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We have derived the complete formula for the α7 m contribution to energy levels of an arbitrary triplet state of
the helium atom, performed numerical calculations for the 2 3S and 2 3P states, and thus improved the theoretical
accuracy of ionization energies of these states by more than an order of magnitude. Using the nuclear charge
radius extracted from the muonic helium Lamb shift, we obtain the theoretical prediction in excellent agreement
with the measured 2 3S − 2 3P transition energy [X. Zheng et al., Phys. Rev. Lett. 119, 263002 (2017)]. At the
same time, we observe significant discrepancies with experiments for the 2 3S − 3 3D and 2 3P − 3 3D transitions.
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I. INTRODUCTION

High-precision spectroscopic measurements in atoms and
molecules can be used for the determination of fundamental
constants such as the Rydberg constant [1] and the electron-
nuclear mass ratio [2,3]. They can also be used for the
determination of nuclear properties, among them magnetic
dipole and electric quadrupole moments. In the present work,
we investigate the possibility of determining the nuclear
charge radius by means of atomic spectroscopy.

The differences of the (squares of) nuclear charge radii
between different isotopes are routinely determined nowa-
days from measurements of the isotope shifts of transition
frequencies [4–7]. Here we address a more ambitious task of
determining the absolute value of the nuclear charge radius,
specifically that of the helium atom. The main motivation of
the spectroscopic determination of nuclear radii is to make
possible a comparison of different methods, such as electron
scattering and the muonic-atom spectroscopy, and to search
for possible deviations that might signal the existence of un-
known interactions at the atomic scale.

The spectroscopic determination of the nuclear radius has
already been accomplished for the hydrogen atom. Impor-
tantly, it was performed by two independent methods: from
ordinary hydrogen [8–11] and from muonic hydrogen [12,13].
At first, the comparison of the two methods revealed a large
discrepancy, which became known as the proton size puzzle.
This discrepancy seems to be close to a resolution now [14]
because several recent spectroscopic and scattering experi-
ments showed to be consistent with the muonic hydrogen
proton radius. As a result, the comparison of ordinary and
muonic hydrogen has provided improved values for the proton
radius and the Rydberg constant and forced a reconsideration
of systematic effects in hydrogen spectroscopy.

One may expect that a similar comparison performed for
other nuclei will also reveal interesting findings. An important
step towards such a comparison is the recent muonic helium
experiment [15], which determined the charge radius of the
helium-4 nucleus (the α particle) with a 0.05% precision.

The goal of the present work is to improve the theoretical
accuracy of the 2 3S − 2 3P transition energy in atomic helium
to a level sufficient for the determination of the nuclear charge
radius from the existing measurements in ordinary helium.
We achieve this by performing the complete calculation of
the α7 m QED effects. Unfortunately, we also find that our
calculation does not resolve the previously reported discrep-
ancy of theoretical predictions with experimental results for
the 2 3S − 2 3D and 2 3P − 2 3D transitions [16]. In view of
this, we postpone the determination of the α-particle charge
radius until these discrepancies are resolved. Henceforth, we
present our calculations of the complete α7 m QED effects and
obtain the improved theoretical predictions for atomic helium
energy levels using the quantum electrodynamic theory.

II. PERTURBATIVE EXPANSION OF ATOMIC
ENERGY LEVELS

The basic assumption in bound-state quantum electrody-
namics is the possibility of the expansion of the bound-state
energy E in a power series of the fine-structure constant α,
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where m/M is the electron-to-nucleus mass ratio and the ex-
pansion coefficients E (n) may contain finite powers of ln α.
The coefficients E (i)(m/M ) are further expanded in powers of
the m/M ratio,
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The leading expansion term E0 ≡ E (2,0) is the nonrela-
tivistic energy, which is the eigenvalue of the nonrelativistic
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Hamiltonian H0. For the helium atom,

H0 = p2
1

2
+ p2

2

2
− Z

r1
− Z

r2
+ 1

r
, (3)

where r = |�r1 − �r2|. Further expansion terms in Eqs. (1) and
(2) can be expressed as expectation values of some effec-
tive Hamiltonians with the nonrelativistic wave function. The
derivation of the effective Hamiltonians is the central problem,
and this can be accomplished within the approach of the non-
relativistic QED (NRQED), which is employed here. While
the leading-order terms are simple, the derivation becomes
increasingly complicated for high powers of α. The complete
theory of helium energy levels up to order α6 m was reviewed
in our former work [17]. In the present work, we summarize
the α7 m contribution and perform its numerical calculations
for the 2 3S and 2 3P states. In this calculation, we assume
the infinitely heavy nucleus. The corresponding finite nuclear
mass corrections are much smaller than the uncertainty due to
the approximate calculation of the next-order α8 m contribu-
tion, and therefore they are neglected.

III. α7 m CONTRIBUTION

The α7m contribution E (7) is represented as a sum of three
terms,

E (7) = E (7)
L + E (7)

exch + E (7)
rad , (4)

where E (7)
L is the low-energy part—specifically, the relativistic

correction to the so-called Bethe logarithm; E (7)
exch is the part

induced by the electron-electron and electron-nucleus photon
exchange; and E (7)

rad is induced by the radiative QED effects
beyond those accounted for by E (7)

L . Both E (7)
exch and E (7)

rad have
the same general structure, being the sum of the first-order and
second-order perturbation corrections,

E (7)
exch/rad = 〈

H (7)
exch/rad

〉 + 2

〈
H (4) 1

(E0 − H0)′
H (5)

exch/rad

〉
. (5)

Here, H (4) is the leading relativistic Breit Hamiltonian (see
Eq. (7) of Ref. [19]) and H (5) is the QED α5m Hamiltonian.

The relativistic correction to the Bethe logarithm was
derived and calculated numerically in Ref. [18], the photon-
exchange contribution was derived in Ref. [19], and the
radiative contribution was recently derived in Ref. [20].

A. Relativistic correction to the Bethe logarithm

We start with the low-energy part in the leading QED
contribution. The leading nonrelativistic (dipole) low-energy
contribution of order α5 m is given by

EL0(�) = e2
∫

k<�

d3k

(2 π )3 2 k

(
δi j − ki k j

k2

)

×
〈
Pi 1

E0 − H0 − k
P j

〉
, (6)

TABLE I. Relativistic corrections to the Bethe logarithm for the
2 3S and 2 3P (centroid) states of helium, in units of α7 m.

Term 2 3S 2 3P

EL1 −45.1291 (35) −41.7175 (40)
EL2 335.8675 (36) 319.1601 (36)
EL3 −1 095.0439 (3) −1 045.271(8)

where �P = �p1 + �p2 and � = λ α2 is the high-momentum cut-
off. EL0(�) diverges when λ → ∞ due to the presence of
terms proportional to λ and ln λ. We obtain the finite part of
EL0 by subtracting all these λ-dependent terms. The result is,
by definition, the low-energy mα5 contribution, also known as
the Bethe logarithm.

The relativistic correction to the Bethe logarithm, E (7)
L , is

obtained similarly. It consists of three parts,

E (7)
L = EL1 + EL2 + EL3. (7)

The first part EL1 is a perturbation of the nonrelativistic low-
energy contribution EL0 in Eq. (6) by the Breit Hamiltonian
H (4), the second part EL2 is induced by the relativistic cor-
rection to the current operator �P/m, and the third term EL3 is
the retardation correction. All of these corrections are defined
as remainders after dropping λ-divergent terms ∼λ2, λ, ln λ,
and ln2 λ. The divergent terms are canceled when combined
with the corresponding terms from the other contributions in
Eq. (4).

The numerical results for EL1, EL2, and EL3 are taken from
Ref. [18] and are summarized in Table I. Numerical uncer-
tainties are negligible in comparison to uncertainties due to
higher-order corrections.

B. Photon-exchange contribution

The contribution E (7)
exch is induced by the electron-electron

and electron-nucleus photon exchanges, i.e., in its definition,
we exclude all diagrams with photons emitted and absorbed
by the same electron. We split this contribution into the first-
order and second-order parts,

E (7)
exch = 〈

H (7)
exch

〉 + E sec
exch, (8)

where

E sec
exch = 2

〈
H (5)

exch

1

(E0 − H0)′
H (4)

〉
(9)

and

H (5)
exch = − 7

6π

1

r3
. (10)

It is advantageous to express 〈H (7)
exch〉 using a set of operators

Qi with i = 1 . . . 64, which are suited for a numerical evalu-
ation and are summarized in Table IV. The first 50 of these
operators were defined in Refs. [21–23], whereas the remain-
ing 14 operators are exclusive for the α7 m contribution. The
final expression for the photon-exchange contribution is

E (7)
exch = 1

π

{
ln

α−2

2

(
− 22

45
Z Q3 − 19

90
Q6T − 4

15
Q10 + 2

15
Z Q18 − 1

15
Z Q62

)
+

(
− 772

675
+ 22

45
ln 2

)
Z Q3
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+
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(
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3
ln 2

)
Z Q18 + 31

240
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45
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(
14

225
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15
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Z Q62 + 2
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}
+ E sec

exch. (11)

The above expression was obtained by slightly simplifying our former result in Ref. [19] with the help of the following
expectation value identity:

pi

(
δi j

r3
− 3

rir j

r5

)
pj = 2π

3
�p δ3(r) �p + Z

4

( �r1

r3
1

− �r2

r3
2

)
· �r

r3
− 1

2 r4
. (12)

The expression (9) for E sec
exch is finite but numerically unstable.

We thus regularize it as

E sec
exch = 2

〈
H (5)

exch

1

(E0 − H0)′
HR

〉

+ 7

6π
[Q9(Z Q53 − Q7) + Q10 − Z Q59], (13)

where the regularized Breit operator HR is acting on ket-state
|φ〉 as

HR|φ〉 =
[

− 1

2
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4
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4
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1∇2
2 + ∇ i

1
1

2r

(
δi j + rir j

r2

)
∇ j

2

]
|φ〉, (14)

where E0 is the nonrelativistic energy of φ and V = − Z
r1

−
Z
r2

+ 1
r . HR is equivalent to H (4) in the sense that their expec-

tation values on φ are the same.

C. The radiative contribution

The radiative correction E (7)
rad consists of the one-loop

self-energy, the one-loop vacuum polarization, the two-loop
correction, and the three-loop correction,

E (7)
rad = E (7)

SE + E (7)
VP + E (7)

rad2 + E (7)
rad3. (15)

The one-loop self-energy contribution is

E (7)
SE = 1

π
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2
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3
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3
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45
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3
E (4)Q7 + 2 Q10 + 4

3
E0Z2 Q11 + 8

3
E0Z2 Q12 − 8

3
E0Z Q13 − 8

3
Z2 Q14

+ 8

3
Z3 Q15 − 4

3
Z2 Q16 + 4

3
Z Q17 − 8

3
Z Q18 + 2

3
Z2 Q21 + 2

3
Z2 Q22 + 4

3
Z Q24 − 2

3
Z Q28

+ 11

30
Z Q51 + 4

3
E2

0 Z Q53 + Z2 Q57
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− 1

2
ln2 α−2

2
Z3 Q1

}
+ E sec

SE , (16)

where E (4) = 〈H (4)〉 is the Breit correction to the energy. The above formula for E (7)
SE is obtained by simplifying our former result

in Ref. [20] with the help of the identity (12). The second-order part E sec
SE is

E sec
SE = 2

〈
H ′′(5) 1

(E0 − H0)′
H ′′(4)

〉
+ 1

π

(
5

9
+ 2

3
ln

α−2

2

) 〈
H ′

R

1

(E0 − H0)′
HR

〉
. (17)

Here, the operators H ′′(4) and H ′′(5) are obtained, respectively, as the α4 and α5 parts of the spin-dependent Breit Hamiltonian
with anomalous magnetic moment (see, e.g., Eq. (1) of Ref. [24]),

Hfs = H ′′(4) + H ′′(5) + O(κ2) = HB + HC + HD, (18)
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HB =
[

Z

4

( �r1

r3
1

× �p1 + �r2

r3
2

× �p2

)
(1 + 2 κ ) − 3

4
�r
r3

× ( �p1 − �p2)

(
1 + 4 κ

3

)] �σ1 + �σ2

2
= ( �QB + κ �Q′

B)
�σ1 + �σ2

2
, (19)

HC =
[

Z

4

( �r1

r3
1

× �p1 − �r2

r3
2

× �p2

)
(1 + 2 κ ) + 1

4
�r
r3

× ( �p1 + �p2)

] �σ1 − �σ2

2
= ( �QC + κ �Q′

C )
�σ1 − �σ2

2
, (20)

HD = 1

4

( �σ1 �σ2

r3
− 3

�σ1 · �r �σ2 · �r
r5

)
(1 + κ )2 = (

Qi j
D + κ Q′i j

D

) 1

2
σ i

1 σ
j

2 + O(κ2), (21)

where κ = α/2π is the anomalous magnetic moment correction. HR is defined in Eq. (14), and H ′
R is

H ′
R|φ〉 = −2Z

( �r1 · �∇1

r3
1

+ �r2 · �∇2

r3
2

)
|φ〉. (22)

Introducing the shorthand notations
QA = HR, (23)

Q′
A =

(
5

9
+ 2

3
ln

α−2

2

)
H ′

R, (24)

we evaluate the second-order corrections as follows. After tracing out spins, we obtain, for the 2 3S1 state,

E (2 3S1)sec
SE = 1

π

{
〈2 3S|Q′

A

1

(E0 − H0)′
QA|2 3S〉 + 2

3
〈2 3S|Q′ j

B

1

(E0 − H0)′
Q j

B|2 3S〉

+ 1

3
〈2 3S|Q′ j

C

1

(E0 − H0)′
Q j

C |2 3S〉 + 1

3
〈2 3S|Q′i j

D

1

(E0 − H0)′
Qi j

D |2 3S〉
}
. (25)

A similar result holds for the 2 3P centroid,

E (2 3P)sec
SE = 1

π

{
〈2 3Pi|Q′

A

1

(E0 − H0)′
QA|2 3Pi〉 + 2

3
〈2 3Pi|Q′ j

B

1

(E0 − H0)′
Q j

B|2 3Pi〉

+ 1

3
〈2 3Pi|Q′ j

C

1

(E0 − H0)′
Q j

C |2 3Pi〉 + 1

3
〈2 3Pi|Q′ jk

D

1

(E0 − H0)′
Q jk

D |2 3Pi〉
}
, (26)

where we assumed the normalization 〈2 3Pi|2 3Pi〉 = 1. This completes the description of the first term in Eq. (15), which is the
electron self-energy contribution.

The second term in Eq. (15) is the one-loop vacuum polarization correction, for which we obtained [20]

E (7)
VP = 1

π

{
8

15
E0E (4) +

(
− E0

105
+ 137

1050
Z2 − π2

54
Z2 − 1

15
Q7 − 1

15
Z2 ln α−2

)
Z Q1 + 1 + 13Z

105
Z Q3 − 13

210
Z Q4

+ 13

63
Q6T − 4

15
E (4)Q7 − 4

15
E0Z2 Q11 − 8

15
E0Z2 Q12 + 8

15
E0Z Q13 + 8

15
Z2 Q14 − 8

15
Z3 Q15 + 4

15
Z2 Q16

− 4

15
Z Q17 − 2

15
Z2 Q21 − 2

15
Z2 Q22 − 4

15
Z Q24 + 2

15
Z Q28 − 13

210
Z Q51 − 4

15
E2

0 Z Q53 + Z2

15
Q57

}
+ E sec

VP , (27)

with

E sec
VP = − 2

15π

〈
H ′

R

1

(E0 − H0)′
HR

〉
. (28)

Finally, the two-loop and three-loop radiative corrections
are obtained from the known hydrogenic results, keeping only
the part proportional to the electron-nucleus contact interac-
tion, whereas the electron-electron contact interaction terms
vanish because the nonrelativistic wave function is antisym-
metric with respect to the exchange �r1 ↔ �r2. Therefore, the
two-loop correction is

E (7)
rad2 = Z2

2π2
Q1 B50, (29)

where the coefficient B50 is known only numerically, B50 =
−21.554 47 (13) [25]. Similarly, the three-loop radiative cor-
rection is given by [25]

E (7)
rad3 = Z

2π3
Q1

[
−568 a4

9
+85 ζ (5)

24
−121 π2 ζ (3)

72

−84 071 ζ (3)

2304
−71 ln4 2

27

− 239 π2 ln2 2

135
+4787 π2 ln 2

108

+ 1591 π4

3240
− 252 251 π2

9720
+ 679 441

93 312

]
, (30)
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where a4 = ∑∞
n=1 1/(2n n4) = 0.517 479 061 . . . . This com-

pletes our evaluation of the α7 m contribution.

IV. ESTIMATION OF α8m EFFECTS

For the estimation of the radiative α8m effects in helium,
we employ the known hydrogenic results and pretend that they
are proportional to the electron-nucleus contact interaction.
Specifically, we use the results for the hydrogenic 2s state of
He+ [25],

E (8+)
rad1 (hydr) = Z7

8π
(81.934 SE + 1.890 VP), (31)

E (8+)
rad2 (hydr)

= Z6

8π2

{
− 8

27
ln3[(Zα)−2] + 0.639 ln2[(Zα)−2]

+ 41.387 ln[(Zα)−2] − 81.1 ± 10

}
, (32)

where the subscripts “SE” and “VP” denote the self-
energy and vacuum-polarization contributions, respectively.
The three-loop contribution is small [26] and thus is neglected.
The approximate α8m corrections to the ionization energies
of the 2 3S and 2 3P states of helium are obtained from the
corresponding hydrogenic 2s contributions by

E (8+) = E (8+)(hydr)
〈δ3(r1) + δ3(r2)〉 − Z3

/π

Z3
/8π

. (33)

Specifically, we get contributions of 0.158(52) MHz and
−0.048(16) MHz for the ionization energies of the 2 3S and
2 3P states, correspondingly. We estimated the uncertainties to
be 1/3 of the corresponding numerical values; this estimate
can be improved further once the α7m contribution is verified.

V. FINITE NUCLEAR SIZE EFFECT

The last significant correction is due to the finite nuclear
size, namely (in relativistic units),

Efns = 2 π

3
Z α

〈∑
a

δ(3)(ra)

〉
R2 [1 − (Z α)2 ln(m R Z α)],

(34)

TABLE II. Second-order corrections for the 2 3S state; the prime
on the sum means exclusion of the reference state.

Intermediate 2 3S
state∑′

n
1

E0−En
〈3S|H ′

R|n3S〉 〈n3S|HR|3S〉 3S 203.050 945∑′
n

1
E0−En

〈3S|H (5)
exch|n3S〉 〈n3S|HR|3S〉 3S −0.030 546

2/3π

∑
n

1
E0−En

〈3S|Q′i
B|n3Pi〉 〈n3P j |Q j

B|3S〉 3Pe −0.003 868
1/3π

∑
n

1
E0−En

〈3S|Q′i
C |n1Pi〉 〈n1P j |Q j

C |3S〉 1Pe −0.000 195
1/3π

∑
n

1
E0−En

〈n3Di j |Qi j
D |3S〉2 3De −0.001 225

where R is the root-mean-square nuclear charge radius, and
the expectation value of the Dirac δ functions is assumed to
include the finite nuclear mass effects.

We note that Eq. (34) includes relativistic effects in the
form of the leading logarithmic correction. Higher-order cor-
rections to Eq. (34) were investigated for hydrogenlike atoms
in Ref. [27]. Crude scaling shows that for helium, they are
negligible at the current level of precision and thus are ne-
glected.

VI. NUMERICAL METHOD

The spatial part of the helium wave function is expanded in
a basis set of exponential functions of the form [28,29]

φi(r1, r2, r) = e−αir1−βir2−δir ± (r1 ↔ r2), (35)

�φi(r1, r2, r) = �r1 e−αir1−βir2−δir ± (r1 ↔ r2), (36)

for the S and P states, correspondingly. The calculation of
the matrix elements of the nonrelativistic Hamiltonian is per-
formed with the help of the formula

1

16π2

∫
d3r1

∫
d3r2

e−αr1−βr2−δr

r1r2r
= 1

(α + β )(β + δ)(δ + α)
.

(37)

The results for integrals with any additional powers of r in the
numerator can be obtained by differentiation with respect to
the corresponding parameter α, β, or δ.

The matrix elements of the relativistic corrections involve
integrals with additional inverse powers of r1, r2, and r.
Formulas for such integrals can be obtained by integrating
Eq. (37) with respect to the corresponding nonlinear pa-
rameter. This leads to the appearance of logarithmic and
dilogarithmic functions; specifically,

1

16π2

∫
d3r1

∫
d3r2

e−αr1−βr2−δr

r1r2r2
= 1

(α + β )(α − β )
ln

(
α + δ

β + δ

)
, (38)

1

16π2

∫
d3r1

∫
d3r2

e−αr1−βr2−δr

r2
1r2r2

= 1

2 β

[
π2

6
+ 1

2
ln2

(
α + β

β + δ

)
+ Li2

(
1 − α + δ

α + β

)
+ Li2

(
1 − α + δ

β + δ

)]
. (39)

Other integrals for the relativistic corrections are obtained by differentiating the two basic formulas above.
In our calculation of the α7 m contribution, we encounter operators involving ln r + γ , where γ stands for the Euler’s gamma

constant. For the evaluation of these operators, we obtained the following formulas:

1

16 π2

∫
d3r1

∫
d3r2 e−α r1−β r2−δ r 4 πδ(r1)

(ln r + γ )

r
= 1 − ln(β + δ)

(β + δ)2
(40)
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and

1

16 π2

∫
d3r1

∫
d3r2

e−α r1−β r2−δ r

r1 r2 r
(ln r + γ ) = 1

(α − β ) (α + β )

[
ln(α + δ)

α + δ
− ln(β + δ)

β + δ

]
, (41)

1

16 π2

∫
d3r1

∫
d3r2

e−α r1−β r2−δ r

r1 r2 r2
(ln r + γ ) = 1

2 (α − β ) (α + β )

[
ln2(β + δ) − ln2(α + δ)

]
, (42)

1

16 π2

∫
d3r1

∫
d3r2

e−α r1−β r2−δ r

r2
1 r2 r2

(ln r + γ ) = 1

2 β

{
1

2
ln

(
α − β

α + β

) [
ln2(α + δ) − ln2(β + δ)

]

+ ln(α + δ)

[
Li2

(−β + δ

α + δ

)
− Li2

(
β + δ

α + δ

)]
+ Li3

(−β + δ

α + δ

)
− Li3

(
β + δ

α + δ

)}
, (43)

where the last formula is valid for α > β. The result for α < β

is obtained by an analytic continuation with the help of the
identities

Li2(−z) + Li2(−z−1) = − π2

6
− ln2(z)

2
, (44)

Li3(−z) − Li3(−z−1) = − π2

6
ln(z) − 1

6
ln3(z). (45)

In our calculation, we have derived explicit formulas for the
expectation values of all Qi operators, and they involve the
combination of the above expressions with the additional ra-
tional functions of α, β, and δ.

VII. RESULTS

Table I presents our numerical results for the relativistic
corrections to the Bethe logarithm, obtained previously in
Ref. [18]. Numerical values of the second-order corrections
are summarized in Table II for the 2 3S state and in Table III
for the 2 3P centroid. The uncertainties present for some of
the matrix elements are negligible at the level of uncalculated
higher-order contributions. The expectation values of various
first-order operators are listed in Table IV. The matrix el-
ements Qi with i � 50 have already been evaluated in our
previous investigations (see Tables I and II of Ref. [22]),
whereas the operators with i > 50 are first encountered in the
present work. The numerical uncertainties for Qi’s are smaller
than the last digit shown.

Table V summarizes our calculation of the α7m contribu-
tions to the energies of the 2 3S and 2 3P states of helium.
In order to obtain contributions to the ionization energy, we
need to subtract the corresponding corrections for the 1S state
of the He+ ion, listed in the last column of the table. The
hydrogenic formulas for E (7)

SE (He+) and E (7)
L (He+) are ob-

tained from Refs. [30,31] as follows:

E (7)
SE (He+, 1S) = Z6

π

{
−121

60
+ 5

2
ζ (3) − 5

18
π2 − 61

90
ln 2

− 3 ln2 2 + ln(Z α)

[
163

30
− 4 ln(2 �)

]

− 5

3
ln � − 22

3
ln 2 ln � + ln2 �

}
, (46)

E (7)
L (He+, 1S) = Z6

π

{
β +

(
5

3
+ 22

3
ln 2

)
ln

[
�

(Z α)2

]

− ln2

[
�

(Z α)2

]}
, (47)

where β = β1 + β2 + β3 = 27.259 909 48 and Z = 2. The
sum E (7)

SE (He+) + E (7)
L (He+) does not depend on the cutoff

parameter �. In order to be consistent with our present cal-
culations for atomic He, one should set the cutoff parameter
as � → α2.

We note a strong cancellation between the He and He+

corrections, which reflects the fact that the dominant contribu-
tion to the 2 3S and 2 3P energies comes from the 1s electron.

TABLE III. Second-order corrections for the 2 3P state (centroid). Normalization is according to 〈Pi|Pi〉 = 〈Di j |Di j〉 = 〈F i jk|F i jk〉 = 1.

Intermediate 2 3P
state∑′

n
1

E0−En
〈3Pi|H ′

R|n3Pi〉 〈n3Pk |HR|3Pk〉 3Po 190.798 218 (3)∑′
n

1
E0−En

〈3Pi|H (5)
exch|n3Pi〉 〈n3Pk |HR|3Pk〉 3Po 0.000 059 (2)

1/3π

∑′
n

1
E0−En

〈3Pi|iεi jkQ′ j
B |n3Pk〉 〈n3Pl |iεlmnQm

B |3Pn〉 3Po −0.008 025

2/3π

∑
n

1
E0−En

〈3Pi|Q′ j
B |n3Di j〉 〈n3Dlm|Ql

B|3Pm〉 3Do −0.000 555

1/6π

∑
n

1
E0−En

〈3Pi|iεi jkQ′ j
C |n1Pk〉 〈n1Pl |iεlmnQm

C |3Pn〉 1Po −0.028 515

1/3π

∑
n

1
E0−En

〈3Pi|Q′ j
C |n1Di j〉 〈n1Dlm|Ql

C |3Pm〉 1Do −0.000 106

1/5π

∑′
n

1
E0−En

〈n3Pi|Qik
D |3Pk〉2 3Po −0.002 429

2/9π

∑
n

1
E0−En

〈n3Di j |iεikl Q jk
D |3Pl〉2 3Do −0.000 015

1/3π

∑
n

1
E0−En

〈n3F i jk|Qi j
D |3Pk〉2 3F o −0.000 495
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TABLE IV. Expectation values of various operators for the 2 3S and 2 3P states, �P = �p1 + �p2, �p = 1/2( �p1 − �p2).

2 3S 2 3P

Q1 4πδ3(r1) 16.592 071 15.819 309
Q2 4πδ3(r) 0 0
Q3 4πδ3(r1)/r2 4.648 724 4.349 766
Q4 4πδ3(r1) p2

2 2.095 714 4.792 830
Q5 4πδ3(r)/r1 0 0
Q6T 4π �p δ3(r) �p 0.028 099 0.077 524
Q7 1/r 0.268 198 0.266 641
Q8 1/r2 0.088 906 0.094 057
Q9 1/r3 0.038 861 0.047 927
Q10 1/r4 0.026 567 0.043 348
Q11 1/r2

1 4.170 446 4.014 865
Q12 1/(r1r2) 0.560 730 0.550 342
Q13 1/(r1r) 0.322 696 0.317 639
Q14 1/(r1r2r) 0.186 586 0.198 346
Q15 1/(r2

1 r2) 1.242 704 1.196 631
Q16 1/(r2

1 r) 1.164 599 1.109 463
Q17 1/(r1r2) 0.112 360 0.121 112
Q18 (�r1 · �r)/(r3

1 r3) 0.011 331 0.030 284
Q19 (�r1 · �r)/(r3

1 r2) 0.054 635 0.075 373
Q20 ri

1r j
2 (rir j − 3δi j r2)/(r3

1 r3
2 r) 0.027 082 0.090 381

Q21 p2
2/r2

1 0.751 913 1.410 228
Q22 �p1/r2

1 �p1 16.720 479 15.925 672
Q23 �p1/r2 �p1 0.243 754 0.279 229
Q24 pi

1 (rir j + δi j r2)/(r1r3) pj
2 0.002 750 −0.097 364

Q25 Pi (3rir j − δi j r2)/r5 P j 0.062 031 −0.060 473
Q26 pk

2 ri
1 /r3

1 (δ jkri/r − δikr j/r − δi j rk/r − rir jrk/r3) pj
2 −0.009 102 0.071 600

Q27 p2
1 p2

2 0.488 198 1.198 492
Q28 p2

1 /r1 p2
2 1.597 727 3.883 405

Q29 �p1 × �p2 /r �p1 × �p2 0.070 535 0.399 306
Q30 pk

1 pl
2 (−δ jl rirk/r3 − δikr jrl/r3 + 3rir jrkrl/r5) pi

1 pj
2 −0.034 780 −0.187 305

Q31 4πδ3(r1) �p1 · �p2 0.040 294 −0.457 224
Q32 (�r1 · �r2)/(r3

1 r3
2 ) −0.005 797 −0.032 383

Q33 �p1 · �p2 0.007 442 −0.064 572
Q34 �P /r1 �P 4.974 707 4.730 359
Q35 �P /r �P 1.232 372 1.127 146
Q36 �P /r2

1
�P 17.504 835 16.972 775

Q37 �P /(r1r2) �P 2.489 592 2.291 176
Q38 �P /(r1r) �P 1.454 007 1.350 214
Q39 �P /r2 �P 0.438 804 0.413 144
Q40 p2

1 p2
2 P2 10.324 509 24.527 699

Q41 P2 pi
1 (rir j + δi j r2)/r3 pj

2 0.151 748 0.067 201
Q42 pi

1 (ri
1r j

1 + δi j r2
1 )/r4

1 P j 33.461 709 31.489 835
Q43 pi

1 (ri
1r j

1 + δi j r2
1 )/(r3

1 r2) P j 2.486 269 2.217 310
Q44 pi

1 pk
2 (ri

1r j
1 + δi j r2

1 )/r3
1 pk

2 P j 1.100 915 2.527 505
Q45 pi

2(rir j + δi j r2)(r j
1rk

1 + δ jkr2
1 )/(r3

1 r3) Pk 0.540 877 0.467 623
Q46 pi

1(ri
1r j

1 + δi j r2
1 )(r j

2rk
2 + δ jkr2

2 )/(r3
1 r3

2 ) pk
2 0.006 782 −0.201 826

Q47 (�r1 · �r2)/(r3
1 r2

2 ) −0.008 117 −0.028 621
Q48 ri

1r j (ri
1r j

1 − 3δi j r2
1 )/(r4

1 r3) −0.036 861 −0.057 404
Q49 ri

1r j (ri
2r j

2 − 3δi j r2
2 )/(r3

1 r2r3) −0.089 086 −0.126 780
Q50 pk

2 ri
1/r3

1 (δ jkri
2/r2 − δikr j

2/r2 − δi j rk
2/r2 − ri

2r j
2rk

2/r3
2 ) pj

2 0.005 856 −0.092 036
Q51 4π �p1 δ3(r1) �p1 0.009 993 0.270 964
Q52 4πδ3(r1)/r2 (ln r2 + γ ) 8.125 982 7.514 290
Q53 1/r1 1.154 664 1.133 242
Q54 1/r4(ln r + γ ) 0.015 481 0.009 473
Q55 1/r5 0.017 580 0.027 240
Q56 1/r3

1 −23.022 535 −21.886 142
Q57 1/r4

1 25.511 837 24.525 751
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TABLE IV. (Continued).

23S 23P

Q58 (�r1 · �r)/(r3
1 r3)(ln r + γ ) 0.026 515 0.038 795

Q59 1/(r1r3) 0.051 914 0.069 729
Q60 �p /r3 �p 0.072 885 0.093 877
Q61 �P /r3 �P 0.211 990 0.226 284
Q62 rir j (δi j r2

1 − 3ri
1r j

1 )/(r5
1 r3) −0.017 688 −0.051 696

Q63 rir j (δi j r2
1 − 3ri

1r j
1 )/(r5

1 r3)(ln r + γ ) −0.045 609 −0.045 395
Q64 pi(δi j r2 − 3rir j )/r5 pj 0.002 731 0.021 530

TABLE V. Numerical results for individual contributions to E (7) for the 2 3S and 2 3P (centroid) states of helium, in units of α7m if not
specified explicitly.

Term 2 3S 2 3P He+(1S)

E (7)
L −804.306 (5) −767.828 (10) −785.107

E (7)
SE −379.061 −359.257 −367.554

E (7)
VP −36.094 −34.381 −34.716

E (7)
rad2 −72.471 −69.096 −69.885

E (7)
rad3 0.223 0.213 0.215

E (7)
exch −10.639 −9.950 0.000

E (7) −1302.348 (5) −1240.301 (10) −1257.046

E (7) (MHz) −177.320 (1) −168.872 (1) −171.152

He − He+ (MHz) −6.168 (1) 2.280 (1)

Prev. theory [17] −5.2 (1.3) 2.9 (0.7)

TABLE VI. Breakdown of theoretical contributions to the ionization (centroid) energies of the 2 3S and 2 3P states of 4He, in MHz.
R∞c = 3.289 841 960 250 8(64) × 1015 Hz [33], M/me = 7294.299 541 42 (24) [33], 1/α = 137.035 999 206 (11) [34], R = 1.678 24 (83) fm
[15]. NS denotes the finite nuclear size correction; NP stands for the nuclear polarizability correction. The uncertainty of the theoretical α2

contribution comes from the Rydberg constant; the uncertainty of the finite nuclear size correction comes from the nuclear radius.

(m/M )0 (m/M )1 (m/M )2 (m/M )3 Sum

2 3S :
α2 −1 152 953 922.384 (2) 164 775.354 −30.620 0.006 −1 152 789 177.644 (2)
α4 −57 629.312 4.284 −0.001 −57 625.029
α5 3 999.431 −0.800 3 998.632
α6 65.235 −0.030 65.205
α7 −6.168 (1) −6.168 (1)
α8 0.158 (52) 0.158 (52)
NS 2.616 (3) 2.616 (3)
NP −0.001 −0.001
Total −1 152 842 742.231 (52)
Theory 2017 [17] −1 152 842 741.4 (1.3)
2 3P :
α2 −876 178 284.857 (2) 61 871.895 −25.840 0.006 −876 116 438.795 (2)
α4 11 436.878 11.053 0.002 11 447.932
α5 −1 234.732 −0.614 −1 235.346
α6 −21.833 −0.001 −21.835
α7 2.280 (1) 2.280 (1)
α8 −0.048 (16) −0.048 (16)
NS −0.799 (1) −0.799 (1)
NP 0.000 0.000
Total −876 106 246.611 (16)
Theory 2017 [17] −876 106 246.0 (7)
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TABLE VII. Comparison of experimental results for various transitions with theoretical predictions, in MHz.

Transition Theory Experiment Difference

2 3S–3 3D1 786 823 849.540 (52)a 786 823 850.002 (56) [35] −0.462 (76)
2 3P0–3 3D1 510 059 754.863 (16)a,b 510 059 755.352 (28) [36] −0.489 (32)
2 3P–2 3S 276 736 495.620 (54) 276 736 495.600 0 (14) [32]b 0.020 (54)

aUsing theoretical energy E (3 3D1) = 366 018 892.691 (23) from Ref. [37].
bUsing theoretical results for the 2 3P fine structure from Ref. [38].

The resulting α7m correction to the ionization energy is in
agreement with our previous approximate predictions [17]
based on the known He+ Lamb shift.

Table VI summarizes all known theoretical contributions
to the ionization energies of the 2 3S and 2 3P states of helium.
The contributions up to order α6 m correspond to those from
our review [17], with the updated value of the Rydberg con-
stant [33]. The finite nuclear size correction is calculated with
the charge radius obtained from the recent measurement of
the muonic helium Lamb shift [15]. We find that the effects of
order α7 m and α8 m shift the 2 3S − 2 3P transition frequency
by −8.447 MHz and 0.206 (54) MHz, respectively.

Table VII compares our final theoretical predictions
with experimental results. There are three accurately
measured transitions in He that involve the 2 3S and
2 3P states. The theoretical transition energy E (2 3S −
2 3P)theo = 276 736 495.620 (54) MHz is in very good
agreement with the experimental result E (2 3S − 2 3P)exp =
276 736 495.600 0 (14) MHz from Ref. [32], while for the
other two transitions, 2 3S − 3 3D1 and 2 3P0 − 3 3D1, theory
and experiment disagree by about 0.5 MHz.

VIII. DISCUSSION

The theoretical energies contain the nuclear charge radius
R as a parameter, through the finite nuclear size correction
given by Eq. (34). By comparing the theoretical predictions
with high-precision experimental results (particularly, the
2 3S − 2 3P transition energy [32]), one can determine R. The
present theoretical accuracy is, in principle, sufficient for a
determination of the nuclear radius with an accuracy of about
1%. However, the unexplained discrepancy between theory

and experiment for the 2 3S − 3 3D and 2 3P − 3 3D transitions
does not allow us to do this.

Disagreements between theory and experiment for tran-
sitions involving D states have already been reported
[16,17,37]. The present calculation reduces the discrepancy
for triplet states from 1 to 0.5 MHz. However, the theoretical
uncertainty due to uncalculated higher-order effects is now
reduced by an order of magnitude, so the relative discrepancy
with experiment increased drastically, reaching 15 σ for the
2 3P0 − 3 3D1 transition.

Bearing in mind the two different measurements, both of
which show similar deviations from theory, we conclude that
the most plausible explanation of the discrepancy would be
some unknown theoretical contribution shifting the 2 3S and
2 3P states by approximately the same value. For this reason,
we postpone the determination of the α-particle charge radius
by means of the atomic spectroscopy until this unknown cor-
rection or a mistake in our calculations is identified.

Note added. Recently, a theoretical study appeared [39]
arguing that the nonresonant corrections may have been
neglected in measurements of the 2 3S − 3D and 2 3P − 3D
transitions, which reach several tenth of MHz and have a
potential to reconcile theory and experiment.
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