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Fermi-Löwdin-orbital self-interaction correction using the optimized-effective-potential method
within the Krieger-Li-Iafrate approximation
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The Perdew-Zunger self-interaction correction (PZ-SIC) offers a route to remove self-interaction errors on
an orbital-by-orbital basis. A recent formulation of PZ-SIC by Pederson, Ruzsinszky, and Perdew proposes
restricting the unitary transformation to localized orbitals called Fermi-Löwdin orbitals. This formulation, called
the FLOSIC method, simplifies PZ-SIC calculations and was implemented self-consistently using a Jacobi-like
(FLOSIC-Jacobi) iteration scheme. In this work we implement the FLOSIC approach using the Krieger-Li-
Iafrate (KLI) approximation to the optimized effective potential. We compare the results of the present FLOSIC-
KLI approach with the FLOSIC-Jacobi scheme for atomic energies, atomization energies, ionization energies,
barrier heights, polarizability of chains of hydrogen molecules, etc., to validate the FLOSIC-KLI approach. The
FLOSIC-KLI approach, which is within the realm of Kohn-Sham theory, predicts smaller energy gaps between
frontier orbitals due to the lowering of eigenvalues of the unoccupied orbitals. Results show that atomic energies,
atomization energies, ionization energy as an absolute of highest occupied orbital eigenvalue, and polarizability
of chains of hydrogen molecules between the two methods agree within 2%. Finally the FLOSIC-KLI approach
is used to determine the vertical ionization energies of water clusters.
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I. INTRODUCTION

The Kohn-Sham (KS) formulation of the density func-
tional theory (DFT) is an exact theory widely used in
chemical physics, materials science, and condensed matter
physics [1]. Its practical usage requires approximations to
the exchange-correlation functional whose accuracy and com-
plexity determine the accuracy and efficiency of the study.
As there is no systematic way to improve upon the accuracy
of exchange-correlation approximations, a large number of
density functional approximations (DFAs) have been been
proposed [2,3]. Practically, all these functionals suffer from
self-interaction error (SIE) which has restricted the univer-
sal application of DFT. The SIE has been attributed to the
problem of excessive delocalization of electrons, low reaction
barrier heights, overestimation of eigenvalues of occupied or-
bitals, overestimation of polarizabilities of molecular chains,
underestimation of band gaps, etc. In KS-DFT, when the
exchange-correlation functional is approximated, the self-
Coulomb energy included in the expression of Coulomb
energy does not get fully canceled by the self-exchange in
the approximate exchange-correlation functional. The resid-
ual left is the self-interaction energy. For example, for the
hydrogen atom or one-electron densities ρiσ of spin σ the sum
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of Coulomb energy EH and exchange-correlation Exc is

EH + Exc = 1

2

∫∫
d3r d3r′ ρiσ (�r)ρiσ (�r′)

|�r − �r′| + Exc[ρiσ ] = δ.

(1)
For the exact functional δ = 0. For approximate functionals,
δ is nonzero and represents the self-interaction error for that
functional for the one-electron density.

Several approaches have been proposed to remove the
SIE explicitly [4–15]. Early approaches [4,5] used orbitalwise
schemes to eliminate the SIE but used functionals related to
Slater’s Xα method [16]. More common approaches that mit-
igate SIE include hybrid functionals, which mix Hartree-Fock
exchange using various criteria [17–20]. A large literature on
the hybrid functionals that were introduced by Becke [17]
exist, but these approaches are not entirely self-interaction
free and are challenging for extended systems.

A. Perdew-Zunger SIC

In 1981, Perdew and Zunger (PZ) [21] proposed a method
to remove the one-electron SIE in an orbitalwise fashion. This
method is the most common approach to explicitly remove
the SIE. The PZ self-interaction correction (PZ-SIC) provides
the exact cancellation for one-electron self-interaction (SI),
but not necessarily for many-electron SI [22]. In the PZ-SIC
method [21], the orbitalwise SIC to the total energy is

ESIC = −
Nocc∑
iσ

(
U [ρiσ ] + EDFA

xc [ρiσ , 0]
)
. (2)

Here, U [ρiσ ] and EDFA
xc [ρiσ , 0] are the Coulomb and

exchange-correlation energy of the ith occupied orbital, σ
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is the spin index, Nocc is the number of occupied orbitals,
and ρiσ is the orbital electron density. It is obvious from
Eq. (2) that the PZ-SIC corrections make the DFA exact for
any one-electron density. The SIC should vanish for the exact
functional. It is unclear if PZ-SIC satisfies this condition.
The exact functional is valid only for ground state densities
while the SIC using the PZ-SIC method is obtained on an
orbital-by-orbital basis, that is, using orbital densities which
are noded [23]. The total energy with the PZ-SIC method is
given by E = EKS + ESIC. In atomic units, EKS is given by

EKS =
∑

iσ

〈ψiσ | − ∇2

2
|ψiσ 〉 +

∫
d3r ρ(�r)vext (�r)

+ 1

2

∫∫
d3r d3r′ ρ(�r)ρ(�r′)

|�r − �r′| + Exc[ρ↑, ρ↓]. (3)

Here, vext is the external potential and ρ = ρ↑ + ρ↓ =∑
σ ρσ = ∑

i,σ fiσ |ψiσ |2 is the electron density, where fiσ

is the occupation of the ψiσ orbital. Atomic units are used
throughout this article unless specified explicitly.

The SI corrected potential seen by an electron in the ith
orbital in the PZ-SIC method is

viσ
eff (�r) = vext (�r) +

∫
d3r′ ρ(�r′)

|�r − �r′| + vσ
xc(�r)

−
{∫

d3r′ ρiσ (�r′)
|�r − �r′| + viσ

xc (�r)

}
. (4)

Here, the second term is the Coulomb potential due to the
electrons and vxc is the exchange-correlation potential (of
DFA). The last two terms in the curly bracket constitute
the SIC potential for the ith orbital vSIC

iσ = −{viσ
C + viσ

xc },
composed of the self-Coulomb and self-exchange-correlation
potentials. Unlike in the standard KS equations, the poten-
tial in Eq. (4) is orbital dependent. This orbital dependence
complicates the solution of one-electron equations. For atoms
where the KS orbitals are localized, PZ-SIC provides finite
SIC. However, the method is not size extensive if the KS or-
bitals are used. The Kohn-Sham orbitals are delocalized for a
system made up of a collection of atoms with large separation
between them. These delocalized KS orbitals give vanishing
SIC correction if used in the PZ-SIC method. For extended
systems the delocalized KS orbitals are normalized over the
entire volume of the solid and hence orbital-dependent quan-
tities in Eq. (2) approach zero for such systems. The SIC can
be made size extensive by using localized orbitals, which can
be obtained from KS orbitals by unitary transformation.

Pederson, Heaton, and Lin implemented such a SIC
scheme and demonstrated the first PZ-SIC calculation for
molecules [24]. In the 1980s, Lin’s group at Wisconsin used
a localization approach to implement the PZ-SIC method
[24–27]. The orbital-dependent Coulomb and exchange-
correlation energies and potentials in Eq. (4) are computed
using local orbitals. The localization approach by Pederson
and coworkers requires that the local orbitals that minimize
total energy must satisfy Pederson’s localization equations
given here:

〈φi|Hi − Hj |φ j〉 = λi
ji − λ

j
i j = 0. (5)

Here Hi is the orbital-dependent Hamiltonian, φ are the lo-
calized orbitals obtained by unitary transformation of the KS
orbitals ψ , and λ is the Lagrangian multiplier introduced to
maintain the orthogonality constraint. When the total energy
is at variational minimum the Lagrangian multiplier matrix is
symmetric.

The variational minimization of PZ-SIC energy requires
satisfying N (N − 1)/2 localization equations where N is the
number of occupied orbitals. In 2014, Pederson and cowork-
ers used Löwdin orthogonalized Fermi orbitals (FLOs) in
the PZ-SIC method. The PZ-SIC using FLOs reduces the
number of unknown parameters needed to describe the uni-
tary transformation and reduce the number of constraints
from N2 to 3N . Before closing this section we note that
a localizing transformation can also be incorporated in the
Kohn-Sham formalism using the optimized effective potential
(OEP) method as shown by Körzdörfer and coworkers [28].
This generalized OEP method is also invariant under unitary
transformation of the orbitals. Below we briefly describe the
details of the PZ-SIC using FLOs.

B. Fermi-Löwdin orbital SIC (FLOSIC)

Recently, Pederson, Ruzsinszky, and Perdew [29] intro-
duced a unitary invariant implementation of PZ-SIC using
Fermi-Löwdin orbitals [30,31] called the FLOSIC method.
FLOSIC has been used interchangeably with PZ-SIC earlier,
but FLOs can also be used in other variants of SIC including
OSIC [32], SOSIC [33], and recently introduced local scaling
SIC [14] methods. FLOSIC makes use of localized Fermi
orbitals (FOs) Fiσ which are defined by the transformation of
KS orbitals as

Fiσ (�r) =
∑

α ψ∗
ασ (�aiσ )ψασ (�r)√∑
α |ψασ (�aiσ )|2 . (6)

Here, �aiσ are points in space called Fermi-orbital descriptors
(FODs). Neglecting the spin index, the above equation can be
rewritten as

Fi(�r) =
Nocc∑
α

Fiαψα = ρ(�ai, �r)√
ρ(�ai )

, (7)

where the transformation matrix Fiα is defined as

Fiα = ψ∗
α (�ai )√
ρ(�ai )

. (8)

The FOs are normalized but are not orthogonal. They are
orthogonalized using the Löwdin orthogonalization method to
generate the Fermi-Löwdin orbitals (FLOs) φiσ . Optimal FOD
positions are found using gradients of the energy with respect
to FOD positions using minimization procedures analogous
to geometry optimizations [34,35]. A number of studies have
been conducted using the FLOSIC method [14,33,36–57].

C. Self-consistency in FLOSIC

Two routes have been used to implement orbital-dependent
functionals. The first one is the generalized Kohn-Sham
scheme [58] that is widely used to implement hybrid function-
als which contain orbital-dependent Hartree-Fock exchange.
This approach lies outside of the traditional Kohn-Sham
scheme with multiplicative effective potentials. Within the
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Kohn-Sham scheme, orbital-dependent functionals are imple-
mented using the optimized effective potential (OEP) method
[59,60].

The PZ-SIC method can also been implemented using the
OEP method. In the OEP method total energy is minimized
with respect to a local-multiplicative potential [59,60]. This
results in integral equations that are very complex and com-
putationally demanding to solve. Typically the OEP solution
is obtained using simplifications proposed by the Krieger, Li,
and Iafrate (KLI) [61]. A few implementations of the PZ-
SIC method using the KLI-OEP have been reported [28,61–
66]. For more details about the OEP-PZ-SIC method and its
comparison to the non-OEP approach we refer the interested
reader to Ref. [28].

Previous implementations of self-consistent FLOSIC used
an approach related to Jacobi rotations [37]. In this approach,
an approximate Hamiltonian is first constructed as

H̃mnσ = 〈φmσ |HKS
σ + vSIC

iσ |φnσ 〉, (9)

where HKS
σ is the traditional KS Hamiltonian. (See Ref. [37]

for more details.) The FLOs and the unoccupied virtual or-
bitals are made orthogonal through pairwise Jacobi rotations
which are carried out iteratively until the matrix elements for
the ith-orbital Hamiltonian between φi and a virtual orbital
vanishes. Alternative schemes such as a unified Hamiltonian
[25,54,67] and a generalized-Slater scheme in real space [56]
have also been used.

The purpose of this work is to introduce self-consistency in
the FLOSIC method using the OEP-KLI approximation. We
refer to this implementation as FLOSIC-KLI. We compare the
results obtained using FLOSIC-KLI for large number of prop-
erties against the Jacobi-rotation approach to self-consistency
(FLOSIC-Jacobi) as well as to the experimental values. We
also use the present implementation to study the vertical ion-
ization energies of water clusters containing 20 to 30 water
molecules. In Sec. II A we describe the FLOSIC-KLI equa-
tions. In Sec. III we present results for atomic energies and
highest occupied orbital (HOO) eigenvalues as well as total
energies and atomization energies of molecules and compare
against the self-consistent FLOSIC-Jacobi approach as imple-
mented in the FLOSIC code.

II. THEORY AND COMPUTATIONAL DETAILS

A. FLOSIC-KLI equations

The present implementation of PZ-SIC using FLOSIC-KLI
closely follows that of Patchkovskii, Autschbach, and Ziegler
[63]. In the KLI approximation, the orbital-dependent poten-
tial of the PZ-SIC equation (Eq. [4]) is replaced by

vσ
eff (�r) = vext (�r) +

∫
d3r′ ρ(�r′)

|�r − �r′| + vσ
xc(�r) + vKLI

xc,σ (�r). (10)

The KLI contribution to the potential is given by the equations

vKLI
xc,σ (�r) = vS

xc,σ (�r) +
Nσ∑
i=1

ρ̃iσ (�r)

ρσ (�r)
(xiσ − Cσ ), (11)

ρ̃iσ (�r) = fiσ |φiσ (�r)|2. (12)

In the present formulation, φiσ are the FLOs (localized or-
bitals) described in Sec. I B. It has been found that using φiσ

as Kohn-Sham orbitals leads to poor results [62,64]. The lead-
ing contribution to the KLI potential is the density-weighted
average of the orbital SIC potentials, vS

xc,σ . This term is sim-
ilar to the Slater approximation [16] to the average exchange
potential and is given as

vS
xc,σ (�r) =

Nσ∑
i=1

ρ̃iσ (�r)

ρσ (�r)
vSIC

iσ (�r). (13)

The second term in Eq. (11) allows a per-orbital shift in
potentials due to the xiσ − Cσ factor. The magnitudes of the
shifts can be determined by enforcing a constraint that the
interaction energy between a given localized electron and the
shifted SIC potential, vSIC

iσ (�r) + xiσ − Cσ , equals the energy of
the electron in the average potential:∫ [

vSIC
iσ (�r) + xiσ − Cσ

]
ρiσ (�r)d�r =

∫
vKLI

xc,σ (�r)ρiσ (�r)d�r.
(14)

Substituting V KLI
xc,σ from Eq. (11) results in a system of linear

equations for xiσ :

Nσ∑
j=1

(
δi j fiσ − Mσ

i j

)
x jσ = vS

iσ − vSIC
iσ , i = 1, . . . , Nσ , (15)

where

Mσ
i j =

∫
ρiσ (�r)ρ jσ (�r)

ρσ (�r)
d�r, (16)

vS
iσ =

∫
ρiσ (�r)vS

xc,σ (�r)d�r, (17)

vSIC
iσ =

∫
ρiσ (�r)vSIC

iσ (�r)d�r. (18)

From Eqs. (13) and (16)–(18) it follows

Nσ∑
i=1

Mσ
i j = 1, (19)

Nσ∑
i=1

(
vS

iσ − vSIC
iσ

) = 0. (20)

In the original KLI approach, the values of the coefficients
xiσ are chosen to satisfy

vKLI
xc (�r) = vS

xc,σ (�r) +
Nσ∑
i=1

ρiσ (�r)

ρσ (�r)

(
vKLI

xc,iσ − vSIC
iσ

)
, (21)

where

vKLI
xc,iσ (�r) =

∫
ρiσ (�r)vKLI

xc,σ (�r)d�r. (22)

In the limit as r → ∞, ρσ can be expected to be dominated
by the highest occupied molecular orbital (HOMO), ρHOMO

σ .
In this limit, it follows that

vDFA
xc,σ (�r) + vKLI

xc → −1

r
+ xHOMO

σ − xσ . (23)

042811-3



DIAZ, BARUAH, AND ZOPE PHYSICAL REVIEW A 103, 042811 (2021)

FIG. 1. SCF diagrams of FLOSIC-Jacobi and FLOSIC-KLI schemes. Differences highlighted in red for FLOSIC-Jacobi and green for
FLOSIC-KLI.

Equation (11) is identical to the KLI-OEP expression
if Cσ is chosen as Cσ = xHOMO

σ . For other choices of Cσ ,
the potentials differ by a constant. Patchkovskii et al. [63]
note difficulties in defining the HOMO in molecular calcu-
lations and find a choice of Cσ = min(xiσ ) to give favorable
convergence properties. In our calculations, we find using
Cσ = max(xiσ ) to give orbital energies comparable to orig-
inal FLOSIC-Jacobi calculations and favorable convergence
for most systems tested. Two exceptions were the atomic
cases of lithium and sodium, where calculations failed to
converge. In these cases, total energies were calculated us-
ing Cσ = min(xiσ ). For the two problematic cases of lithium
and sodium, calculations can be converged by fixing the or-
bital occupation. This gives the same total energies as by
choosing Cσ = min(xiσ ), but in these cases the lowest unoc-
cupied molecular orbital (LUMO) energy is brought lower
than the HOMO, which is of opposite spin. Since orbital
eigenvalues are affected by the choice of Cσ , the HOMO
energies for lithium and sodium are not included in errors
reported in Sec. III. The steps to solve FLOSIC-KLI equations
self-consistently and the difference of the FLOSIC-KLI im-
plementation from the FLOSIC-Jacobi scheme are illustrated
in Fig. 1.

B. Computational details

All of the results presented in this article are calculated
with the FLOSIC code [68,69], which is based on the UTEP
version of the NRLMOL electronic structure code [70,71].
The FLOSIC code inherits the optimized Gaussian basis sets
of NRLMOL [72] and an accurate numerical integration grid
scheme [70]. The SIC calculations require a finer mesh as or-
bital densities are involved in calculation of orbital-dependent
potentials. A default NRLMOL mesh for FLOSIC calculation,
on average, has 25 000 grid points per atom. This results in
integration of charge density that is accurate to the order of
10−8e. All calculations use the Perdew, Burke, and Ernzerhof
(PBE) exchange-correlation functional [73] except for the wa-
ter clusters. Water cluster calculations were performed using
PBE as well as the local spin density approximation (LSDA).
For the LSDA correlation, the Perdew-Wang parametrization
[74] was used. A self-consistency convergence tolerance of
10−6 Ha in the total energy was used for all calculations.

FLOSIC calculations require an initial set of trial FOD
positions. We use previously reported PBE-optimized FOD
positions. These FOD positions were optimized by minimiz-
ing the FOD forces [34] until the convergence criteria of
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10−6 Ha on the FLOSIC total energy was met. FOD posi-
tions were not reoptimized for KLI calculations, except for
the calculations on hydrogen chains in Sec. IV. We note
that this is an additional approximation. The FOD positions
depend on the choice of the Hamiltonian and the exchange-
correlation approximation. We have examined the effect of
this approximation by reoptimizing the FODs for atomic
systems within the FLOSIC-KLI scheme. We find that the
optimization results in 0.36% change (0.58 millihartrees) in
the mean absolute error (MAE) compared to experiment, in
each case bringing the results to better agreement with the
FLOSIC-Jacobi results. The largest observed change was a
3 millihartree lowering in the case of the fluorine atom, bring-
ing it within 3 millihartrees of the optimized FLOSIC-Jacobi
result. We refer to calculations using the Jacobi-rotation ap-
proach to self-consistency as FLOSIC-Jacobi and calculations
using the KLI approximation as FLOSIC-KLI. A subset of
calculations were obtained using only a leading term of the
KLI approximation (Eq. [13]) which we refer to as FLOSIC-
Slater. The FOD positions for the water clusters were obtained
using the fodMC code [75].

C. Average-density SIC (ADSIC) guess

The iterative solution of KS or PZ-SIC equations requires
an initial guess to start the self-consistent field (SCF) cycle.
Several choices of initial guess exist. Since its inception in
late 1980s, the NRLMOL code (on which the FLOSIC code is
based) uses a linear superposition of atomic potentials (SAPs)
as an initial guess. The atomic potentials are generated on the
fly and a least-squares fit is used to construct initial potentials
for molecular systems. Our experience is that this choice has
worked well for wide variety of systems. Recently, Lehtola
[76] has reviewed the performance of various choices for
initial guess to initialize the SCF cycle and has concluded that
SAP on average performs better than other choices. Typically
in FLOSIC calculations we either start from SAP or from
the converged DFA (SIC-uncorrected) KS orbitals. This has
worked well but there are cases where starting DFA KS den-
sity can have incorrect character, for example when molecules
are in dissociation limits. In such case self-consistent FLOSIC
calculations can take longer to converge. An alternative if
not better initial SAP for SIC calculations can be generated
from the self-interaction corrected atomic potentials using a
suitable SIC method. We construct the SAP using a simple
average-density SIC (ADSIC) scheme [66,77], which is a
generalization of the Fermi and Amaldi [78] method. OEP-
KLI-SIC can also be used but we have chosen ADSIC due to
its simplicity. The KS effective potential in ADSIC exhibits
the correct −1/r asymptotic.

In ADSIC, the self-interaction corrections to the Coulomb
and exchange-correlation potential are given by

V ADSIC
C = VC[ρ] − VC

[
ρ

Ne

]
= VC

Ne − 1

Ne
(24)

and

V ADSIC
xc = Vxc[ρ] − Vxc

[
ρ

Ne

]
. (25)

Here, Ne is the number of electrons. This correction can be-
come very small for systems with a large number of electrons,
but here we are using it only to generate atomic potentials. In
general, we have found that using superposition of ADSIC
atomic potentials as an initial guess in the self-consistent
FLOSIC calculations usually, but not always, requires fewer
iterations to converge than starting from SAP from DFAs or
starting from the converged DFA orbitals.

D. KLI implementation/parallelization

One advantage of the FLOSIC-KLI implementation is that
the equations involved are relatively easy to parallelize. The
most expensive step in the self-consistent FLOSIC calculation
is the determination of orbital-dependent potentials, partic-
ularly the Coulomb potential, required to compute the SIC
terms. However these potentials are independent of each other
and can be easily parallelized. The FLOSIC code, which is
parallelized using MPI, adds a second level of parallelization
for these calculations. The construction of the Hamiltonian
using the Jacobi-like method of Yang, Pederson, and Perdew
[37] is harder to parallelize and creates a bottleneck for
larger calculations. The present FLOSIC-KLI scheme offers
easy parallelization and helps in improving scalability. In the
FLOSIC-KLI approach, the SIC potentials and orbital densi-
ties are stored to disk after they are computed. Subsequently,
each processor reads from file V SIC and ρi and the integrals
used to generate M, vS

iσ , and vSIC
iσ [Eqs. (16)–(18)] are then

parallelized over batches of grid points.
The contributions from each batch of grid points to the in-

tegrals are then reduced across processors. Construction of the
M matrix scales as O(N2

e ) and is thus efficiently parallelized.
In contrast, the Jacobi-like method scales as O(NeN3

b ), where
Nb is the number of basis functions in a calculation. Since ρi

which is obtained from the FLO will be localized, we may
be able to reduce scaling to O(Ne) by taking advantage of
the sparsity of the density. In the subsequent section we com-
pare the FLOSIC-KLI approach against the FLOSIC-Jacobi
approach of Yang, Pederson, and Perdew [37] using standard
data sets previously employed for assessing the performance
of FLOSIC method. We also report new results on the vertical
ionization energies of intermediate-size water clusters.

III. RESULTS

A. Atoms: Total energies and eigenvalues

FLOSIC energies for atoms from H–Ar (Z = 1–18) are
compared against accurate total energies reported by Chakra-
vorty et al. [79]. We report the deviation on a per electron
basis as (E − ERef )/Ne, where E is the FLOSIC energy and
ERef is the reference energy. We find that the FLOSIC-KLI
results give very close energies compared with the orig-
inal FLOSIC implementation, with a mean absolute error
(MAE) of 0.161 Ha for FLOSIC-KLI compared to 0.158 Ha
for FLOSIC-Jacobi. The FLOSIC-Slater calculations perform
slightly worse in each case, as shown in Fig. 2, and did not
converge for the lithium and sodium atoms. FLOSIC-KLI cal-
culations for these atoms were converged by using the Cσ =
min(xiσ ) factor, as detailed in Sec. II A. Neglecting these
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FIG. 2. Atomic total energies (in Ha) for FLOSIC-Jacobi,
FLOSIC-KLI, and FLOSIC-Slater compared against the reference
values of Ref. [79]. (E − ERef )/Ne is shown, where Ne is the number
of electrons.

atoms, FLOSIC-KLI, FLOSIC-Jacobi, and FLOSIC-Slater
give a MAE of 0.170, 0.167, and 0.192 Ha, respectively.

The vertical ionization potential (vIP) can be obtained from
the negative of the highest occupied orbital (HOO) eigenvalue.
For the exact exchange-correlation functionals, they are equal
[6,80,81]. For the approximate functionals, the quality of the
asymptotic behavior of the exchange functionals determines
the accuracy of the HOO as an approximation to the vIP.
All semilocal functionals perform poorly in this regard. In
Fig. 3 we compare the HOO eigenvalues to experimental
ionization potentials (IPs) [82]. Table I shows the MAEs
and mean absolute relative errors (MAREs) for the FLOSIC-
Jacobi and FLOSIC-KLI approaches, as well as the less
accurate FLOSIC-Slater approximation. These results show
good agreement between FLOSIC-Jacobi and FLOSIC-KLI,
with a difference in MARE of less than 1%. FLOSIC-Slater
performs slightly worse with a MARE 3.8% higher than that
of FLOSIC-Jacobi.

FIG. 3. Error in HOMO eigenvalues (in Ha) compared to exper-
imental IPs [82].

TABLE I. MAE (in Ha) and MARE (%) of HOMO eigenvalues
compared to experimental IPs [82]. FLOSIC-Jacobi results from
[52].

FLOSIC-Jacobi FLOSIC-KLI FLOSIC-Slater

MAE (Ha) 0.026 0.030 0.041
MARE (%) 5.67 6.62 9.44

B. Atomization energies

FLOSIC-Jacobi and FLOSIC-KLI are also used to calcu-
late the total and atomization energies (AEs) of a set of 37
molecules taken from the G2/97 test set [83]. In addition, we
include the six molecules from the AE6 test set [84], as well
as HBr, LiBr, NaBr, FBr, and Br2. Most of the geometries
were optimized using B3LYP with the 6-31G(2df,p) basis
[85]. The geometries for O2, CO, CO2, C2H2, Li2, CH4, NH3,
and H2O were optimized using the PBE functional and the
default NRLMOL basis set. The atomization energy (AE) of a
molecule is defined as AE = ∑Natoms

i Ei − Emol > 0, where Ei

is the energy of individual atoms, Natom is the number of atoms
in the molecule, and Emol is the total energy of the molecule.
For the AE6 set, we find that FLOSIC-KLI has slightly larger
MARE (7.51%) compared to FLOSIC-Jacobi (6.82%).

For the larger set of molecules the average errors in
calculated AEs for FLOSIC-Jacobi and FLOSIC-KLI calcu-
lations are summarized in Table II. Experimental values are
taken from Ref. [82]. The MAREs are 9.67% and 10.00%
for FLOSIC-Jacobi and FLOSIC-KLI, respectively. Figure 4
shows a close agreement between two implementations for
most systems, except for F2.

Figure 5 plots the differences in total energies between
the FLOSIC-Jacobi and FLOSIC-KLI implementations as a
function of number of electrons for all atoms and molecules
tested. The plot shows a linear behavior, signifying the error
per electron to fall within some constant range. When calcu-
lating quantities such as AEs, these differences cancel out.

IV. POLARIZABILITY OF H2 CHAINS

Most semilocal functionals perform poorly in predicting
the response of charge distributions to electric fields for
molecular chains and polymers [86–90]. The polarizabilities
predicted by semilocal functionals are severely overestimated.
However, recent work by Aschebrock and Kümmel shows
that meta-GGA functionals constructed by considering
KS-potential-related properties such as the derivative
discontinuity and its density response can provide an accurate
description of polarizabilities [91]. The chains of hydrogen
molecules have been extensively used as model systems

TABLE II. Atomization energies for the set of molecules fea-
tured in Fig. 4. MAE (kcal/mol) and MARE (%) are shown.

FLOSIC-Jacobi FLOSIC-KLI

MAE (kcal/mol) 84.29 83.32
MARE (%) 9.67 10.00
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FIG. 4. Relative error (E − ERef )/ERef of atomization energies of
molecules compared against the reference experimental values found
in Ref. [82].

to examine performance of DFAs in predicting the electric
response of molecular chains [53,86,92–99]. The overestima-
tion of polarizabilities has been understood as a result of a
missing field-counteracting term in the response part of the
XC potentials of semilocal functionals [86,92]. Here, we use
hydrogen chains to examine how well FLOSIC-KLI compares
with FLOSIC-Jacobi for the polarizabilities of these systems.
For this purpose we use the finite-field method with an electric
field of h = 1.0 × 10−3 a.u. The polarizability is calculated
using a second-order central finite difference approach. The z
component of the polarizability αzz is calculated as

αzz = dμz

dFz
= d2E

dF 2
z

= E (−h) − 2E (0) + E (h)

h2
, (26)

where h is the z component of the electric field.
Table III shows the calculated polarizabilities for Hn chains

comparing PBE, FLOSIC-Jacobi, and FLOSIC-KLI (see also
Fig. 6). We constructed linear chains of hydrogen atoms by

FIG. 5. Difference in total energy (in Ha) between FLOSIC-
Jacobi and FLOSIC-KLI calculations as a function of the number
of electrons in the system. Linear fit of data shown as solid line.

TABLE III. Polarizabilities αzz of H2 chains (in a.u.). MP4 and
CCSD values from Ref. [96]. Mean absolute relative error (MARE)
relative to CCSD(T) calculations for H4−12.

Method H4 H6 H8 H12 H14 H100 MARE (%)

PBE 36.0 69.1 108.4 197.0 243.9 2600.1 43.1
FLOSIC-KLIa 32.1 56.8 83.6 158.7 173.7 1417.7 17.3
FLOSIC-KLI 32.1 59.2 88.6 158.5 180.5 20.1
FLOSIC-Jacobi 31.2 60.3 90.5 156.9 194.8 20.3
MP4 29.5 51.9 75.2 127.3 155.0 3.3
CCSD(T) 28.7 50.2 73.4 122.0

aFOD positions in these calculations are not optimized.

placing hydrogen atoms with alternating distances of 2 and
3 bohrs. Initial FODs were generated by placing a spin-up
and spin-down FOD at the midpoint between each bonded
H2 molecule. Polarizabilities were then calculated using the
initial guess as well as by optimizing FODs using a 10−4

Ha/bohr convergence criterion. In the case of the H100 chain,
the FOD positions were not optimized. Table III shows that
the polarizabilities calculated using the initial guess of FODs
show a mean average error of 2.7% compared to the final
optimized calculations, and lie between the FOD-optimized
calculations and the MP4 reference calculations.

V. HOMO-LUMO GAPS

There has been considerable discussion about the inter-
pretation of Kohn-Sham orbital energies as electron removal
energies or the differences between the orbital energies as the
excitation energies [6,58,80,81,100–117]. Despite these, the
density of states from Kohn-Sham calculations is often used to
interpret experimental observations. DFAs that have explicit
orbital dependence, such as hybrid or meta-GGA functionals,
are typically implemented using the generalized Kohn-Sham
scheme [58]. The self-consistent implementation of the
PZ-SIC method using the Jacobi scheme (FLOSIC-Jacobi)

FIG. 6. Polarizabilities αzz of H2 chains (in a.u.) plotted as a
function of number of hydrogen atoms. MP4 and CCSD values from
Ref. [96].
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TABLE IV. HOMO and LUMO eigenvalues for Jacobi and KLI (in eV) along with the difference in HOMO-LUMO gaps. The negative of
the HOMO eigenvalues approximate the vertical ionization potentials.

HOMO (eV) LUMO (eV)

Molecule FLOSIC-Jacobi FLOSIC-KLI FLOSIC-Jacobi FLOSIC-KLI Gap Difference

HF −17.82 −17.55 −0.53 −6.28 −6.02
LiF −13.20 −13.44 −1.32 −5.28 −3.72
HCl −13.43 −13.47 −0.90 −5.59 −4.66
LiCl −10.69 −10.72 −1.75 −4.74 −2.97
NaCl −10.06 −10.05 −2.12 −5.33 −3.21
Cl2 −12.89 −12.31 −4.68 −9.16 −5.06
HBr −12.19 −12.11 −1.38 −5.57 −4.27
LiBr −9.84 −9.85 −1.86 −4.64 −2.77
BrF −12.70 −12.44 −4.76 −9.66 −5.15
Br2 −11.67 −11.19 −4.92 −8.84 −4.40
Benzene −9.08 −8.82 −1.40 −3.63 −2.49
Furan −10.36 −10.64 −0.92 −5.65 −4.44
2-Butyne −11.00 −10.98 0.04 −4.12 −4.18
C2H6 −14.30 −14.19 0.10 −4.67 −4.88
C5H5 −1.62 −1.29 4.43 3.29 −1.48
CN− −5.17 −4.79 6.78 2.11 −5.06
N2 −17.24 −16.15 −2.05 −7.44 −6.49
BH3 −14.36 −14.48 −3.01 −8.75 −5.63
Cyclobutane −13.10 −13.08 0.12 −4.51 −4.65
S2 −10.94 −11.08 −4.65 −7.80 −3.01
SiH4 −13.99 −14.01 0.17 −4.91 −5.05
SiO −12.41 −12.04 −2.92 −6.89 −4.34
SO2 −14.48 −14.19 −4.64 −9.99 −5.64

is like the generalized KS scheme used for hybrid DFAs or
meta-GGAs.

The FLOSIC-KLI method gives a multiplicative effec-
tive potential as in the standard KS scheme. As seen in
previous sections, these two implementations of the PZ-
SIC give total atomic energies, atomization energies, and
polarizabilities that agree within 1%–2%. The eigenvalues, es-
pecially the eigenvalues of the unoccupied molecular orbitals
(LUMOs), in the two approaches are however very differ-
ent. The FLOSIC-Jacobi LUMOs are essentially the same
as those of the uncorrected functional as the Jacobi scheme
does not affect the unoccupied orbitals. As can be seen from
Table IV and Fig. 7, the FLOSIC-KLI LUMO (and higher
unoccupied orbitals) are substantially lowered compared to
the FLOSIC-Jacobi LUMO. The calculations also show that
the eigenvalues of the core orbitals (especially those of 1s
orbitals) are destabilized by several eV in the FLOSIC-KLI
scheme. Since the HOMO eigenvalues between the FLOSIC-
Jacobi and FLOSIC-KLI agree within 1%, the eigenspectrum
in the FLOSIC-KLI scheme is compressed compared to
FLOSIC-Jacobi. This behavior is illustrated in Fig. 7 which
shows the difference between the first (lowest) and the highest
occupied eigenvalues in the FLOSIC-Jacobi and FLOSIC-
KLI methods. This means the core electron binding energies
if estimated from the absolute eigenvalues of core electrons
will differ by several eVs in the two approaches. This would
also lead to differences in the prediction of the core-valence
excitations used in simulating near-edge x-ray absorption fine
structure (NEXAFS) spectra by two approaches.

VI. IONIZATION POTENTIALS OF WATER CLUSTERS

We have used the present methodologies to obtain the
vertical ionization potentials of water clusters from (H2O)21

to (H2O)30. The geometries of these clusters are from the
recent study by Rakshit [118] and coworkers. These authors
performed a large-scale search for the putative minima of

FIG. 7. The difference between the width of occupied eigenvalue
spectrum (i.e., the difference in deepest 1s core eigenvalue and
HOMO eigenvalue) (in eV) between FLOSIC-Jacobi and FLOSIC-
KLI calculations.
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TABLE V. HOMO and LUMO eigenvalues and HOMO-LUMO
gaps (in eV) for water clusters calculated using FLOSIC-KLI.

HOMO (eV) LUMO (eV) Gap (eV)

H2O Molecules LDA PBE LDA PBE LDA PBE

1 −14.75 −14.27 −6.30 −5.88 8.45 8.39
5 −14.48 −13.95 −6.40 −5.87 8.08 8.07
10 −14.11 −13.60 −6.84 −6.21 7.27 7.39
15 −14.07 −13.56 −7.27 −6.59 6.79 6.96
20 −14.49 −13.91 −7.03 −6.30 7.46 7.61
21 −13.82 −13.31 −7.04 −6.35 6.78 6.96
22 −14.44 −13.91 −7.17 −6.47 7.27 7.44
23 −13.97 −13.49 −7.12 −6.44 6.85 7.05
24 −14.24 −13.74 −7.21 −6.51 7.03 7.23
25 −14.17 −13.63 −7.01 −6.28 7.16 7.35
26 −14.08 −13.56 −7.18 −6.46 6.90 7.10
27 −14.23 −13.75 −7.21 −6.51 7.02 7.24
28 −14.25 −13.71 −7.27 −6.51 6.98 7.20
29 −14.21 −13.68 −7.24 −6.50 6.97 7.18
30 −13.97 −13.64 −7.45 −6.70 6.51 6.95

water clusters using Monte Carlo basin paving approach with
a polarizable Thole-type model for force field. These geome-
tries were further refined at the MP2/aug-cc-pVTZ level of
theory. The FLOSIC-KLI calculations were performed on the
most stable water clusters at MP2/aug-cc-pVTZ level. The
FODs for these clusters were obtained using the fodMC code
[75]. No further optimizations of FODs were performed. To
examine how well this approach works for the properties of
water clusters studied herein, we optimized the FODs us-
ing the FLOSIC code for the (H2O)20 cluster. We find that
the forces on the FODs are very small and the optimization
changes the HOMO eigenvalue by 0.4%. The HOMO and
the LUMO eigenvalues of water clusters along with HOMO-
LUMO gap are presented in Table V. The vertical ionization
potentials are the absolute values of the HOMO eigenvalues.
The ionization potentials of (H2O)21-(H2O)30 water clusters
are in the range 13.8 eV to 14.4 eV and do not show systematic
variation with respect to size. Recently, Akter and coworkers
[119] studied small water clusters using PZ-SIC and locally
scaled self-interaction methods. They found that the vertical
ionization potentials obtained as an absolute of the HOMO
eigenvalue within the FLOSIC-LSDA scheme show system-
atic overestimation of approximately 2 eV when compared

with CCSD(T) ionization potentials. By adding this shift,
FLOSIC-KLI ionization potentials are in good agreement
with CCSD(T) energies. Likewise, the PBE FLOSIC-KLI
HOMO-LUMO gaps are in the range of 6.7 eV to 7.6 eV. For
the water molecule the HOMO-LUMO gap is 8.39 eV. Thus
there is about a 1 to 1.4 eV reduction of the HOMO-LUMO
gap from water molecule to water clusters containing 20–30
water molecules.

VII. CONCLUSION

To summarize, we have implemented the FLOSIC method
using the optimized effective potentials with the Krieger-Li-
Iafrate (KLI) approximation. The implementation was tested
by computing the atomic energies, atomization energies,
eigenvalues and ionization potentials using standard data sets,
and polarizabilities of hydrogen chains and comparing the re-
sults with those obtained using the FLOSIC-Jacobi method of
Yang, Pederson, and Perdew [37]. It is found that the FLOSIC-
KLI approach gives results that are in close agreement within
1%–2% of the FLOSIC-Jacobi method. We have also used
the FLOSIC-KLI scheme to predict the vertical ionization
energies of water clusters.

The FLOSIC-KLI is a desirable approach for larger calcu-
lations as it allows more efficient and scalable parallelization
than the FLOSIC-Jacobi method. Another desirable feature of
the FLOSIC-KLI approach is that it provides self-interaction-
corrected virtual orbitals. The virtual orbitals are required
for the calculation of excitation energies using the time-
dependent density functional or for magnetic anisotropy
calculations using the Pederson-Khanna method [120]. Such
applications will be investigated in the future.

The data that support the findings of this study are available
from the authors upon reasonable request.
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