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Quantum computers are capable of efficiently contracting unitary tensor networks, a task that is likely to
remain difficult for classical computers. For instance, networks based on matrix product states or the multiscale
entanglement renormalization ansatz can be contracted on a small quantum computer to aid the simulation of a
large quantum system. However, without the ability to selectively reset qubits, the associated spatial cost can be
exorbitant. In this paper, we propose a protocol that can unitarily reset qubits when the circuit has a common
convolutional form, thus dramatically reducing the spatial cost for implementing the contraction algorithm on
general near-term quantum computers. This protocol generates fresh qubits from used ones by partially applying
the time-reversed quantum circuit over qubits that are no longer in use. In the absence of noise, we prove that
the state of a subset of these qubits becomes |0 · · · 0〉, up to an error exponentially small in the number of gates
applied. We also provide numerical evidence that the protocol works in the presence of noise and formulate a
condition under which the noise-resilience follows rigorously.
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I. INTRODUCTION

A quarter century after the discovery that quantum com-
puters could efficiently solve classically intractable problems
[1,2], there is now a worldwide academic and industrial ef-
fort to build machines realizing that vision. An important
milestone was passed last year with Google’s experimen-
tal demonstration of quantum supremacy using a 54-qubit
processor [3]. While the quantum supremacy experiment
demonstrated that there are some classically intractable tasks
that a quantum computer can efficiently perform, it is still
unclear if a speedup can be realized in the near term for
any practical problems of interest. One promising approach
is to pursue variational quantum algorithms [4,5]. These
algorithms use a quantum computer as a device that can
prepare quantum states, parametrized by a circuit of uni-
tary operators. By variationally minimizing the energy of a
physical system of interest, one can prepare a low-energy
state of a quantum many-body system. If the states pre-
pared in this minimization procedure are difficult to simulate
on a classical computer, one may hope to obtain a quan-
tum advantage in finding and characterizing the low-energy
states.

However, to achieve a practical advantage, one needs to
overcome several challenges. For generic circuits, the gradient
decays exponentially with circuit depth [6], making gradient-
based optimization challenging. Moreover, realistic devices
are noisy and, as such, any intermediate or final outcomes
obtained from these experiments will be noisy as well. These
limitations suggest that, in order to use variational algorithms
for practical purposes, one must use a structured circuit such
as the ones introduced in Refs. [4,5,7–12].

The family of convolutional quantum circuits [13], in
which a sliding active window moves over the qubits of the
circuit, is particularly promising. The family includes cir-
cuits referred to in previous studies as holographic quantum
circuits [8,9,14–18], which can be used to realize versions
of the matrix product state [19], projected entangled pair
states [20], and the multiscale entanglement renormalization
ansatz [21]. Holographic circuits have a number of desir-
able properties. First, there are theoretical arguments for the
faithfulness of the circuits in describing physical states of
interest [8,22]. Second, generically, the expectation values of
the local observables obtained from these circuits are resilient
to noise [9,14]. Third, these circuits often lead to a reduced
spatial cost. For instance, a quantum many-body system in
D spatial dimensions can be simulated using a set of qubits
arranged on a (D − 1)-dimensional lattice. Therefore, the ex-
isting quantum computing architectures, which are either one-
or two-dimensional, can simulate two- and three-dimensional
quantum many-body systems. If the target system one in-
tends to simulate has a volume of �D, the number of qubits
one would need to carry out such a simulation would scale
as O(�D−1). Indeed, a recent experiment demonstrated the
success of this approach for D = 1, giving hope that these
methods can become useful with continued improvement in
quantum computing technology [16,18].

Despite their promise, convolutional quantum circuits have
not been widely used on existing quantum computing plat-
forms. This is mainly because they require a source of fresh
|0〉 qubits to realize their advantages, but resetting qubits in
the middle of a computation can be demanding. For example,
the Sycamore processor which Google used in their quantum
supremacy experiment does not have the ability to quickly
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reset a specific qubit [3]. Without that capability, the size
of the system one can simulate is limited by the number of
qubits present in the quantum computer. For instance, even
if one uses convolutional quantum circuits for simulating an
� × � system, without the ability to reset, one would still need
a quantum computer consisting of O(�2) qubits. In contrast,
with the ability to reset, one can reduce this qubit requirement
to O(�). For instance, if � = 10, the requirement on the num-
ber of qubits can shrink from hundreds to tens.

Since having the reset capability can dramatically reduce
the number of physical qubits required, it is clearly of in-
terest to implement it in some form. This article provides a
software-based reset protocol suitable for systems in which
the hardware capability is either absent or too slow. Our pro-
cedure, which we refer to as the rewinding protocol, unitarily
converts a set of qubits used in the computation to a fixed
state, after which they can be reused in the remaining part of
the computation. Because our protocol is unitary, the protocol
can be implemented on any quantum computer, even if it is
not equipped with a physical reset operation.

Importantly, we can provide a rigorous theoretical guaran-
tee on the quality of the reset qubits. The infidelity of the reset
qubits decays exponentially with the length of the protocol.
Therefore, resetting a qubit up to a fixed target error tolerance
takes time logarithmic in the inverse error.

While other strategies exist for reusing qubits, they have
limitations that make them unsuitable for our purpose. As
stated before, in certain experimental platforms, qubit reset
is unavailable. Alternatively, one could resort to algorithmic
cooling [23,24]. However, algorithmic cooling can fail if the
state of the qubits has off-diagonal components in the compu-
tational basis or if the qubits are correlated. Neither of these
possibilities can be ruled out in our setup.

In contrast, our protocol enjoys the following properties.
First, our protocol is unitary. Therefore, it can be imple-
mented on any quantum computing platform. Second, it
successfully produces fresh qubits even in a regime where
algorithmic cooling fails. Third, our protocol is straightfor-
ward to implement. The protocol involves partially applying
the time-reversed quantum circuit over the qubits that are no
longer in use, a capability that we expect to be available in
many near-term quantum computers. There is no need for
measurement, reset, or new unitary gates that are incompatible
with the given hardware. Last, we numerically demonstrate
that our protocol works in the presence of noise. While we do
not have a theoretical understanding of this phenomenon, our
numerical evidence seems compelling.

The rest of this paper is structured as follows. In Sec. II,
we introduce our protocol. In Sec. III, we provide a rigor-
ous performance guarantee of our protocol, demonstrating its
robustness to noise in Sec. V. In Sec. IV, we describe and an-
alyze a method for using our protocol to effectively boost the
number of qubits available for implementing a convolutional
circuit. We conclude with a discussion in Sec. V.

II. REWINDING PROTOCOL

In this section, we introduce the rewinding protocol. With-
out loss of generality, a general quantum computation can be
thought of as a sequence of gates applied to the |0n〉 state,

FIG. 1. An example of the rewinding circuit. Here the first four
qubits are assumed to be idle. The subcircuit in the dashed box is the
rewinding circuit of the circuit in dotted box.

where n is the number of qubits. We shall refer to this se-
quence as

C = (g1, g2, . . . , gN−1, gN ), (1)

where gi belongs to some universal gate set for every i. This
circuit implements a unitary

U (C) := gN gN−1 · · · g2g1. (2)

In the quantum circuit, some of the qubits may no longer
participate in the computation after a certain point. Specifi-
cally, we may be able to break up C into

C1 = (g1, . . . , gk−1),

C2 = (gk, . . . , gN ), (3)

such that C2 acts trivially on a subset of qubits. For such
qubits, we will say that they are idle during C2.

The main goal of our protocol is to convert some of these
idle qubits to |0m〉 for some m > 0. We propose to achieve this
by implementing the following “rewinding” circuit. Let QI be
the set of idle qubits. Consider a subsequence of C1 consisting
of gates that act exclusively on QI . Let us refer to this circuit
as

C1,I := (g̃1, . . . , g̃N ′ ). (4)

The rewinding circuit is defined as follows:

R(C1,I ) := (g̃†
N ′ , . . . , g̃†

1). (5)

After applying the rewinding circuit (see Fig. 1 for an exam-
ple), we obtain the following state:

R(C1,I )U (C)|0 · · · 0〉. (6)

An important question is whether the state of the idle
qubits becomes close to the |0 · · · 0〉I state in some sense. We
formulate a sufficient condition under which this is possible.
Of course, generally speaking, we should not expect this state
to be close to |0 · · · 0〉. However, for a special class of circuits
called convolutional circuits [8,9,14], one can guarantee this
generically.

III. CONVOLUTIONAL CIRCUITS

In this section, we study how well the rewinding protocol
works for convolutional circuits [13]. These circuits have a
fixed-size active window that moves over the qubits of the
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FIG. 2. A circuit diagram representing the state preparation of
Eq. (9) for n = 5 followed by the measurement of an observable O.

circuit. More formally, a convolutional circuit is one which
can be written in the following form:

U[n−k−1,n] · · ·U[2,k+1]U[1,k] (7)

over n qubits, where U[i, j] is a unitary operator acting on a set
of qubits ranging from the ith to the jth index. Here k is a
constant that is often chosen to be O(1).

Convolutional circuits play an important role in near-term
quantum algorithms because they naturally appear in quan-
tum circuits that can approximately prepare physical ground
states of interest [8,9,14,22] (see Appendix C for a review).
Specifically, for the purpose of evaluating the expectation
values of local observables, which is a key subroutine used in
many near-term quantum algorithms, one can compress those
circuits into a convolutional circuit. Without loss of generality,
suppose our goal is to evaluate

〈ψ |O|ψ〉, (8)

where |ψ〉 is the state prepared by the circuits in
Refs. [8,9,14]. One can estimate this expectation value by
preparing a new state |ψO〉, which can be expressed as

|ψO〉 = U(n−1),n · · ·U2,3 U1,2|0 · · · 0〉, (9)

where Ui,i+1 represents a unitary that acts on two groups of
qubits, labeled by i and i + 1 [15], and the support of the
observable O lies in the union of the last two groups of qubits;
see Fig. 2 for an illustration.

An important property of convolutional circuits is that
the state preparation of Eq. (9) can be implemented using a
constant number of qubits (independent of n), provided that
one can reset the qubits at will (see Fig. 3). However, as
explained above, the experimental implementation of reset
remains challenging, which motivates the search for alterna-
tives. By applying the rewinding protocol to the preparation
circuit truncated after the gate Um−1,m, we obtain the circuit
diagram in Fig. 4. The rewound circuit prepares the same state
on qubit m as the original. In addition, though, the first few
qubits are returned to the |0〉 state up to an error exponentially
small in m:

〈0k|ρ[1,k]|0k〉 � 1 − c exp[−α(m − k)], (10)

where c and α are numerical constants. For a sufficiently large
m, the error becomes negligible. Therefore, one can inject

these freshly reset qubits into the remainder of the preparation
circuit.

The rest of this section will be devoted to explaining why
Eq. (10) is true. A sketch of the proof is presented in Sec. III A.
We also report on a numerical experiment that corroborates
the proof in Sec. III B, focusing on extracting a precise esti-
mate of the average number of iterations one needs to bound
the fidelity to a level that is available in realistic devices,
namely, 0.01.

A. Fidelity guarantee

In this section, we sketch the proof of Eq. (10), deferring
the details to Appendix A. To explain the main idea, it will be
convenient to replace the circuit diagram of Fig. 4 with a “pro-
cess” diagram in which the unitary gate Ui,i+1 is replaced by a
superoperator Ui(·) = Ui,i+1(·)U †

i,i+1. For simplicity, suppose
we trace out all but the first qubit (see Fig. 5).

Our argument will be directed at analyzing transfer op-
erators associated with the circuit, which will describe how
portions of the rewinding circuit affect the rest. Consider a
sequence of quantum channels (�i) for i = 1, . . . , n, whose
action on a state ρ is defined as follows:

(11)

Because �i+1 is a composition of quantum channels, so is �i.
The transfer operator Ti+1→i is the transformation taking the
channel �i+1 to �i.

The transfer operator has several useful properties. First, it
maps the identity channel to the identity channel. In particular,
viewing the transfer operator as a linear operator, the identity
channel becomes an eigenvector with an eigenvalue 1. More-
over, the transfer operator has an eigenvalue with modulus
less than or equal to 1. Therefore, generically, by applying the
transfer operator sufficiently many times, all the nonidentity
components decay away. What is left is a quantum channel
that is exponentially close to the identity channel. We make
this argument more precise in Appendix A, proving that

‖�1 − I‖� = O(λn), (12)

where λ is the modulus of the second-largest eigenvalue of
Ti+1,i, maximized over all i, and ‖ · · · ‖� is the diamond norm.
In particular, we obtain

‖ρ − �1(ρ)‖1 = O(λn). (13)

In practice, it could be difficult to estimate the precise
value of λ. Without that knowledge, one cannot provide a
quantitative bound on the fidelity of the rewinding process.
However, there is a simple method that can overcome this
problem. One can simply estimate the fidelity of the recycled
state by measuring those qubits in the computational basis.
Assuming that we expect the fidelity to be bounded from

FIG. 3. A space-efficient implementation of Eq. (9). Compared to Fig. 2, the number of requisite qubits is reduced to a constant.
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FIG. 4. Applying the rewinding protocol (see Sec. II) to Eq. (9).

below by 1 − δ, to estimate the fidelity up to an error of ε,
it suffices to take ∼δ(1 − δ)/ε2 samples.

Of course, Eq. (13) will yield a nontrivial bound only if
λ < 1. There are examples for which λ is equal to 1, for
instance, when U is chosen to be the SWAP operation. How-
ever, there is evidence suggesting that λ < 1 generically. As
we shall briefly mention in Sec. III B, if we choose Ui,i+1

to be identical for all i and choose the underlying unitary
randomly, we generically observe an exponential decay in n
for ‖ρ − �1(ρ)‖1.

B. Numerical experiment

While our proof firmly establishes that the rewinding
protocol works for convolutional circuits, Eq. (12) is a con-
servative bound. To get a more precise quantitative estimate
of the actual fidelity we can typically achieve, we have per-
formed a numerical experiment using the TENSOR NETWORK

library [25].
Consider Haar-random gates U,V ∈ SU(4). We choose the

gates in the circuit to be U1,2 = U2,3 = · · · = Un−2,n−1 = U
and Un−1,n = V . We applied the rewinding protocol to this
circuit, making the length n = 150. Figure 6 presents the
median (over 2000 trials) of the overlap of the ith qubit with
|0〉 for different values of i.

As shown in Fig. 6, our protocol yields a fidelity converg-
ing exponentially to 1 with an average decay rate of 0.22.
Typically, to reach a single-qubit preparation error of 0.01 and
0.001, we needed to apply the protocol of length 19 and 29,
respectively.

In all the randomly generated instances we studied, we
observed that the infidelities decay exponentially, albeit with
varying decay constants. For instance, there were rare in-
stances for which the exponential decay became evident only

at around x ≈ 103. This suggests that λ is likely to be gener-
ically strictly smaller than 1 and the probability of λ being
close to 1 is small. Making these numerical observations
mathematically rigorous is an important open problem left for
future work.

We have also performed a similar experiment in which
Ui,i+1 were chosen randomly and independently of each other.
The result was similar to Fig. 6. An interested reader may
access the code in Ref. [26].

C. Robustness to noise

Numerical evidence indicates that the rewinding protocol
is also remarkably robust to noise. To model those imper-
fections, we redid the numerical experiment of Sec. III B but
followed every gate with noise. Specifically, each qubit the
gate acts on was completely depolarized independently with
probability 1%. The results are summarized in Fig. 7. The
fidelity of the qubits being reset converges to a quantity that
is close to 1 even in the presence of noise. In fact, the fidelity
converges to a stationary value close to 0.99, which suggests
that the stationary value is 1 − O(p), where p is the error
probability per gate. Crucially, there is no indication that noise
accumulates with increasing circuit depth. Moreover, up to the
precision in our numerical experiment, the decay rate is 0.22,
which is the same value obtained in the absence of noise.
In Appendix B, we formulate a condition under which this
robustness can be explained rigorously.

IV. BOOSTING THE NUMBER OF AVAILABLE QUBITS

By repeatedly using the rewinding protocol, we can obtain
an asymptotic reduction in the number of qubits needed. Sup-
pose, for concreteness, that we are equipped with an nq qubit

FIG. 5. Circuit in Fig. 4 in the density matrix picture. Here Ui is a quantum channel that applies a unitary gate Ui,i+1. After tracing out all
but the first qubit, we obtain a density matrix ρ1. One can view the right-hand side as a recursive application of Eq. (11).
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FIG. 6. Median fidelity plots. Here x is 150 − i, where i is the
index of the qubit as defined above. The base of the logarithm is e.

quantum computer but somehow the circuit of interest consists
of n > nq qubits. What should we do? Often, one is interested
in estimating the expectation value of the observable up to
some error, say ε. The main question we address in this section
is the size of the circuit one can simulate using n qubits while
ensuring that the error is below ε.

The idea is to use the rewinding protocol recursively. Sup-
pose, for instance, that we run the circuit only up to the
first n1 = nq qubits and then apply the rewinding protocol,
resetting the first k1 qubits. We can feed those k1 qubits in as
new ancillae to be used for the remaining part of the circuit,
incurring an error bounded by ε1 = ce−α(n1−k1 ) in doing so.
We are once again constrained by space, so we apply a circuit
over n2 = k1 + 1 qubits, namely, the output of the first portion
in addition to the new ancillae, and then apply the rewinding
protocol. If we keep the first k2 qubits, we incur an error on
these qubits which can be bounded by

ε2 � ε1 + ce−α(n2−k2 ). (14)

By repeating this t times, the total error is bounded by

εtotal �
t∑

i=1

c(t − i + 1)e−α(ki−1−ki ), (15)

where k0 = nq. The number of qubits effectively available
for the original convolutional circuit is therefore

∑t
i=0 ki.

Since the size of a convolutional quantum circuit is propor-
tional to the number of available qubits, the size is itself

(

∑t
i=0 ki ).
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FIG. 7. Median fidelity in the presence of noise, with the conven-
tion x = 150 − i, where i is the index of the qubit as defined above.
The base of the logarithm is e.

Let us choose ki−1 − ki to be a constant, denoted �k. To
leading order, the �k that ensures εtotal is below ε is

�k ≈ ln (t2/ε)

α
. (16)

We can then choose t ∼ αnq

ln(1/ε) ln(nq ) to get, to leading order,

ncircuit ≈ αn2
q

2 ln(1/ε) ln nq
. (17)

Therefore, we get a nearly quadratic boost in the size of
the circuit we can implement. For ε = 0.01 and the numeri-
cally observed average value of α = 0.22, we obtain ncircuit ≈
0.024n2

q/ ln nq. The rewinding protocol always increases the
number of available qubits, but this bound detects the ad-
vantage only at nq ∼ 90 qubits. A more optimized choice of
ki−1 − ki could potentially yield a better bound.

The preceding analysis allowed for the possibility that the
induced error on the recycled qubits could be highly corre-
lated. In practice, the error model might be close to being
independent. While we do not have a general proof for such a
statement, we have performed a preliminary numerical exper-
iment that supports the hypothesis. If that is really the case, an
extensive error occurring on every qubit, say of fixed strength
ε, generically gives rise to only an error of order ε to the final
answer [8,9,14]. Understanding to what degree this is true and
the ultimate limit of our protocol is an open problem left for
future work.
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As a practical matter, it is important to note that the pro-
cedure described above is highly parallelizable. There is no
reason to wait until a given iteration of the rewinding protocol
is complete before recycling qubits. As soon as a sufficiently
high-fidelity qubit is prepared, one can use this qubit while
running the remainder of the recycling protocol concurrently.
The procedure discards the first �k qubits processed by the
rewinding protocol, which will impose a corresponding delay
at each level of recursion, but the delay is independent of the
number of qubits nq, depending only on the quality of the
desired recycled qubits. In fact, the delay can even be elim-
inated by maintaining a buffer of �k fresh qubits. Therefore,
the depth of the convolutional circuit implemented using the
rewinding protocol to achieve a nearly quadratic savings in
spatial cost can be made to be the same as the circuit executed
with a physical supply of fresh qubits.

V. DISCUSSION

In this paper, we proposed a simple protocol for unitarily
implementing a reset operation on a qubit. This protocol is
particularly useful for reducing the spatial cost in implement-
ing convolutional quantum circuits, which frequently appear
in a large family of promising variational quantum circuits
that can efficiently prepare physical ground states of inter-
est [8,9,14–18]. While implementation of such circuits using
a physical reset operation can be realized directly in ion
qubits [18] and indirectly via measurements and conditional
correction in superconducting qubits [27,28], the reported ex-
perimental system consists of a small number of qubits. By
using our method, it should be possible to run these circuits on
the existing larger quantum computers which are not equipped
with physical reset operations.

Recently, Borregaard et al. [15] pointed out that convolu-
tional circuits can be truncated to shorter circuits, leading to
a reduction in spatial (and temporal) cost. Interestingly, the
key parameter in their work that determines the savings is
different from ours. In their case, the modulus of the second-
largest eigenvalue of the transfer matrix acting on the space
of density matrices determines the optimal depth of the circuit
beyond which it does not make sense to run the circuit any
further. In our case, the savings are determined by the second-
largest eigenvalue of the transfer matrix acting on the space
of completely positive trace-preserving maps (see Appendix
A). Understanding which of these two methods is better in
practice is an open problem left for future work.

There are several directions to improve our method. First,
one may be able to devise a method to efficiently certify that
the newly prepared ancilla states have large overlaps with the
|0〉 state. One straightforward way to do this is to measure
the state of the qubit directly, thus gathering the statistics.
However, this process can predict a lower fidelity because of
the measurement error. A method to remove such measure-
ment error in the spirit of randomized benchmarking [29,30]
would be desirable. Second, one may be able to concatenate
our method with the well-known algorithmic cooling method
to further improve the purity of the ancilla qubits [23,24].

Our work focused on convolutional quantum circuits for
which the local Hilbert space dimension is bounded. This
is an important assumption because the bounds we derived

in this paper were in terms of two-norm in some vector
space. However, in order to convert a bound on this norm
to a statement about the fidelity, one generally introduces a
dimension-dependent factor. Therefore, if the local Hilbert
space dimension is large, this bound may not be so useful.
A similar problem was tackled in Ref. [14] by introducing
a more refined notion of mixing called local mixing. It will
be interesting to understand whether there is an analogous
physically plausible local mixing condition in our context.

Last, the noise resilience of our protocol warrants further
study. Specifically, if every gate in the circuit is replaced by an
ideal gate followed by a local noise channel, would the fidelity
of the prepared qubits be still 1 − O(ε). where ε is the noise
strength? Alternatively, would the fidelity scale as 1 − O(nε),
where n is the circuit depth? Our numerical experiment sug-
gests the former, and our analysis in Appendix B definitively
shows that there is a sufficient condition under which one can
rigorously prove the noise resilience of our protocol. Whether
this condition holds generically for convolutional quantum
circuits is an important open problem that is left for future
work.
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APPENDIX A: TRANSFER OPERATOR

In this Appendix, we will prove properties of the trans-
fer operator introduced in Sec. III A. Let us first recall the
definition of the transfer operator. Without loss of generality,
let U : HA ⊗ HB → HA ⊗ HB be a unitary on two quantum
systems, A and B. Let U (ρ) = UρU † be the corresponding
channel. The transfer operator is defined as follows:

TU [�] = TrB ◦ U† ◦ (IA ⊗ �) ◦ U ◦ E, (A1)

where E (ρ) = ρ ⊗ |0〉B 〈0|B.
Clearly, TU maps quantum channels to quantum channels.

It will be helpful to be precise about the domain and range
TU . In order to be able to introduce eigenvectors, it will be
convenient to view TU as an operator acting on the com-
plex vector space 〈CPT P

H 〉 spanned by the completely positive
trace-preserving (CPTP) maps CPT P

H . There is a natural inner
product 〈·, ·〉 on 〈CPT P

H 〉 induced by the Hilbert space inner
product on H.

In order to study properties of TU , it will be convenient to
define two norms: the “Hilbert-Schmidt” norm over 〈CPT P

H 〉,
which we shall denote as ‖ · ‖2, and an operator norm for the
operators that act on 〈CPT P

H 〉, which we shall denote as ‖ · ‖.
Formally, these norms are defined as follows:

‖�‖2 :=
√

〈�,�〉 (A2)
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and

‖T ‖ = sup
�∈〈CPT P

H 〉
‖T [�]‖2

‖�‖2
. (A3)

As a first application, we first show that TU has eigenvalues
with a modulus less than or equal to 1.

Theorem 1. Suppose U is a unitary and TU is defined as in
Eq. (A1). Let � ∈ 〈CPT P

H 〉 be a right eigenvector of TU with
eigenvalue λ. Then |λ| � 1.

Proof. Without loss of generality, let � = ∑
i∈I αi�i for

some αi ∈ C and �i ∈ CPT P
H for some finite index set I .

The index can be made to be finite because the vector space
〈CPT P

H 〉 is finite dimensional. Thus, T k
U [�] = ∑

i∈I αiT k
U [�i]

by linearity, where T k
U is the kth repeated application of TU .

After applying TU k times, we obtain∥∥T k
U [�]

∥∥
2 = |λ|k‖�‖2. (A4)

The key point is that this quantity becomes unbounded if |λ| >

1 in the k → ∞ limit. This is a contradiction because, using
triangle inequality, we get

∥∥T k
U [�]

∥∥
2 �

∑
i∈I

∥∥αiT k
U [�i]

∥∥
2

�
∑
i∈I

|αi|‖�̃i‖2,
(A5)

where �̃i ∈ CPT P
H because T k

U maps quantum channels to
quantum channels. Importantly, the last line of Eq. (A5) is
bounded for all k because the set of quantum channels itself is
bounded. If |λ| > 1, there exists a finite k ∈ N such that

|λ|k‖�‖2 >
∑
i∈I

|αi|‖�̃i‖2, (A6)

which is a contradiction. Therefore, we conclude that |λ| � 1,
completing the proof. �

From Theorem 1, we found that the eigenvalues of the right
eigenvectors of TU must lie on |λ| � 1. Moreover, one can
verify straightforwardly that the identity channel, denoted as
I, satisfies the following relation:

TU [I] = I. (A7)

This means that I is a right eigenvector of TU with an eigen-
value 1. Provided that this is the only right eigenvector whose
eigenvalue has a modulus of 1, the norm of the other right
eigenvectors must be strictly less than 1. In particular, after a
repeated application of TU , the norm in fact decays exponen-
tially. Let us note in passing that the eigenvectors of TU need
not be CPTP; the vector space on which TU is defined consists
of a linear combination of CPTP maps, which are generally
not CPTP.

Corollary 1. Let T be a transfer operator. Suppose there is
only one right eigenvector of T that has an eigenvalue with
modulus 1. Let � be a CPTP map and define a sequence of
CPTP maps as �0 := � and �i := T [�i−1]. Then

‖�k − I‖2 � O(�k ), (A8)

where 0 < � < 1. Specifically, � is the modulus of the
largest nonunit eigenvalue of T .

Proof. Recall that T [I] = I. Therefore, if T has only one
right eigenvector, it must be I. Without loss of generality,

T = P + D, (A9)

where P is a projector onto the one-dimensional subspace
spanned by I and D = T − P. Let us first prove that P[�] =
I. Since Ti maps a CPTP map to a CPTP map,

lim
n→∞ T n[�] = P[�] (A10)

is also a CPTP map. However, the only multiple of the identity
that is a CPTP map is the identity map itself. Therefore,
P[�] = I.

Without loss of generality, consider the decomposition of
� into the linear combination of right eigenvectors of T :

� =
∑
i∈I

αi�i, (A11)

where T [�i] = λi�i. Since P[�] = I,

� − I =
∑

i ∈ I, |λi| < 1

αi�i. (A12)

Using the fact that T [I] = I,

‖�k − I‖2 = ‖T k[� − I]‖2

= ‖
∑

i ∈ I,
|λi| < 1

αi�iλ
k
i ‖2

� �k
∑

i ∈ I,
|λi| < 1

|αi|‖�i‖2.

(A13)

Since we are working in a finite-dimensional vector space,
each of the terms in the last line is bounded. �

Let us remark that the distance ‖�k − I‖2 upper bounds a
more operationally meaningful distance of ‖�k − I‖� up to a
dimension-dependent factor. Because the underlying Hilbert
space is finite, the fact that this distance decays exponentially
in k remains the same. This completes the main claim in
Sec. III A.

APPENDIX B: NOISE RESILIENCE

In this Appendix, we formulate a sufficient condition under
which the rewinding protocol becomes resilient to noise. The
central concept is the notion of contractivity of the transfer
matrix.

Definition 1. Let T be a linear map which maps a channel
to another channel. T is contractive if

‖T [�1 − �2]‖2 � γ (T )‖�1 − �2‖2 (B1)

for some real number γ (T ) < 1. If such a γ (T ) exists, the
smallest such number will be defined as the contraction coef-
ficient of T .

Below, we will show that if the transfer matrix in Eq. (A1)
is contractive, the rewinding protocol is resilient to noise.
Specifically, without loss of generality, consider the noisy
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version of the transfer matrix [see Eq. (A1)]:

TU,δ[�] = TrB ◦ U†
δ ◦ (IA ⊗ �) ◦ Uδ ◦ E, (B2)

where U and U†
δ are noisy versions of U and U†:

‖Uδ − U‖ � δ,

‖U†
δ − U†‖ � δ.

(B3)

Our goal is to show that the fixed point of TU,δ is close to that
of TU up to a distance O(δ/(1 − γ )).

For small δ, TU,δ and TU are close to each other, as we
prove below.

Lemma 1.

‖TU,δ − TU ‖ � Cδ (B4)

for some constant C.
Proof. Note the following chain of inequalities:

‖TU,δ − TU ‖ = sup
�∈〈CPT P

H 〉
‖(TU,δ − TU )[�]‖2

‖�‖2

= sup
�∈〈CPT P

H 〉
‖TrB ◦ (U†

δ − U†) ◦ (IA ⊗ �) ◦ Uδ ◦ E + TrB ◦ U† ◦ (IA ⊗ �) ◦ (Uδ − U ) ◦ E‖2

‖�‖2

� sup
�∈〈CPT P

H 〉
‖TrB ◦ (U†

δ − U†) ◦ (IA ⊗ �) ◦ Uδ ◦ E‖2

‖�‖2
+ sup

�∈〈CPT P
H 〉

‖TrB ◦ U† ◦ (IA ⊗ �) ◦ (Uδ − U ) ◦ E‖2

‖�‖2

� ‖TrB‖IA‖‖E‖(‖U†
δ − U†‖‖Uδ‖ + ‖Uδ − U‖‖U†‖)

� δ‖TrB‖IA‖‖E‖(‖Uδ‖ + ‖U†‖). (B5)

Since the operators placed in the norm in the last line
are bounded operators acting on a finite-dimensional vector
space, their norms are bounded. �

Proposition 1. Consider a sequence T1, T2, . . . , Tk of trans-
fer operators, each potentially defined by a different unitary
transformation. Suppose Ti has a contraction coefficient of γi

and let γ = maxi γi.
For any sequence of operators T̃1, T̃2, . . . , T̃k which map

channels to channels such that ‖Ti − T̃i‖ � δ for all i ∈
{1, . . . , k},

‖(T̃k ◦ · · · ◦ T̃1 − Tk ◦ · · · ◦ T1)[�]‖2 � C′δ
1 − γ

(B6)

for some constant C′ > 0.
Proof. Consider the telescopic decomposition of T̃k ◦ · · · ◦

T̃1 − Tk ◦ · · · ◦ T1:

T̃k ◦ · · · ◦ T̃1 − Tk ◦ · · · ◦ T1

=
k−1∑
i=1

T[i+1,k] ◦ (T̃i − Ti ) ◦ T̃[0,i−1], (B7)

where T[i, j] and T̃[i, j] are the sequential application of Tk for k
from i to j. Here we assume that j � i and also that T0 is an
identity operation, returning every channel to itself.

Therefore,

‖
k−1∑
i=1

T[i+1,k] ◦ (T̃i − Ti ) ◦ T̃[0,i−1][�]‖2

�
k−1∑
i=1

T[i+1,k] ◦ (T̃i − Ti )[�i]‖2 (B8)

for some channel �i. Note that

‖T̃i[�i] − Ti[�i]‖ � C′δ (B9)

for some constant C′ and that both T̃i[�i] and Ti[�i] are
channels. Using the definition of the contraction coefficient
(see Definition 1), we obtain the following bound:

‖
k−1∑
i=1

T[i+1,k] ◦ (T̃i − Ti ) ◦ T̃[0,i−1][�]‖2

� C′δ
k−1∑
i=1

γ k−i−1

� C′δ
1 − γ

. (B10)

�

APPENDIX C: EXAMPLES OF
CONVOLUTIONAL CIRCUITS

Convolutional circuits appear in many situations, including
the encoding circuits for convolutional quantum codes [13].
We focus on three examples: the matrix product states [16,31],
holographic quantum circuits [8,14], and deep multiscale en-
tanglement renormalization ansatz (DMERA) [9,21,32].

1. Matrix product states

The matrix product state (MPS) is a many-body quantum
state which can be expressed in the following form:

|�〉 =
∑
{s}

Tr
[
A(s1 )

1 A(s2 )
2 · · · A(sn )

n

]|s1s2 · · · sn〉, (C1)

where {A(si )
i } is a set of matrices of dimension χ and si ∈

{0, . . . , d − 1}. Here χ is the dimension of the virtual space
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Hv of the MPS, and d is the local Hilbert space dimension
of the constituent particles, which has a tensor product form
⊗iHi, where dim(Hi ) = d . Formally, one can view A(si )

i as
a matrix Ai whose domain and image are Hv and Hv ⊗ Hi.
Specifically,

Ai|α〉 =
∑
β,si

(Ai )
(si )
βα |β〉|si〉, (C2)

where α, β ∈ {0, . . . , χ − 1} and si ∈ {0, . . . , d − 1}.
One can consider the following special form of MPS:

|�〉 =
∑
{s}

〈φF |A(s1 )
1 A(s2 )

2 · · · A(sn )
n |φI〉|s1s2 · · · sn〉, (C3)

where |φI〉 and |φF 〉 are χ -dimensional vectors. While a class
of states in the form of Eq. (C3) forms a subclass of Eq. (C1),
this subclass is still capable of describing many physical states
of interest, such as the W state, cluster state, and Greenberger-
Horne-Zeilinger state [31].

While the matrices appearing in Eq. (C3) can be arbitrary,
up to normalization, such states can be reexpressed as

|�〉 ⊗ |φF 〉 =
∑
{s}

V (s1 )
1 V (s2 )

2 · · ·V (sn )
n |φI〉|s1s2 · · · sn〉, (C4)

where V (si )
i is an isometry from the virtual Hilbert space to

the tensor product of the virtual Hilbert space and the local
Hilbert space. Specifically, the action of this isometry, acting
on a basis state |α〉 in the virtual Hilbert space and |si〉 in the
local Hilbert space, acts as

Vi|α〉|si〉 =
∑
β,si

(Vi)
(si )
βα |β〉|si〉. (C5)

Since Vi is an isometry from Hv to Hv ⊗ Hi, one can
rewrite it as

Vi = Ui(|0〉 ⊗ Iv ) (C6)

for some unitary acting on Hv ⊗ Hi, where |0〉 ∈ Hi and Iv is
the identity operator acting on Hv . Viewed this way, the state
in Eq. (C3) can be created by first preparing the state

|φI〉 ⊗ |0〉 ⊗ · · · ⊗ |0〉︸ ︷︷ ︸
n copies

(C7)

and applying Un to U1 sequentially.
The resulting circuit, up to a relabeling, has a convolutional

structure. To see why, it is convenient to view the virtual
Hilbert space as a �logd χ�-qudit system. The key idea is to
convert the tensor representation of Ui

Hi
Ui

Hi

Hv Hv
(C8)

to the following form:

Hi
Ui

Hv

Hv Hi
(C9)

Formally, Ũi is Ui followed by the map

|α〉|si〉 → |si〉|α〉 (C10)

for all α ∈ {0, . . . , χ − 1} and si ∈ {0, . . . , d − 1}. Since this
is a permutation of qudits, it can be realized unitarily. There-
fore, Ũi is simply a unitary acting on �logd χ� + 1 qudits.

Using Ũi, the convolutional structure of MPS becomes
evident. We provide the following example, which is a MPS
over three qudits:

|0
U1

|φF

|0
U2|0

U3|φI
(C11)

Generalization to the n-qudit MPS is straightforward.

2. Holographic quantum circuits

Holographic quantum circuits [8,14,15,18] generalize
MPSs to higher dimensions by replacing a qudit with a collec-
tion of qudits and imposing a spatial structure within Ui. These
circuits can be used as an ansatz to simulate a D-dimensional
quantum many-body systems by applying a sequence of local
gates on a set of qudits arranged on a (D − 1)-dimensional
lattice.

For concreteness, let us describe a (D = 2)-dimensional
example. Without loss of generality, suppose the physical
system of interest consists of qudits with local Hilbert space
dimension d , arranged on a square lattice of size �x × �y.
Each qudit will be specified by its coordinate (x, y), where
x ∈ [�x] = {0, . . . , �x − 1} and y ∈ [�y] = {0, . . . , �y − 1}. To
describe our circuit, we will also need to introduce a total of
�y “virtual” qudits, each of which has a local Hilbert space
dimension of χ . We shall specify them with an index y ∈ [�y].

Just like in the MPS example, a holographic quantum cir-
cuit consists of a sequence of unitaries {Ui} that act on the
virtual qudits and a set of qudits at x = i. The state is prepared
by first initializing all the qudits as

(C12)

and then applying Ui from i = �x − 1 to 0.
Importantly, Ui is a finite-depth local quantum circuit,

meaning that it is a O(1)-depth quantum circuit consisting of
gates that act on qudits whose y coordinates are close to each
other. An example of such Ui for a depth of 3 and �y = 3 is
described below:

v : 0
p : 0

v : 1
p : 1

v : 2
p : 2 (C13)
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Here v : y is the virtual qudit labeled by y, and p : y is the
physical qudit labeled by (i, y).

To restore the convolutional structure, we can swap each
virtual qudit with a physical qudit with the same y coordinate,
similar to what we did in Eqs. (C8) and (C9).

3. DMERA

DMERA is a multiscale ansatz that can well approxi-
mate many-body wave functions of scale-invariant quantum
many-body systems [9,21]. This ansatz can be prepared in
a recursive manner. Without loss of generality, suppose we
are interested in simulating a scale-invariant system in D
spatial dimensions. The DMERA ansatz over 2nD qudits can
be constructed by first preparing an ansatz over the qudits
arranged on a lattice of size 2n−1 × · · · × 2n−1︸ ︷︷ ︸

D

, embedding

the constituent qudits into a lattice of size 2n × · · · × 2n︸ ︷︷ ︸
D

with

a lattice spacing of (2, . . . , 2︸ ︷︷ ︸
D

), filling the remaining lattice

sites by qudits initialized in the |0〉 state, and then applying a
finite-depth local quantum circuit. Without loss of generality,
we will assume that the depths of these local circuits are
bounded by D.

For the purpose of estimating the expectation value of a
local observable O, one can remove some of the spurious gates

that do not affect its expectation value. For instance, suppose
the DMERA ansatz |�〉 can be represented as u|� ′〉 for some
gate u. If u commutes with O, then the following identity
holds:

〈�|O|�〉 = 〈� ′|O|� ′〉. (C14)

By applying this identity recursively, one can remove gates
used in preparing |�〉 until this procedure no longer yields a
smaller circuit. The resulting minimal circuit is referred to as
the past causal cone of the observable O [32].

Once the past causal cone is obtained, the expectation value
of O can be expressed as follows:

〈O〉 = Tr[�n ◦ · · · ◦ �1(ρ)O], (C15)

where �i is a CPTP map called the transfer operator acting
on O(DD ) qudits, whose exact form can be deduced from the
DMERA circuit (see Refs. [9,32] for details).

By the Stinespring dilation theorem [33], every CPTP
map can be viewed as an isometry followed by a partial
trace. Moreover, this isometry can be directly deduced from
the DMERA circuit, as explained in Refs. [9,32]. Therefore,
Eq. (C15) can be viewed as an expectation value of O evalu-
ated with respect to a state created by applying a sequence of
isometries {Vi} which are the dilations of the CPTP maps {�i}.
Then, by the analysis of Sec. C 1, the expectation value of O
can be viewed as an expectation value evaluated with respect
to a state prepared by a convolutional circuit.
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