the spectral cutoff. Note, also, that the spec-
tral cutoff in both the Lewenstein and three-step models, in
agreement with our definition, is the maximum energy that
an electron can obtain. Clearly, the TDKS equations predict
the energy of the spectral cutoff poorly, while the TDNKS
equations perform better. Finally, we find that the choice of
the exchange-correlation functional (LDA or PBE) hardly in-
fluences the HHG spectrum.

To evaluate whether the large static correlation of the H2

molecule affects our conclusions, Figs. 6 and 7 provide TDCI,
TDKS, and TDNKS HHG spectra for a He atom (small static
correlation [58]). The presence and absence of even-order har-
monics in the TDKS and TDNKS HHG spectra, respectively,
show that the static correlation is not responsible for the even-
order harmonics. Again, the TDNKS equations predict the
energy of the spectral cutoff better than the TDKS equations
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(Ip = 24.6 eV for the He atom); see Fig. 6(b). Note that all
TDNKS HHG spectra show distinct plateaus.

III. CONCLUSIONS

Our results show that the TDKS equations generate
symmetry-forbidden harmonics for both a H2 molecule and a
He atom, but not for a H atom. We demonstrate that this short-
coming is due to incorrect populations of the one-electron
excited states, as a consequence of fixation of the number of
KS orbitals and their occupations. Interestingly, direct effects
of the unphysical two-electron excited states resulting from
the TDKS equations turn out to be negligible, while indirect
effects on the populations of the one-electron excited states
are critical. We also find that the TDKS equations yield a
wrong energy of the spectral cutoff. As the TDNKS equations
do not share the shortcomings of the TDKS equations, they
provide a favorable formulation of real-time time-dependent
density functional theory. The development of TDNKS equa-
tions for periodic systems and systems with more than two
electrons, therefore, appears to be a promising route. We note
that no unphysical even-order harmonics have been reported
in Refs. [56] and [59] for E0 = 2.5 and 5.0 V/Å, respectively,
due to the fact that they become buried in the enhanced odd-
order harmonics at growing laser strength.
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APPENDIX A

The TDKS and TDNKS formulations share the equations
of motion

ih̄
∂

∂t
|ψm(t )〉 =

[
− h̄2

2me
�2 + νext (t ) + νHartree[ρ](t )

+ νxc[ρ](t )
]
|ψm(t )〉 , (A1)

where |ψm(t )〉, νext , νHartree, and νxc denote the natural KS
orbitals, external potential, Hartree potential, and exchange-
correlation potential, respectively. The spin-reduced electron
density is constructed from M(t ) natural KS orbitals with
occupations pm(t ) as ρ(t ) = ∑M(t )

m=1 pm(t )|ψm(t )|2 and the
time-propagated wave function can be written as

|	(t )〉 =
M∑

m,n=1

Cmn(t ) |ψmψ̄n〉 , (A2)

with |ψm〉 = |ψm(t = 0)〉. Removing two-electron excitations
from Eq. (A2), we obtain

C = 1

NC

⎛
⎜⎜⎝

C11 C12 · · · C1M

C21 0 · · · 0
...

...
. . .

...

CM1 0 · · · 0

⎞
⎟⎟⎠, (A3)

TABLE I. Parameters of the applied Tukey windows.

System H2 He H

Laser duration 26.7 fs 13.3 fs 13.3 fs 26.7 fs

TDCI �t = 52 fs �t = 26 fs
t0 = 26 fs t0 = 13 fs
α = 0.07 α = 0.12

TDKS �t = 52 fs �t = 30 fs �t = 30 fs �t = 52 fs
t0 = 26 fs t0 = 15 fs t0 = 15 fs t0 = 26 fs
α = 0.20 α = 0.01 α = 0.01 α = 0.20

TDNKS �t = 30 fs �t = 30 fs
t0 = 15 fs t0 = 15 fs
α = 0.10 α = 0.10

with the renormalization factor NC =
√∑M

m,n=1 |Cmn|2. The

corresponding density matrix is ρ = CC† and diagonaliza-
tion D = U†ρU provides the updated natural KS orbitals
|ψm(t )〉 = ∑M

n=1 |ψn〉Unm(t ) and their occupations 2Dmm. The
updated wave function is

|	(t )〉 =
M∑

m,n=1

Bmn |ψm(t )ψ̄n(t )〉 (A4)

with B = U∗CU†. The updated natural KS orbitals are propa-
gated by Eq. (A1) and the procedure is iterated.

APPENDIX B

The parameters of the applied Tukey windows

WT (t ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1+cos[π (2 t−t0
�tα −1+ 1

α
)−φ]

2 for −1
2 � t−t0

�t < α−1
2

1 for α−1
2 � t−t0

�t � 1−α
2

1+cos[π (2 t−t0
�tα +1− 1

α
)−φ]

2 for 1−α
2 < t−t0

�t � 1
2

0 otherwise,
(B1)

with 0 < α < 1, are given in Table I.

APPENDIX C

The H2 molecule is modeled as a two-electron KS system
with Hamiltonian

H0 =
N∑
i

[
−1

2
∇2

i + νKS (�ri )

]
=

N∑
i

hKS (�ri ), (C1)

where νKS is the KS potential, N is the number of electrons,
and hKS is the KS Hamiltonian. Including the external electric
field in the dipole approximation, the total Hamiltonian is

H = H0 +
N∑

i=1

�ri · �E (t ). (C2)

The initial state is the ground state with the wave function
given by the Slater determinant

|	(t = 0)〉 = |ψ1ψ̄1〉 ≡ 1√
2

∣∣∣∣ψ1(�r1) ψ̄1(�r1)
ψ1(�r2) ψ̄1(�r2)

∣∣∣∣, (C3)
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where |ψm〉 are the KS orbitals satisfying the KS equation

hKS |ψm〉 = εm |ψm〉 , (C4)

with eigenenergies εm. We obtain the time-propagated mul-
tielectron wave function by solving the time-dependent
Schrödinger equation (atomic units),

i
d

dt
|	(t )〉 = H |	(t )〉 , (C5)

through the TDCI or TDKS equations.
In the case of the TDCI equations, expansion of |	(t )〉 in

the basis of multielectron wave functions of H0 [Eq. (A2)] and
substitution into Eq. (C5) yields

i
M∑

m′,n′=1

∂Cm′n′ (t )

∂t
|ψm′ψn′ 〉 =

M∑
m′,n′=1

Cm′n′ (t )

×
(

H0 +
N∑
i

�ri · �E (t )

)
|ψm′ψn′ 〉 . (C6)

Noting that

〈ψmψ̄n|ψm′ψ̄n′ 〉
= 1

2 (〈ψm(�r1)| 〈ψ̄n(�r2)| − 〈ψm(�r2)| 〈ψ̄n(�r1)|)
× (|ψm′ (�r1)〉 |ψ̄n′ (�r2)〉 − |ψm′ (�r2)〉 |ψ̄n′ (�r1)〉)

= δmm′δnn′ (C7)

implies

〈ψmψ̄n|H0|ψm′ψ̄n′ 〉
= 1

2 (〈ψm(�r1)| 〈ψ̄n(�r2)| − 〈ψm(�r2)| 〈ψ̄n(�r1)|)

×
2∑

i=1

hKS (�ri )(|ψm′ (�r1)〉 |ψ̄n′ (�r2)〉 − |ψm′ (�r2)〉 |ψ̄n′ (�r1)〉)

= (εm + εn)δmm′δnn′ , (C8)

and assuming that �E (t ) is polarized along ŷ leads to

〈ψmψ̄n|
2∑

i=1

�ri · �E (t )|ψm′ψ̄n′ 〉

= 〈ψmψ̄n|
2∑

i=1

yi · E (t )|ψm′ψ̄n′ 〉

= (dmm′δnn′ + dnn′δmm′ )E (t ). (C9)

Multiplying Eq. (C6) from the left by 〈ψmψ̄n| and employing
Eqs. (C7)–(C9), we obtain

i
∂

∂t
Cmn(t ) = (εm + εn)Cmn(t )

+
M∑

m′=1

Cm′n(t )dmm′ +
M∑

n′=1

Cmn′ (t )dnn′ , (C10)

where the eigenenergies εm and transition dipoles dmm′ can be
calculated by density functional theory. The dipole moment is
given by

dy(t ) ≡ 〈	(t )|y1 + y2|	(t )〉

=
M∑

n=1

M∑
m′,m=1

C∗
m′n(t )Cmn(t )dm′m

+
M∑

m=1

M∑
n′,n=1

C∗
mn′ (t )Cmn(t )dn′n. (C11)

Neglecting the two-electron excited states, Eq. (C11) simpli-
fies to

dy(t ) =
M∑

m′,m=1

C∗
m′1(t )Cm1(t )dm′m

+
M∑

n′,n=1

C∗
1n′ (t )C1n(t )dn′n. (C12)

Propagating the KS orbitals by the TDKS equations,

i
∂

∂t
|ψi(t )〉 = hKS[ρ] |ψi(t )〉 , (C13)

where ρ= ∑N
i=1 |ψi(t )〉 〈ψi(t )|, results in the time-propagated

multielectron wave function |	(t )〉 = |ψ1(t )ψ̄1(t )〉. The
dipole moment is obtained as

dy(t ) = 2 〈ψ1(t )|y|ψ1(t )〉 , (C14)

where the factor two represents the two electrons in the lowest
orbital. The TDNKS and TDKS formulations share the time
propagation, being distinguished only by the calculation of the
electron density. In the TDNKS formulation, we have

dy(t ) =
M(t )∑
m=1

pm(t ) 〈ψm(t )|y|ψm(t )〉 . (C15)
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