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Evolution of the velocity distribution of atoms under the action of the bichromatic force
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We study numerically the evolution of the velocity distribution of atoms under the action of the bichromatic
force. The comparison of the time dependencies of the distribution width and the average acceleration of atoms
reveals the correlation of these quantities. We show that the estimation of the momentum diffusion coefficient
on the basis of the analogy between the interaction of atoms with the counterpropagating bichromatic waves
and the interaction of atoms with the counterpropagating sequences of the π pulses roughly corresponds to
the results of numerical calculations. To separate the influence of the momentum diffusion on the evolution of
atomic momentum distribution from the influence of the time-dependent Doppler shift, we study the motion of
a “heavy” atom, for which the velocity change during the interaction of an atom with the field can be neglected.
Provided that the parameters of the atom-field interaction are optimal, we show that the momentum diffusion
coefficient is proportional to the intensity of the laser radiation. We used the Monte Carlo wave-function method
for the numerical simulation of the atomic motion.
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I. INTRODUCTION

The first theoretical study of the light pressure force exerted
on atoms in the field of counterpropagating bichromatic waves
in 1988 [1] showed that this force can be used to control
the motion of atoms. This control is based on the large light
pressure force exerted on atoms, which is much larger than
the maximal light pressure force Frad in the field of a traveling
monochromatic wave, given by the formula [2,3]

Frad = 1

2
h̄kγ . (1)

Here γ is the rate of the spontaneous emission, and k is the
wave vector. This fundamental limit was exceeded already in
the first observation of the bichromatic force [4]. Later, the
light pressure force much greater than Frad was experimentally
confirmed [5]. Analytical theory of the bichromatic force was
developed in Refs. [6,7], and a review of publications on this
topic is given in Ref. [8]. At the same time, momentum diffu-
sion of atoms in the field of counterpropagating bichromatic
waves has not been studied so far, in contrast to well-known
thorough studies of momentum diffusion of atoms in the field
of monochromatic waves [2,9] and momentum diffusion of
atoms in the field of π pulses [10].

To describe the evolution of the velocity distribution of
atoms under the action of the bichromatic force, we track
the time dependence of two statistical characteristics of the
distribution. These characteristics are the average velocity v̄

of atoms and the standard deviation �v of the velocity from
the average value. We find v̄ and �v from the atomic state
vector of each atom using the Monte Carlo wave-function
method [11,12]. We show that only at the beginning of the
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interaction of the atoms with the field the time evolution of
the width �p of the momentum distribution of the atoms can
be described by the diffusionlike dependence �p = √

2Dt ,
where D is the momentum diffusion coefficient and t is the
atom-field interaction time. Over time, �p can both increase
and decrease.

To separate the influence of momentum diffusion on the
evolution of momentum distribution of atoms from the in-
fluence of the time-dependent Doppler shift of the atomic
frequency, we used an assumption of a “heavy” atom, in which
the change of the Doppler shift during the interaction of the
atom with the field can be neglected. This allowed us to study
the dependencies of the momentum diffusion coefficient on
the average velocity of atoms and the momentum diffusion
coefficient on the intensity of laser radiation.

The paper is structured as follows. The next section
presents the equations that describe the time dependence of
the field acting on the atoms and the Hamiltonian of the
atom-field interaction. The third section describes the Monte
Carlo method for the wave function. In the fourth section, we
present the scheme of the numerical calculation. The obtained
results are discussed in the fifth section. In the sixth section,
we formulate conclusions of the work.

II. ELECTRIC FIELD AND HAMILTONIAN

Consider a two-level atom with the ground |g〉 and the ex-
cited |e〉 states, which interacts with two counterpropagating
bichromatic waves

Ep = 1

2
eE0 cos

[
(ω + δ)t + ϕ

2
− kz

]

+ 1

2
eE0 cos

[
(ω − δ)t − ϕ

2
− kz

]
(2)
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and

Em = 1

2
eE0 cos

[
(ω + δ)t − ϕ

2
+ kz

]

+ 1

2
eE0 cos

[
(ω − δ)t + ϕ

2
+ kz

]
, (3)

where E0 is the peak amplitude of the waves, which is as-
sumed to be the same for all waves, e is the unit polarization
vector, and ω ± δ are the carrier frequencies with the mean
frequency ω and the difference 2δ.

Here we neglected the difference of the wave vectors
∼(δ/ω)k; taking it into account leads to a change in the
phase difference, which is substantial at a distance of the
order c/δ ∼ 1 m ∼ (106−107)λ, where λ is the wavelength of
electromagnetic radiation. In our model, used in other works
[1,4–6,10,13,14], we describe the phase difference between
the waves by the terms ±ϕ/2.

The Hamiltonian of an atom in the field

E = Ep + Em (4)

has the form

H = p̂2

2M
+ h̄ω0|e〉〈e| − d̂ · E. (5)

Here p̂ is the momentum operator of the atom, M is the
atomic mass, ω0 is the transition frequency (h̄ω0 is the energy
difference of the states e and g), and d̂ is the dipole momentum
operator.

The field Eq. (4) can be written as counterpropagating
amplitude-modulated waves:

E = eE1 cos(ωt − kz) + eE2 cos(ωt + kz), (6)

where

E1 = E0 cos

(
δt + 1

2
ϕ

)
, (7)

E2 = E0 cos

(
δt − 1

2
ϕ

)
. (8)

Here E0 is the amplitude of the counterpropagating waves.
The field Eq. (4) can also be interpreted as a bichromatic
standing wave:

E = E0 cos

(
kz + ϕ

2

)
cos [(ω − δ)t]

+ E0 cos

(
kz − ϕ

2

)
cos [(ω + δ)t], (9)

with the amplitude E0 of the monochromatic components.

III. SCHRÖDINGER EQUATION AND MODELING
OF THE STATE VECTOR BY MONTE CARLO

WAVE-FUNCTION METHOD

We determine the temporal evolution of the state vector |ψ〉
from the Schödinger equation

ih̄
d

dt
|ψ〉 = H |ψ〉 − ih̄

γ

2
|e〉〈e|ψ〉 (10)

by the Monte Carlo wave-function method [11,12].

The last term in Eq. (10) describes the spontaneous emis-
sion by the atom in the excited state with the rate γ . To
reduce the number of equations needed to describe the evo-
lution of the state vector, we assume, as in Ref. [12], that the
momentum of the atom along the Oz axis is changed after
spontaneous emission by ±h̄k or does not change at all (the
photon is emitted in the orthogonal to the Oz axis direction).

We seek the state vector in the form

|ψ〉 = cg(z, t )|g〉 + ce(z, t )e−iω0t |e〉. (11)

Substituting Eqs. (6) and (11) in Eq. (10), and assuming that
the components of the bichromatic waves are symmetrically
detuned with respect to the optical transition frequency ω0, we
find the equations for cg(z, t ) and ce(z, t ) in the rotating-wave
approximation [15]:

i
∂

∂t
cg = − h̄

2M

∂2

∂z2
cg + 1

2
(V1e−ikz + V2eikz )ce, (12)

i
∂

∂t
ce = − h̄

2M

∂2

∂z2
ce + 1

2
(V1eikz + V2e−ikz )cg − i

γ

2
ce.

(13)

Here V1 and V2 are defined by the expressions

V1 = −1

h̄
〈g|d̂ · e|e〉E1 = �R cos

(
δt + 1

2
ϕ

)
, (14)

V2 = −1

h̄
〈g|d̂ · e|e〉E2 = �R cos

(
δt − 1

2
ϕ

)
, (15)

where �R = −〈g|d̂ · e|e〉E0/h̄ is the Rabi frequency. To sim-
plify the notations, in Eqs. (12) and (13) and hereinafter, we
omit the arguments denoting the dependence of quantities on
time and coordinates.

We write cg and ce in the forms

cg =
∞∑

n=−∞
bg,n exp

(
ik0z + inkz − i

h̄k2
0

2M
t

)
, (16)

ce =
∞∑

n=−∞
be,n exp

(
ik0z + inkz − i

h̄k2
0

2M
t

)
, (17)

where k0 = p0/h̄, and p0 is the z component of the initial
momentum of the atom along the axis Oz. Time-dependent
phases in Eqs. (16) and (17) do not influence the probabilities
bg,n and be,n to find the atom in the states |g, n〉 = |g〉 ⊗ |n〉
and |e, n〉 = |e〉 ⊗ |n〉.

To obtain the equations for bg,n and be,n, we substitute
Eqs. (16) and (17) in Eqs. (12) and (13):

∂

∂t
bg,n = −i

(
n2δrec + nh̄kk0

M

)
bg,n

− i

2
(V1be,n+1 + V2be,n−1), (18)

∂

∂t
be,n = −i

(
n2δrec + nh̄kk0

M

)
be,n

− i

2
(V1bg,n−1 + V2bg,n+1) − γ

2
be,n. (19)

Here δrec = h̄k2/(2M ).
We seek the state vector (11) by the Monte Carlo wave-

function method [11,12]. This method, when applied to the
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amplitudes of the probabilities bg,n and be,n to find an atom in
the ground or excited states with momentum h̄k0 + nh̄k, looks
like the following.

(1) We assume that at time t the amplitudes bg,n(t ) and
be,n(t ) are normalized:

∞∑
n=−∞

[|bg,n(t )|2 + |be,n(t )|2] = 1. (20)

Knowing bg,n(t ) and be,n(t ), we find the values of b(1)
g,n(t + �t )

and b(1)
e,n(t + �t ) from Eqs. (18) and (19) for a small time

interval �t . From the difference

1 −
∞∑

n=−∞

(∣∣b(1)
g,n(t + �t )

∣∣2 + ∣∣b(1)
e,n(t + �t )

∣∣2) = �Psp, (21)

we find the probability of an atom to spontaneously emit a
photon during the time interval �t :

�Psp = γ�t
∞∑

n=−∞

∣∣b(1)
e,n(t )

∣∣2
. (22)

(2) To find whether there was a photon emission during the
time �t , we generate a random variable, ε, which is uniformly
distributed between 0 and 1 and compare it with �Psp. If ε >

�Psp (in most cases), no emission of a photon has occurred.
In this case,

bg,n(t + �t ) = b(1)
g,n(t + �t )√

1 − �Psp
, (23)

be,n(t + �t ) = b(1)
e,n(t + �t )√

1 − �Psp
. (24)

If ε � �Psp, the atom emits a photon and goes to the ground
state. In this case,

bg,n(t + �t ) = b(1)
e,n−ξ (t + �t )∑∞

m=−∞
∣∣b(1)

e,m(t + �t )
∣∣2 , (25)

be,n(t + �t ) = 0, (26)

where ξ takes one of the values ξ = 0 and ±1 with some
probability. Here we simulate the real distribution of the
projections of the photon momentum on the Oz axis by a
hypothetical distribution with ξ = 0 and ±1, as was done in
the modeling of Doppler cooling in Refs. [12,16].

Instead of going back to step 1 and continuing the cal-
culation further, we adjust the numbering of the amplitudes
bg,n(t + �t ) in order to reduce the required size of the am-
plitude arrays in numerical calculations. For this purpose,
we calculate the average momentum acquired by the atom
between the moments of spontaneous photon emission as

〈�p〉 = h̄k
∞∑

n=−∞
n|bg,n|2, (27)

and we find the integer number nph of the photon momentum
h̄k which it contains as follows:

nph =
[ 〈�p〉

h̄k

]
, (28)

where square brackets denote an integer part of a number.
Next, we change the numbering of the amplitudes:

bg,n → bg,n−nph . (29)

This is equivalent to changing the momentum of an atom to
−nph h̄k, so we also change the momentum,

p0 → p0 + nph h̄k, (30)

and return to step 1.
For definiteness, we assume that the atom in the ground

and excited states is characterized by angular momentums h̄Jg

and h̄Je, with Je = Jg + 1. In this case, the two-level scheme
of the atom-light interaction between the states |g, mg = Jg〉
and |e, me = Je〉 (these are the states that we denoted for
simplicity by |g〉 and |e〉) is realized when the atom interacts
with circularly polarized light. The optimal description of the
momentum diffusion rate due to spontaneous emission by a
discrete distribution of the projection of the photon momen-
tum on the axis Oz occurs if ξ acquires the values −1, 0, and
+1 with probabilities of 1/5, 3/5, and 1/5 [12,16].

In the calculations, we also use the model of the heavy
atom, M → ∞. In this case, the terms in Eqs. (18) and (19),
which contain δrec, become negligible and these equations
read as follows:

∂

∂t
bg,n = −inkv0bg,n − i

2
(V1be,n+1 + V2be,n−1), (31)

∂

∂t
be,n = −inkv0be,n − i

2
(V1bg,n−1 + V2bg,n+1) − γ

2
be,n,

(32)

where v0 = h̄k0/M is the initial velocity of the atom. In this
approximation, a very small variation of the velocity with time
practically does not change the Doppler shift.

IV. NUMERICAL CALCULATION ROUTINE

We consider an ensemble of N atoms in the field of the
bichromatic counterpropagating waves and assume that each
atom begins to move with a projection v0 of the initial velocity
on the axis Oz. The evolution of the state vector of the atom is
calculated by the procedure described in Sec. III. We solve the
Schrödinger equation by Runge-Kutta methods of the fourth-
order with a time step �t and every �t we check the norm of
the wave function and use it to decide when a quantum jump
is to occur. We repeat this time step many times until we reach
the final time of calculation t f .

Knowing the final state vector of each of the N atoms,
we determine the average momentum of the mth atom by the
formula

〈p(m)〉 = p(m)
0 + h̄k

∞∑
n=−∞

n
(∣∣b(m)

g,n

∣∣2 + ∣∣b(m)
e,n

∣∣2)
, (33)

where the values of the probability amplitudes refer to the
mth atom, and p(m)

0 is the initial value of the momentum after
the last act of spontaneous radiation, which is modified after
each spontaneous photon radiation according to Eq. (30). The
average value of the square of the momentum of the mth atom
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is calculated by the formula

〈(p(m) )2〉 =
∞∑

n=−∞

(
p(m)

0 + nh̄k
)2(∣∣b(m)

g,n

∣∣2 + ∣∣b(m)
e,n

∣∣2)
. (34)

Now we can calculate the average value of the z component
of the momentum per an atom in the ensemble,

pav = 1

N

N∑
m=1

〈p(m)〉, (35)

and the standard deviation of the z component of the
momentum,

�p =
√√√√ 1

N

N∑
m=1

〈(p(m) )2〉 − p2
av, (36)

per an atom from its average value. Equations (35) and (36)
allow us to calculate the average force F acting on the atom
and the momentum diffusion coefficient D:

F = pav

t f
, (37)

D = �p2

2t f
. (38)

In the following calculations, we compare the force of light
pressure on the atom in the field of counterpropagating bichro-
matic waves with the maximal force Frad of pressure on the
atom in the field of the monochromatic traveling wave given
by Eq. (1). We compare the momentum diffusion coefficient
with the maximal momentum diffusion coefficient Dr in the
field of a traveling monochromatic wave along the direction
of its propagation [2]:

Dr = 1

4
h̄2k2γ (1 + α), (39)

where α = 〈cos2 θ〉 = 2
5 is the mean value of the square of the

cosine of the angle between the direction of photon radiation
and the direction of wave propagation.

V. RESULTS OF NUMERICAL SIMULATIONS

We perform numerical simulation for the case of sodium
atoms. In addition, we consider the limiting case of very heavy
atoms, in which the change of the velocity of an atom during
the atom-field interaction is negligibly small.

Calculations were carried out for 23Na atoms, in which
a cyclic interaction with the field can be created [3]. The
wavelength of the transition 3 2S1/2 −3 2P3/2 in the sodium
atom is λ = 589.16 nm, the rate of spontaneous emission
is γ = 2π×9.795 MHz, and the Doppler cooling limit is
TD = 235.03 μK [17].

A. Sodium atoms in the field of counterpropagating
bichromatic waves

Figure 1 shows time evolution of the mean velocity v̄ and
the standard deviation of the velocity �v from its mean value
for sodium atoms in the field of counterpropagating bichro-
matic waves. The plots are obtained both for the optimal ratio
of �R/δ = √

6 at ϕ = π/4 [6] and for a small but noticeable

FIG. 1. Time dependence of the average velocity v̄ (a) and the
standard deviation �v (b) for 1000 sodium atoms in the field
of the counterpropagating bichromatic waves. Parameters are as
follows: �R = 2π×122 MHz, δ = 2π×40 MHz (thin line), δ =
2π×50 MHz (thick line), and δ = 2π×60 MHz (dashed line). The
initial velocity of the atoms is v0 = 0. The phase difference of the
counterpropagating waves is ϕ = π/4.

(≈20%) deviation from the optimum. First of all, it should
be noted that with increasing time the velocity of the atom
approaches v = δ/k, when, according to the quasiclassical
theory [1,5], the force of light pressure exerted on the atom is
zero. The standard deviation �v increases monotonically with
time only at the beginning of the interaction of atoms with the
field, and then this dependence becomes nonmonotonic. This
suggests that the influence of the Doppler effect on the distri-
bution of atoms in the momentum space is significant. In the
next section, to exclude the influence of the time-dependent
Doppler shift on the light pressure force and the momentum
dispersion, we consider the interaction of atoms of very large
mass with counterpropagating bichromatic waves.

At the beginning of the interaction of atoms with the field,
the dependencies of �v on t shown in Fig. 1(b) are well
approximated by the curves �v = √

2Dvt , which indicates
the diffusion nature of the spreading of the distribution of
atoms by momentum with the diffusion coefficient Dv in the
velocity space.

The diffusion coefficient Dv is related to the momentum
diffusion coefficient D by the formula

Dv = D/M2. (40)
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Let us compare the diffusion coefficient in the field of coun-
terpropagating bichromatic waves with that in the field of a
traveling monochromatic wave of high intensity (when there
is a saturation of absorption),

Dvr = Dr/M2, (41)

where Dr is given by Eq. (39). Calculations for sodium atoms
with α = 0.4 give Dr = 2.78×10−47kg2 m2/s3 and Dvr =
19.07×103 m2/s3.

For the curves shown in Fig. 1 we have the ratio Dv/Dvr :
34.5 (δ/2π = 40 MHz), 60.6 (δ/2π = 50 MHz), and 47.9
(δ/2π = 60 MHz); i.e., the coefficient of momentum dif-
fusion of sodium atoms in the field of counterpropagating
bichromatic waves exceeds the coefficient of momentum dif-
fusion in the field of traveling monochromatic wave by 1–2
orders.

There is a well-known analogy between the light pressure
force in the field of the counterpropagating bichromatic waves
and the sequences of counterpropagating π pulses [1,4–6,10].
We may expect that the momentum diffusion coefficients in
these fields are of the same order of magnitude.

The maximal value of the coefficient of diffusion of atoms
in the field of counterpropagating sequences of π pulses with
the repetition period T for the model of a “heavy” atom in the
most interesting case γ T 
 1 reaches [10]

Dπ max = 4h̄2k2

γ T 2
. (42)

Substituting T = π/δ in Eq. (42), we obtain a rough estima-
tion of the momentum diffusion coefficient of atoms in the
field of the counterpropagating bichromatic waves:

Dbi = 4h̄2k2δ2

γπ2
. (43)

For sodium atoms, Eq. (43) gives Dbi = 8.04×10−46

kg2 m2/s3 for δ/(2π ) = 50 MHz. Estimation of the momen-
tum diffusion coefficient from Fig. 1 for δ/(2π ) = 50 MHz
gives D = 1.7×10−45 kg2 m2/s3, which is twice Dbi. We see
the close results in the momentum diffusion coefficients cal-
culated from Fig. 1 and from Eq. (43) for the parameters we
used.

At the beginning of the interaction of atoms with the field,
the standard deviation of the velocity from the mean value
changes approximately according to the law �v ∝ √

2Dvt
[see the initial part of Fig. 1(b)]. Over time, the dependence
of �v on time ceases to be monotonic: there are observed
areas of growth and the decline of �v [see Fig. 1(b)]. As far
as v̄ grows monotonically with time, similar peculiarities are
observed for the dependence �v on v̄ [see Fig. 2(b)], which
is produced from Figs. 1(a) and 1(b). Figure 2 also shows the
dependence of average acceleration a on v̄, which is produced
from Fig. 1(a) and a(t ). The latter was found by differenti-
ating v̄(t ) [Fig. 1(a)] after its presmoothing. Such smoothing
is necessary because the time derivative of the unsmoothed
v̄ has peculiarities due to quantum jumps in the atoms. We
approximate the curve by the cubic spline f which minimizes

FIG. 2. Correspondence between the average acceleration a =
d v̄/dt and the average velocity v̄ of atoms (a) and correspondence
between the standard deviation of the velocity �v and v̄ of atoms
(b) in the field of counterpropagating bichromatic waves. Parame-
ters are as follows: �R/(2π ) = 122 MHz, δ/(2π ) = 50 MHz, and
ϕ = π/4. The initial velocity of atoms is v0 = 0 (curve 1), v0 = 10
m/s (curve 2), and v0 = −10 m/s. Simulation is for 1000 sodium
atoms. The time of the atom-field interaction is 100 μs.

the functional

J[ f ] = w

K∑
j=1

[ f (x j ) − y j]
2 +

∫ xK

x1

[ f (x)′′]2dx. (44)

Here x j and y j are the coordinates of the j point of the
curve, K is the number of points, and w is the point’s weight.
When w approaches 0, the second term dominates and the
spline approaches a straight line. In the opposite case of very
large w, the spline almost passes the data points. We used
w = 1.0 for K = 4001 points. The commands which produce
the smoothed curve when using GNUPLOT software are
set samples 4001
plot [:][:] ’data’ using 1:2:(1.0) with lines
smooth acsplines

The same result may be obtained by function
csaps(x,y,q,x,w) of MATLAB or OCTAVE with weight
w = 1.0 and q = 0.5.

To understand the nonmonotonic change of �v with a
change of v̄, we must take into account two factors that
determine it. On the one hand, it is a process of momen-
tum diffusion, which leads to a diffusionlike change of �v

with time. On the other hand, the dependence of the average
acceleration a on the average velocity v̄ of an atom can both
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increase and decrease the value of �v. Indeed, let us con-
sider the case da/d v̄ < 0. It is plausible to assume that the
acceleration a1 of one atom or group of atoms with velocity
v1 also decreases with increasing velocity, da1/dv1 < 0. The
accuracy of this statement becomes greater if the standard
deviation �v of the velocity of atoms in the ensemble from
its mean value becomes smaller. In this case, the acceleration
of atoms with a lower velocity is greater than the acceleration
of atoms with a higher velocity. As a result, the velocity
distribution of atoms narrows to a limit that is established
as a result of the dynamic equilibrium of the distribution
narrowing process by reducing the acceleration of atoms with
increasing velocity and the momentum diffusion process that
makes this distribution broader. A well-known analog of this
phenomenon is the Doppler cooling of atoms [8], with the
difference that instead of grouping atoms at zero velocity in
the field of a standing monochromatic wave, we have the
grouping of atoms near the average velocity of the ensemble
of atoms v̄ in the field of counterpropagating bichromatic
waves in the case of da/d v̄ < 0. Similar considerations show
that in the case of da/d v̄ > 0 there should be an expansion
of the distribution of atoms by momentum. Besides that, in
this case, the dependence of the acceleration of atoms on their
velocity changes �v in the same direction as the momentum
diffusion.

The reason for the shift of the first maximum of the depen-
dence �v(v̄) relative to the first maximum of a(v̄) towards
the larger v̄ in Fig. 2 is obvious: the derivative da/d v̄ near the
maximum of the dependence a(v̄) is too small to compensate
for the increase in �v due to the momentum diffusion. The
small value of the derivative da/d v̄ in the range from 20 to
25 m/s, which insufficient to compensate for the momentum
diffusion, is the reason for the growth of �v in Fig. 2(b).

In Fig. 2 we see that the final average velocities of groups
of atoms that start with initial velocities v0 = −10 m/s, v0 =
0 m/s, and v0 = 10 m/s after 100 μs are close to δ/k = 29.46
m/s for which the light pressure force is close to zero [1]. At
the same time �v almost coincides for these groups of atoms
and is approximately equal to 2.1 m/s. This means that the
bichromatic force cools atoms: atoms with initial velocities
from −10 to 10 m/s after 100 μs of interaction with the
bichromatic waves are characterized by �v ∼ 2 m/s. The
simulation also shows that the atoms with v0 = 20 m/s finish
with v̄ close to δ/k and �v close to 2 m/s, but when we
enlarge the initial velocity in the negative direction the result
is worse. For v0 = −25 m/s, the final v̄ is close to δ/k, but
�v = 7.18 m/s.

Since the velocity of atoms changes continuously with
time, the momentum diffusion coefficient also changes with
time. To completely exclude the effect of a change in velocity
on the momentum diffusion coefficient, in the next section
we consider the model of the “heavy atom,” in which the
change of atomic velocity is small enough to neglect changes
of Doppler shift. In addition, this consideration allows us to
compare the results of the calculation of the light pressure
force exerted on an atom in the quasiclassical theory [1,6,7]
with the results of the quantum mechanical theory. Since the
quasiclassical theory considers an atom as a material point,
and in our calculations, the wave function of an atom at the
initial time is an eigenstate of the momentum, consistency

FIG. 3. Time dependence of the standard deviation �p of the
atom’s momentum from its average value for 1000 atoms and �R =
24.5γ and δ = 10γ . Parameters are as follows: curve 1, kv = 0;
curve 2, kv = 0.2γ ; curve 3. kv = 5γ , and curve 4, kv = 5.05γ .
Phase difference of the counterpropagating waves is ϕ = π/4. Solid
lines are the results of numerical calculations, and dashed lines are
approximation of curves 1 and 3 by formulas �p = √

2Dt + St2

(curves 1 and 3) and �p = √
2Dt (curves 2 and 4). The approxi-

mation parameters are as follows: D = 69.92h̄2k2γ , S = 6.88h̄2k2γ 2

(curve 1), D = 71.35h̄2k2γ (curve 2), D = 59.51h̄2k2γ and S =
0.729h̄2k2γ 2 (curve 3), and D = 31.52h̄2k2γ (curve 4).

of the results obtained from these different assumptions are
important for the confident application of the quasiclassical
approach to the light pressure force calculation.

B. Heavy atoms in the field of counterpropagating
bichromatic waves

We simulate the motion of “heavy” atoms in the field of
the counterpropagating waves by the procedure described in
Sec. IV and we use Eqs. (31) and (32), which give the time
evolution of the probability amplitudes bg,n and be,n. Calculat-
ing the change of the average momentum of the atoms during
the time ∼100γ −1, much greater than the time of the transient
processes at the beginning of the interaction of atoms with the
field (∼10γ −1), we find the average force exerted on an atom.
In addition, we calculate the light pressure force by the density
matrix method according to the theoretical work [1] to verify
the correctness of our software.

First of all we simulated the time dependence of �p for
different ratios δ/�R and found that this dependence dramati-
cally changes with δ/γ starting from the momentum diffusion
law �p ∼ √

t (δ = 0, i.e., standing wave) to practically linear
dependence, �p ∼ t (δ ∼ �R). The latter case contradicts the
diffusionlike dependence �v(t ) shown in Fig. 1(b). As far as
the dependencies depicted in Fig. 1 are calculated taking into
account the change in the velocity of atoms over time, we also
investigate the dependence �p(t ) for a nonzero initial velocity
of a “heavy” atom.

Figure 3 shows an example of the time dependence
of the standard deviation �p of the atom’s momen-
tum from its average value for �R = 24.5γ and δ = 10γ

(�R ≈ √
6δ). In two cases the dependence of �p(t )

is linear for γ t > 10 (curve 1) and γ t > 20 (curve 3).
In the other two cases, if the ratio kv/γ is not very
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FIG. 4. The dependence of the light pressure force exerted on
atoms in units of Frad (a) and the square root of the coefficient of
momentum diffusion

√
D in units of

√
Dr (b) on δ/γ provided that

�R = √
6δ and ϕ = π/4. Averaging is per 1000 atoms. Open circles

correspond to v = 0, and solid circles correspond to kv = 0.1γ .

small, the dependence of �p(t ) can be approximated
by �p = √

2Dt (see dashed lines). The initial parts of the
curves, γ t < 1, are almost linear. This is the expected result:
there is no momentum diffusion before spontaneous emis-
sion occurs. Here the momentum distribution becomes wider
due to the scattering of atoms by the counterpropagating
bichromatic waves. The scattering parts are also observed
on curves 1 and 3 in the region γ t  1; in these cases, the
scattering occurs due to Doppleron resonances [18,19] and
the time dependence of �p is approximately described by the
formula

�p =
√

2Dt + St2 (45)

(see dashed lines for curves 1 and 3 in Fig. 3). Equation (45)
manifests the time dependence of (�p)2 as a sum of two
terms, 2Dt and St2, one which describes the momentum dif-
fusion of atoms, while the other is responsible for scattering.

The scatteringlike time dependence of �p at the resonance
(curve 3) changes to a diffusionlike one (curve 4) even if
the detuning from the resonance is very small (1%). At the
resonance we characterize �p(t ) by two constants, D and S,
while otherwise only one constant, D, is sufficient.

At the end of the discussion of Fig. 3, we note small os-
cillations with the period π/kv on curve 2. These oscillations

FIG. 5. The dependencies of the light pressure force F exerted on
atoms in units of Frad (a) and the momentum diffusion coefficient D
in units of Dr (b) on the atomic velocity for �R = √

6δ, δ = 10γ , and
ϕ = π/4. Averaging is per 1000 atoms. Circles show the results of
calculation by the Monte Carlo wave-function method, and the solid
curve is the result of calculations by the density matrix equation.
Dashed vertical lines mark the values of kv/δ, which correspond
to Doppleron resonances. The momentum diffusion coefficients for
these values of kv/δ are not defined.

are more prominent on the dependence �p(t ) for kv = 0.1γ ,
not shown here.

Figure 4 shows the dependence of the light pressure force
and the square root of the momentum diffusion coefficient
on δ provided that the optimal conditions �R = √

6δ and
ϕ = π/4 of the atom-field interaction are met. Using the
dependence shown in Fig. 4(b), we find the following for the
parameters of Fig. 4:

D ≈ 2.4Dr
δ2

γ 2
. (46)

This is about twice as much as given by Eq. (43).
As far as both F and

√
D under optimal conditions lin-

early depend on δ, �p/p̄ = √
2Dt/(Ft ) ≈ 4.2/

√
γ t does not

depend on δ. Since �R = √
6δ, the momentum diffusion co-

efficient under optimal conditions is proportional to �2
R, i.e.,

the intensity of the laser radiation.
Figure 5 shows an example of the dependence of the light

pressure force exerted on atoms and the momentum diffusion
coefficient for the optimal parameters of the atom-field inter-
action, which were found from the evolution of the atom’s
momentum distribution during time t = 100/γ . Besides that,
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the result of the light pressure force calculation by the equa-
tions for the density matrix [1,5] is also presented. Some
differences in the calculation by both methods can be ex-
plained by the different descriptions of the atom: in this paper,
an atom is described by a wave packet; in Refs. [1,5] an atom
is a material point. The momentum diffusion coefficient at
velocities corresponding to Doppleron resonances could not
be calculated because the time dependence of the momentum
variance does not obey the law �p2 = 2Dt . It is noteworthy
that the coefficient of momentum diffusion with increasing
velocity v of atoms at kv < 0.05γ decreases rather quickly,
almost twice that when velocity changes from v = 0.01δ/k
to v = 0.1δ/k, while the light pressure force remains almost
unchanged in this velocity range.

VI. CONCLUSIONS

We showed that the standard deviation of the velocity from
its average value may increase or decrease with time. There
are two factors that control these phenomena. One of them is
the momentum diffusion of atoms, which always spreads the
momentum distribution. The other has a dynamic nature. If the
acceleration of atoms increases when their velocity increases,
the broadening of the velocity distribution of the atomic en-
semble takes place. In the opposite case, the bunching of
atoms around the average velocity of the atomic ensemble
occurs.

To separate the influence of momentum diffusion on the
evolution of momentum distribution of atoms from the in-
fluence of the time-dependent Doppler shift of the atomic
frequency, we used the model a “heavy” atom, in which the
change of the Doppler shift during the interaction of an atom
with the field can be neglected. In the frame of this approxima-
tion, we find that the time dependence of �p in the vicinity of
Doppleron resonances becomes almost linear if the time of the
atom-field interaction is large enough. In other cases, �p(t ) is
described by the diffusion law.

The estimation of the momentum diffusion coefficient
based on the results of numerical simulation of the velocity
evolution of Na atoms in the field of the counterpropagating
bichromatic waves roughly agrees with its estimation accord-
ing to the formula for the maximum diffusion coefficient of
atoms in the field of the counterpropagating sequences of π

pulses.
For optimal parameters of the atom-field interaction, the

coefficient of momentum diffusion is proportional to the in-
tensity of laser radiation.

ACKNOWLEDGMENTS

This paper contains the results of research in the frame
of grant support of the targeted research program of NAS of
Ukraine, “Fundamental Problems of Creation of New Nano-
materials and Nanotechnologies”, Contract No. 3/19-N.

[1] V. S. Voitsekhovich, M. V. Danileiko, A. M. Negriiko, V. I.
Romanenko, and L. P. Yatsenko, Zh. Tekh. Fiz. 58, 1174 (1988)
[Sov. Phys. Tech. Phys. 33, 690 (1988)].

[2] V. G. Minogin and V. S. Letokhov, Laser Light Pressure on
Atoms (Gordon and Breach, New York, 1987).

[3] H. J. Metcalf and P. van der Stratten, Laser Cooling and Trap-
ping (Springer-Verlag, New York, 1999).

[4] V. S. Voı̆tsekhovich, M. V. Danileı̆ko, A. N. Negriı̆ko,
V. I. Romanenko, and L. P. Yatsenko, JETP Lett. 49, 161
(1989).

[5] J. Söding, R. Grimm, Y. B. Ovchinnikov, P. Bouyer, and C.
Salomon, Phys. Rev. Lett. 78, 1420 (1997).

[6] L. Yatsenko and H. Metcalf, Phys. Rev. A 70, 063402
(2004).

[7] L. Podlecki, R. D. Glover, J. Martin, and T. Bastin, J. Opt. Soc.
Am. B 35, 127 (2018).

[8] H. Metcalf, Rev. Mod. Phys. 89, 041001 (2017).
[9] K. Berg-Sørenson, Y. Castin, E. Bonderup, and K.

Mølmer, J. Phys. B: At. Mol. Opt. Phys. 25, 4195
(1992).

[10] V. S. Voı̆tsekhovich, M. V. Danileı̆ko, A. N. Negriı̆ko, V. I.
Romanenko, and L. P. Yatsenko, Sov. Phys. JETP 72, 219
(1991).

[11] J. Dalibard, Y. Castin, and K. Mølmer, Phys. Rev. Lett. 68, 580
(1992).

[12] K. Mølmer, Y. Castin, and J. Dalibard, J. Opt. Soc. Am. B 10,
524 (1993).

[13] C. Corder, B. Arnold, X. Hua, and H. Metcalf, J. Opt. Soc. Am.
B 32, B75 (2015).

[14] C. Corder, B. Arnold, and H. Metcalf, Phys. Rev. Lett. 114,
043002 (2015).

[15] B. Shore, The Theory of Coherent Atomic Excitation (Wiley,
New York, 1990), Vol. 1.

[16] R. Chrétien, Master’s thesis, Faculté des Sciences Appliquées,
Universitè de Liège, Belgium, 2014.

[17] D. A. Steck, Sodium D Line Data (2019), https://steck.us/
alkalidata/sodiumnumbers.pdf.

[18] S. M. Freund, M. Römheld, and T. Oka, Phys. Rev. Lett. 35,
1497 (1975).

[19] E. Kyröla and S. Stenholm, Opt. Commun. 22, 123 (1977).

043104-8

https://doi.org/10.1103/PhysRevLett.78.1420
https://doi.org/10.1103/PhysRevA.70.063402
https://doi.org/10.1364/JOSAB.35.000127
https://doi.org/10.1103/RevModPhys.89.041001
https://doi.org/10.1088/0953-4075/25/20/016
https://doi.org/10.1103/PhysRevLett.68.580
https://doi.org/10.1364/JOSAB.10.000524
https://doi.org/10.1364/JOSAB.32.000B75
https://doi.org/10.1103/PhysRevLett.114.043002
https://steck.us/alkalidata/sodiumnumbers.pdf
https://doi.org/10.1103/PhysRevLett.35.1497
https://doi.org/10.1016/0030-4018(77)90001-3

