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Confined variational calculations of low-energy electron-helium scattering
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The S-, P-, and D-wave elastic scattering of electrons by atomic helium with the scattering energy between
0.136 and 16.463 eV is studied using the confined variational method. Our calculated phase shifts improve the
best published results by at least one order of magnitude. The finite nuclear mass effect on the S-wave phase shift
at very low scattering energy between 0.022 and 0.067 eV is investigated, and the accurate S-wave scattering
length is determined to be 1.1723a0, where a0 is the Bohr radius. The results reported here can serve as a
benchmark for other theoretical and experimental studies.
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I. INTRODUCTION

The collision between electrons and rare-gas atoms has
always been an important research topic, and extensive
research has been carried out both experimentally and the-
oretically [1–15]. Scattering cross-section data are essential
for understanding plasma physics, astrophysics, and radia-
tion chemistry [1,15]. Since the electron-helium system is
the simplest system, the e-He scattering provides an ideal
test ground for different experimental and theoretical meth-
ods. The elastic, excitation, and ionization cross sections
of this system have been extensively studied at nearly all
collision energies using various approaches, such as the R-
matrix method [4], the Kohn variational method [5], the
convergent close-coupling method [16–18], and the J-matrix
method [19,20]. For scattering energies below the excita-
tion threshold, the S- and P-wave phase shifts reported by
Nesbet [5] have been accepted as a benchmark until now.
Therefore, we are motivated to perform an ab initio investi-
gation of the e-He elastic scattering with higher accuracy for
low energies.

Many experimental total cross-section sets for e-He scat-
tering have been reported up to now [7–15,21–29], and most
of them can be classified into two categories: electron-beam
experiments [21] and electron-swarm experiments [26–28].
Using the hot-filament electron sources, the energy range of
these beam experiments has been extended down to 100 meV.
Although the electron-swarm experiments can achieve lower
scattering energies, the analysis of experimental data is very
complicated and may lead to large uncertainty in the cross sec-
tions [26–28]. A breakthrough was made by Shigemura et al.
using the threshold-photoelectron source [15], in which they
measured the total cross sections for the scattering energies
ranging from 6 meV to 20 eV, with an electron beam energy
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resolution of 6–8 meV. As mentioned by Shigemura et al. [15],
the theoretical calculation becomes very difficult due to the
strong effect of electron correlation and polarization at very
low energies close to the zero-energy limit, and it is also very
challenging to obtain accurate experimental cross sections
under the single collision condition at very low energies.

Theoretically, using the R-matrix method, O’Malley
et al. [4] calculated the S- and P-wave phase shifts for e-He
scattering with scattering energies from 0.136 to 16.463 eV.
Nesbet [5] reported ab initio S- and P-wave phase shifts in the
same energy range using the Kohn variational (KV) method,
and D-wave phase shifts estimated using the partial-wave
Born approximation formula. The S-, P-, and D-wave phase
shifts were also investigated by Saha [30,31] by applying
the multiconfiguration Hartree-Fock (MCHF) method. The
most accurate S-wave phase shift at the momentum, k = 0.2
a.u., was reported by Mitroy et al. [6,32] using the confined
variational method (CVM). The elastic cross sections below
16.463 eV were calculated by Konovalov et al. using the
J-matrix method [19,20]. Recently, Cheng et al. [33] deter-
mined the S- and P-wave phase shifts in the momentum
range 0.05–1.1 a.u. using the box-variational (BV) method
combined with many-body perturbation theory. In their cal-
culations, the scattering system is placed in a hard spherical
wall of radius R, and the wave function satisfies the conditions
�(0) = �(R) = 0. The momentum kn can be used to deter-
mine the phase shift δn from the general boundary condition
jl (knR) − tan(δn)nl (knR) = 0 [33,34].

The CVM approach is an ab initio method to study low-
energy elastic scattering problems. It was originally proposed
by Mitroy et al. [6] and applied to calculate the S-wave phase
shift of e-He scattering. Later, this method was developed by
Zhang et al. to study the scattering problems involving a com-
posite projectile and target, such as Ps-H [35] and Ps-H2 [36]
scattering processes. Recently, we [37] extended the CVM to
non-S partial waves under higher scattering energies using
a different strategy to effectively eliminate the nonphysical
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confinement effects that may occur in scattering calculations
involving complex constituents.

The main purpose of this work is to extend the previous
CVM calculation of e-He scattering to higher partial waves
under higher scattering energies, and to provide more accurate
scattering data as a new benchmark for other theoretical and
experimental work. The second purpose of this work is to
conduct a detailed investigation on the S-wave phase shifts of
e-He scattering for the electron momentum k � 0.1 a.u. and
then extract accurate S-wave scattering lengths for the cases
of infinite and finite nuclear mass. This paper is organized as
follows. In Sec. II, the CVM is introduced. The computational
results are presented in Sec. III, where the S-, P-, and D-wave
phase shifts with k = 0.1–1.1 a.u. are given in Sec. III A, the
phase shifts with k � 0.1 a.u. as well as the S-wave scattering
lengths are given in Sec. III B, and a comparison of total
cross sections is presented in Sec. III C. Finally, Sec. IV is
a summary. Phase shifts are expressed in radians, and atomic
units (a.u.) are used throughout unless otherwise stated.

II. THEORY

A. Infinite nuclear mass

Consider the electron scattering by two potentials V1(ρ)
and V2(ρ), where V1(ρ) describes the complicated interaction
between the electron and the helium atom, and V2(ρ) is the
model potential,

V2(ρ) = λe−0.5ρ − αd

2ρ4
[1 − e−(ρ/5)6

]. (1)

In the above, λ is an adjustable parameter and −αd/(2ρ4) is
the long-range polarization potential, with αd = 1.383 200 be-
ing the ground-state polarizability of helium [38]. To convert
a complicated scattering problem into a modified bound-
state one that can be solved by applying well-established
bound-state techniques, we add to the scattering potentials a
confining potential vcp:

vcp(ρ) = 0, ρ < R0,

vcp(ρ) = G(ρ − R0)2, ρ � R0, (2)

where G is a tunable positive number and R0 is chosen to be
large enough so that V1(R0) � 0 and V2(R0) � 0.

Now let us consider the following four radial Schrödinger
equations for the partial wave of total angular momentum L,

(
−1

2

d2

dρ2
+ L(L + 1)

2ρ2
+ V1(ρ) + vcp(ρ)

)
φ1 = Esφ1, (3)

(
−1

2

d2

dρ2
+ L(L + 1)

2ρ2
+ V2(ρ) + vcp(ρ)

)
φ2 = Esφ2, (4)

(
−1

2

d2

dρ2
+ L(L + 1)

2ρ2
+ V1(ρ)

)
φ′

1 = Esφ′
1, (5)

(
−1

2

d2

dρ2
+ L(L + 1)

2ρ2
+ V2(ρ)

)
φ′

2 = Esφ′
2, (6)

where Es = k2/2 is the scattering energy, and the final radial
wave function is φ1(ρ)/ρ, etc. According to the boundary
conditions of the scattering wave functions φ1, φ2, φ′

1, and φ′
2,

their logarithmic derivatives

�X (R0) ≡ 1

X (R0)

dX (ρ)

dρ

∣∣∣∣
R0

(7)

must be the same for the same Es [6], i.e.,

�φ1 (R0) = �φ2 (R0) = �φ′
1
(R0) = �φ′

2
(R0). (8)

Therefore, the phase shifts, determined by Eqs. (5) and (6) at
Es as a function of �X (R0), are exactly the same.

To obtain the k- and L-dependent vcp and V2, i.e., the pa-
rameters G and λ, we solve the following many-body problem
using the explicitly correlated Gaussian (ECG) basis [39].
We first add the confining potential Vcp = ∑3

i=1 vcp(ri) to the
Hamiltonian of the e-He system so that it becomes a bound-
state eigenvalue problem,

(H + Vcp)�(r, s) = E�(r, s), (9)

H = −1

2

3∑
i=1

∇2
i +

3∑
i=1

Qqi

ri
+

3∑
i, j = 1
i < j

qi q j

|r j − ri| , (10)

where the nuclear mass of helium is assumed to be infinity,
ri and si are, respectively, the position vector and the spin
of electron i, where i = 1, 2, 3, r and s in Eq. (9) denote
collectively these variables, qi are the corresponding electron
charges, and Q is the nuclear charge. �(r, s) is the eigen-
function of H + Vcp corresponding to E , where E is the total
energy of the scattering system, which includes the ground-
state energy of the helium atom, E0 = −2.903 724 377 [40],
and the kinetic energy of the electron, i.e., E = E0 + Es. The
eigenfunction �(r, s) can be expanded in terms of the ECG
basis,

φn(r, s) = |v|2Kn+L exp
( − 1

2 rTAnr
)
YLM (v)χ (s) , (11)

where v = uTr, with uT = (u1, u2, u3) being a global vector,
χ (s) is the spin function, and Kn is an integer. Taking the
S-wave k = 0.1 scattering, for example, the number of basis
functions used is 500, 500, 500, 500, and 600 for Kn = 0,
1, 2, 3, and 4, respectively. Thus, the total number of basis
functions used is N = 2600 for the S-wave k = 0.1 scattering.
An is a parameter matrix, L and M are, respectively, the total
orbital angular momentum and its z component, and YLM is the
spherical harmonics.

The confining parameter G is tuned to ensure that a specific
total energy is yielded. For example, if the electron scattering
momentum k = 0.1 or Es = 0.005, then G is determined to
be 5.011 869 80 × 10−5 at R0 = 17. We then solve Eq. (4)
to obtain the parameter λ. Finally, the phase shift δk

L is ob-
tained from Eq. (6) by applying an integration procedure and
a least-squares fit between φ′

2(ρ) and A sin(kρ − Lπ/2 + δk
L )

for ρ → ∞.

B. Finite nuclear mass

To study the finite nuclear mass effects on scattering calcu-
lation, some modifications need to be made. After eliminating
the four-body center-of-mass coordinates, the Hamiltonian
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TABLE I. Convergence test of the total energy E , the electron
momentum k, and the phase shift δ0.5

0 for the e-He scattering, as the
size of basis set N increases. Infinite nuclear mass is assumed.

N E k δ0.5
0

2000 –2.778723783 0.500001188 –0.66785
2200 –2.778724237 0.500000280 –0.66783
2400 –2.778724288 0.500000178 –0.66781
2600 –2.778724377 0.500000000 –0.66780

becomes

H = −1

2

3∑
i, j=1


i j∇i · ∇ j +
3∑

i=1

Qqi

ri
+

3∑
i, j = 1
i < j

qi q j

|r j − ri| , (12)

where 
i j = ∑4
k=1 UikUjk

1
mk

, mk = 1 in this work, and U
is a 4 × 4 transformation matrix [39]. The coordinates ri in
the confining potential in Eq. (9) are the distance between
electron i and the center-of-mass of He. Also, the reduced
mass 0.999 862 963 should be used in Eqs. (3)–(6), instead
of 1, where the helium nuclear mass 7294.299 536 1 is taken
from [41]. Finally, for the helium polarizability αd , we still
keep the infinite nuclear mass value. The polarizability for the
case of finite nuclear mass has been calculated by Bhatia and
Drachman [42], and the value is 1.383 241. However, it will
not change the values of the phase shifts given in the present
accuracy.

III. RESULTS AND DISCUSSION

A. Phase shifts

Table I presents the convergence study of δ0.5
0 as the size

of basis N increases. We can see that δ0.5
0 converges smoothly

to four significant digits. In general, more basis functions are
needed as k and L increase due to the increasing complexity
of the wave function. In the present CVM calculations, the
smallest basis set is N = 2600 for δ0.1

0 and the biggest one is
N = 3800 for δ1.1

2 .
Table II shows a comparison of the S-, P-, and D-wave

phase shifts obtained by the present CVM, the KV method [5],
the recent BV method [33], the R-matrix method [4], and the
MCHF method [31], where the KV phase shifts of Nesbet
have been accepted as a benchmark for other methods. Note
that the KV S- and P-wave phase shifts were extrapolated
using Aitken’s formula with respect to the size of the basis set,
and the D-wave phase shifts were estimated using a partial-
wave Born approximation formula.

For the S-wave phase shifts, all the CVM values given in
Table II are converged to the fourth significant digit. Com-
pared with our results, the KV values have no more than
three converged digits, and the corresponding percentage dif-
ferences are 0.08% for δ0.1

0 and 0.48% for δ1.1
0 . As pointed out

by Cheng et al. [33], for δ0.3
0 and δ0.6

0 the differences between
the KV and BV values are quite large. For δ0.3

0 , the CVM value
is about the average of the KV and BV values. For δ0.6

0 , the
CVM value is closer to the BV value. In general, for δk

0 the
percentage difference between the CVM and KV or BV values
is all below 0.8%.

TABLE II. Comparison of S-, P-, and D-wave phase shifts
for the e-He scattering among the present confined variational
method (CVM), the Kohn variational (KV) method [5], the box-
variational (BV) method [33], the R-matrix method [4], and the
MCHF method [31]. Error estimates are in brackets. ab ≡ a × 10b.

k Present KV BV R-Matrix MCHF

S-wave
0.1 –0.1281 –0.1282 –0.1286 –0.1276(5) –0.1271
0.2 –0.2650 –0.2655 –0.2657 –0.2646(1) –0.2633
0.3 –0.4030 –0.4021 –0.4037 –0.402(1)
0.4 –0.5380 –0.5388 –0.5387
0.5 –0.6678 –0.6684 –0.6684 –0.671(2)
0.6 –0.7907 –0.7930 –0.7913 –0.793(2)
0.7 –0.9062 –0.9067 –0.9064
0.8 –1.013 –1.0155 –1.0133 –1.018(3)
0.9 –1.112 –1.1163 –1.1117 –1.114(3)
1.0 –1.202 –1.2056 –1.2015
1.1 –1.291 –1.2848 –1.2817 –1.289(4)

P-wave
0.1 3.029−3 3.08−3 2.96−3 3.1−3(1) 3.054−3

0.2 1.269−2 1.311−2 1.247−2 1.28−2(2) 1.2814−2

0.3 2.964−2 3.063−2 2.929−2 2.95−2(3)
0.4 5.390−2 5.519−2 5.351−2

0.5 8.449−2 8.605−2 8.422−2 8.3−2(1)
0.6 0.1197 0.1209 0.1196 0.116(1)
0.7 0.1567 0.1588 0.1572
0.8 0.1941 0.1960 0.1947 0.189(2)
0.9 0.2287 0.2305 0.2300 0.224(1)
1.0 0.260 0.2626 0.2620
1.1 0.282 0.2932 0.2903 0.281(1)

D-wave
0.1 4.693−4 4−4 4.0−4 3.85−4

0.2 1.658−3 1.7−3 1.59−3 1.637−3

0.3 3.658−3 3.7−3 3.55−3

0.4 6.497−3 6.6−3 6.32−3

0.5 1.006−2 1.04−2 9.93−3

0.6 1.448−2 1.49−2 1.441−2

0.7 1.970−2 2.03−2 1.979−2

0.8 2.567−2 2.65−2 2.606−2

0.9 3.23−2 3.35−2 3.319−2

1.0 3.96−2 4.14−2 4.115−2

1.1 4.50−2 5.01−2 4.992−2

For the P-wave phase shifts, the CVM values for k =
0.1–0.9 given in Table II are also converged to the fourth
significant digit. The phase shifts for k = 1.0–1.1, however,
are converged to the third significant digit due to near lin-
ear dependence problems when enlarging and optimizing the
ECG bases. Compared with our values, the KV values have
no more than two converged digits, and the percentage dif-
ferences range from 0.79% for δ0.9

1 to 3.97% for δ1.1
1 . The

CVM values are closer to the BV values than the KV values
except for δ0.1

1 . This shows that the KV method works better
for S-waves than for P-waves.

Similar to the P-wave phase shifts, the CVM D-wave phase
shifts are converged to the fourth significant digit for k = 0.1–
0.9, and to the third significant digit for k = 1.0–1.1, as shown
in Table II. This indicates that the CVM can maintain a good
performance for higher partial waves. Compared to our CVM
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TABLE III. S-wave phase shifts at k = 0.04–0.07 for the cases
of infinite nuclear mass (INM) and finite nuclear mass (FNM), and a
comparison with the Kohn variational (KV) method [5] and the box-
variational (BV) method [33]. The KV and BV values are obtained
for the INM case.

k δk
0

CVM (INM) CVM (FNM) KV BV
0.04 −0.049190 −0.049200 −0.049256 −0.049591
0.05 −0.062190 −0.062200 −0.062065 −0.062452
0.06 −0.075139 −0.075158 −0.075035 −0.075455
0.07 −0.088227 −0.088244 −0.088148 −0.088582

results, the KV values have no more than one converged digit
except for δ0.5

2 and δ0.6
2 , which have two significant digits. The

BV values have three significant digits for δ0.6
2 and δ0.7

2 , and
they have no more than one significant digit for the other
cases. Nesbet [5] pointed out that the Born approximation
appears to be valid within 5% for L > 1 in the range k < 1.2.
From the table, however, one can see that the percentage dif-
ference between the CVM and KV values is 15% for k = 0.1,
less than 4% for k = 0.2–0.9, 4.5% for k = 1.0, and 11% for
k = 1.1, implying that the reliability of the Born approxima-
tion depends significantly on the scattering energy.

B. Scattering length

There are several theoretical and experimental results of
the e-He S-wave scattering lengths in the literature. How-
ever, no CVM value has ever been reported, although Mitroy
et al. [6,32] did a calculation for the S-wave phase shift at
k = 0.2 using the CVM. The method of extracting the scat-
tering length is to use the calculated phase shift data to fit the
well-known effective range theory

k cot δk
0 = −1

a
+ r0k2

2
, (13)

where a is the S-wave scattering length and r0 is the effec-
tive range. Taking into account the long-range polarization
potential −αd/(2ρ4), we have the modified effective range
theory [43]

tan δk
0 = −ak

[
1 + 4αd k2

3
ln k

]
− παd k2

3
+ Dk3 + Fk4,

(14)
where D and F are two additional fitting parameters. The
higher-order terms ignored in these formulas are not important
for low-k scattering processes.

To extract an accurate scattering length, the S-wave phase
shifts in the cases of infinite nuclear mass (INM) and finite
nuclear mass (FNM) at k = 0.04–0.07 are calculated, and
the results are shown in Table III, together with the KV and
BV phase shifts of infinite nuclear mass for comparison. It
is noted that the KV phase shifts are interpolated with cu-
bic spline functions of k [5]. One of the advantages of the
present method is that the Hamiltonian and its matrix elements
in the FNM case preserve their functional forms under the
linear transformation U appeared in Eq. (12). Thus, the exten-
sion from INM to FNM is straightforward, but computational

TABLE IV. Comparison of theoretical and experimental e-He S-
wave scattering lengths.

Method Scattering length

Theory
Present [INM, Eq. (13)] 1.2167
Present [FNM, Eq. (13)] 1.2169
Present [INM, Eq. (14)] 1.1724
Present [FNM, Eq. (14)] 1.1723
R-matrix (1979) [4] 1.177 ± 0.006
KV (1979) [5] 1.1835 ± 0.0059
Polarized orbital (1983) [44] 1.1575 ± 0.0579
MCHF (1993) [31] 1.1784
BV (2014) [33] 1.189

Experiment
Drift velocity (1970) [27] 1.19 ± 0.02
Angular distribution (1975) [29] 1.172
Time of flight (1980) [25] 1.195
Time of flight (1986) [10] 1.16
Threshold-photoelectron (2014) [15] 1.194 ± 0.006

efforts are increased. Comparing to the INM, we find that the
FNM effect decreases the phase shifts, with the percentage
difference ranging from 0.016% to 0.025%, which is in the
order of magnitude of me/mHe = 1.3709 × 10−4, as expected.
In addition, the CVM values are closer to the KV values, with
the percentage difference ranging from 0.09% to 0.2%.

The CVM values of the scattering lengths, determined by
Eqs. (13) and (14), are listed in Table IV, together with a com-
parison with other theoretical and experimental methods. Note
that the CVM scattering lengths are extracted from the phase
shifts in the range k = 0.04–0.07. It can be seen from the table
that the scattering lengths, determined by Eqs. (13) and (14),
are different at the level of 3.6–3.7 %, which indicates that
the long-range polarization potential has a significant influ-
ence on the scattering length. Since the finite nuclear mass
effect on the phase shift is at me/mHe = 1.3709 × 10−4, we
recommend that the S-wave scattering length is 1.1723. Our
scattering length is in excellent agreement with the measured
value 1.172 reported by Andrick and Bitsch [29], and is dif-
ferent at the level of 1–2 % compared with other measured
values. Compared with other theoretical results, our scatter-
ing length is in excellent agreement with the R-matrix value
1.177 ± 0.006 [4], the MCHF value 1.1784 [31], and the KV
value 1.1835 ± 0.0059 [5].

C. Total cross section

The experimental total cross sections agree very well with
the theoretical calculations for the scattering energy greater
than 1 eV [15]. Here we focus on the total cross section
for k � 0.1; in other words, the scattering energy is below
0.136 eV. The total cross section can be calculated by using
the partial-wave expansion

σt = 4π

k

2 ∞∑
L=0

(2L + 1) sin2 δk
L. (15)

For k = 0.1, there is only a 0.17% difference between σt =
20.5443 a2

0, calculated by including the S-, P-, and D-wave
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FIG. 1. Comparison of the total cross sections of e-He scatter-
ing for k � 0.1. Experiment: Shigemura et al. [15]; Buckman and
Lohmann [10]; Gus’kov et al. [24]. Theory: Nesbet [5]; present
CVM.

phase shifts, and σt = 20.5084 a2
0, calculated by including

only the S-wave phase shift, where a0 is the Bohr radius. Since
the S-wave scattering will become more and more dominant
in the total cross section as k decreases further, we can assume
σt ≈ 4π sin2 δk

0/k2 for k � 0.1 with the percentage of uncer-
tainty less than 0.17%.

A comparison of theoretical and experimental results of
σt for k � 0.1 is shown in Fig. 1. Our total cross section
at k = 0.1 is in good accord with the experimental value
of Shigemura et al. [15], and our values in the region of
k = 0.04–0.07 are close to their lower limits of error bars.
The results of Nesbet agree very well with those of Shigemura
et al. for k � 0.04, while they have small divergences for k >

0.04, indicating that the tendency is opposite to our results.
The experimental results of Gus’kov et al. [24] and Buckman
and Lohmann [10] are lower than those of Shigemura et al.
The CVM results indicate that although there have been great
developments in the experimental technology of Shigemura
et al., the total cross sections measured at k < 0.1 need further
improvements.

IV. SUMMARY

Using the confined variational method together with ex-
plicitly correlated Gaussian bases, the S-, P-, and D-wave
phase shifts of electron-helium scattering at k = 0.1–1.1 a.u.
have been calculated. Our well-converged calculations have
improved the previous theoretical results. The finite nuclear
mass effect has also been investigated, which begins to appear
at the level of me/mHe. We have found that the long-range
polarization potential between the projectile electron and the
target helium atom has a significant influence on the S-wave
scattering length. Our calculation has also confirmed the
measurement results of Shigemura et al. [15] for the total
cross section in the region k < 0.1 a.u.. Our definitive results
presented here may serve as a new benchmark for other theo-
retical and experimental studies.
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