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Imaging ring-current wave packets in the helium atom
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We study the reconstruction of a wave packet and the corresponding electron dynamics in an atom via
photoelectron angular distributions (PADs) in a pump-probe scheme as a function of time delay. The method
is applied to the superposition of ground and one or two excited states in helium atom representing field-free
charge migrations on the attosecond timescale in form of ring currents around the core. It is based on the
interference between one- and two-photon transitions from ground and excited states into the continuum. In
the reconstruction predictions of first- and second-order perturbation theory are used to determine the unknown
phases and amplitudes from the PADs, which we simulate via solutions of the time-dependent Schrödinger
equation in single-active-electron approximation. Results of calculations show that the reconstruction technique
works well for peak laser intensities less than 1013 W/cm2. Knowledge of the electric field of the probe pulse
is required with shot-to-shot variations of carrier-to-envelope phase and peak intensity of up to 10% and 20%,
respectively. The relevance of different one- and two-photon pathways for the reconstruction as a function of
peak intensity and pulse duration is analyzed—specifically their role for ultrashort probe pulses with broad
bandwidths.
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I. INTRODUCTION

The availability of ultrafast light sources at wavelengths
from the vacuum ultraviolet (VUV) and extreme ultravi-
olet (EUV) to the soft-x-ray regime via the technologies
of free electron lasers (FELs) [1] and high-order harmonic
generation (HHG) [2,3] has opened a new regime of ultra-
fast measurements in atomic and molecular physics. Laser
pulses of duration as short as a few tens of attoseconds
have been demonstrated experimentally [4,5] and enabled
the observation of electron dynamics (for recent reviews, see
Refs. [6–11]). One example is the time-resolved measure-
ment of the photoelectric effect in atoms and solids [12–16].
Electron emission from the target has been also temporally
resolved for a transition of the electron into the contin-
uum through excited-state resonances [17–19], autoionizing
states [20–22], Fano resonances [23–26], and for correlated
electron emission [27–29]. Electron wave-packet dynamics
in superposition states of atoms and molecules has been an-
other focus of ultrafast time-resolved studies, either for single
valence electron motion [30–41] or correlated two-electron
dynamics [42–44].

Recently, the application range of ultrafast laser pulse
technology has been extended by the capability to control
the polarization of the emitted light in high-order harmonic
generation and free-electron lasers. The physical principle to
produce circularly polarized high-order harmonics has been
proposed and applied first two decades ago [45]. Efficient
phase matching of the generated light in the EUV and soft
x-ray regime [46–48] and the control of the polarization
stage [49] has been demonstrated more recently. Similarly,
free-electron laser light with variable polarization has become

available [50,51]. The potential to control the polarization
and helicity of light generated by HHG and FELs extends
the range of accessible states and transition pathways during
photon absorption. States with varying orbital angular mo-
mentum and magnetic quantum number can be excited during
the interaction with the pulses. In turn, the helicity of the light
pulses can be used to selectively prepare superpositions of
states in atoms or molecules with a variety of combinations in
the quantum numbers (principal, orbital angular momentum,
magnetic) on an ultrafast timescale.

One of the simplest cases of a superposition of atomic
states with different orbital angular momentum and magnetic
quantum numbers is that of a helium atom in the 1s and
2p1 states. It results in an ultrafast electron dynamics given
by a wave packet rotating in a plane around the nucleus
with a period of ≈200 attoseconds. We use this dynamics
as a prototype example to study the reconstruction of the
corresponding wave packet via ionization with an ultrashort
linearly polarized probe laser pulse. To this end, we an-
alyze the photoelectron angular distributions as a function
of time delay from the instant of preparation of the atomic
superposition states. The concept is based on the idea to uti-
lize quantum beating signals, where the imaged wave packet
is interfered with a reference wave to reconstruct a wave
function [31,36,40,52–54]. Accounting for the phase accumu-
lation, ionization cross sections, and characterization of the
reference wave packet that is used in the measurement is a
nontrivial task. In this work we present a method for wave-
packet reconstruction based on quantum beating signals that
utilizes perturbation theory. Since the method requires knowl-
edge of the average values for intensity, carrier-to-envelope
phase, and pulse duration of the probe pulse, we perform a
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sensitivity study to show the impacts of noise produced in
an experiment and the limits in peak laser intensity on the
reconstruction method. Finally, we consider the extension of
the method to imaging of wave packets consisting of superpo-
sitions of more than two states.

The rest of the paper is organized as follows: In Sec. II
we first present and discuss the ionization scheme on which
the reconstruction method is based. Then we briefly review
the methods for the numerical solution of the time-dependent
Schrödinger equation and the perturbation theory formalism
used for the reconstruction algorithm. In Sec. III we present
the application of the method to the reconstruction of a cir-
cular wave packet in a helium atom. Aspects of the error
analysis with respect to the accuracy of the observation of
the PADs and the variation of the laser parameters will be
presented. Furthermore, the impact of different pathways on
the reconstruction process will be studied. Finally, we briefly
discuss the extension of the method to superpositions of more
than two states along with results for a specific three-state su-
perposition. The paper ends with a summary. We use Hartree
atomic units e = me = h̄ = 1 if not mentioned otherwise.

II. CONCEPT AND THEORETICAL METHODS

A. Pump-probe scheme

In this study, we focus on the reconstruction of a wave
function and the related imaging of the dynamics via pho-
toelectron angular distributions (PADs). To this end, we start
our simulations in a superposition state of the atom. An exper-
iment will require a pump pulse to generate the superposition.
There are a few requirements for the pump pulse itself to apply
the reconstruction scheme. Since the scheme relies on the
measurement of the PADs at various time delays between the
pump and the probe pulse, the pump must be a reproducible
pulse with a fixed carrier envelope phase (CEP) such that
the superposition generated for each measurement is very
similar from shot to shot if not the same. However, the form
of the electric field of the pump pulse does not need to be
known. Next, the delay between the pump and probe pulses
must be controlled on the attosecond timescale to allow for
measurements as a function of the delay. The shot-to-shot
measurements should be taken for time delays within one
cycle of the probe pulse giving rise to the requirement of an
attosecond control over the delay. The total delay is irrelevant
as long as the two pulses do not overlap in time and the state
to be imaged does not decay. Furthermore, photoelectrons
generated by the pump pulse have to be separated from those
produced by the probe pulse. It might be therefore useful to
limit ionization by the pump pulse.

The method studied here can be applied to simple super-
positions, consisting of population in two or three atomic
states. As prototypical example we consider a helium atom
in a 1s-2p1 superposition, which represents a circular wave
packet rotating around the nucleus. This superposition with
equal population in the two levels can be created with an
≈23 cycle laser pulse at 1014 W/cm2 tuned to the resonance
frequency. Figure 1(a) shows the dynamics via isosurfaces of
the wave function (i.e., |r�|2) rotating in the x-y plane on an
attosecond timescale.

FIG. 1. (a) Isosurfaces of the 1s-2p1 wave function (|r�|2 is
shown) evolving in time. (b) Ionization scheme in the x-y plane. The
laser polarization along the x axis is depicted in red, the direction
of the ionized electron is shown in orange, and the charge migration
is shown in yellow. Selection rules for (c) ground-state signal and
(d) excited-state signal. The solid lines illustrate the transitions of
photons absorbed at the central frequency and the dashed lines show
the pathways for short pulse effect due to the large bandwidth of an
ultrashort pulse.

To characterize the motion, and in turn reconstruct the
wave function, we expand the initial wave function in the
eigenbasis of stationary states and write the wave function at
some time t as

�(r, t ) = a0ψ0(r, t ) +
N−1∑
j=1

a je
iθ j ψ j (r, t ), (1)

where a j is a positive real number, θ j is a relative phase,
and {ψ j = �nlm; j = 0, . . . , N − 1} is the eigenstate basis.
While the basis may contain an infinite number of eigenstates,
for practical means in the numerical calculations and any
application it has to be truncated at some finite number N .
Thus, the wave function depends on N − 1 phases and N
amplitudes since the global phase is not a physically relevant
quantity. In this framework, all time dependence is contained
in the states |ψ j (t )〉 and the initial wave function is completely
reconstructed if all a j and θ j for j � 1 are obtained since a0 is
fixed by the normalization and we set the phase of ground state
|ψ0〉 to zero. If the wave function generated by the pump pulse
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can be reconstructed at a given time, the full time-dependent
motion of the wave function has also been obtained.

In the reconstruction scheme that we consider the electron
dynamics is probed via ionization by an intense ultrashort
laser pulse as a function of time delay after the end of the
pump pulse. In the scheme, predictions of first- and second-
order perturbation theory (PT) are used to determine the
unknown phases and amplitudes from the photoelectron an-
gular distributions (PADs). The latter may be determined in
an experiment but in this theoretical study we utilize ab initio
numerical calculations. For the case of a helium atom in a
1s-2p1 superposition, we apply a probe laser pulse linearly
polarized along the x axis and detect the photoelectron angular
distribution in the x-y plane, i.e., for θ = π/2, as a function of
the angle ϕ from the x axis, as shown in Fig. 1(b). The absorp-
tion of a photon will induce transitions with � → � ± 1 and
m → m ± 1 due to the selection rules. The pathways from the
ground and the excited state are shown in Figs. 1(c) and 1(d),
respectively. The solid arrows represent the pathways for the
transitions at the central frequency of the probe pulse. Ip is
the ionization potential and the ovals indicate possible reso-
nances. Since we analyze photoelectron emission induced by
ultrashort pulses, we need to consider additional pathways due
to the broad bandwidth of the pulse [55]. These pathways are
the ionization from the ground state with a single photon and
the two-photon transition from the excited state, which are
represented by the dotted arrows in Fig. 1. Since states in the
continuum with the same energy and quantum numbers can
be reached via different pathways, the photoelectron angular
distribution will change in both shape and yield as the relative
amplitudes and phases of each signal varies.

B. Numerical solution of time-dependent Schrödinger equation

To test the applicability and limits of the reconstruction
method we use numerical solutions of the time-dependent
Schrödinger equation (TDSE) as a substitute for actual mea-
surements of the photoelectron angular distributions. We
consider the TDSE in length gauge and single-active electron
approximation:

i
∂

∂t
�(r, t ) =

[
−∇2

2
− E(t ) · x + V (r)

]
�(r, t ), (2)

where V (r) is a single-active electron potential for helium
atom given by [56]

V (r) = −1

r
− e−2.0329r

r
− 0.3953e−6.1805r . (3)

giving a ground-state energy of −0.944 409 a.u. and a 2p en-
ergy of −0.12847 a.u. The potential has been constructed for
benchmark tests between TDSE and time-dependent density-
functional theory (TDDFT) calculations [56]. The energies
match those of the corresponding DFT potential while the
experimental values for the ground and the 2p state in helium
are −0.9037 a.u. and −0.12382 a.u.

For the solution we have expanded �(r, t ) in spherical
harmonics up to lmax = |mmax| = 20 and discretized the radius
using fourth-order finite differences. The wave function has
been propagated in time with a time step of 0.01 a.u. on a grid
with spacing of 0.05 a.u., with a maximum radius of 300 a.u.

and an exterior complex scaling on the outer 30 a.u. of the grid
utilizing the Crank-Nicolson method for time propagation.
The numerical code tested against previously used codes as
well as results from numerical calculations published in the
literature [57].

To avoid unphysical effects in the numerical simulations
we make sure that the electric field integrates to zero by setting
the vector potential as [58]

A(t ) =
{

A0 sin2
(

πt
T

)
sin

[
wA

(
t − T

2 + τd
)]

, 0 � t � T

0 otherwise,
(4)

where A0 = c
√

I
ωA

, T = 2πN
ωA

, τd is the pulse delay, c is the speed
of light, I is the peak intensity, N is the number of cycles in the
pulse, and ωA is the central frequency of the vector potential.
ωA is determined such that the spectral distribution of the
E -field matches the given physical central frequency ωE [59].
The E field is obtained by

E (t ) = −1

c

∂

∂t
A(t ). (5)

Once the wave function has been propagated to the end of
the pulse we obtain the photoelectron angular distribution by
projecting onto numerical continuum states. For an arbitrary
radial potential V (r) we propagate the radial Schrödinger
equations for a given � from r = 0 to rmax. Boundary condi-
tions and scattering phase shifts are accounted for via setting
φk,l (r = 0) = 0 and using the asymptotic solution to the
Coulomb wave functions

φkl (r � 1) → sin

[
kr − lπ

2
+ Z

k
ln (2kr) + δkl

]
. (6)

To normalize the amplitude at r = rmax we set

N =

⎡
⎢⎢⎣ 1√

|φkl (r)|2 + ∣∣ φ′
kl (r)

(k+ Z
kr )

∣∣2

⎤
⎥⎥⎦

r=rmax

(7)

and determine the phase shift δkl by

δkl =
⎡
⎣arg

⎛
⎝ iφkl (r) + φ′

kl (r)

(k+ Z
kr )

(2kr)iZ/k

⎞
⎠ − kr + lπ

2

⎤
⎦

r=rmax

. (8)

The photoelectron angular distribution is then obtained as

PTDSE(k, θ, φ)

∝
∣∣∣∣∣
∑
l,m

Y ∗
l,m(θ, φ)

∫
e−iδkl (i)lφ∗

kl (r)�(r, t )dr

∣∣∣∣∣
2

. (9)

C. Perturbation theory

To reconstruct the initial wave function, i.e., determine
amplitudes and phases, we invert the photoelectron angular
distributions (here, TDSE results) as a function of time delay
by utilizing perturbation theory (PT). In standard perturbation
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theory the distribution can be written as

PPT(k, φ, τ ; a) ∝
∣∣∣∣∣a0

∑
�,m

A�,m
0 (k, τ )Y m

�

(
π

2
, φ

)

+
∑

j

a je
iφ j

∑
�,m

A�,m
j (k, τ )Y m

�

(
π

2
, φ

)∣∣∣∣∣
2

,

(10)

where a = {aj, φ j} is the state vector containing the set of
state amplitudes and relative phases, and θ = π

2 as only detec-
tion of the PADs in the x-y plane is needed for reconstruction
of the superpositions considered in the present applications.
The signal is normalized in the reconstruction method. Y m

� are
spherical harmonics and Al,m

j (k, t ) is the sum of the first order

A(1)
ψ j

(k, t ) = 〈φkl (t )|
∫ t

−∞
dt1G0(t, t1)Vlas(t1)|ψ j (t1)〉 (11)

and second-order

A(2)
ψ j

(k, t ) = 〈φkl (t )|
∫ t

−∞
dt1G0(t, t1)Vlas(t1)

×
∫ t1

−∞
dt2G0(t1, t2)Vlas(t2)|ψ j (t2)〉 (12)

transition amplitudes from the initial orbital ψ j where

G0(t, t ′) =
∑∫

g
e−iEgt |φg(t )〉〈φg(t ′)|eiEgt ′

(13)

is the field-free Green’s function and

Vlas(t ) = −E(t ) · x (14)

is the electron-field interaction. To evaluate A(1)
ψ (k, t ) and

A(2)
ψ (k, t ) we use the bound states of the TDSE field-free

Hamiltonian for the initial states, and expand the Green’s
function for 200 dipole allowed states per � and m block.
The states represent the bound part of the spectrum and a
discretized continuum up to an energy of ≈59 eV. The matrix
elements and time integrals are performed numerically.

The PT results are then used to obtain a residual

R(a) =
∑
k,φ,τ

∣∣∣∣ PTDSE∑
k,φ,τ |PTDSE| − PPT(a)∑

k,φ,τ |PPT(a)|
∣∣∣∣
2

, (15)

where PTDSE and PPT are the TDSE and PT photoelectron
distributions for all utilized final momenta, time delays, and
detection angles. The state vector a that minimizes R(a)
gives the reconstructed wave function. The normalization
maintains the relative yields at each final momentum. To
minimize R(a) for the two (three) state system considered
below, 1000 (250) evenly spaced samples were used. For the
current applications, this minimization technique is sufficient.
For superpositions involving more states, the dimensional-
ity of the minimization space increases. It is likely that, for
such studies, more advanced minimization methods such as
stochastic gradient descent will be needed. We also note that
the method is applied to image field-free wave packets, i.e., a
is time independent. For cases in which a changes with time,
an extension of the present method is needed.

FIG. 2. Results of TDSE calculations for photoelectron angular
distributions over one cycle of the probe pulse field for ionization of
1s-2p1 superposition with ultrashort two-cycle (left column) and ten-
cycle (right column) laser pulse with peak intensities of 1014 W/cm2

(top row), 1012 W/cm2 (middle row), and 1010 W/cm2 (bottom row).
The time delays 
τ are given with respect to a reference time τ0 after
the end of the first pulse.

III. RESULTS AND DISCUSSION

A. Reconstruction of two-state superposition:
Intensity limits and number of samples

To apply the minimization and therefore reconstruct the
wave packet, the photoelectron angular distributions (PADs)
have to vary as a function of time delay. It is therefore first
interesting to see at which laser parameters a significant vari-
ation in the PADs can be observed. To this end, in Fig. 2
we show how the PAD varies within one optical cycle of the
pump pulse. The delay 
τ in the figure refers to some fixed
reference time τ0 after the end of the first pulse. Comparison
of the TDSE results for a two-cycle (≈190 as FWHM, left
column) and a ten-cycle (≈950 as FWHM, right column)
laser pulse at three peak intensities ranging from 1010 W/cm2

(bottom row) over 1012 W/cm2 (middle row) to 1014 (top
row) W/cm2 is shown. In the calculations, the photon energy
ωE has been set to the energy difference between the initially
equally populated field-free 1s and 2p1 states in helium atom
[(|1s〉 + |2p1〉)/

√
2]. We note that, in the present application

the energy difference between the two states and the use of
transform-limited pulses lead to pulse duration in the attosec-
ond regime. For many other superpositions of atomic states
the pump pulse durations will be in the femtosecond regime.
The angular distribution is taken at photoelectron energy E =
2ωE − Ip, where ωE is the central photon energy and Ip is the
ionization energy.
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FIG. 3. Errors in (a), (d) amplitude and (b), (e) phase for the two-state reconstruction using PADs generated with laser pulses at two-, five-,
and ten-cycle pulse duration. (c), (f) Also shown is the residual R(a). The reconstructions are based on PADs at 20 time samples (
t = τ/20)
using PADs in the full x-y plane (upper row) and photoelectron signals in forward-backward direction (lower row).

Although the laser pulse has a FWHM of similar or even
longer duration than the charge migration in the present appli-
cation, the time-delayed PAD shown in Fig. 2 has significant
enough variation for the minimization technique to converge.
This is due to the coherent nature of the applied laser light.
Since the laser is tuned near the resonance, the oscillation
of the electric field approximately agrees with that of the
superposition to be imaged. This allows for subcycle time
dependence to be encoded in the PAD signal.

At the lowest intensity (Fig. 2, bottom row) we observe
that the two-cycle signal varies significantly. This is due to the
interference between the one-photon ionization channels from
the excited state and the ground state. The pathway from the
ground state provides a significant contribution to the electron
emission due to the broadband spectrum of the ultrashort two-
cycle pulse [55,60]. Thus, as the time delay varies, the relative
phase of the ground and excited states changes, producing a
quantum beating. In contrast, for the longer ten-cycle pulse
the spectrum of the pulse is more narrow. Consequently, the
contribution from the one-photon pathway from the ground
state is much smaller. Hence, the PAD for the ten-cycle pulse
at the lowest intensity shows minimal variation as a function
of time delay since it is dominated by ionization of the excited
state.

As the intensity increases, the relative contribution of the
two-photon ionization pathway from the ground state in-
creases because the power dependence of the signals scales
with the number of photons absorbed. Since the two-photon
channel depends on the absorption of photons at the central
energy the significance of the contribution does not depend on
the pulse duration. As a result, we observe that, at the largest
intensity considered in Fig. 2 (top row), both the two- and the
ten-cycle PADs vary strongly as functions of time delay. This
is due to the interference between the one-photon ionization

from the excited state and the two-photon ionization from the
ground state.

To demonstrate the reconstruction method the errors in
reconstructing the amplitude and phase of the superposition
state (|1s〉 + |2p+〉)/

√
2 in helium atom as a function of

peak intensity are shown in Figs. 3(a), 3(d) and 3(b), 3(e),
respectively. The error is obtained via 
a = a′ − a, where
a is the amplitude or phase of the original wave function
and a′ is the corresponding amplitude or phase of the recon-
structed wave function. The reconstruction is based on PADs
taken at 20 time delays over one period of quantum beating
τ = 2π/|E2p1 − E1s|. Also shown are the final results of the
minimization for R(a) [Figs. 3(c) and 3(f)].

Reconstructions of two cases are compared in which either
the full PAD in the x-y plane via signals at 6285 equally
spaced angles (upper row) or only the signals in the forward-
backward direction along the polarization axis of the probe
pulse (lower row) are used. The results in the upper row
show that the reconstruction method reproduces the initial
state up to peak laser intensities of about 1013 W/cm2 if the
full x-y plane and 20 time samples are used. The increase
of the errors at intensities larger than 1013 W/cm2 indicates
that higher-order processes begin to contribute leading to
the breakdown of the present second-order reconstruction
method. For a two-state superposition, just two amplitudes
and the relative phase have to be determined. Using the full
PAD with several thousand signals is oversampling for the
reconstruction method. This is confirmed by the results for
the reconstruction [Figs. 3(d) and 3(f)] using the PAD signals
in forward-backward direction only.

Next, we studied if one can limit the number of PAD
samples over time. Toward this end, we present in Fig. 4
the errors in amplitude and phase based on a reconstruction
using just two PADs over one period of quantum beating
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FIG. 4. Same as Fig. 3 but based on PADs at just two time delays.
Errors in amplitude (filled symbols with solid lines) and phase (open
symbols with dashed lines) are shown for using PADs in the full x-y
plane (blue squares) and in the forward-backward direction (orange
circles).

τ = 2π/|E2p1 − E1s|. If the full PAD in the x-y plane is used
(blue squares), the reconstruction method remains successful
over the same intensity regime as before. However, when the
available signals are limited to the forward-backward direc-
tion (orange circles), the data are insufficient for a one-to-one
mapping between the initial state and the obtained photoelec-
tron signal. Consequently, the reconstruction fails at nearly
all peak laser intensities, since for just two time samples the
normalization leads to a greater chance that multiple values
for amplitudes and the relative phase produce a given signal.

Thus, for the basic case of equal population in a two-state
superposition and probing with a pulse having a central fre-
quency equal to the field-free energy difference of the state,
our results show that the reconstruction method is successful
for intensities in the perturbative regime up to 1013 W/cm2.
If the PADs can be measured over a broad range of angles
probing at two times over one cycle of the probe pulse field is
sufficient. In contrast, if only the forward-backward asymme-
try signals are measured more time samples are needed.

B. Impact of different pathways

The reconstruction depends on the effective interference
of at least two amplitudes to have a quantum beating. In the
full reconstruction we consider the contributions from four
pathways (one- and two-photon transitions from ground and
excited states). It is interesting to ask which pathways con-
tribute effectively besides the one-photon transition from the
excited state. To study this question, we have deliberately ne-
glected individual amplitudes in the reconstruction. In Fig. 5
we compare the results of these calculations with those of the
full reconstruction (blue bars) based on the full x-y plane and
20 time samples. We show the results for the amplitude error
only and note that those for the phase error lead to the same
conclusions.

We performed two set of test calculations: First, we uti-
lized all amplitudes except the two-photon signal from the
excited state (orange bars). Next, we removed the one-photon
signal from the ground state and the two-photon signal from
the excited state from the reconstruction (green bars). Both
transition amplitudes are expected to have an impact at

FIG. 5. Comparison of amplitude error for a (a) two- and (b) five-
cycle probe pulse from calculations using full second-order PT
(blue), neglecting only the two-photon transition from the excited
state (orange) and neglecting both the one-photon transition from the
ground state and the two-photon amplitude from the excited state
(green) in the reconstruction.

ultrashort durations due to the broad bandwidth of the pulses.
Indeed, we do see noticeable changes for the two-cycle data
[Fig. 5(a)] while there appears to be insignificant impact for
the five-cycle pulse [Fig. 5(b)] at all intensities.

For a two-cycle probe pulse, at intensities less than
1013 W/cm2, the reconstruction without the two-photon am-
plitude from the excited state matches the full data [Fig. 3(a)].
At higher intensities, the results deviate, which agrees with the
expectation. Removing also the one-photon transition from
the ground state from the reconstruction causes the results
to deviate from the full results at 1010 W/cm2 and above
1013 W/cm2. At the lowest intensity it is the one-photon
signal from the ground state that provides a dominant con-
tribution to the PAD, leading to the deviation at 1010 W/cm2.
At intensities above 1013 W/cm2, the additional exclusion of
the one-photon signal leads to a better reconstruction than
for the full data and when the two-photon pathway from the
excited state is neglected. This can indicate that inadvertently
the two ultrashort amplitudes have an opposite effect on the
reconstruction or that an even higher-order amplitude is more
dominant than the lower-order processes.

C. Variation of central frequency and population

So far, we have considered a special case with equal popu-
lation in the two states and the central frequency tuned to the
energy difference between the two field-free states. We will
now study deviations from this special case. First, we consider
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FIG. 6. (a), (c) Amplitude and (b), (d) phase errors for ionization
at a detuned photon frequency of ω = 0.8ω0 (upper row) and ω =
1.2ω0 (lower row). The reconstructions are based on full PADs in
x-y plane at 20 time delays.

a laser pulse detuned from the energy difference between the
two equally populated states. We calculated the photoelectron
distribution at E = ωE − |Ee|, where Ee is the energy of the
excited 2p1 state. Given a sufficiently broad spectral range,
i.e., sufficiently short pulse, the one-photon ground-state sig-
nal (peaking at about E = ωE − |Eg|) at low intensities will
interfere with the excited-state signal creating the same quan-
tum beating as before allowing for the reconstruction process
to work. In Fig. 6 we show the reconstruction results for a
laser with central frequency of ωE = 0.8ω0 (upper row) and
ωE = 1.2ω0 (lower row). The results lead to the same conclu-
sion as for the resonant case, namely, that the reconstruction
method can be applied in the perturbative intensity regime up
to 1013 W/cm2.

To show that the reconstruction works for a two-state su-
perposition with arbitrary unknown amplitudes and phases,
we have performed a “blindfold experiment” where the popu-
lation of the states were chosen randomly. The random values
were held unknown and were only accessed to obtain the final
error at the end of the reconstruction procedure. We have used
this approach in several calculations and for probe pulses of
different duration, with results leading to the same conclusion.
As an example, one set of results for this blindfold experiment
is presented in Fig. 7, showing that the reconstruction is suc-
cessful with the same low errors as in the other cases studied.

D. Detector accuracy and variation of laser parameters

For the reconstructions so far we have used results from
TDSE calculations up to machine precision. Since detectors
in experiment do not operate with the same precision we have
studied how less accurate data may impact the success of
the reconstruction. To this end, we have deliberately added
random noise at a certain percentage level of the maximum
signal in the PADs to the TDSE data. In Fig. 8 we compare
the results for the reconstruction with added noise at the 1%
and 10% level with those at machine precision using the
signals from the full x-y plane and 20 time samples. It is
seen that an accuracy of detection at the 1% level is sufficient

FIG. 7. Amplitude and phase error for the reconstruction of an
arbitrary unknown two-state superposition. Reconstruction is based
on full PADs in the x-y plane at 20 time delays with a five-cycle probe
pulse.

to reconstruct the wave function with similar error as in the
full calculation with TDSE data at machine precision. Similar
results and conclusions have been obtained for the other cases
presented in Figs. 3 and 4. We expect that this limit can be
achieved in a measurement.

We have further considered variations in the laser param-
eters relevant for an application of the reconstruction method
in an experiment. Typically, the peak intensity of the applied
laser pulse may vary from shot to shot as well as over the
interaction volume. Another parameter that is usually difficult
to control is the carrier-to-envelope phase (CEP) of a laser
pulse, specifically for ultrashort pulses. To study the impact
on the reconstruction, CEP, peak intensity, and both CEP and

FIG. 8. Comparison of (a) amplitude and (b) phase error for
reconstruction using PADs at machine precision (blue) and with
accuracy limited to 1% and 10%.
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FIG. 9. (a) Amplitude and (b) phase error for variation of CEP
only (blue squares with solid lines), intensity only (orange circles
with dashed lines) and both CEP and intensity (green stars with
dotted lines) at peak intensity of 1011 W/cm2 and pulse duration of
two cycles. Reconstruction is based on full PADs in x-y plane at 20
time delays.

peak intensity have been varied randomly within a certain
percentage in the TDSE results. The results in Fig. 9 show that
the reconstruction method still works well up to 10% variation
in both parameters before significant errors occur. Perhaps
most surprising is the rather large acceptable tolerance in the
CEP even for the shortest pulses, since CEP variations often
lead to large changes in experimental observables. We assume
that the shot to shot variation is “averaging out” over the
various time delays leading to a quality in the reconstruction
similar to fitting a linear regression to noisy data.

E. Extension to superpositions of more than two states

Finally, we consider the extension of the reconstruction
method to a superposition of more than two states. The ion-
ization scheme shown in Figs. 1(c) and 1(d) can be applied to
each excited state in the superposition separately, taking the
waves generated via one- and two-photon transitions from the
ground state as reference. For the reconstruction measurement
of PADs at separate energies for each excited state in the
superposition is required. Based on PT results, residuals R(a)
[Eq. (15)] have been obtained, taking into account both final
momenta to reconstruct the wave function.

To test the extension of the method we have considered the
helium atom in the (|1s〉 + |2p1〉 + |3p1〉)/

√
3 superposition.

A probe laser pulse at central photon energy tuned halfway
between the |2p1〉 and |3p1〉 states and measurement of PADs

FIG. 10. (a), (c) Amplitude and (b), (d) phase errors for the
reconstruction of the superposition (|1s〉 + |2p1〉 + |3p1〉)/

√
3 in the

helium atom (upper row: errors for 2p state, lower row: errors for 3p
state).

at both E = ω − |E2p| and E = ω − |E3p| have been applied.
The results of the reconstruction, based on PADs in the full x-y
plane taken at 20 time delays, are shown as function of peak
intensity for different pulse durations in Fig. 10. The results
show that a similar degree of accuracy in the reconstruction
as for the two-state superposition is achieved within the same
intensity limits. The example indicates that the present method
may be extended to even more complex wave packets and
electron dynamics.

Extension of the reconstruction method to more complex
superpositions will require attention to the interference with
the ground-state signal and the increased dimensionality of
the minimization space. Since the minimization process ap-
pears to be convex, a standard minimization algorithm, like
conjugate gradient, may be sufficient for an efficient recon-
struction. For each additional state in the interference scheme,
the signal at the photoelectron energy chosen must include
interference with at least one other state. This can be achieved
if all transitions from the excited states interfere with that from
the ground state by using a short pulse. If only longer pulses
are available, coupling over many pairs of states reduces the
required bandwidth for a reconstruction. Finally, due to the
selection rules some initial states do not generate a signal in
the xy plane. In this case it may be required to utilize a full 4π

PAD for reconstruction of the corresponding superposition.

IV. SUMMARY AND OUTLOOK

We have studied the use of perturbation theory to recon-
struct an atomic wave function representing ultrafast field-free
charge migration. In the reconstruction scheme the photo-
electron angular distributions obtained by ionizing an atom,
prepared in a superposition of two or three states, are used.
The electron dynamics are encoded in the PAD signal via
interference of the ground and excited-state ionization signals.
Time delayed measurements allow for the extraction of all
amplitudes and phases of the initial wave function that fully
characterizes the charge migration. Results of applications
based on TDSE calculations show that the reconstruction is
highly accurate for probe pulse intensities below 1013 W/cm2
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while allowing for CEP (intensity) variations of 10% (20%)
from shot to shot. Additionally, a detection accuracy for the
PADs of about 1% for a reconstruction with small error is
required.

These results may provide some basic guidelines for future
experimental progress in imaging electron motion on its fun-
damental timescale via the detection of photoelectron angular
distributions. However, the results also show that experimen-
tal challenges remain. Controlling the creation of ultrashort
laser pulses, especially those with attosecond pulse duration,
is a nontrivial task. For the current method to be applied, aver-
age values for intensity, CEP and pulse duration of the electric
field of the probe pulse must be obtained and shot-to-shot
variations must be limited up to a certain degree. Given the
rate of advancement in attosecond laser pulse technology over
the last decade, this level of pulse control may be however
achieved in the coming years.

Additionally, precise knowledge of one- and two-photon
transition dipoles is required to perform perturbation theory

calculations for the target atom with high accuracy. Over
the last decades several standard theoretical methods, such
as multielectron theories, density-functional theory or calcu-
lations using accurate single active electron potentials, have
been developed to perform such calculations. As theoretical
methods for bound and continuum wave functions further
advance, the current and other reconstruction methods will
become increasingly accurate.
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