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Single ionization of an asymmetric diatomic system by relativistic charged projectiles
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We study single ionization of a heteroatomic system by charged projectiles whose velocity v approaches
the speed of light c. The system is formed by two loosely bound atomic species, A and B, with the ionization
potential of A being smaller than excitation energy for a dipole-allowed transition in B. In such a case, three single
ionization channels occur: (i) single-center ionization of atom A, (ii) single-center ionization of atom B, and
(iii) two-center ionization of A. While (i) and (ii) are the well known mechanism of direct impact ionization of
a single atom, in channel (iii) ionization of A proceeds via impact excitation of B with consequent radiationless
transfer of excitation energy—via (long-range) two-center electron-electron correlations—to A, leading to its
ionization. We show that, close to the resonance energy, the two-center channel (iii) is so enormously strong that
its contribution remains dominant even if the range of emission energies ∼ 1 eV, which is orders of magnitude
broader than its width, is considered. The influence of relativistic effects, caused by a high collision velocity, on
the angular distribution of emitted electrons may be quite strong even at γ = 1/

√
1 − v2/c2 ≈ 2. However, in

the energy distribution and the total cross section, these effects become substantial only at γ � 1. Relativistic
effects arising due to a large size of the two-atomic system are shown to be very weak even for a 7Li-He dimer
whose mean size is about 28 Å.

DOI: 10.1103/PhysRevA.103.042804

I. INTRODUCTION

Ionization occurring in ion-atom collisions belongs to the
basic phenomena studied by atomic physics. The direct impact
ionization of an atom by a charged projectile (e.g., an electron,
an ion) is a well-known process which has been studied for
a wide range of collision energies including relativistic ones
(see, e.g., Refs. [1–3] and references therein).

In this paper, we consider single ionization of a loosely
bound heteroatomic system bombarded by relativistic bare
ions. The system consists of two atomic species A and B,
which are separated by a distance much larger than the typical
atomic size, and it is assumed that the ionization potential
of A is smaller than an excitation energy of a dipole-allowed
transition in B.

Under such conditions single ionization of the A-B system
can proceed via three basic channels: (i) direct (single) ion-
ization of A, (ii) direct ionization of B, and (iii) two-center
ionization of A. While the channels (i) and (ii) represent the
well-known process of single ionization of a single atom,
the channel (iii) is a more subtle ionization mechanism in
which correlations between electrons belonging to the dif-
ferent atomic centers play the crucial role. This mechanism
involves impact excitation of a dipole-allowed transition in B
with the subsequent radiationless decay of the excited state
of B via long-range two-center electron-electron correlations
which transmit the de-excitation energy to atom A that results
in its ionization.

One has to mention that two-center electron correlations
may cause a variety of other interesting phenomena. For in-
stance, they drive the population inversion in a He-Ne laser

and the energy transfer in quantum optical ensembles [4] or
cold Rydberg gases [5]. They are also crucial for Förster
resonances between chromophores [6] in biological systems.
Another two-center phenomenon is represented by inter-
atomic Coulombic decay (ICD) [7] in which the electronic
excitation energy of one of the atoms cannot be quickly re-
leased through a forbidden (single-center) Auger decay and
is instead transferred to the neighboring atom resulting in
its ionization. Processes based on correlated electronic decay
have been also found in expanding nanoplasmas which were
formed by irradiating clusters with intense laser pulses [8].

Inter-atomic electron-electron correlations are also respon-
sible for the process of resonant two-center photoionization
(2CPI) [9] in which ionization of a Van der Waals dimer
occurs via resonant photoabsorption by one of its atoms
with subsequent interatomic coulombic decay. It was exper-
imentally observed in Ne-He dimers [10,11] and large NeAr
clusters [12]. The process that is time inverse of two-center
photoionization is termed two-center dielectronic recombi-
nation (2CDR) [13]. Here, an incident electron is captured
by an ion via resonant transfer of the energy excess to the
neighbor atom which afterwards stabilizes via spontaneous ra-
diative decay. If the energy excess is larger than the ionization
potential of the neighbor atom, electron emission from this
atom takes place. This process is called interatomic coulombic
electron capture (ICEC) [14].

Recently, the process of two-center ionization in nonrel-
ativistic collisions with electrons was studied in [15]. The
present paper, where ionization of a large-size asymmetric
dimer by high-energy ions is considered, focuses on the role
of relativistic effects in this process which are caused by both
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a collision velocity approaching the speed of light and a large
size of the dimer.

The paper is organized as follows. In Sec. II, we con-
sider single-electron emission from the A-B system and derive
differential and total cross sections for all emission chan-
nels, where we especially focus on two-center ionization.
Section III contains numerical results and discussion. Fi-
nally, our main findings are summarized in Sec. IV. Atomic
units (h̄ = |e| = me = 1) are used throughout unless other-
wise stated.

II. THEORETICAL CONSIDERATION

A. General approach

Let us consider a diatomic system consisting of two weakly
bound atomic species A and B which are in their ground states
with energies εg and εg, respectively. We suppose that B has an
excited state with an energy εe, which can be populated by a
dipole-allowed transition from the ground state of B, and that
the excitation energy of this transition in B is larger than the
ionization potential IA of A: ωB = εe − εg > IA.

We also assume that the nuclei of A and B are separated
by the internuclear distance R which is much larger than
the typical atomic size such that the electron orbitals of A
and B essentially do not overlap and, besides, the interaction
between A and B is relatively weak. Then, the electronic
structure of the A-B system may be approximately considered
as that of two individual noninteracting species A and B.

Let now the A-B system be bombarded by a bare ion P
with the charge ZP and (relative) velocity v. In the present
consideration, we shall assume that the projectile has a rela-
tively low charge, i.e., that the condition ZP/v � 1 is fulfilled.
Under such a condition the projectile field will represent just
a weak pertubation for the A-B system and we may use the
first order of (time dependent) perturbation theory in order to
treat the interaction between this system and the projectile.
Besides, this condition also implies that (total) ionization of
the A-B system will be largely dominated by single ionization
processes.

As was already mentioned, in collisions with charged
projectiles there are two direct (one-step) and one indirect
(two-step) ionization channels which lead to single ionization
of the A-B system. The two direct channels are the single-
center impact ionization of either atom A or B. The indirect
channel—which we term two-center impact ionization – is of
two-center nature involving both atomic species and can be
subdivided into two steps.

In the first step, the interaction between the projectile P and
atom B leads to a dipole allowed transition from the ground
state of B with energy εg into its excited state with energy
εe. Afterwards, B radiationlessly decays into its initial ground
state with the energy release being transferred—via the (long-
range) two-center electron-electron interaction—to A. As a
result of the energy transfer atom A undergoes a transition
from its ground state with energy εg into a continuum state
with energy εk . A scheme of two-center ionization is shown
in Fig. 1(a).

As is already rather obvious, two-center impact ionization
(unlike the direct ionization) is a resonant process which oc-
curs within a very narrow range of electron emission energies

FIG. 1. (a) Scheme of two-center ion impact ionization and
(b) schematic representation of space coordinates characterizing the
collision.

centered around the resonance energy εk,r = (εe − εg) + εg ≡
ωB − IA. We shall see, however, that despite the energy inter-
val affected by this channel being tiny, it is so enormously
strong on the resonance and close to it that its presence may
noticeably influence even the total cross section.

Before we proceed further, two remarks may be appropri-
ate. First, the condition εe − εg > IA ensures that we only have
to deal with two-center ionization of A and not B. Second,
in our present treatment of all ionization channels, we shall
consider only one ’active’ electron in each atom A and B.

Our treatment of collisions between the A-B system and the
projectile will be based on the semi-classical approximation
in which the relative motion of the heavy particles (nuclei) is
treated classically while the “active” electrons are considered
quantum mechanically. Note that this approximation is very
well justified for high energy collisions [1].

We choose a reference frame in which the A-B system is
at rest and take the nucleus of B as the origin. Let r (ξ) be the
coordinate of the single active electron in A (B) with respect to
the nucleus of A (B). Further, let R be the internuclear vector
between A and B.

In this reference frame, the projectile P moves along a
classical straight-line trajectory dB(t ) = bB + vt , where bB =
(bx, by, 0) is the impact parameter in the B-P collision and
v = (0, 0, v) the collision velocity. Further, sB(t ) = ξ − dB(t )
is the distance vector between the active electron in B and the
ion P. The corresponding coordinates for the A-P collision can
be obtained by simple vector addition. The collision geometry
for two-center ionization is illustrated in Fig. 1(b).

It is well-known (see, e.g., Ref. [16]), that the main contri-
bution to the total ionization cross section is given by emission
energies not greatly exceeding the initial electron binding
energy. Therefore we may use the nonrelativistic Schrödinger
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equation

i
∂�(t )

∂t
= Ĥ�(t ) (1)

to describe the motion of the active electrons. In (1), the
Hamiltonian Ĥ reads

Ĥ = ĤA + ĤB + V̂AB + ŴA + ŴB. (2)

Here, ĤA (ĤB) is the Hamiltonian for free atom A (B), V̂AB is
the interaction between A and B, and ŴA (ŴB) is the interaction
between the projectile and atom A (B).

The interaction V̂AB, which at relatively large interatomic
distances R is mainly of the dipole-dipole character, can be de-
rived by considering the coupling jA

μAμ
B between the transition

four-current jA
μ of the electron in atom A and the four-potential

Aμ
B of the field created by the electron of atom B (or vice

versa). A detailed derivation of V̂AB is given in Appendix A
and the corresponding result reads

V̂AB = eiR ωA
c

[(
r · ξ − 3(r · R)(ξ · R)

R2

)
1 − iR ωA

c

R3

−
(

r · ξ − (r · R)(ξ · R)

R2

)(
ωA
c

)2

R

]
, (3)

where c is the speed of light and ωA = εk − εg is the transition
energy in A. In the limit of comparatively small interatomic
distances, R � c/ωA, equation (3) takes on the well known
form of the instantaneous interaction between two electric
dipoles

V̂AB =
(

r · ξ − 3(r · R)(ξ · R)

R2

)
1

R3
, (4)

which scales with the distance as R−3. Expression (3), in par-
ticular, takes into account that the electromagnetic field, which
transmits the interaction beween the atoms, propagates with
the finite velocity (= c) that leads to the so called retardation
effect. As it follows from the form of (3), this effect becomes
important for interatomic distances R � c/ωA changing the R
dependence of V̂AB from ∼ R−3 at R � c/ωA to ∼ R−1 at R �
c/ωA. Thus, in our case of resonant two-center transitions, the
account of relativistic effects in the interatomic interaction
results in a substantial increase of its range. This could be
contrasted with the case when two atoms are in the ground
state, where relativistic effects reduce the interaction range
changing the R-dependence of the van der Waals potential
energy from ∼ R−6 to ∼ R−7.

Let us now consider the interaction Ŵj ( j = A, B) between
the projectile and atom j. Taking into account that the electron
motion is nonrelativistic this interaction can be written as

Ŵj = 1

2c
[ p̂ j · A j + A j · p̂ j] − φ j

+ 1

2c2
A2

j + 1

2c
σ · B j, (5)

where p̂ j ( p̂A = p̂r, p̂B = p̂ξ) is the momentum operator for
the ’active’ electron in atom j. Further, φ j and A j are the
scalar and vector potential, respectively, which describe the
field of the projectile ion acting on the active electron in j.
We shall take these potentials in the Liénert-Wiechard form in

which they read (see, e.g., Ref. [17])

φ j = γ ZP

|s′
j (t )| , A j = v

c
φ j, (6)

where γ is the Lorentz factor and

s′
A(t ) = (r⊥ − bA − R⊥, γ (r‖ − R‖ − vt )),

s′
B(t ) = (ξ⊥ − bB, γ (ξ‖ − vt )). (7)

Here, r⊥ (r‖), ξ⊥ (ξ‖) and R⊥ (R‖) are the transverse (lon-
gitudinal) parts of the coordinates r, ξ and R which are
perpendicular (parallel) to the collision velocity v. Note that
the potentials in (6) satisfy the Lorentz condition ∂μAμ

j = 0
for the four-potential Aμ

j = (φ j, A j ).
Finally, in (5) σ are the Pauli matrices and B j is the mag-

netic field of the projectile which acts on the active electron
in j. From the theory of single-center impact ionization, it is
known (see, e.g., Ref. [18]) that spin effects are negligible for
light atomic targets and accordingly we drop the interaction
term 1

2c σ · B j in our calculation.
The consideration of the interaction term proportional to

A2
j in (5) requires especial care. In Ref. [16], it was shown

that in a self-consistent first order treatment one has to omit
the 1/(2c2)A2

j term in the Schrödinger equation and so do we.
The initial state �gg of the A-B system reads

�gg(ξ, ν, t ) = φg(ν − R)e−iεgtχg(ξ)e−iεgt , (8)

where φg (χg) is the ground state of atom A (B) and ν = R +
r. Considering single-center impact ionization of atom A, the
final state �kg is given by

�kg(ξ, ν, t ) = φk(ν − R)e−iεktχg(ξ)e−iεgt . (9)

Here, φk is the continuum state of the electron ejected from A
with an asymptotic momentum k. Similarly, the final state �gκ

for single-center ionization of atom B is determined by

�gκ(ξ, ν, t ) = φg(ν − R)e−iεgtχκ(ξ)e−iεκ t , (10)

where χκ is the continuum state of the electron emitted from
B with an asymptotic momentum κ.

Concerning two-center impact ionization of A, in addition
to the initial state (8) and the final state (9), we must also take
into account the intermediate state(s)

�ge(ξ, ν, t ) = φg(ν − R)e−iεgtχe(ξ)e−iεet (11)

with χe the excited state of B.

B. Transition amplitudes

The channels for single-center and two-center ionization
of atom A interfere with each other since they both lead to
the same final state of the A-B system. Accordingly, the tran-
sition amplitude for the ionization of atom A consists of the
direct amplitude SA

1C (bA) and two-center amplitude S2C (bB)
and reads

S1C+2C (bA, bB) = SA
1C (bA) + S2C (bB). (12)

The channel for single-center ionization of atom B leads to
electron emission from B instead of A and, hence, does not
interfere with the other two channels.
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1. Amplitude for ionization of atom A

Using the first order of time dependent pertubation theory,
the transition amplitude SA

1C in (12) is defined by

SA
1C (bA) = 1

i

∫ ∞

−∞
dt 〈φk|ŴA(bA, t ) |φg〉 eiωAt , (13)

where the interaction ŴA between A and the projectile P is
given by (5).

Actually, it is more convenient to consider the ampli-
tude (13) in momentum space. The corresponding Fourier
transform to momentum space and its inverse are given by

S̃ (q⊥) = 1

2π

∫
d2bS (b)eiq⊥·b,

S (b) = 1

2π

∫
d2q⊥ S̃ (q⊥)e−iq⊥·b, (14)

where q⊥ has the meaning of the perpendicular part of the
momentum transfer between the projectile and the A-B system
in the collision.

Using (13) and the first equation in (14) we obtain that
the amplitude S̃A

1C (q⊥) for the direct ionization of A in the
momentum space reads

S̃A
1C (q⊥) = 2ZP

ivq′2 F
m
k g (q)eiq·R. (15)

Here,

Fm
k g (q) = 〈φk|eiq·r

[
v · p̂r

c2
+ ωA

2c2
− 1

]
|φg〉 (16)

and

q =
(

q⊥,
ωA

v

)
,

q′ =
(

q⊥,
ωA

γ v

)
. (17)

In (17), q and q′ are the momentum transfer from the projectile
to the target A as viewed in the rest frame of the target and
projectile, respectively.

In order to obtain the amplitude for two-center ionization
of atom A, we need to use the second order of perturbation
theory where both the interaction of the projectile with atom
B and the interatomic interaction V̂AB are present. Then the
corresponding transition amplitude S2C in (12) for two-center
ionization is obtained to be

S2C (bB) =
1∑

m=−1

Sm
2C (bB). (18)

Here, m = 0,±1 denotes the change in the magnetic
quantum number for the dipole-allowed excitation transition
in B and

Sm
2C (bB) = 1

i2

∫ ∞

−∞
dt Mm

2 (t )
∫ t

−∞
dt ′ Mm

1 (bB, t ′), (19)

where Mm
1 (bB, t ′) = 〈�ge|ŴB(bB, t ′) |�gg〉 and Mm

2 (t ) =
〈�kg| V̂AB |�ge〉. Substituting the states from (8), (9) and (11)

into (19) yields

Sm
2C (bB) = 1

i2

∫ ∞

−∞
dt Mm

AB ei(ωA−ωB )t

×
∫ t

−∞
dt ′ Mm

B (bB, t ′)eiωBt ′
, (20)

where Mm
AB = 〈φkχg| V̂AB |φgχe〉 is the interatomic matrix

element which describes the de-excitation in atom B and
the ionization of atom A and Mm

B = 〈χe|ŴB |χg〉 the ma-
trix element for the impact excitation of B. Defining F (t ) =∫ t
−∞ dt ′ Mm

B (bB, t ′)eiωBt ′
, the transition amplitude in (20)

becomes

Sm
2C (bB) = 1

i2

∫ ∞

−∞
dt Mm

AB ei(ωA−ωB )t F (t ). (21)

The interatomic matrix element Mm
AB is constant for finite

t and vanishes at the boundaries t = ±∞ (this corresponds
to the assumption that the interaction between A and B is
adiabatically switched on and off at t → −∞ and t → +∞,
respectively). Taking this into account, we can perform in (21)
integration by parts that yields

Sm
2C (bB) = −iMm

AB

δ + i γ

2

∫ ∞

−∞
dt Mm

B (bB, t )eiωAt . (22)

Here, δ = ωA − ωB and the appearance of γ (γ → +0) re-
flects the assumption about adiabatic switching the interaction
on and off at |t | → ∞ according to ∼ exp(−γ |t |/2).

A more careful treatment of two-center ionization (which
includes also the channel of spontaneous radiative decay of
the excited state of B and goes beyond the ’standard’ pertur-
bative theory) shows that the infinitesimally small parameter
γ in (22) should be replaced by the finite total width �m of
the intermediate state (11) accounting for the finite lifetime
of this state. The total width is the sum, �m = �B

r + �m
a , of

the radiative width,

�B
r = 4ω3

B

3c3
| 〈χe| ξ |χg〉 |2, (23)

due to the spontaneous radiative decay of the excited state χe

and the two-center autoionization width,

�m
a = kr

(2π )2

∫
d�k

∣∣Mm
AB (kr )

∣∣2
, (24)

where kr = √
2(ωB − IA) is the resonant value for the mo-

mentum of the emitted electron and �k is the solid angle for
electron emission, which arises due to the nonradiative decay
of the excited state χe caused by the two-center electron-
electron interaction.

As before, it is more convenient to work with the two-
center ionization amplitude written in momentum space
which is obtained by applying the Fourier transformation (14)
to the amplitude (22), which yields

S̃2C (q⊥) = 2ZP

ivq′2

1∑
m=−1

Mm
AB Fm

eg (q)

δ + i�m/2
(25)

with

Fm
eg (q) = 〈χe|eiq·ξ

[
v · p̂ξ

c2
+ ωA

2c2
− 1

]
|χg〉. (26)
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2. Amplitude for ionization of atom B

Similarly to the consideration of direct ionization of atom
A, we obtain that the transition amplitude S̃B

1C for the direct
ionization of atom B reads

S̃B
1C (q⊥) = 2ZP

ivq′2
B

Fm
κ g (qB). (27)

Here,

Fm
κ g (qB) = 〈χκ|eiqB·ξ

[
v · p̂ξ

c2
+ ωion

B

2c2
− 1

]
|χg〉, (28)

where κ is the asymptotic momentum of the emitted electron,
ωion

B = εκ − εg the transition energy for the bound-continuum
transition in B with εκ being the energy of the continuum state.
The momenta qB and q′

B transferred in the collision resulting
in ionization of atom B are given by

qB = (
q⊥, ωion

B

/
v
)
,

q′
B = (

q⊥, ωion
B

/
(γ v)

)
(29)

(as viewed in the rest frame of the target and projectile, re-
spectively).

3. Ionization of atom B and the A+–B system

In the presence of atom A, the ion-impact ionization of
atom B can trigger a further development in the residual
A-B+ system resulting in the same electronic final state as
the direct and two-center ionization of atom A considered in
subsection II B 1.

Indeed, the B+ ion, formed due the ion-impact ionization,
will polarize atom A that leads to the appearance of an attrac-
tive interatomic force. When the two atomic centers approach
sufficiently close each other, an outer electron of atom A can
be transferred to the ion B+ via radiative capture mechanism.
In such a case, one has the neutral atom B (in the ground state)
and the ion A+.

The above mentioned process involves the interaction be-
tween two atomic centers and, in this sense, can be viewed as a
kind of two-center ionization which might noticeably increase
the number of collision events resulting in the appearance of
the A+-B system (but at the expense of those where A-B+
system would be formed). However, unlike the two-center
ionization process considered in subsection II B 1, this pro-
cess is not resonant with the shape of the electron emission
spectrum being similar to that of the ion-impact ionization of
a single atom B and it will not be considered here.

C. Cross sections

1. Cross sections for ionization of atom A

The spectrum of electrons emitted from atom A is de-
termined by the cross section differential in the electron
momentum

d3σ1C+2C

dk3 =
∫

d2q⊥ |S̃A
1C (q⊥) + S̃2C (q⊥)|2, (30)

where the integration runs over the plane of perpendicular
momentum transfer. The cross section (30) can be split into

the sum

d3σ1C+2C

dk3 = d3σ A
1C

dk3 + d3σ2C

dk3 + d3σinterf.

dk3 . (31)

Here,

d3σ A
1C

dk3 =
∫

d2q⊥
∣∣S̃A

1C (q⊥)
∣∣2

(32)

and

d3σ2C

dk3 =
∫

d2q⊥ |S̃2C (q⊥)|2 (33)

refer to the partial contributions of the single-center and two-
center ionization mechanisms, respectively, whereas the term

d3σinterf.

dk3 =
∫

d2q⊥
(
S̃A

1CS̃∗
2C + (

S̃A
1C

)∗S̃2C
)

(34)

arises because of interference between the direct and two-
center ionization channels.

Due to the resonant nature of the two-center mechanism,
one can expect that in the small vicinity ωB + εg − �m �
εk � ωB + εg + �m of the resonant emission energy εkr =
ωB + εg only the second term in (31) will be important. We
have performed numerical calculations which show that, close
to the resonance, the single-center and interference terms, (32)
and (34), are several orders of magnitude smaller than the two-
center term (33). On the other hand, in the range of emission
energies far away from the resonance, the single-center chan-
nel is the dominant ionization mechanism and only the first
term in (31) is important. Therefore interference between the
direct and two-center channels is expected to be overally of
minor importance and the interference term (34) in the cross
section (31) can—to a good approximation—be neglected.

Substituting (15) into (32) and (25) into (33), we obtain

d3σ A
1C

dk3 = C0

∫
d2q⊥ q′−4

∣∣Fm
k g (q)

∣∣2
(35)

and

d3σ2C

dk3 = C0

∫
d2q⊥ q′−4

∣∣∣∣
1∑

m=−1

Mm
AB Fm

eg (q)

δ + i�m/2

∣∣∣∣
2

, (36)

respectively, where C0 = Z2
P/(2π3v2).

Since dk3 = √
2εkdεkd�k the single-center and two-

center ionization cross sections differential in the emission
energy and solid angle read

d3σ A
1C

dεkd�k
= C1

∫
d2q⊥q′−4

∣∣Fk g(q)
∣∣2

(37)

and

d3σ2C

dεkd�k
= C1

∫
d2q⊥ q′−4

∣∣∣∣
1∑

m=−1

Mm
AB Fm

eg (q)

δ + i�m/2

∣∣∣∣
2

, (38)

respectively, where C1 = Z2
P
√

εk/(
√

2π3v2).
Further, the energy distribution of emitted electrons is de-

termined by the cross sections

dσ A
1C

dεk
=

∫
d�k

d3σ A
1C

dεkd�k
(39)
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and

dσ2C

dεk
=

∫
d�k

d3σ2C

dεkd�k
(40)

for single-center and two-center ionization, respectively.
Finally, for the total cross sections, we obtain

σ A
1C =

∫ ∞

0
dεk

dσ A
1C

dεk
(41)

and

σ2C =
∫ ∞

0
dεk

dσ2C

dεk
. (42)

2. Cross section for ionization of atom B

The cross section differential in the energy and the solid
angle of the electrons emitted from atom B has obviously the
same form as the cross section (37) and reads

d3σ B
1C

dεκd�κ

= Z2
P
√

εκ√
2π3v2

∫
d2q⊥q′−4

B

∣∣Fκ g(qB)
∣∣2

. (43)

Energy differential and total cross sections are obtained using
expressions similar to (39) and (41).

D. Analytical cross sections for the two-center channel

Now we shall give simple approximate formulas for the
two-center ionization cross sections which are expressed us-
ing single-center atomic quantities accessible from literature.
Assuming that there is only one intermediate state �ge in
atom B one can obtain that the cross section differential in
the emission energy and solid angle (38) is given by

d3σm
2C

dεkd�k
= k

(2π )3

|Mm
AB |2

δ2 + (�m)2/4
σ B,m

exc , (44)

where σ B,m
exc is the single-center cross section for excitation

of atom B by ion impact and the rest on the right-hand side of
this expression represents the probability that de-excitation of
B results in ionization of A.

Integrating (44) over the emission angles, we obtain the
cross section diferential in the emission energy

dσm
2C

dεk
= 1

2π

�m
a

δ2 + (�m)2/4
σ B,m

exc . (45)

Integrating (45) over the emission energy we get the total
cross section for two-center ionization

σm
2C = �m

a

�m
σ B,m

exc . (46)

The above expression has an especially simple physical mean-
ing: the total cross section for two-center ionization of A by
ion impact is the product of the impact excitation cross section
of B times the corresponding branching ratio between the two
possible pathways of the de-excitation of B.

To conclude this section, we note that the quantities
|Mm

AB |2 and �m
a in (44)–(46) can be very simply expressed

via the radiative width �B
r of the excited state of atom B and

the photoionization cross section σ A
PI of atom A by a photon

of frequency ωB:

∣∣Mm
AB

∣∣2 = Am(R,�k, ωA)
1

k

(
c

ωB

)4

�B
r σ A

PI (ωB) (47)

and

�m
a = Bm(R, ωA)

(
c

ωB

)4

�B
r σ A

PI (ωB). (48)

Here, Am and Bm are geometric factors, which depend
on the internal structure of the two-center system (they are
discussed in Appendix B).

III. NUMERICAL RESULTS AND DISCUSSION

A. Preliminary remarks

Here we present results of numerical calculations for ion-
ization cross sections which are based on the theory presented
in Sec. II. Throughout this section we take ZP = 1. Accord-
ing to the first order of perturbation theory ionization cross
sections depend on the projectile charge ZP as Z2

P and are
independent of the projectile mass. Therefore, as long as the
first-order perturbative condition ZP/v � 1 is fulfilled, the
numerical results obtained for projectiles with ZP = 1 can
be easily generalized to collisions with bare ions with larger
charges ZP.

Besides, since in ionization by high-energy (relativistic)
electrons the momentum and energy transfers to the target
are negligibly small compared to the initial momentum and
energy of the electron projectile (and the projectile and atomic
electrons have essentially no overlap in the phase space), our
results obtained for collisions with protons can be directly
applied also to collisions with electrons (or positrons).

As two-center systems we shall take heteroatomic Van-der-
Waals molecules Li-He [19] and Ne-He.

In Li-He, both atoms, very weakly bound by the Van-der-
Waals force, are separated by quite a large mean distance
∼28 Å (≈ 53 a.u.) [20] while the equilibrium distance is
∼6.0 Å (≈ 11 a.u.) [21]. The binding energy is ∼0.5 μeV [20]
which is much smaller than the first ionization potentials of Li
(IA = |εg| = 5.39 eV) and He (IB = |εg| = 24.59 eV).

Concerning two-center ionization channel(s), here we only
consider that one based on the impact excitation and conse-
quent decay of the 1s2p state of He. Note that the transition
1s2 → 1s2p with an excitation energy ωB = 21.22 eV is the
first and strongest dipole allowed transition in He. The cor-
responding resonance energy of the emitted electron is εkr =
ωB + εg = 15.83 eV. The radiative width of the excited 1s2p
state in He is �B

r = 7.44 × 10−6 eV [22] and the partial pho-
toionization cross section for the 2s subshell in Li evaluated
at ωB is σ A

PI (21.22 eV) = 7.64 × 10−20 cm2 [23].
In Ne-He, where the Ne and He atoms are weakly bound by

the van der Waals force with the binding energy ∼2 meV [10],
the equilibrium distance is ∼3.0 Å(≈5.7 a.u.) [10] (the mean
distance is close to the equilibrium one). The binding energy
is four orders of magnitude smaller than the first ionization
potential of Ne (IA = |εg| = 21.56 eV) and He (IB = |εg| =
24.59 eV).

For the two-center ionization of this system we consider
only the channel involving the 1s2 → 1s3p transition in He
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with an energy ωB = 23.09 eV. This is the first (and strongest)
dipole-allowed transition in He which has an energy larger
than the ionization potential of Ne (and which turned out
to be extremely efficient for photoionization of a Ne-He
dimer [10]). With this transition we get εkr = ωB + εg =
1.52 eV for the resonant electron emission energy. The ra-
diative width of the excited 1s3p state in He is �B

r = 2.34 ×
10−6 eV [22] and the photoionization cross section for Ne at
ωB is σ A

PI (23.09 eV) = 7.05 × 10−18 cm2 [23].
Unlike Ne-He, the mean size of a Li-He dimer strongly

differs from its equilibrium distance (≈ 53 a.u. and ≈ 11 a.u.,
respectively). Since the strength of the two-center ionization
channel strongly depends on the interatomic distance R, the
question arises on which values of R should be considered in
order to provide theoretical predictions allowing for experi-
mental verification.

In the case of a reaction, which involves fast electronic
transitions resulting in a breakup of a dimer, the measurement
of kinetic energies of reaction fragments quite often enables
one to obtain rather accurately the magnitude of the distance
R at which the process has occurred. And indeed, based on
the very recent results of Ref. [24], one can expect that the
most likely outcome of the two-center ionization process,
which we consider, will be a break up of the Li-He dimer into
Li+ and He fragments. However, the same results (see [24])
also suggest that there is no one-to-one correspondence be-
tween the kinetic energy of the fragments and the interatomic
distance R.

Therefore, in what follows, we shall only consider ion-
ization cross sections which are averaged over the size of
the vibrational ground state of the Li-He dimer. Such cross
sections are obtained according to

σaver =
∫ ∞

0
dR σ (R) |�0(R)|2, (49)

where σ (R) is a cross section evaluated at an interatomic
distance R and �0(R) is the wave function of the molecular
ground state of Li-He dimer. In our calculations this state was
approximated by using results of Refs. [25,26].

Since we take the interatomic interaction in the dipole-
dipole form, which is valid at sufficiently large interatomic
separations, the lower boundary Rmin of the integration over
R in (49) should effectively be not 0 but instead satisfy the
condition Rmin � 1. The latter indeed takes place due to the
very rapid decrease of the probability |�0(R)|2 with decreas-
ing the interatomic distance R in the range R � 10 a.u. In
particular, as our calculations show, depending on the type of
the cross section, the difference between results obtained by
setting Rmin = 1 and 10 a.u. does not exceed 1%–16%.

B. Single-center cross sections for Li, Ne, and He

For the Li-He and Ne-He systems as well for the Li, He and
Ne atoms, we performed two different sets of numerical cal-
culations. The first one is the theoretical approach presented
in Secs. II A–II C.

In the second set we made use of the relativistic Bethe
formula for cross sections for excitation and single ionization

of atoms. This formula reads (see, e.g., Ref. [27])

σ = 8πZ2
P

v2

[
M2

{
ln

(
γ v

c

)
− v2

2c2

}
+ C

]
(50)

and is known to yield quite accurate results starting with im-
pact energies of a few MeV/amu. Note that (50) was derived
within the first order of perturbation theory in the projectile-
target interaction.

The constants M2 and C depend on the internal structure of
the atomic target and can be specified for the ionization from
individual subshells as well as for discrete excitations between
two subshells. We extracted experimentally determined values
for M2 for the respective 2s and 2p subshell ionization of Li
and Ne from [28] (M2

Li,2s = 0.515351 and M2
Ne,2p = 1.519).

However, for these atoms we could not locate in the literature
any experimental or theoretical data for the constant C. A
reasonable alternative is to calculate C within the relativistic
binary-encounter-Q (RBEQ) model of Ref. [29] using the
above experimental values for M2 that yields CLi,2s = 3.49
and CNe,2p = 5.89.

In case of He, accurate theoretical values for M2 and
C exist for discrete 1s2 → 1snp (n = 2, 3) excitations [30]
(M2

He,1s→2p = 0.177, CHe,1s→2p = 0.82825, M2
He,1s→3p =

0.0433 and CHe,1s→3p = 0.20338) as well as for ionization
from the 1s2 ground state [31] (M2

He,1s = 0.489 and CHe,1s =
2.763).

Note also that the RBEQ model provides an analytical
expression (Eq. (19) in Ref. [29]) for the energy differential
ionization cross section which can be employed for calculat-
ing the single-center energy differential cross sections of Li,
Ne, and He.

C. Angular distributions

In this section, we focus on the angular distribution of
the emitted electrons at a resonance emission energy εkr =
ωB + εg ≡ εe − εg + εg. At this energy and in its vicinity, the
ionization cross section is fully dominated by the two-center
mechanism of ionization of atom A. (Moreover, as will be
shown in Sec. III E, this mechanism may strongly dominate
the total emission in the range of electron energies surround-
ing the resonance as broad as δεk ∼ 1 eV.)

In order to explore relativistic effects in the angular distri-
bution, in addition to relativistic calculations we performed
also nonrelativistic ones in which the speed of light c was
set to ∞.

One should note that, according to both the relativistic and
nonrelativistic treatments, the shape of this distribution de-
pends on a subtle interplay between the ionization amplitudes
involving ion-impact excitation of the different magnetic sub-
states of the excited level of atom B. Since it is not possible
to extract these amplitudes from cross sections, the calculation
method, which was discussed in Sec. II D cannot be used here.

Figure 2 presents the angular distributions of electrons
emitted with a resonance energy (≈15.83 eV) in the process
of ionization of the Li-He system by 1 GeV protons. They are
given by the cross section d2σ

dεk sin ϑkdϑk
considered as a function

of the polar emission angle ϑk at a given (resonance) emission
energy εk . Two main conclusions can be drawn from this
figure.
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FIG. 2. (a) The angular distribution of electrons emitted with the
resonance energy from the Li-He system in collisions with 1 GeV
protons. The distribution was calculated by averaging over the size
of the dimer and is shown for the parallel (R ‖ v, thick dashed)
and perpendicular (R ⊥ v, thick dotted) orientation as well as for
the orientational average (thick solid). In addition, the correspond-
ing results in the nonrelativistic limit (c → ∞) are displayed by
thin dashed, thin dotted and thin solid curves, respectively. (b) The
relativistic–to–nonrelativistic cross section ratio for R ‖ v (dashed),
R ⊥ v (dotted) and the orientational average (solid).

First, all the angular distributions are symmetric with re-
spect to the emission angle ϑk = 90◦. This feature arises
because the two-center ionization is driven solely by dipole
transitions (including those leading to the excitation of atom
B and those resulting in the consequent energy exchange be-
tween B and A). Note that this feature is absent in the direct
ionization of A (or B) where the interference between the
dipole and nondipole (mainly quadrupole) transitions leads
to an asymmetry between the angular ranges ϑk � 90◦ and
ϑk � 90◦ (with more electrons being emitted into the forward
semisphere ϑk � 90◦).

Second, at an impact energy of 1 GeV/amu (which cor-
responds to a rather modest value of the collisional Lorentz
factor of γ ≈ 2.1), the shape of the angular distribution of
the emitted electrons is already very substantially influenced
by relativistic effects which enhance the emission into the
transverse direction and decrease it parallel/antiparallel to the
collision velocity. As additional calculations show, such a
redistributive action of the relativistic effects remains for any
orientation of the dimer (even though its strength depends on
the orientation). This feature can be understood by noting that
in high-energy ion-atom collisions, in which the motion of
atomic electrons remains nonrelativistic, the main relativistic
effect is caused by the flattening of the electric field generated
by the projectile. This flattening increases the electric field
in the transverse (⊥ v) direction and reduces its component
parallel/antiparallel to the projectile velocity which leads to
the enhancement of the emission in the transverse direction
and its reduction in the longitudinal direction(s).

Third, after averaging over the orientation of the dimer the
angular distribution of electrons emitted via the two-center
ionization channel turns out to be rather weakly dependent on
the polar emission angle: it is almost spherically symmetric.
This means that, in case of two-center ionization, the angu-

lar momentum, which is imparted into the initial system in
the collision (due to the absorption of a virtual photon), on
average mainly goes to the nuclei leading to excitation of
rotational degrees of freedom of the residual (Li-He)+ system.

The very pronounced maximum in the electron emission at
ϑk = 90◦, which is present both at R ‖ v and R ⊥ v, and the
rather weak dependence of the electron emission on ϑk , when
the averaging over the orientation of the dimer is performed,
show that the shape of the emission pattern has a nontrivial
dependence on the angle θR = arccos(R · v/Rv). In particular,
our numerical calculations show that provided 0◦ � θR � 18◦
or 63◦ � θR � 90◦ the angular distribution of the emitted
electrons has a maximum at ϑk = 90◦ and two equal minima
at ϑk = 0◦ and ϑk = 180◦, whereas if 18◦ � θR � 63◦ then
the electron emission has two equal maxima at ϑk = 0◦ and
ϑk = 180◦ and a minimum at ϑk = 90◦.

An analytical evaluation of the two-center cross sections
could give a better idea about the orientation dependence
of the emission. By using the theoretical approach of our
paper this is quite cumbersome, though. However, within the
Weizsäcker-Williams approximation, in which the field of a
relativistic charged projectile is replaced by “equivalent pho-
tons” (which is rather accurate at high impact energies), one
can show that the angular distribution of the electrons emitted
via the two-center channel is given by

d2σ

dεk sin ϑkdϑk
∼ A(θR) sin2 ϑk + B(θR) cos2 ϑk, (51)

where

A(θR) = 1 + (3 sin2 θR − 1)2

2
,

B(θR) = 9 sin2 θR cos2 θR. (52)

While being simple, expression (51) captures all essential
features of the results of our numerical calculations (based on
a formalism which is more general and more accurate than
the Weizsäcker-Williams approximation). In particular, (i) it
shows that when the dimer is parallel or perpendicular to the
collision velocity the angular distribution is proportional to
sin2 ϑk and also predicts that at the dimer orientation θR =
90◦, the emission is 2.5 times larger than at θR = 0◦, 180◦
(note that from our numerical calculations, we obtain for this
ratio ≈2.2).

(ii) Expression (51) also predicts that when the angle
θR varies between 17◦ � θR � 58◦ one has B(θR) > A(θR)
implying that in this interval of θR the electron emission
has maxima at ϑk = 0◦, 180◦, and a minimum at ϑk = 90◦
(note that the above interval is quite close to the interval
18◦ � θR � 63◦ following from our numerical calculations).

(iii) After averaging expression (51) over the dimer orien-
tation, we obtain for the angular emission distribution〈

d2σ

dεk sin ϑkdϑk

〉
∼

(
1 + 1

6
sin2 ϑk

)
, (53)

which predicts a modest maximum in the electron emission
at ϑk = 90◦. According to (53) the emission at 90◦ exceeds
that at 0◦ and 180◦ by about 16%−17% which is somewhat
larger compared to our full numerical calculations where we
get about 10%–15%.
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FIG. 3. (a) The energy distribution of emitted electrons as a func-
tion of the detuning δ = ωA − ωB for the Li-He system for two-center
ionization (solid) and direct ionization of Li (dashed) in collisions
with 1 GeV protons. The two-center distribution was calculated by
averaging over the internuclear vector R of the dimer. (b) The corre-
sponding energy distribution for the Ne-He system for two-center
ionization (solid) and direct ionization of Ne (dashed). The two-
center distribution was obtained by averaging over the orientation
of the dimer at a fixed interatomic distance R = 3 Å.

The shape of the orientation-averaged angular distribution
for Li-He qualitatively differs not only from those at R ‖ v

and R ⊥ v but also from that for ionization from an s state
of a single atom which is characterized by a pronounced
emission maximum at ϑk ≈ 90◦ and very little emission in
the forward, ϑk ≈ 0◦, and backward, ϑk ≈ 180◦, directions.
Since the range of emission energies δεk ∼ 1 eV surrounding
the resonance is strongly dominated by the two-center channel
(see Sec. III E), the overall angular distribution of the emitted
electrons in this range will qualitatively differ from that typ-
ical for single Li and He atoms (and also for a Li-He dimer
very far from the resonance).

Effects similar to those, which were discussed for Li-He,
arise also in the impact ionization of Ne-He dimers. In par-
ticular, relativistic effects tend to increase electron emission
in the transverse direction and decrease it in the longitudinal
directions. Besides, after averaging over the dimer orientation
the shape of the emission spectrum substantially differs from
those arising in the impact ionization of single Ne and He
atoms.

D. Energy distributions

In this section, we consider the energy distribution of
electrons emitted from the two-center systems represented by
Li-He and Ne-He dimers. In Fig. 3, we display the energy
distribution of emitted electrons in the process of ionization of
Li-He and Ne-He by 1 GeV protons. It is determined by the
cross section dσ

dεk
taken as a function of the energy detuning

δ = ωA − ωB. In this figure, we show the two-center cross
section, which is given by the (incoherent) sum of partial cross
sections (45) over all intermediate states �ge of the two-center
system, and the single-center cross sections for the ionization
of Li and Ne (the latter were obtained using Eq. (19) of
Ref. [29]).

As can be seen in Fig. 3, the two-center cross section has
a resonant structure, reaching a maximum at the respective
resonance energy εkr = ωB + εg, and rapidly decreases for
both εk < εkr and εk > εkr . The width of the resonance is
determined by the total decay width � which consists of the
radiative width (23) and two-center autoionization width (24).
The single-center cross sections depend only slightly on the
electron emission energy εk .

In a narrow vicinity of the resonance emission energy, two-
center ionization can dominate direct ionization by several
orders of magnitude. In particular, the ratio of two-center and
single-center cross section

μ(1) = dσ2C/dεk

dσ A
1C/dεk

(54)

evaluated at the resonance becomes ≈105 for Li-He and
≈4 × 104 for Ne-He, respectively. Outside the resonant en-
ergy interval, ωB + εg − � � εk � ωB + εg + �, two-center
ionization strongly diminishes and the direct ionization chan-
nel dominates.

We mention that the two-center cross section in the rel-
ativistic treatment is ∼7.5 % larger than its corresponding
nonrelativistic limit (c → ∞) for both the Li-He and Ne-He
system.

In our consideration, the dimer is regarded as a system
of two independent atoms which interact with each other
but otherwise keep their identities. In reality, even a very
weakly bound dimer is a molecule and its interaction with
the projectile ion will in general involve excitation not only
of electronic but also of vibrational and rotational states of
the dimer. As a result, the spectrum of the emitted electrons
will be split into several lines corresponding to the involve-
ment of different vibrational (and rotational) states into the
process [10,11,26]. However, since these states have much
smaller energy separations than electronic states, the electron
emission lines will be quite close to each other. Therefore
the electron spectrum, after averaging over the energy interval
containing all the lines, is expected to correspond to that one
predicted by our two-atomic model of this process (provided
this electron spectrum is also averaged over the same energy
interval). The same can also be said about the enhancement
in ionization, which is due to the presence of the two-center
channel.

E. Total cross section

In this section, we consider the total cross section for elec-
tron emission from the two-center system as a function of the
projectile energy. Figure 4 shows the dependence of the total
two-center ionization cross section, given by the sum of partial
cross sections (46), on the projectile energy (per nucleon) EP

for the Ne-He system together with the single-center cross
sections for single ionization of Ne and He atoms.

We can conclude from Fig. 4 that the two-center and single-
center cross sections for the ionization of atom A show the
same asymptotic behavior for high projectile energies. This
results from two facts: first, the dependence of σ2C in (46)
on the impact energy is solely determined by the energy
dependence of the impact excitation cross section σ B

exc; sec-
ond, at high impact energies the cross sections for ionization
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FIG. 4. Total cross section, given as a function of the projectile
energy (per nucleon) Ep, for two-center ionization of Ne-He (thick
solid) and direct ionization of Ne (thick dashed) and He (thick dotted)
atoms. The two-center cross section was calculated by averaging
over the orientation of the dimer for a fixed interatomic distance
R = 3 Å. In addition, we show the coresponding cross sections
obtained neglecting the relativistic effects (c → ∞, by thin solid,
thin dashed and thin dotted curves, respectively).

and dipole-allowed excitations show quite a similar depen-
dence on EP.

In order to characterize the overall effect of the two-center
channel on the total emission from A, we evaluated the ratio

μ(2) = σ2C

σ A
1C

(55)

of total two-center and single-center cross sections at EP = 1
GeV/amu obtaining 3.8 × 10−4 and 2.9 × 10−2 for Li-He and
Ne-He, respectively. Thus, for Li-He, the two-center channel
adds very little to the total emission from Li while for Ne-
He, which has much smaller size, the two-center ionization
mechanism gives a more noticeable contribution to the total
emission from Ne.

The relative overall weakness of the two-center channel in
ionization of Li-He is caused by two main reasons. First, the
size of this dimer is much larger than that of Ne-He which
weakens the atom-atom interaction. Second, the frequency ωB

of the 1s2 → 1s2p transition in He is about 21 eV that results
in the emission of electrons from Li with kinetic energy of
about 16 eV, which is by a factor of 3 larger than the ionization
potential of Li, whereas in case of Ne-He the two-center
resonance due to the 1s2 → 1s3p transition in He with the
frequency ωB ≈ 23 eV results in emission of electrons with
energies about 2 eV, which is much smaller than the ioniza-
tion potential of Ne. Since it is known that in fast collisions
with charged projectiles most of the emitted electrons have
energies not exceeding their initial atomic binding energy, it is
not very surprising that the range of relatively large emission
energies (∼ 16 eV) contributes much less the emission from
Li than the range of low emission energies (∼ 2 eV) to the
ionization of Ne.

Even though the two-center channel turns out to contribute
little to the total emission one should note the following. If
we limit the integration to an interval of emission energies
centered at the resonance and having the width δεk ≈ 0.5 eV,

which is much smaller than the “effective width” of the atomic
continuum (∼10 eV) but several orders of magnitude larger
than the resonance width, the ratio (55) becomes μ(2) ≈ 174
for Li-He and μ(2) ≈ 200 for Ne-He. Hence, in a not very
large (δεk ∼ 1 eV) but experimentally very well resolved
range of emission energies containing the resonance, the two-
center ionization channel still very strongly outperforms the
direct ionization channel.

Up to now we only have discussed electron emission from
atom A (via the direct and two-center channels) but have not
yet considered single-center ionization of atom B which also
contributes to electron emission from the whole A-B system.
The direct impact ionization of B leads to an enhancement
of the background of ejected electrons as well as a decrease
in the total number of neutral atomic species B which are
essential for two-center ionization to take place. The latter
point remains of minor importance (as long as the condition
ZP/v � 1 is fulfilled). However, the direct ionization of B
may substantially contribute to the total emission (that, in
particular, reduces the role of the two-center ionization) and
should be taken into account.

The influence of the two-center channel on the total emis-
sion from both atomic centers may be characterized by the
ratio

μ(3) = σ2C

σ A
1C + σ B

1C

(56)

of total two-center and “A + B” single-center cross sections.
Considering only the interval of emission energies centered at
the resonance and having the width δεk ≈ 0.5 eV, we obtain
μ(3) ≈ 8.3 for Li-He and μ(3) ≈ 152 for Ne-He. This could
be compared with the ratio (55) for the same energy interval
which gives ≈ 174 for Li-He and ≈ 200 for Ne-He as already
mentioned. Hence, inclusion of electron emission from
He strongly reduces the relative contribution of two-center
ionization in the Li-He dimer while the corresponding
effect for the Ne-He dimer is rather weak. Nevertheless, the
two-center channel remains highly visible even in the case of
Li-He dimers.

The cross section of the total (single) ionization of He
atoms is shown in Fig. 4. Over the displayed range of impact
energies, the electron emission from a Li atom is between 15%
and 37% larger than that from He whereas the direct emission
from Ne atom turns out to be substantially larger than from He
dominating the latter by a factor of 1.62 to 2.65. Thus, for the
Li-He system, the direct ionization of He can not be neglected
while for Ne-He, it is not very important.

The two-center and single-center cross sections in the
relativistic treatment which are displayed in Fig. 4 show a
logarithmic growth starting with projectile energies of a few
GeV/amu. This is a typical relativistic effect observed for all
dipole-allowed transitions which is caused by the flattening of
the electromagnetic field of the projectile. In the nonrelativis-
tic limit (c → ∞), the flattening disappears, the logarithmic
growth is naturally absent and all the calculated cross sections
simply “saturate.”

F. Retardation effects in two-center ionization

Let us now briefly consider the role of retardation ef-
fects in the two-center system which are caused by the finite
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FIG. 5. Total cross section at EP = 1 GeV/amu for Li-He dimer
multiplied by R6 as a function of the interatomic distance R using the
retarded dipole-dipole interaction (3) (solid) and the instantaneous
interaction (4) (dashed). The cross section was averaged over the
orientation of the dimer.

propagation time of the electromagnetic field transmitting the
interaction between the two atoms. Figure 5 displays the total
two-center cross section, given by the sum of partial cross
sections (46), for Li-He multiplied by R6 as a function of the
interatomic distance R between A and B. The cross section
was evaluated using either the retarded dipole-dipole interac-
tion (3) or its instantaneous limit given by (4).

In general, the importance of the retardation effects de-
pends on the ratio between the electronic transition time
τ = 1

ωB
and the time T = R

c necessary for the electromagnetic
field to propagate between the atoms: if T � τ then the field
propagates essentially instantaneouly whereas at T � τ the
retardation effects very strongly influence the two-center in-
teraction [in the latter case Eqs. (3) and (4) predict the 1/R
and 1/R3 dependencies, respectively].

Since the size of the He-Ne dimer is relatively small (and
the transition time does not exceed 1 a.u.), for the two-center
ionization of this dimer the retardation effects are expected to
be negligible (this also follows from our calculations for the
cross section).

In contrast, for the Li-He dimer the transition time τ is also
close to 1 a.u. but the mean size is much larger reaching about
53 a.u.. In this case the ratio η = T/τ = ωB R

c is not very small
(η ≈ 0.3) and one could expect a sizable retardation effect.

However, according to the calculation (see Fig. 5) the retar-
dation effects in fact become of importance only at distances
which are noticeably larger than the above simple estimates
suggest. In particular, in the case of two-center ionization of
Li-He, the effect of the retardation in the atom-atom interac-
tion on the ionization (averaged over the dimer size) turned
out to be below 1%.

Instead of focusing on very large dimers with relatively
low transition frequencies, one could consider ionization of
a relatively small dimer but involving much higher values of
the transition frequency. Suppose that the active electron in
atom B undergoes a dipole-allowed transition between states
where it is effectively restricted to the space region around
the nucleus with a linear size aB. Then its dipole matrix
elements will be ∼aB whereas its transition frequencies ωB

would scale as ωB ∼ a−2
B . Let aB � 0.1 a.u. and, consequently,

ωB � 102 a.u. In such a case, retardation effects in the inter-
action of an atom B with its neighbor atom A would become
of importance beginning already with the interatomic dis-
tances R � 1 a.u. This simple consideration suggests that the
influence of retardation effects on the two-center ionization
channel would become substantial if the active electron in
atom B is (initially) tightly bound. However, as estimates
show, the retardation effects become important only when the
two-center channel itself is already rather weak.

IV. SUMMARY

We have considered single-electron emission from a het-
eroatomic system, consisting of two weakly bound atomic
species A and B, in relativistic collisions with charged pro-
jectiles. Provided that the ionization potential of A is smaller
than an excitation energy for a dipole-allowed transition in B,
three single ionization channels occur: (i) single-center ion-
ization of atom A, (ii) single-center ionization of atom B, and
(iii) two-center ionization of A. Channels (i) and (ii) describe
the well known mechanism of direct impact ionization of a
single atom while in channel (iii) ionization of A involves the
impact excitation of B with subsequent radiationless transfer
of the excitation energy—via (long-range) interatomic elec-
tron correlations—to A, resulting in its ionization.

Our theoretical approach to collisions between the A-B
system and the projectile was based on the semiclassical
approximation which is very well justified at high impact ve-
locities and in which the relative motion of the nuclei is treated
classically while the active electrons are considered quan-
tum mechanically. The above three reaction channels were
described using the lowest (possible) order of perturbation
theory. Namely, the single-center channels were treated using
the first order of perturbation theory in the projectile-atom
interaction whereas the amplitude for the two-center channel
was obtained within the second order of perturbation theory,
where both the interaction of the projectile with atom B and
the interatomic interaction between A and B are present.

We have applied our approach to study ionization of the
Li-He and Ne-He dimers. Since the mean size of and the
equilibrium interatomic distance in Ne-He are close (both are
≈3 Å), the calculations for this system were performed at a
fixed value R = 3 Å. In case of Li-He, where the mean size
and the equilibrium distance strongly differ, the calculations
were done by averaging results for a fixed R over the vibra-
tional ground state of Li-He. A few main conclusions can be
drawn from our study.

First, substantial relativistic effects in ionization of a
weakly bound dimer are caused by the flattening of the electric
field of the projectile in the transverse direction which arises
when the collision velocity becomes comparable to the speed
of light. However, the role of the other type of relativistic
effects—the retardation in the interaction between the atoms
of the dimer—turned out to be weaker than one could expect
being very small even for the Li-He dimer whose mean size
(28 Å ≈ 53 a.u.) is very large on the atomic scale.

Second, the relativistic effects in ionization become visible
first of all in the angular distributions of emitted electrons
where they reach substantial magnitude already at modest

042804-11



A. JACOB, C. MÜLLER, AND A. B. VOITKIV PHYSICAL REVIEW A 103, 042804 (2021)

relativistic impact energies corresponding to γ ∼ 1–2. These
effects increase the emission into the transverse direction and
decrease it in the longitudinal direction (counted from the
collision velocity).

Third, the influence of the relativistic effects on the energy
spectra of emitted electrons and the total ionization cross
section noticeably increases the latter but a substantial in-
crease can be reached only at quite high impact energies
(corresponding to γ � 1).

Fourth, in the close vicinity of the resonance energy the
two-center channel becomes so strong that its contribution
continues to dominate ionization for the whole range of emis-
sion energies (δεk ∼ 1 eV) which contains the resonance but is
orders of magnitude broader than the width of the resonance.
This coincides with our previous finding for ionization by
nonrelativistic electrons [15].

Our theoretical predictions can be tested in experiments
where Li-He and/or Ne-He dimers are bombarded by high-
energy charged particles. We note, in particular, that the
Ne-He dimer was already used in recent experiments on
the related process of two-center resonant photoionization
[10,11].
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APPENDIX A

Here we shall derive the dipole-dipole interaction V̂AB be-
tween atoms A and B given by equation (3). There are different
ways to obtain this interaction, including those where the
electromagnetic field is considered as quantized, see, e.g.,
Ref. [32], but here we will derive it using an approach, in
which the electromagnetic field is regarded as classical (and
which we could not locate in the literature). Considering
the coupling jA

μAμ
B between the transition four-current jA

μ =
(cρA, jA) of the electron in atom A and the four-potential
Aμ

B = (φ, A) of the field created by the other electron in
atom B, the corresponding first-order transition amplitude is
given by

a(1)
f i = − i

c2

∫
d4x jA

μ(x)Aμ
B (x) (A1)

with xμ = (ct, x) the four-space-time vector. The four-
potential Aμ

B (x) satisfies the Maxwell equations

�Aμ
B (x) = −4π

c
jμB (x). (A2)

First, we apply the inverse fourier transforms

jA
μ(x) = 1

(2π )2

∫
d4kA j̃A

μ(kA)e−ikAx,

Aμ
B (x) = 1

(2π )2

∫
d4kBÃμ

B (kB)e−ikBx, (A3)

where kμ
A = (ω′

A/c, kA) and kμ
B = (ω′

B/c, kB) are the four-
wave vectors of the electrons in A and B. Insertion of (A3)

into (A1) and subsequent integration over space-time yields

a(1)
f i = − i

c2

∫
d4kA j̃A

μ(kA)Ãμ
B (−kA). (A4)

Further, we can solve (A2) in the four-dimensional kB space
and get

Ãμ
B (kB) = 4π

c
G̃F (kB) j̃μB (kB). (A5)

Here, G̃F (kB) = ((ω′
B/c)2 − k2

B + iη)−1 (η > 0) is the Feyn-
man propagator for a massless Klein-Gordon particle. If we
take into account (A5), the transition amplitude in (A4) be-
comes

a(1)
f i = −4π i

c3

∫
d4kAG̃F (−kA) j̃A

μ(kA) j̃μB (−kA). (A6)

Using the fourier transform, the four-currents in (A6) can be
written as

j̃A
μ(kA) = 1

(2π )2

∫
d4x jA

μ(x)eikAx,

j̃μB (−kA) = 1

(2π )2

∫
d4x jμB (x)ei(−kA )x. (A7)

Now, taking into account that the motion of the electrons is
nonrelativistic, we approximate jA

μ(x) and jμB (x) in (A7) by
the Schrödinger transition four-currents which read (see, e.g.,
Ref. [33]):

jA
μ(x) = (

cφ∗
f (r)φi(r)eiωAt ,

− 1
2 {φ∗

f (r) p̂xφi(r) + φi(r) p̂∗
xφ

∗
f (r)}eiωAt

)
,

jμB (x) = (
cχ∗

f (ξ)χi(ξ)eiωBt ,

1
2 {χ∗

f (ξ) p̂xχi(ξ) + χi(ξ) p̂∗
xχ

∗
f (ξ)}eiωBt

)
, (A8)

where φi (χi) is the initial state of atom A (B), φ f (χ f ) the final
state of A (B) and p̂x = 1

i ∇x the momentum operator. Insert-
ing (A8) into (A7), calculating the resulting time integrals and
inserting these results into (A6), we obtain

a(1)
f i = − i

4πc2

∫ ∞

−∞
dω′

Aδ(ωA + ω′
A)δ(ωB − ω′

A)

× 〈φ f χ f | (2c)2I − I p̂r p̂ξ − p̂ξI p̂r

−p̂rI p̂ξ − p̂r p̂ξI |φiχi〉 , (A9)

where

I =
∫

d3kAG̃F (−kA)e−iρ·kA (A10)

with ρ = R + r − ξ. Integration over the solid angle �kA

in (A10) provides

I = 2π i

ρ

∫ ∞

−∞
dkA

kAe−iρkA

(ω′
A/c)2 − k2

A + iη
. (A11)

The remaining integral in (A11) is solved by applying the
residual theorem and we arrive at

I = 2π2 eiρ
|ω′

A |
c

ρ
. (A12)
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Inserting (A12) into (A9), afterwards calculating the ω′
A in-

tegral by taking advantage of one of the delta functions and
recalling that ωA = εk − εg > 0 yields

a(1)
f i = 2π

i
δ(ωA + ωB) 〈φ f χ f | 1

(2c)2

{
(2c)2 eiρ ωA

c

ρ

− eiρ ωA
c

ρ
p̂r p̂ξ − p̂ξ

eiρ ωA
c

ρ
p̂r − p̂r

eiρ ωA
c

ρ
p̂ξ

− p̂r p̂ξ

eiρ ωA
c

ρ

}
|φiχi〉 . (A13)

Considering the interaction V̂AB between the two electrons in
atom A and B as a small perturbation, the quantum mechani-
cal transition amplitude within the first order of perturbation
theory reads

a(1)
f i = 2π

i
δ(ωA + ωB) 〈φ f χ f | V̂AB |φiχi〉 . (A14)

Comparing (A13) and (A14), the interaction V̂AB is given by

V̂AB = 1

(2c)2

{
(2c)2 eiρ ωA

c

ρ
− eiρ ωA

c

ρ
p̂r p̂ξ

−p̂ξ

eiρ ωA
c

ρ
p̂r − p̂r

eiρ ωA
c

ρ
p̂ξ − p̂r p̂ξ

eiρ ωA
c

ρ

}
. (A15)

The interaction in (A15) includes all kinds of multipole-
interactions between the two electrons in A and B. Since
we are only interested in the strongest coupling, namely the
dipole-dipole interaction, between the electrons, we employ
appropriate multipolexpansions in the term eiρ ωA

c /ρ in (A15).
First, we expand 1/ρ up to second order in h = r − ξ. Af-
terwards, an expansion of ρ in the exponent, again up to
second order in h, is made. Finally, we expand the resulting
exponential terms up to second order in h. Keeping only terms
up to second order in h in the final result, we get

eiρ ωA
c

ρ
≈

{
1

R
− [(r − ξ) · R]2

2R3

(
ωA

c

)2

+
(

3[(r − ξ) · R]2

2R5
− (r − ξ)2

2R3
− (r − ξ) · R

R3

)

×
(

1 − iR
ωA

c

)}
eiR ωA

c . (A16)

Now, we insert (A16) into (A15) and use the identities p̂r =
iωAr and p̂ξ = iωBξ = i(−ωA)ξ which arise from the com-
mutator relations p̂r = i[ĤA, r] and p̂ξ = i[ĤB, ξ]. Afterwards,
we neglect all terms in the resulting interaction V̂AB that will
not lead to dipole allowed transitions. Our final result for the
dipole-dipole interaction V̂AB then becomes

V̂AB = eiR ωA
c

[(
r · ξ − 3(r · R)(ξ · R)

R2

)
1 − iR ωA

c

R3

−
(

r · ξ − (r · R)(ξ · R)

R2

)(
ωA
c

)2

R

]
. (A17)

APPENDIX B

In order to evaluate the two-center ionization cross sections
defined in Sec. II D. for the systems Li-He and Ne-He, we
have calculated the corresponding geometric factors Am and
Bm in (47) and (48).

More precisely, for fixed principal quantum numbers nA

and n′
A and nB and n′

B in atoms A and B, respectively, in case
of Li-He, Am and Bm were derived for all possible nBs →
n′

B pm (m ∈ {−1, 0, 1}) bound-bound transitions (3 in total) in
B for a fixed nAs → εk p bound-continuum transition in A.
Further, in case of Ne-He, Am and Bm were derived for all
combinations (9 in total) of nA pmA → εkd (mA ∈ {−1, 0, 1})
bound-continuum transitions in A and nBs → n′

B pm bound-
bound transitions in B. Here, one should mention that the
dipole selection rules would also allow nA p → εks transitions
in A, but for rare gases in general [34] and especially for
the 2p subshell in Ne [35,36] the main contribution to the
nA p-subshell ionization cross section comes from nA p → εkd
transitions, so we only consider these.

(i) Geometric factors Am(R,�k, ωA) and Bm(R, ωA)
for the nAs → εk p bound-continuum transition in atom A
and nBs → n′

B pm (m ∈ {−1, 0, 1}) bound-bound transitions in
atom B:

A0 = 9

16
|ek · ρ0|2, A±1 = 9

32
|ek · ρ±1|2,

B0 = 3

16π
[|(ρ0)x|2 + |(ρ0)y|2 + |(ρ0)z|2],

B±1 = 3

32π
[|(ρ±1)x|2 + |(ρ±1)y|2 + |(ρ±1)z|2], (B1)

where ek = k/k,

ρ0 =
(

3(R · ez )R
R2

− ez

)
1 − iR ωA

c

R3

−
(

(R · ez )R
R2

− ez

)(
ωA
c

)2

R

and

ρ±1 =
(

3(R · e±)R
R2

− e±

)
1 − iR ωA

c

R3

−
(

(R · e±)R
R2

− e±

)(
ωA
c

)2

R

with e± = ex ± iey.
(ii) Am(R,�k, ωA) and Bm(R, ωA) for the nA p0 → εkd

bound-continuum transition in A and nBs → n′
B pm bound-

bound transitions in B:

A0 = 3

16
|e0 · ρ0|2,

A±1 = 3

32
|e0 · ρ±1|2,

B0 = 9

80π

[
|(ρ0)x|2 + |(ρ0)y|2 + 4

3
|(ρ0)z|2

]
,

B±1 = 9

160π

[
|(ρ±1)x|2 + |(ρ±1)y|2 + 4

3
|(ρ±1)z|2

]
. (B2)

Here, e0 = 3 cos ϑk ek − ez.
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(iii) Am(R,�k, ωA) and Bm(R, ωA) for the nA p1 → εkd
bound-continuum transition in A and nBs → n′

B pm bound-
bound transitions in B:

A0 = 3

27
(3 cos2 ϑk − 1)2|ez · ρ1|2,

A±1 = 3

28
(3 cos2 ϑk − 1)2|e+ · ρ±1|2,

B0 = 3

160π

R2
z

(
R2

x + R2
y

)
R4

×
[(

3

R3
−

(
ωA
c

)2

R

)2

+ 9
(

ωA
c

)2

R4

]
,

B±1 = 3

320π

∣∣∣∣
[

3

R2

(
R2

x ∓ R2
y + 2iRxRyδm,1

)

−2δm,−1

]
1 − iR ωA

c

R3

−
[

1

R2

(
R2

x ∓ R2
y + 2iRxRyδm,1

) − 2δm,−1

](
ωA
c

)2

R

∣∣∣∣
2

.

(iv) Am(R,�k, ωA) and Bm(R, ωA) for the nA p−1 →
εkd bound-continuum transition in A and nBs → n′

B pm bound-
bound transitions in B:

A0 = 3

27
(3 cos2 ϑk − 1)2|ez · ρ−1|2,

A±1 = 3

28
(3 cos2 ϑk − 1)2|e− · ρ±1|2,

B0 = 3

160π

R2
z

(
R2

x + R2
y

)
R4

×
[(

3

R3
− ( ωA

c )2

R

)2

+ 9
(

ωA
c

)2

R4

]
,

B±1 = 3

320π

∣∣∣∣
[

3

R2

(
R2

x ± R2
y − 2iRxRyδm,−1

)

−2δm,1

]
1 − iR ωA

c

R3

−
[

1

R2

(
R2

x ± R2
y − 2iRxRyδm,−1

) − 2δm,1

](
ωA
c

)2

R

∣∣∣∣
2

.
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