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We present an extension to the robust phase estimation protocol, which can identify incorrect results that
would otherwise lie outside the expected statistical range. Robust phase estimation is increasingly a method of
choice for applications such as estimating the effective process parameters of noisy hardware, but its robustness
is dependent on the noise satisfying certain threshold assumptions. We provide consistency checks that can
indicate when those thresholds have been violated, which can be difficult or impossible to test directly. We test
these consistency checks for several common noise models, and identify two possible checks with high accuracy
in locating the point in a robust phase estimation run at which further estimates should not be trusted. One of
these checks may be chosen based on resource availability, or they can be used together in order to provide
additional verification.
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I. INTRODUCTION

The phase estimation algorithm is ubiquitous in quantum
computing. It is common as an algorithmic primitive [1–6]
and is also used for error mitigation [7] and for estimating the
parameters of quantum processes [8,9]. However, error rates
in noisy intermediate-scale quantum (NISQ) devices, particu-
larly in state preparation and measurement (SPAM), present a
challenge for implementing phase estimation in existing and
near-future hardware [4]. This incentivizes the development
of intrinsically error-resilient, or robust, protocols for phase
estimation [9–12].

Robust phase estimation (RPE) is one such protocol
that was originally conceived as a method for characteriz-
ing single-qubit gates [13]. Recently, RPE implementations
have been experimentally demonstrated on trapped-ion qubits
[14,15] and used to simulate the ground state and low-lying
electronic excitations of a hydrogen molecule on a super-
conducting cloud-based quantum computer [16]. RPE has
Heisenberg scaling, so it is optimally fast up to constant
factors. It is robust to all errors below a certain threshold. Fur-
thermore, it is easy to implement, as it involves no entangled
states, or even any additional registers beyond the register on
which the gate of interest acts.

RPE is based on a nonentangled-state version of phase
estimation presented in 2009 by Higgins et al. [9]. The focal
point of an RPE protocol is a particular unitary gate whose
rotation angle is to be estimated. The protocol involves multi-
ple generations of experiments where this unitary of interest is
repeatedly applied in longer and longer sequences. Roughly,
each generation provides an additional bit of precision to the
estimate of the phase. The protocol can tolerate a relatively
high degree of inaccuracy at any given round, since future
generations serve to correct the accuracy. This tolerance is

what gives the protocol its robustness to a wide range of errors
[17].

The proof of robustness of RPE starts with the assumption
that errors do not exceed a certain size, and then shows that
under those conditions, by increasing the number of samples
by a constant factor we can ensure that the estimates produced
will still be accurate, and will still achieve Heisenberg scaling.
The problem with this proof is that the errors we would
like RPE to be robust to are themselves often expensive to
accurately characterize. Thus it is difficult to know whether
they violate the threshold required for RPE to work correctly,
without resorting to costlier characterization techniques.

We address this difficulty in the present work by describing
tests of the self-consistency of RPE, which can herald to the
user that errors have exceeded their allowed thresholds. In
particular, for several different notions of “consistency” we
find sets of underlying angles that can explain the RPE mea-
surement data. Our criteria indicate inconsistency when no
such angle exists. Additionally, using realistic error models,
we numerically demonstrate that the tests do a good job of
flagging when errors start causing inaccuracies in the RPE
estimate.

It is important to note that in this paper we are not at-
tempting to tightly characterize resource use in RPE, which
has been the primary focus of prior work [9,13,18]. Rather,
we test whether an instance of an RPE experiment provides
an estimate that is trustworthy, given there are likely aspects
of the system (e.g., stochastic error processes) that may not
be well-characterized, but nevertheless may impact RPE’s
success. The tests we develop here are somewhat akin to sta-
tistical tests of self-consistency employed in various quantum
tomography schemes [19–22]. In those cases, the aim is to
perform statistically rigorous testing to see if an estimate ap-
propriately fits the data that generated it. However, as RPE is
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not a tomographically complete protocol, it does not generate
a fully predictive estimate for a gate set (i.e., one that can
predict outcomes for any circuit using only the operations in
said gate set), so we cannot simply translate the statistical tests
used with tomographic protocols, and instead need to develop
a different set of tools. Nevertheless, the question our tests
aim to answer is quite similar to the tomographic consistency
tests: given a data set and some parameter(s) estimated from
it, ought we trust those estimates?

We begin by reviewing the RPE protocol in Sec. II. We
emphasize the multigenerational nature of RPE, which cre-
ates the opportunity for self-consistency tests. In Sec. III, we
define various notions of consistency that can be applied to
sequences of choices of estimates across generations. We first
define four increasingly stringent tests that are related to inter-
generational constraints, which we call plausible consistency,
consecutive consistency, local consistency, and uniform-local
consistency. We then define three other types of consistency,
which we call angular-historical consistency, probability-
historical consistency, and intersequence consistency, which
are respectively based on an angular constraint, a statistical
constraint, and consistency across different full RPE runs.
These definitions ultimately lead to a series of tests that can be
applied to data from an RPE experiment in order to determine
its failure point, i.e., the generation at which we should cease
to trust the estimates. We also provide a full reference im-
plementation of the protocol in the Python package “pyRPE”
[23].

Finally, in Sec. IV we numerically test the performance of
the consistency checks defined in Sec. III. We apply depolar-
izing, dephasing, and amplitude damping noise to simulated
RPE experiments for a range of error rates and target angles.
We find that the angular-historical consistency and interse-
quence consistency checks outperform the other checks across
the board, with both of them on average flagging failure within
one generation of the actual failure point for typical rotation
angles. These two consistency checks perform similarly, so
since the angular-historical consistency check requires only
the original set of data, while the intersequence consistency
check requires a second RPE run, we suggest using angular-
historical consistency as the baseline test, and employing the
intersequence consistency test as a double-check if desired.
We also find that the probability-historical consistency check
flags failure before actual failure occurs with high probability,
providing an option for the experimenter who wants a very
conservative estimate of when failure occurs.

II. REVIEW OF THE RPE PROTOCOL

RPE is effectively a sequence of Ramsey and Rabi oscil-
lation experiments with logarithmic spacing in the number of
repetitions of the unitary under investigation,

Ut = exp[−iθσx/2], (1)

where σx is the Pauli X matrix, and θ is the parameter we
would like to learn. It proceeds across multiple generations of
experiments indexed by k = 0, 1, 2, . . .; in the kth generation,
Ut is applied Nk times. At each generation, RPE produces an
estimate θ̂k of the rotation angle θ of Ut, by combining data
from prior generations. Nk is chosen such that it increases with

each generation, which refines the estimate, as we will see. In
what follows we consider the requirements for implementing
RPE for a single-qubit gate, noting that generalization to mul-
tiqubit unitaries is relatively straightforward [16].

The RPE protocol requires the ability to (i) apply Ut repeat-
edly, and (ii) prepare the states |0〉 and

|y+〉 ≡ 1√
2

(|0〉 + i |1〉). (2)

Using these, we can construct circuits for which the distribu-
tion of outcomes encodes θ :

Pc,k = ∣∣ 〈0|U Nk
t |0〉 ∣∣2 = 1

2 [1 + cos(Nkθ )], (3)

Ps,k = ∣∣ 〈y+|U Nk
t |0〉 ∣∣2 = 1

2 [1 + sin(Nkθ )]. (4)

In generation k the circuits represented by Eqs. (3) and (4)
are sampled sufficiently many times to generate estimates P̂c,k

and P̂s,k of Pc,k and Ps,k , respectively, from the relative fre-
quencies of 0 and 1 measurement outcomes. We do not specify
the number of samples that should be taken for each circuit in
the protocol, since this has been addressed in previous works
[9,18], and our consistency tests are agnostic to the sampling
schedule. The estimates P̂c,k and P̂s,k may be reinserted into
Eqs. (3) and (4) to give us a set of candidate estimates of θ

that are compatible with the experimental data,

�k =
{

θ̃ ∈ [0, 2π )

∣∣∣∣∃λ̂ > 0 : λ̂

(
cos(Nk θ̃ )

sin(Nk θ̃ )

)
=

(
2P̂c,k − 1

2P̂s,k − 1

)}
.

(5)

The λ̂ serves to normalize the probabilities, and we will pro-
vide a more thorough interpretation of this value in Sec. IV.
Henceforth, all angles are implicitly assumed to be defined
modulo 2π . Equation (5) can be rewritten as

�k =
{

atan2(2P̂s,k − 1, 2P̂c,k − 1)/Nk + 2πn

Nk

∣∣∣∣ n ∈ Z

}
,

(6)
where n indexes the choice of branch in the branch cut for the
arctangent. If Nk = 1, this set contains a unique estimate for θ .
More generally for Nk � 1, there are Nk candidate estimates,
one in each angular interval ((2n − 1) π

Nk
, (2n + 1) π

Nk
], for

0 � n < Nk . See the dashed red lines in Fig. 1 for a graphical
illustration of the angles in this set.

We want to select a single estimate, θ̂k , from �k at each
generation. The criterion used by RPE is to successively
choose the θ̂k that is closest to the previous estimate θ̂k−1. If
we assume that the initial estimate is unique, i.e., that N0 = 1,
this is possible with probability 1 [24]. To determine which
angle is closest to the previous estimate we need a branch-
cut-independent metric for measuring the distance between
angles,

|θ ′ − θ ′′|2π = min{|θ ′ − θ ′′ + 2πn| ∣∣ n ∈ Z}. (7)

We extend this metric to define the distance from any single
angle θ ′ to a set of angles �,

d (θ ′,�) = min
θ̃∈�

|θ̃ − θ ′|2π , (8)
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(a) (b)

(c) (d)

FIG. 1. Illustration of a successful RPE run. Red arrows indicate
elements of �k , and the green arrow indicates θ , the correct angle to
be estimated. (a) A first measurement θ̂0 of θ is made. (b) A second
measurement of θ is made. Two candidate angles (red arrows) are
possible, and RPE selects the one closest to the previous value, θ̂0

(solid red). The selected angle is within π/2 of θ , as expected (within
the green shaded region). (c) and (d) As before, with four and eight
candidates, and shading within π/4 and π/8 of θ , respectively.

the minimizer of which is [25]

M(θ ′,�) = argmin
θ̃∈�

|θ̃ − θ ′|2π . (9)

Using these definitions, Algorithm 1 states the RPE protocol.
In particular, we will henceforth assume that N0 = 1, and
Nk+1 > Nk .

While the above description of RPE is made in terms of
the selection of the closest angle to the previous selection as
in [14], one can consider a procedure where a set of estimate
angles is updated at each generation. In Appendix D, we
address this formulation of RPE and find that it has equivalent
error tolerance to the single-angle approach.

Also, as mentioned above, our goal is not to calculate
the resources required from first principles, but to determine
whether the resources actually used in an experiment are suf-
ficient, given uncharacterized noise in the system. However,
any RPE-like protocol can still achieve Heisenberg scaling in
the presence of bounded noise when the number of samples
increases by a constant factor, as we show in Appendix B
[26]. Thus for optimal efficiency, we suggest starting with
a number of samples as prescribed by Refs. [9,18], which
perform a detailed analysis in the error-free case, and then
scaling the number of samples by an amount that you be-
lieve will overcome your errors according to the scaling of
Appendix B. Then use the consistency tests we lay out in the
next section to check whether the number of samples has been
increased sufficiently to overcome the actual errors, or to test
at what point in the protocol the noise becomes too large to
compensate for.

Algorithm 1. Robust Phase Estimation

Input:
1: {�k′ }k′�kmax , the list of candidate estimates for each

generation, Eq. (6)
Output:
2: θ̂kmax , the estimate for the underlying angle
Preconditions:
3: Nk′ < Nk for k′ < k
4: N0 = 1
Code:
5: function ROBUSTPHASEESTIMATION({�k′ }k′�kmax )
6: k ← 0
7: θ̂0 ← the unique element in �0.
8: while k + 1 � kmax do
9: k ← k + 1
10: θ̂k ← M(θ̂k−1,�k )
11: return θ̂kmax

We suspect that many experimentalists will not actually use
the complex sampling schedules suggested in Refs. [9,18],
but rather will take a constant number of samples at each
generation, as this schedule achieves near optimal resource
efficiency, while being much simpler. In fact, this is what we
do in our own numerical simulations. Both the consistency
tests presented here, as well as the analysis in Appendix B,
can be applied to any sampling schedule.

III. THE SUCCESS AND FAILURE OF RPE

Ideally, the value of θ̂k closest to θ would be chosen at each
generation. Then θ̂k would estimate θ with error at most π/Nk

because the Nk elements of �k are equally spaced around the
unit circle:

θ̂k = M(θ,�k ) ⇔ |θ̂k − θ |2π <
π

Nk
(10)

(see Fig. 1 for an illustration). If, for any reason, the RPE pro-
cedure selects a value of θ̂k that does not satisfy (10) at some
generation k, we say that the procedure failed at generation k.

Generally, we would like to know whether RPE has failed
at any given generation. However, to know this with cer-
tainty would require knowledge of θ [required to evaluate
(10)], which is the parameter being sought. Instead, we de-
velop heuristic consistency checks that evaluate some related
conditions but are experimentally accessible, in order to ap-
proximate the maximum value of k for which (10) holds.

Note that in order for RPE to succeed at some generation,
it is not necessary in general for it to have succeeded at all
previous generations. This can happen when RPE fails due to
a sufficiently large error in one generation, which is corrected
by another sufficiently large error in a subsequent generation.
An example illustrating this is shown in Fig. 2. However, such
a success mode is not trustworthy, since it depends on the
confluence of two errors, each of which would on its own be
sufficient to induce failure.

All of the criteria for our checks are based on different no-
tions of consistency. These notions are all based on properties
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(a) (b)

(c) (d)

FIG. 2. Illustration of the action of the RPE protocol that fails at
intermediate generations, but succeeds at the final generation. Red
arrows are elements of �k , and the green arrow is the correct angle
be estimated, θ . (a) and (b) As in Fig. 1. (c) An incorrect choice of θ̂2

occurs—the candidate that is closest to θ was not chosen. (d) Despite
this, at generation 3, the correct choice of θ̂3 is still made.

that are satisfied in an ideal RPE run, but might fail to be
realized in an RPE run in the presence of noise. The first five
criteria are based on increasingly stringent constraints on the
intergenerational consistency of θ̂k . We define another crite-
rion based on a condition on the intergenerational probability
estimates. Finally, we consider a criterion based on inter-
sequence consistency across different full RPE runs. These
definitions provide a series of tests that can be applied to data
from an RPE experiment in order to approximately determine
its failure point, i.e., the generation at which (10) ceases to be
satisfied, and we should no longer trust the estimates.

Our first criterion is that there is some “plausible angle”
θ̃ that satisfies Eq. (10) at every generation, ruling out the
situation in Fig. 2, as well as more typical failure modes like
large drift in the estimates.

Criterion 1 (plausible consistency). Consider the set of
angles

�k = {θ̃ | θ̂k = M(θ̃ , �k )} (11)

= {θ̃ | |θ̂k − θ̃ |2π = d (θ̃ , �k )} (12)

= {θ̃ | |θ̂k − θ̃ |2π < π/Nk}, (13)

i.e., angles for which the choice of θ̂k would not constitute a
failure based on Eq. (10) at generation k [27]. We then check
whether such an angle exists in common to all generations,
giving us our first criterion:

kmax⋂
k=0

�k �= ∅. (14)

(a) (b)

FIG. 3. Pathology in �k : Increasing the accuracy of θk−1 can
make θk incorrect. (a) The correct θ̂1 is chosen, despite the large error
in θ̂0. (b) Even though θ̂0 is closer to the true angle θ than in (a), it
is closer to the incorrect candidate for generation 1, leading to the
incorrect choice of θ̂1. In (a), paradoxically, θ0 laying further from θ ,
caused the correct selection of θ1 for generation 1.

Notice that there is no dependence on θ for this criterion, and
{�k}k�kmax are experimentally derivable quantities.

Because �k are intervals (with size less than π for k > 0),
their intersection is an interval, which permits efficient clas-
sical testing of membership in the intersection. For the later
criteria, care will have to be taken to ensure that criterion
satisfaction is efficiently testable.

Unfortunately, satisfying Eq. (14) does not provide partic-
ularly strong guarantees. The condition is trivially satisfied if
Nk � 2Nk−1 for all k (see Remark 4 in Appendix A). Also, the
criterion fails to rule out the paradoxical scenario of Fig. 3,
in which more reliable data can lead to an incorrect choice
of angle. Our next criterion addresses these two concerns by
relying on the distance to the set �k , rather than the point θ̂k .

Criterion 2 (consecutive consistency). Consider the sets
�k , where �0 = [0, 2π ) and

�k =
{
θ̃

∣∣∣∣ d (θ̃ , �k ) + d (θ̃ , �k−1) <
π

Nk

}
(15)

for k = 1, 2, . . .. An angle θ̃ is in �k if there exist measure-
ments in both �k and �k−1 that are close to θ̃ . As before, the
corresponding consistency test is whether the intersection of
the sets �k is nonempty:

kmax⋂
k=0

�k �= ∅. (16)

Criterion 2 is stronger than Criterion 1:
Theorem 1. The sets {�k}k�kmax and {�k}k�kmax satisfy⋂

k′�k

�k′ ⊆
⋂
k′�k

�k′ . (17)

Hence, Eq. (16) implies Eq. (14).
The proof may be found in Appendix A. Moreover, for a

sequence that satisfies Criterion 2 and Eq. (10) for all k′ < k,
further reduction of d (θ,�k′ ) will only improve the estimate
θ̂k (see Corollary 1 in Appendix A).

Unlike �k , �k is not an interval (for k > 0), and testing for
membership could introduce exponential classical overhead
(since �k is the union of Nk intervals). Fortunately, �k ∩ �k ,
and hence

⋂
k′�k �k′ , is an interval:

�k ∩ �k = {θ | d (θ, (θ̂k, θ̂k−1)) < Dk}, (18)
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where Dk = π
2Nk

− 1
2 |θ̂k − θ̂k−1|2π . The interval is, equiva-

lently, the smallest angular interval containing θ̂k and θ̂k−1,
expanded by Dk on both sides. Refer to Lemma 0 in
Appendix A and the reference Python implementation [23]
for further details.

Criterion 2 is based on balancing errors on adjacent gen-
erations. While adaptive protocols, such as [28], include
detection and adjustment for errors between generations, stan-
dard RPE is nonadaptive and makes no such adjustments.
Thus a criterion that allows a small error at one generation to
compensate for a larger error on another, independently of the
predetermined number of samples to take at each generation,
should raise suspicion. This motivates a third, still stronger
criterion which forbids balancing errors across subsequent
generations.

Criterion 3 (local consistency). Consider a set of angular
error bounds on the sequence, {δθk}k�kmax , which should sat-
isfy Eq. (21) but may otherwise may be freely chosen. At
generation k, the set of angles within those bounds is


k[δθk] =
{
θ̃

∣∣∣∣ d (θ̃ , �k ) <
δθk

Nk

}
. (19)

We say that a sequence is (δθk)-locally-consistent if the inter-
section across all generations is nonempty:⋂

k�kmax


k[δθk] �= ∅. (20)

Local consistency is stronger than Criterion 2 if

δθk

Nk
+ δθk−1

Nk−1
� π

Nk
, (21)

since in that case we have⋂
k′�k


k′ [δθk′] ⊆
⋂
k′�k

�k′ ⊆
⋂
k′�k

�k′ . (22)

Like �k , 
k is not necessarily an interval, but its union is if
the set inclusion Eq. (22) holds (see Remark 1), so we demand
that Eq. (21) be satisfied. In this case, an interval formulation
of this criterion follows directly from Eq. (19):⋂

k′�k


k′[δθk′ ] =
⋂
k′�k

{
θ̃

∣∣∣∣ |θ̃ − θ̂k′ |2π <
δθk′

Nk′

}
. (23)

Criterion 4 (uniform-local consistency). From Criterion 3,
we can obtain a special case for which δθk = δθ is indepen-
dent of k:

δθk = π

1 + r
, (24)

where r � Nk
Nk−1

for all k; this δθk satisfies Eq. (21).
This schedule is intended to be used when Nk grows

roughly exponentially in k, i.e., Nk ≈ rk . Also, notice that
r � 2, since N1 � 2. It balances the error tolerance between
generations, so it is a natural choice when the expected error
on each generation is the same, which could occur for example
when SPAM error is independent of generation and dominates
error associated with implementing U Nk

t . Note that for the
standard RPE case in which Nk = 2k [13],

δθk = π

3
. (25)

Criterion 3 (including the special case Criterion 4) leads
to a bound on the errors in the estimates of the probabil-
ities of Eq. (3) and Eq. (4). A straightforward geometrical
argument—found in, for example, [9] [the “simple geometry”
leading to Eq. (2)] or [29] (Theorem 4.1)—shows that

max{|P̂c,k − Pc,k|, |P̂s,k − Ps,k|} = 
P � sin(δθk )

2
√

2
. (26)

In particular, to satisfy the hypothesis for uniform-local con-
sistency, with Nk = 2k , we require


Pk �
√

3

32
∼ 30.6%, (27)

which corrects the numerical value given in [13].
The previous tests are based on the existence of an angle θ̃

that is consistent with {�k}k�kmax , but do not indicate whether
the final output θ̂k is such a witness. The following criterion
asserts precisely this.

Criterion 5 (angular-historical consistency). For all k �
kmax,

θ̂k ∈
⋂
k′�k


k′[δθk′ ]. (28)

If this condition holds, the value of θ̂kmax is not just the
terminating measurement in a reasonable RPE measurement
sequence; it is also one of the putative underlying angles.
In Theorem 3, we show that, if δθk′−1/Nk′−1 > δθk′/Nk′ for
all k′ � k (which holds for Nk = 2k), (28) is equivalent to
requiring that the intersection has length greater than δθk/Nk

for all k � kmax: ∣∣∣∣∣
⋂
k′�k


k′ [δθk′ ]

∣∣∣∣∣ >
L

Nk
, (29)

where L = δθk . One might imagine fine-tuning the interval
length, L, to optimize the performance of the consistency test
in identifying the actual failure point. In Sec. IV, we provide
numerical evidence that although such fine-tuning may be
possible, it is too sensitive to the error model and the value
of the actual angle θ to provide a consistent advantage over
using L = δθk .

The previous five criteria form a hierarchy of consistency
checks that are increasingly stringent. We also consider two
other criteria that do not strictly fit into this hierarchy. The
first is to directly test the probability condition Eq. (26) for
each estimate:

Criterion 6 (probability-historical consistency). For all
k′ < k � kmax,

| sin Nk′ θ̂k′ − sin Nk θ̂k| � sin(δθk )√
2

, (30)

and

| cos Nk′ θ̂k′ − cos Nk θ̂k| � sin(δθk )√
2

. (31)

In other words, probability-historical consistency tests that
the probabilities expected from each estimated phase [from
Eq. (3) and Eq. (4)] are consistent with the probabilities
obtained in previous generations, up to the δθk bounds as
given in Eq. (26). Because this test is expressed in terms of
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TABLE I. Overview of consistency checks of RPE success. The criteria in the first part (of “fundamental value”) are used to characterize
basic convergence properties of RPE, and include Criteria 1, 2, and (to a lesser extent) 3. Notice they form a logical hierarchy, with later criteria
strictly stronger than earlier ones. The second part lists the remainder of the criteria discussed, which we find have value for empirically testing
the validity of RPE results. There is no straightforward logical hierarchy among these final 4 criteria.

Criteria of fundamental value
# Description Set Criterion Interval

1 plausible �k = {θ̃ | θ̂k = M(θ̃ , �k )} ⋂
k�kmax

�k �= ∅ ⋂
k′�k

{
θ̃ | |θ̃ − θ̂k′ |2π < π

Nk′

}
2 consecutive �k = {

θ̃ | d (θ̃ , �k ) + d (θ̃ , �k−1) < π

Nk

} ⋂
k�kmax

�k �= ∅ ⋂
k′�k {θ | d (θ, (θ̂k, θ̂k−1)) < Dk}
Dk′ = π

2Nk′ − 1
2 |θ̂k′ − θ̂k′−1|2π

3 local 
k[δθk] = {
θ̃ | d (θ̃ , �k ) <

δθk
Nk

} ⋂
k�kmax


k[δθk] �= ∅ ⋂
k′�k

{
θ̃ | |θ̃ − θ̂k′ |2π <

δθk′
Nk′

}
such that δθk

Nk
+ δθk−1

Nk−1
� π

Nk

Criteria useful as tests
# Description Criterion

4 uniform local
⋂

k�kmax

k[π (1 + Nk/Nk−1)] �= ∅

5 angular-historical ∀k � kmax θ̂k ∈ ⋂
k′�k 
k′ [δθk′ ]

6 probability-historical ∀k′ < k � kmax max {| sin Nk′ θ̂k′ − sin Nk θ̂k |, | cos Nk′ θ̂k′ − cos Nk θ̂k |} � sin(δθk )√
2

7 intersequence ∀k < kmax |θ̂k − θ̂ ′
k |2π � 2π

Nk

probabilities rather than angles, it will turn out to be overly
pessimistic in the presence of incoherent noise (see Sec. IV),
but it does provide a conservative estimate of the failure point.

Our final test is to compare the results of RPE originating
from different sequences of Nk:

Criterion 7 (intersequence consistency). For two sequences
of RPE estimates θ̂k and θ̂ ′

k with sequences Nk � N ′
k , check

that

|θ̂k − θ̂ ′
k|2π � 2π

Nk
(32)

for all k � kmax.
Instead of looking at the single original sequence Nk , and

checking for self-consistency, we consider a second sequence
N ′

k , and check that the resulting estimates are consistent with
those of the original sequence. Notice first that if Eq. (32) fails
for some generation k, then either

|θ̂k − θ |2π >
π

Nk
(33)

or

|θ̂ ′
k − θ |2π >

π

Nk
>

π

N ′
k

; (34)

i.e., at least one of the sequences does not satisfy the true
condition for correctness, Eq. (10). Using the notation �k (and
�′

k , respectively) of Eq. (11), the intersequence consistency
condition Eq. (32) is equivalent to

�k ∩ �′
k �= ∅. (35)

In other words, the intersequence consistency check tests
whether there exist any plausible estimates that are consistent
with both sequences. In Sec. IV we find that this approach can
provide a very good test of data, but it does of course require
an extra sequence’s worth of additional experimental data.

We thus have a range of consistency checks that we can
use to gain information about the performance of an RPE
run. The consistency checks are summarized in Table I. In the

next section, we test and compare the performance of these
consistency checks by simulating noisy RPE runs.

IV. NUMERICAL PERFORMANCE OF
SELF-CONSISTENT CRITERIA

In the previous section, we defined several heuristic consis-
tency tests for an RPE experiment. In this section, we evaluate
the performance of these tests by numerically simulating RPE
runs with depolarizing, dephasing, and amplitude damping
noise.

When one of our consistency tests fails, it flags a genera-
tion k ∈ {0, 1, 2, ..., kmax} at which the RPE estimate becomes
unreliable. Because we are performing a numerical simulation
for a particular target angle θ , the heuristic’s failure generation
can be compared to the actual failure generation in which RPE
is no longer able to correctly estimate θ [i.e., when it fails the
condition (10)].

Any single-qubit mixed state ρ may be represented as

ρ = 1
2 (1 + xσx + yσy + zσz ), (36)

for x, y, z ∈ R satisfying x2 + y2 + z2 � 1, and Pauli matrices
σx, σy, σz. For notational and computational convenience we
instead represent ρ as a Pauli vector |ρ〉〉 (i.e., an element of
Hilbert-Schmidt space):

|ρ〉〉 = 1√
2

⎛
⎜⎜⎜⎝

1

x

y

z

⎞
⎟⎟⎟⎠. (37)

Quantum operations are then implemented as superopera-
tors that act on |ρ|〉〉 by matrix multiplication.

We assume that Ut is a rotation about σx by some angle
θ , the parameter we wish to estimate. We represent Ut as a
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superoperator:

Ut = Rx(θ ) =

⎛
⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 cos(θ ) − sin(θ )

0 0 sin(θ ) cos(θ )

⎞
⎟⎟⎟⎠. (38)

Let |0〉 and |1〉 denote the σz eigenstates with eigenvalues +1
and −1, respectively. Ideally, the initial state is |0〉:

ρinit = |0〉〈0| , |ρinit〉〉 = 1√
2

⎛
⎜⎜⎜⎝

1

0

0

1

⎞
⎟⎟⎟⎠, (39)

and the measurements of the cosine and sine strings are ideally
of the states

ρc = |0〉〈0| , |ρc〉〉 = 1√
2

⎛
⎜⎜⎜⎝

1

0

0

1

⎞
⎟⎟⎟⎠,

ρs = |y+〉〈y+| , |ρs〉〉 = 1√
2

⎛
⎜⎜⎜⎝

1

0

1

0

⎞
⎟⎟⎟⎠. (40)

Denoting the realistic noisy (rather than ideal) forms of these
quantities with tildes, the probabilities of the cosine and sine
measurements are(

Pc,k

Ps,k

)
=

(〈〈ρ̃c|Ũk|ρ̃init〉〉
〈〈ρ̃s|Ũk|ρ̃init〉〉

)
. (41)

As in Eq. (5), these probabilities are reparametrized as(
2Pc,k − 1

2Ps,k − 1

)
=

(
λ cos φ

λ sin φ

)
, (42)

where φ is the maximum likelihood estimate of the angle Nkθ .
Notice that λ̂ of Eq. (5) serves to normalize the observed fre-
quencies, while λ above analogously normalizes the expected
probabilities. In Appendix C, we show that λ renormalizes the
measurement counts, M �→ Mλ2. The renormalization occurs
when a protocol makes use of only φ information, so RPE and
the consistency checks—with the exception of the probability-
historical consistency check—all have this scaling behavior.
In order to simulate depolarization, dephasing, or amplitude
damping, after each application of the unitary Ut of Eq. (38)
we apply an error operator V defined by the error type and the
error rate b, i.e., Ũk = (VUt )Nk .

For depolarization, the superoperator is

Vdepol.(b) =

⎛
⎜⎜⎜⎝

1 0 0 0

0 1 − b 0 0

0 0 1 − b 0

0 0 0 1 − b

⎞
⎟⎟⎟⎠. (43)

Notice that this superoperator commutes with Ut, leading to
λ = (1 − b)Nk , while leaving φ = Nkθ unaffected.

Dephasing in the σxσy plane [30] results in the superopera-
tor

Vdepha.(b) =

⎛
⎜⎜⎜⎝

1 0 0 0

0 1 − b 0 0

0 0 1 − b 0

0 0 0 1

⎞
⎟⎟⎟⎠. (44)

In contrast to depolarizing noise, dephasing noise results in a
nontrivial φ(k) and λ(k) that we do not attempt to characterize
analytically. Nevertheless, the performance of the consistency
checks is still qualitatively the same, as seen in Fig. 5.

Finally, we simulate an amplitude damping channel, with
decay from |1〉 to |0〉. This is described by the superoperator

Va.d.(b) =

⎛
⎜⎜⎜⎜⎝

1 0 0 0

0
√

1 − b 0 0

0 0
√

1 − b 0

b 0 0 1 − b

⎞
⎟⎟⎟⎟⎠. (45)

Unlike the previous examples, the presence of the b term in the
lower-left corner of the matrix—corresponding to the relax-
ation to the state |0〉—acts to drive the system to a particular
steady state by adding a finite term to the z component of
the Bloch vector at every application of Ũ . The other terms
in the noise model act as damping, so for sufficiently large
Nk , the system evolves toward a particular fixed λ(∞) and
φ(∞), which we again do not attempt to determine analyti-
cally. Notice that λ increases with b in this scenario, because
b serves as the amplitude of the driving term added at every
generation. The overall result is that, if the amplitude damping
is strong enough, the statistical noise will become irrelevant at
high generations, and RPE will begin to track the strong signal
for φ(∞). Hence any consistency checks that depend on φ

information only will never flag a failure, because without
information about the true angle there is no way to tell that
the false signal φ(∞) is incorrect. This results in a residue in
Fig. 6 for failure discrepancies greater than 12 for strong am-
plitude damping (i.e., the consistency checks flag failure more
than 12 generations after failure actually occurs). Notice that
the probability-historical consistency check does detect the
error because it is directly sensitive to the length of the Bloch
vector λ. For this reason, in general the probability-historical
consistency test is more pessimistic than the other tests (i.e., it
flags failure earlier). In the case of strong amplitude damping,
this pessimism is justified, but we suggest caution, since other
error models may not cause λ to shrink sufficiently to flag a
failure. Note that if there is reason to believe that a small λ

is an indication of overall infidelity of the system, one might
also consider directly checking the magnitude of λ.

In all cases, we simulated RPE runs with each error model
for exponentially spaced error rates

b = 2−i for i = 2, . . . , 10. (46)

Additionally, SPAM error was introduced by setting

ρ̃init. = Vdepol.(bSPAM)ρinit., (47)

and

ρ̃c = Vdepol.(bSPAM)ρc. (48)
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FIG. 4. For varying depolarization error rates and actual angle θ = 1.6, we plot the discrepancies between the generations at which each
consistency check flagged failure, and the generations at which failure actually occurred. Positive values indicate that the consistency check
flagged failure after failure actually occurred. 1000 RPE runs were performed per error rate. Bin colors show the proportion of the runs at that
error rate they contain. The curves show averages for each error rate. The lower right plot shows the average curves from all of the other plots,
for comparison. The dotted red line at discrepancy 0 is placed to help guide the eye.

Because many implementations of RPE will use an additional
gate to implement ρs, we injected error due to an imperfect
π/2 rotation:

ρ̃s = Vdepol.(bSPAM)Vdepol.(bs)Rx(bs)ρs. (49)

We choose and present results for a fixed value of bSPAM =
bs = 10−2, but comment that the results are qualitatively the
same with both set to zero, bSPAM = bs = 0. For each error
rate and error type, we simulated 1000 runs of the RPE proce-
dure, taking M = 1000 samples of the measurement outcomes
at each generation, and repeating for a variety of angles θ . The
results for

θ = 1.6 (50)

are shown in Figs. 4, 5, and 6, with detailed plots of the
distributions of discrepancies available in Appendix E. The
primary generation sequence in all cases was Nk = 2k , and
for the intersequence consistency check the second sequence

was N0 = 2, Ni = 3(2i−1) for i � 1 = 1, 2, 3, . . . (with a
preliminary generation at N−1 = 1 that was used to deter-
mine a unique θ̂0, and was not compared to the primary
sequence).

Each plot in Figs. 4 to 6 compares the generation at which
the heuristic consistency check flagged failure to the actual
failure point of the run [as determined by (10)]. In particu-
lar, we subtract the generation number where failure actually
occurred from the generation number that was flagged by
the consistency check. Thus positive values in Figs. 4 to 6
indicate that the actual failure occurred before failure was
flagged by the given consistency check. Data were collected
out to 45 generations (and 46 for the intersequence alternative
test), and if no failure was detected, a failure point at the fol-
lowing generation was recorded. This choice can only affect
the calculation of average failure point. In addition, this only
becomes an issue for amplitude damping with strong error
rates b � 1/16.
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FIG. 5. For varying dephasing error rates and actual angle θ = 1.6, we plot the discrepancies between the generations at which
each consistency check flagged failure, and the generations at which failure actually occurred. Positive values indicate that the con-
sistency check flagged failure after failure actually occurred. 1000 RPE runs were performed per error rate. Bin colors show the
proportion of the runs at that error rate they contain. The curves show averages for each error rate. The lower right plot shows
the average curves from all of the other plots, for comparison. The dotted red line at discrepancy 0 is placed to help guide
the eye.

The results in Figs. 4 to 6 show that the angular-historical
consistency check is on average the closest to the actual fail-
ure point, in all the cases we studied. (The angular-historical
consistency check is found in the center of the bottom row of
each figure.) Close behind it is the intersequence consistency
check (which appears on the left of the bottom row of each
figure). We therefore suggest that if one simply desires to
estimate as accurately as possible the actual failure point,
one should use the angular-historical consistency check. If
one wants an additional verification layer for the resulting
failure generations, one could compare these results to those
of the intersequence consistency check (which, recall, requires
taking a second set of data). Since the angular-historical and
intersequence tests perform similarly for most cases of the
error models studied in this paper, finding a large differ-
ence between them in an experiment would indicate that the

underlying error model is outside the regimes investigated
here, or is in one of the pathological cases for amplitude
damping.

If one instead wants to obtain a conservative estimate of
the failure point, i.e., an estimate that precedes the actual
failure point with high probability, one should use the check
for probability-historical consistency (which appears in the
top-left corner of each figure). As we can see from Figs. 4
to 6, in every run that we simulated, the check for probability-
historical consistency flagged failure before failure actually
occurred.

The results in Figs. 4 to 6 are only for θ = 1.6, as noted
above. However, their qualitative features appear to hold for
almost any θ , the exception being small θ under amplitude
damping. In particular, we see in Fig. 7 that at the error
rate b = 2−6, the angular-historical consistency check and the
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FIG. 6. For varying amplitude damping error rates and actual angle θ = 1.6, we plot the discrepancies between the generations at which
each consistency check flagged failure, and the generations at which failure actually occurred. Positive values indicate that the consistency
check flagged failure after failure actually occurred. 1000 RPE runs were performed per error rate. Bin colors show the proportion of the runs
at that error rate they contain. The curves show averages for each error rate. The lower right plot shows the average curves from all of the
other plots, for comparison. Very strong amplitude damping (b � 1/16) creates a false signal that RPE will track, as indicated by the residue
of failures at generation >12. This skews the average failure points in those generations toward the maximum probed failure generation of 45,
complicating a direct analysis of the average. The dotted red line at discrepancy 0 is placed to help guide the eye.

intersequence consistency check are the closest to correct on
average, and the probability-historical consistency check flags
failure early.

Testing angular-historical consistency in the case Nk = 2k

amounts to checking that each intersection (29) has size at
least π

3Nk
, i.e.,

L = δθk = π

3
(51)

[by (24)]. The fact that (29) is equivalent to (28) for L = δθk

suggests that this value of L should provide good performance
of the consistency check, which is supported by Figs. 4, 5,
and 6.

However, as discussed in the paragraph following (29), we
could in principle build a heuristic consistency check around
any value of L we like, rather than L = δθk . As for any heuris-
tic consistency check, performance will depend on the specific
error model. Consequently, we tested the angular-historical
consistency check for a variety of interval widths centered
around L = δθk = π/3; an example of the results is shown
in Fig. 8. This and the plots for other actual angles show
that although the angular-historical consistency check with
interval width L = π/3 (as defined in Criterion 5) is close to
optimal, it does flag failure early on average, so it might be
possible to numerically fine-tune the interval width in order to
obtain a more accurate check. However, doing so is sensitive
to the specific error model and error rate as well as the actual
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FIG. 7. Dependence of the failure point discrepancies on actual rotation angle for simulated depolarization, dephasing, and amplitude
damping at the rate b = 2−6. Each data point is an average of 1000 RPE runs. The most notable feature is that all consistency checks have near
constant failure point discrepancies for all θ , with the exception of substantial deviations for small θ under amplitude damping.

angle, so the utility of this approach is probably limited, and
we instead chose to stick to the theoretically motivated width
of L = π/3.

V. CONCLUSION

In this work we provided a framework for characterizing
the consistency of RPE data based on a variety of efficiently
classically verifiable criteria. The implementation of such
consistency checks will allow an experimenter to address
the worry that, due to systematic errors, their RPE run may
have violated the assumptions that guarantee the protocol’s
performance. Such a violation might result in the proto-
col returning a dramatically incorrect estimate of the value
of the desired parameter. We described seven such checks,
and tested them numerically under simulated depolarization,
dephasing, and amplitude damping, identifying the angular-
interval-consistency check as the most accurate in all cases.
This provides a tool that augments the standard RPE protocol

by permitting detection of unknown errors with unknown
rates, which would otherwise cause hidden failure of the stan-
dard RPE protocol.
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1000 runs. The solid black line at discrepancy 0 is placed to help
guide the eye.

APPENDIX A: DERIVATION OF CRITERIA

This Appendix provides proofs for some of the results in
Sec. III, as well as some additional details. We will extensively
use the distance d from an angle to a set of angles, as well as
the minimizer M of d , so we repeat their definitions Eq. (7)
and Eq. (9) here. First, we restate the point distance on the unit
circle,

|θ ′ − θ ′′|2π = min {|θ ′ − θ ′′ + 2πn| | n ∈ Z}, (A1)

which induces a set distance,

d (θ ′,�) = inf
θ̃∈�

|θ̃ − θ ′|2π . (A2)

Notice this subsumes the definition in Eq. (8). When a unique
minimizer exists, we define it as M:

M(θ ′,�) = argmin
θ̃∈�

|θ̃ − θ ′|2π . (A3)

We will additionally use a version of the triangle inequality
appropriate for point-to-set distances.

Lemma 0 (set triangle inequality). d (θ,�) � |θ − θ ′|2π +
d (θ ′,�).

Proof.

d (θ,�) = min
θ̃∈�

|θ̃ − θ |2π � min
θ̃∈�

(|θ̃ − θ ′|2π + |θ ′ − θ |2π )

= |θ ′ − θ |2π + min
θ̃∈�

|θ̃ − θ ′|2π

= |θ ′ − θ |2π + d (θ ′,�). (A4)

�

1. Plausible consistency

Recall our definition in Eq. (11) of the plausible consistent
angles at each generation k,

�k = {θ̃ | θ̂k = M(θ̃ , �k )}. (A5)

We call �k the plausible angles for generation k because the
estimate θ̂k chosen at generation k is “correct” [as defined by
Eq. (10)] if and only if the actual angle is in �k . Therefore,
if the actual angle were any θ̃ ∈ ⋂

k�kmax
�k , then the entire

sequence of estimates {θ̂k}k�kmax would be correct. Hence, the
corresponding consistency check is

kmax⋂
k=0

�k �= ∅. (A6)

Equation (A6) is the same as Eq. (14), in the main text.
Remark 1. The plausible angles at generation k are exactly

those angles for which distance to the set �k is the same as
the distance to the RPE-chosen angle θ̂k ∈ �k ,

�k = {θ̃ | |θ̂k − θ̃ |2π = d (θ̃ , �k )}. (A7)

Remark 2. The angles within π/Nk of the RPE-chosen
angle θ̂k are the plausible angles at generation k,

�k =
{
θ̃

∣∣∣ |θ̃ − θ̂k|2π <
π

Nk′

}
. (A8)

Note that when k = 0, Eqs. (A5) and (A7) give �0 =
[0, 2π ), while Eq. (A8) excludes the antipodal point θ̂0 + π .
In this case, we define �0 by Eq. (A8) [31].

Remark 3. If the plausible consistency check Eq. (A6) is
satisfied as kmax → ∞, we are able to fully resolve the angle.
In other words, if there exists a θ̃ ∈ ⋂

k<∞ �k , then θ̃ is unique
and limk→∞ θ̂k → θ̃ .

However, as noted in the main text, the implications of
Eq. (A6) for finitely many generations of data are limited in
some cases.

Remark 4. If Nk � 2Nk−1 for all k, then �k ⊂ �k−1.
Equivalently,

⋂
k�kmax

�k = �kmax , and the consistency crite-
rion Eq. (A6) is always satisfied.

Proof. Assume that Nk � 2Nk−1, and let θ̃ ∈ �k . We prove
that θ̃ ∈ �k−1. First, notice that

|θ̂k−1 − θ̂k|2π � π/Nk, (A9)

since θ̂k is chosen to be the element of �k that is closest
to θ̂k−1, and �k is made up of Nk equally spaced angles in
[0, 2π ). Then, using the triangle inequality,

|θ̂k−1 − θ̃ |2π � |θ̂k−1 − θ̂k|2π + |θ̂k − θ̃ |2π

� π

Nk
+ π

Nk

= π

Nk/2
� π

Nk−1
, (A10)

where the second line follows from Eq. (A9) and from the
definition Eq. (A5) of �k . Hence by Eq. (A5), θ̃ ∈ �k−1, and
thus �k ⊂ �k−1. �
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2. Consecutive consistency

Recall the definition of consecutive consistency in Crite-
rion 2 [Eq. (16), in the main text],

kmax⋂
k=0

�k �= ∅, (A11)

where

�k =
{
θ̃

∣∣∣ d (θ̃ , �k ) + d (θ̃ , �k−1) <
π

Nk

}
(A12)

for k ∈ {1, 2, . . . , kmax}, and �0 = [0, 2π ). Notice first that
consecutive consistency does not make reference to the RPE-
chosen angles θ̂k . That Criterion 2 [Eq. (A11)] is stronger than
Criterion 1 [Eq. (A6)] is proven in the following theorem:

Theorem 1. The sets {�k}k�kmax and {�k}k�kmax satisfy⋂
k′�k

�k′ ⊆
⋂
k′�k

�k′ . (A13)

Hence, Eq. (16) implies Eq. (14).
Proof. We will need to show along the way that each θ̂k =

M(θ̂k−1,�k ) is well-defined—this may fail to be the case if
the choice is between two candidate angles that are equidistant
to the previous θ̂k [i.e., d (θ̂k−1,�k ) = π/Nk]. We therefore
proceed by induction on k for the following statement: there
is a unique minimizer M(θ̂k−1,�k ) (provided k > 0), and⋂

k′�k

�k′ ⊆
⋂
k′�k

�k′ . (A14)

The base case is k = 0, where Eq. (A14) becomes �0 ⊆ �0,
which follows directly from the definitions Eq. (A5) and
Eq. (A12).

For the induction step, assume that for some k the inductive
hypothesis [i.e., Eq. (A14) and uniqueness of the minimizer]
holds. Then for any θ̃ ∈ ⋂

k′�k+1 �k′ we have θ̃ ∈ �k , and (by
Remark 1) |θ̂k − θ̃ |2π = d (θ̃ , �k ). Therefore by the triangle
inequality,

d (θ̂k,�k+1) � |θ̂k − θ̃ |2π + d (θ̃ , �k+1)

= d (θ̃ , �k ) + d (θ̃ , �k+1) <
π

Nk+1
, (A15)

where the final inequality follows from the definition of �k+1.
Because the final inequality in Eq. (A15) is strict, the mini-
mizer M(θ̂k,�k+1) is unique. Next, set

B =
⋂
k′�k

�k′ ⊆
⋂
k′�k

�k′ . (A16)

We will show that

B ∩ �k+1 ⊆ B ∩ �k+1. (A17)

Let θ̃ ∈ B ∩ �k+1. Then we have

|M(θ̃ , �k+1) − θ̂k|2π

� |M(θ̃ , �k+1) − θ̃ |2π + |θ̃ − θ̂k|2π

= |M(θ̃ , �k+1) − θ̃ |2π + |θ̃ − M(θ̃ , �k )|2π

= d (θ̃ , �k+1) + d (θ̃ , �k )

<
π

Nk+1
, (A18)

where the first line follows by the triangle inequality, the
second line follows because θ̃ ∈ �k and thus θ̂k = M(θ̃ , �k ),
the third line follows by the definition Eq. (A2) of the distance
d , and the final inequality follows because θ̃ ∈ �k+1. There-
fore, since the elements of �k+1 are separated by 2π/Nk+1,
by Eq. (A18) M(θ̃ , �k+1) must be the closest element in
�k+1 to θ̂k . But that closest element is θ̂k+1, by definition, so
θ̂k+1 = M(θ̃ , �k+1), i.e., θ̃ ∈ �k+1. �

Corollary 1. If θ̃ ∈ ⋂
k′�k �k′ , and {�′

k′ }k′�kmax
are another

set of measurement data satisfying

d (θ̃ , �′
k′ ) � d (θ̃ , �k′ ), (A19)

then θ̃ ∈ ⋂
k′�k �′

k′ ⊆ ⋂
k′�k �′

k′ , where {�′
k′ }k′�k and

{�′
k′ }k′�k are generated by the �′.
The corollary shows that any improvement of the mea-

surements that reduces the error to any of the consecutively
consistent values θ̃ ∈ ⋂

k′�kmax
�k′ will still cause that θ̃ to be

identified as a correct value (cf. Fig. 3, illustrating that this is
not the case for

⋂
k′�kmax

�k′ ).
Notice that the �k sets are defined in terms of distance

from the θ̂k , automatically making them intervals. The �k are
instead defined in terms of distance to the �k . Theorem 1 and
Remark 1 together imply that

⋂
k′�k �k′ is a simple interval.

Lemma 1. Let D = π
2Nk

− 1
2 |θ̂k − θ̂k−1|2π . If D < 0, then

�k ∩ �k = ∅. Otherwise,

�k ∩ �k = (θ̂k−1 ∓ D, θ̂k ± D)2π . (A20)

The 2π subscript indicates that the interval is circular, and
the ± means that the interval should be interpreted as follows:
connect θ̂k and θ̂k−1 along the shortest arc, then expand that arc
by a circular distance D on both sides. Also, the arc �k ∩ �k

has length < π .
Proof. We first prove that the arc �k ∩ �k has length

< π . The worst case is when k = 1: in this case, assuming
that Nk is strictly increasing, N1 � 2, so D � π/4. Since �1

contains Nk � 2 angles, |θ̂1 − θ̂0|2π < π/2. Hence the arc
(θ̂k−1 ∓ D, θ̂k ± D)2π has length at most π .

For the main proof, first note that by applying Remark 1 to
the distances in the definition of �k [Eq. (A12)],

�k ∩ �k = �k ∩
{
θ̃

∣∣∣ |θ̃ − θ̂k|2π + |θ̃ − θ̂k−1|2π <
π

Nk

}
.

(A21)
Because of the interval representation of �k ,

�k ∩ �k = (θ̂k − π/Nk, θ̂k + π/Nk )2π

∩
{
θ̃

∣∣∣ |θ̃ − θ̂k|2π + |θ̃ − θ̂k−1|2π <
π

Nk

}
. (A22)

The first interval is a superset of the second set therefore

�k ∩ �k =
{
θ̃

∣∣∣ |θ̃ − θ̂k|2π + |θ̃ − θ̂k−1|2π <
π

Nk

}
. (A23)

Because |θ̂k−1 − θ̂k|2π < π , for any θ̃

|θ̃ − θ̂k|2π + |θ̃ − θ̂k−1|2π = |θ̂k−1 − θ̂k|2π

+
{

0, θ̃ ∈ (θ̂k−1, θ̂k )2π ,

2 min{|θ̂k−1 − θ̃ |2π , |θ̂k − θ̃ |2π }, θ̃ /∈ (θ̂k−1, θ̂k )2π .

(A24)
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Consider the first case in Eq. (A24), where θ̃ ∈ (θ̂k−1, θ̂k )2π :
from Eq. (A23) we obtain

θ̃ ∈ �k ∩ �k ⇔ |θ̂k − θ̂k−1|2π <
π

Nk
. (A25)

The right-hand inequality may be rewritten in terms of D as

0 <
π

2Nk
− 1

2
|θ̂k − θ̂k−1|2π = D, (A26)

and thus θ̃ is in the interval in Eq. (A20).
Alternatively, in the second case of Eq. (A24), where θ̃ /∈

(θ̂k−1, θ̂k )2π , θ̃ ∈ �k ∩ �k is equivalent to

|θ̂k − θ̂k−1|2π + 2 min{|θ̂k−1 − θ̃ |2π , |θ̂k − θ̃ |2π } <
π

Nk
,

(A27)
or

min{|θ̂k−1 − θ̃ |2π , |θ̂k − θ̃ |2π } <
π

2Nk
− 1

2
|θ̂k − θ̂k−1|2π = D,

(A28)
which is precisely checking whether θ̃ is within D of the end
points of the angular interval, also precisely as desired. �

Theorem 2. Testing for membership in
⋂

k′<k �k′ is equiv-
alent to testing for membership in the intersection of the
intervals in Lemma 1.

Proof. This follows from Lemma 1, noticing that, by The-
orem 1,

⋂
k′�k �k′ ⊆ ⋂

k′�k �k′ . �

3. Historical consistency

Recall the definition of 
k[δθk] [Eq. (19) in the main text]:


k[δθk] =
{
θ̃

∣∣∣∣ d (θ̃ , �k ) <
δθk

Nk

}
, (A29)

where {δθk}k�kmax is a sequence of positive real numbers. In
the following, |A| denotes the length of the interval, A.

Lemma 2. Suppose a ∈ R, and 0 � L′ < L. Then,

b ∈ (a, a + L) ⇐⇒ |(b − L′, b + L′) ∩ (a, a + L)| > L′.
(A30)

This generalizes to angular intervals as long as L + 2L′ < 2π .
Theorem 3. Consider an RPE schedule Nk with N0 = 1 and

Nk > Nk−1. Assume that δθk is a local consistency error bound
schedule; i.e., it satisfies δθk

Nk
+ δθk−1

Nk−1
� π

Nk
, and, in addition,

δθk−1

Nk−1
> δθk

Nk
for all 0 < k � kmax. Then the two following state-

ments are equivalent:

θ̂k ∈
⋂
k′�k


k′ ∀k � kmax, (A31)

and ∣∣∣∣∣
⋂
k′�k


k′

∣∣∣∣∣ >
δθk

Nk
∀k � kmax. (A32)

Proof. We proceed by induction on kmax. For the base case,
note that θ̂0 ∈ 
0[δθ0] [i.e., Eq. (A31) holds], and N0 = 1, so
|
0[δθ0]| = 2δθ0 > δθ0 [i.e., Eq. (A32) holds].

Let kmax be a positive integer. The induction hypothesis is
that Eq. (A31) and Eq. (A32) are equivalent ∀k � kmax − 1,
i.e., that either both or neither hold. If neither hold, then that
remains true even when the k = kmax cases are included. If

both hold, then it will be enough to show that under this
assumption

θ̂kmax ∈
⋂

k′�kmax


k′ ⇔
∣∣∣∣∣

⋂
k′�kmax


k′

∣∣∣∣∣ >
δθkmax

Nkmax

. (A33)

First, notice that by the definitions Eq. (A5) and Eq. (A29),⋂
k′�kmax


k′ = (�kmax ∩ 
kmax ) ∩
⋂

k′�kmax−1


k′ , (A34)

and

�kmax ∩ 
kmax =
(

θ̂kmax − δθkmax

Nkmax

, θ̂kmax + δθkmax

Nkmax

)
. (A35)

Equation (A33) is then equivalent to

θ̂kmax ∈
⋂

k′�kmax


k′

⇐⇒
∣∣∣∣∣(�kmax ∩ 
kmax ) ∩

⋂
k′�kmax−1


k′

∣∣∣∣∣ >
δθkmax

Nkmax

. (A36)

Because
⋂

k′�kmax−1 
k′ is an interval of length L >
δθkmax−1

Nkmax−1
,

inserting Eq. (A35) and applying Lemma 2 gives the claim. �

APPENDIX B: ROBUST RESOURCE SCALING

In Ref. [13], RPE was shown to be robust to additive errors,
which in turn makes the protocol robust to a range of physical
errors including SPAM errors. While there was a mistake
in the details of that analysis [18], here we show that the
main result still holds, and any protocol that has RPE-like
characteristics can be made robust.

Let X = {X1, . . . , Xkmax} be a set of binomial random vari-
ables, where it requires cost ck to obtain a sample of Xk .
Suppose there is a protocol that, for each k ∈ [kmax], takes
mk samples of Xk to create an estimate x̂k of E[Xk] (the
average value of Xk), where |E[Xk] − x̂k| < δ with probabil-
ity at least 1 − 2 exp [−2mkδ]. The cost of this protocol is∑kmax

i=1 ckmk . (Here δ is the same constant for all k.) Note that
1 − 2 exp (−2mkδ) probability of success is natural because
many results that involve bounding the success probability
of binomial random variables rely on Hoeffding’s inequality,
which produces this term.

Given such a protocol, we can simulate it using binomial
random variables X ′ = {X ′

1, . . . , X ′
kmax

} that approximate X , if
we are promised that for all k, |E[Xk] − E[X ′

k]| < ε < δ for
some constant ε. If the cost of sampling X ′

k is ck , then the
cost of the new protocol will be only a constant factor more
than the original protocol. Consider taking m′

k = mkδ/(δ −
ε) samples of X ′

k . Then using the Hoeffding inequality for
the binomial distribution, we can obtain an estimate x̂′

k of
E[X ′

k] to within additive error δ − ε with probability of error
at most

2 exp [−2m′
k (δ − ε)] = 2 exp [−2mkδ]. (B1)

Because |E[Xk] − E[X ′
k]| < ε < δ, this estimate x̂′

k is actually
within δ of E[Xk] with probability of error 2 exp (−2mkδ).
Thus we can use our estimates x̂′

k in place of x̂k in the
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original protocol and achieve the same result. The cost is∑kmax
i=1 ckmkδ/(δ − ε), as claimed.
The consequence of this analysis is that any experiment

dealing with binomial random variables that does not require
precise estimates of any single variable will still be successful
even if those variables become biased, at the cost of a mul-
tiplicative, constant overhead. In particular, this means that
it is possible to still achieve Heisenberg scaling using the
phase estimation protocol outlined here, even in the presence
of noise, as long as the noise does not shift the probabilities of
the measurement outcomes by more than a constant.

However, this statement is difficult to take advantage of
in practice, since knowing how much to increase the sample
number requires knowing the size of ε. This brings us back to
the main purpose of the present work, which is to detect when
the noise does not satisfy this property.

APPENDIX C: SAMPLE COMPLEXITY

In this Appendix we demonstrate the scaling of sample
complexity, as a function of noise in the quantum channel,
to achieve a particular target error bound.

1. Preliminaries

For a sufficiently large number of samples M, the binomial
distribution is approximately the normal distribution:

Binomp,M (k) ≈ NormM p,
√

M p(1−p)(k)

= 1√
2π

√
M p(1 − p)

e− 1
2

(k−M p)2

M p(1−p) . (C1)

Also, the product of two normal distributions is a rescaled
normal distribution. We prove this here and obtain the rescal-
ing factor. First, observe that

[2πσaσb Normμa,σa (x) Normμb,σb (x)]−2 = exp

[(x − μa

σa

)2

+
(x − μb

σb

)2
]

(C2)

= exp

[
x2 − 2μax + μ2

a

σ 2
a

+ x2 − 2μbx + μ2
b

σ 2
b

]
(C3)

= exp

⎡
⎣
⎛
⎝√

σ−2
a + σ−2

b x − μaσ
−2
a + μbσ

−2
b√

σ−2
a + σ−2

b

⎞
⎠

2

+
(

μ2
aσ

−2
a + μ2

bσ
−2
b −

(
μaσ

−2
a + μbσ

−2
b

)2

σ−2
a + σ−2

b

)]
(C4)

= [√
2πσ Normμ,σ (x)

]−2
exp

[
μ2

aσ
−2
a + μ2

bσ
−2
b −

(
μaσ

−2
a + μbσ

−2
b

)2

σ−2
a + σ−2

b

]
, (C5)

where σ−2 = σ−2
a + σ−2

b and μ = σ 2(μaσ
−2
a + μbσ

−2
b ). It follows that

Normμa,σa (x) Normμb,σb (x) = Normμ,σ (x)
σ√

2πσaσb

exp

[
−1

2

(
μ2

aσ
−2
a + μ2

bσ
−2
b −

(
μaσ

−2
a + μbσ

−2
b

)2

σ−2
a + σ−2

b

)]
. (C6)

Better yet, the scale factor can be expressed in terms of an-
other normal distribution:

Normμa,σa (x) Normμb,σb (x) = Normμ,σ (x) Norm0,σ ′ (x′),
(C7)

where x′ = μa − μb and σ ′2 = σ 2
a + σ 2

b .

2. Complexity

We now derive an expression for pλ,φ,M (φ̂), the probability
density function for obtaining the estimated angle φ̂ given a
distribution by taking M samples, as described by Eq. (42).
We suppress the subscripts for typographical clarity. In par-
ticular, in the large-M limit, λ and M appear only in the
combination λ2M, showing that the effect of λ is simply to
determine the number M of actual, noisy samples required in
order to achieve some desired number M ′ of effective, noise-
less samples, as M = λ−2M ′. Unlike a generic error model,

depolarization noise is fully characterized by the λ parameter
(i.e., φ is unchanged), making this result particularly useful in
that case.

The experimental data are used by the RPE algorithm to
generate an estimate of the angle of rotation of Ut. As de-
scribed in Eq. (5), this is the angle φ̂ satisfying

λ̂

(
cos φ̂

sin φ̂

)
=

(
2 ĉ

M − 1

2 ŝ
M − 1

)
=

(
τc

τs

)
, (C8)

where ĉ and ŝ are the sample counts from Eq. (3) and Eq. (4),
respectively, and M is the total number of measurements.
Notice that

τs

τc
= tan φ̂ (C9)
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modulo additive factors of π . If we restrict our attention to the
case φ̂ ∈ [0, π ), Eq. (C9) uniquely determines τs and τc (and
therefore ŝ and ĉ). It follows that the probability of measuring
an angle φ̂ is

M∑
ĉ,ŝ

′
BinomPc,k ,M (ĉ) BinomPs,k ,M (ŝ), (C10)

where the prime denotes the restriction of the integers ĉ, ŝ ∈
[0, M] to those satisfying both ŝ � M/2 for φ̂ ∈ [0, π ) and
Eq. (C9). If φ̂ ∈ [π, 2π ), an analogous argument to the fol-
lowing leads to the same conclusions. Using the τ notation,
this probability can be expressed as the integral over the
ray originating at the origin, making an angle φ̂ with the τc

axis:

∫∫
ray φ̂

dτs dτc

(
M∑
ĉ,ŝ

BinomPc,k ,M (ĉ) BinomPs,k ,M (ŝ)δ(τc − (2ĉ/M − 1))δ(τs − (2ŝ/M − 1))

)
. (C11)

We identify the integrand as the probability density function, pτc,τs dτc dτs, and notice that, for sufficiently large M, the binomials
can be approximated using (C1), yielding

pτc,τs =
M∑
ĉ,ŝ

NormMPc,k ,
√

Mσc
(ĉ) NormMPs,k ,

√
Mσs

(ŝ)δ(τc − (2ĉ/M − 1))δ(τs − (2ŝ/M − 1)) (C12)

=
M∑
ĉ,ŝ

M2 NormMPc,k ,
√

Mσc
(ĉ) NormMPs,k ,

√
Mσs

(ŝ)δ(Mτc − (2ĉ − M ))δ(Mτs − (2ŝ − M )), (C13)

where

σ 2
s = Ps,k (1 − Ps,k ), and σ 2

c = Pc,k (1 − Pc,k ). (C14)

If pτx,τy is to be integrated over a sufficiently large area, the individual privileged points selected by the Dirac δ’s can be neglected
(in the large-M limit). More precisely, we replace the Dirac δ by a function Di, j (x, y) which is 1 for i < x < i + 1 and j < y <

j + 1, and 0 otherwise:

pτc,τs ≈
M∑
ĉ,ŝ

M2 NormMPc,k ,
√

Mσc
(ĉ) NormMPs,k ,

√
Mσs

(ŝ)D2ĉ−M,2ŝ−M (Mτc, Mτs) (C15)

≈ M2 NormMPc,k ,
√

Mσc
[M(τc + 1)/2] NormMPs,k ,

√
Mσs

[M(τs + 1)/2]. (C16)

Pulling a factor of 1/M out of each Norm yields

pτc,τs = NormPc,k ,σcM−1/2 ((τc + 1)/2) NormPs,k ,σsM−1/2 ((τs + 1)/2). (C17)

Next, parametrize the probability using Eq. (42), (
2Pc,k − 1
2Ps,k − 1

)
=

(
λ cos φ

λ sin φ

)
, (C18)

so that

σ 2
s = 1 − λ2 sin2 φ, and σ 2

c = 1 − λ2 cos2 φ, (C19)

and

pτc,τs = Norm(λ/2) cos φ,σcM−1/2 (τc/2) Norm(λ/2) sin φ,σsM−1/2 (τs/2). (C20)

Because we are interested in the probability density function over φ̂, p(φ̂) dφ̂, we integrate pτx,τy over a wedge spanning angles
from 0 to φ̂,∫∫

wedge
pτc,τs dτx dτy =

∫ ∞

0
dτ

∫ φ̂

0
τ dφ̂′ Norm(λ/2) cos φ,σcM−1/2 ((τ/2) cos φ̂′) Norm(λ/2) sin φ,σsM−1/2 ((τ/2) sin φ̂′), (C21)

and then take the derivative with φ̂:

p(φ̂) =
∫ ∞

0
τ dτ Norm(λ/2) cos φ,σcM−1/2 ((τ/2) cos φ̂) Norm(λ/2) sin φ,σsM−1/2 ((τ/2) sin φ̂) (C22)

= 2

λ2
√

cos φ̂ sin φ̂

∫ ∞

0
τ dτ Normcos φ/ cos φ̂,2σc/[(λ2M )1/2 cos φ̂](τ/λ) Normsin φ/ sin φ̂,2σs/[(λ2M )1/2 sin φ̂](τ/λ) (C23)

= 2√
cos φ̂ sin φ̂

∫ ∞

0
τ dτ Normcos φ/ cos φ̂,2σc/[(λ2M )1/2 cos φ̂](τ ) Normsin φ/ sin φ̂,2σs/[(λ2M )1/2 sin φ̂](τ ), (C24)
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where we have absorbed the trigonometric and λ/2 terms, and changed variable, τ/λ → λ. It therefore follows that, in the
large-M limit, the only effect of changing M on the distribution of observed angles is controlled by the quantity λ2M. In other
words, λ renormalizes M �→ λ2M = M ′, as claimed.

3. Distribution

In this section we further simplify Eq. (C24), our expression for the probability density p(φ̂) of estimated angles φ̂, providing
a form that is readily numerically evaluated. This result complements Appendix A of [13], which provides a bound on the integral
of the tails of this distribution. Using Eq. (C7), put

σ ′′−2 = M ′

4

(
σ−2

c cos2 φ̂ + σ−2
s sin2 φ̂

)
, (C25)

and

μ = 4
(
σ−2

c cos2 φ̂ + σ−2
s sin2 φ̂

)
M ′

(
cos φ/ cos φ̂

4σ 2
c /(M ′ cos2 φ̂)

+ sin φ/ sin φ̂

4σ 2
s /(M ′ sin2 φ̂)

)
(C26)

= (
σ 2

s cos2 φ̂ + σ 2
c sin2 φ̂

)(
σ 2

s cos φ cos φ̂ + σ 2
c sin φ sin φ̂

)
(C27)

= (1 − λ2(sin2 φ cos2 φ̂ + cos2 φ sin2 φ̂))((1 − λ2 sin2 φ) cos φ cos φ̂ + (1 − λ2 cos2 φ) sin φ sin φ̂), (C28)

to get

p(φ̂) = 2√
cos φ̂ sin φ̂

∫ ∞

0
τ dτ Normμ,σ ′′ (τ ) Norm0,σ ′2

(
cos φ

cos φ̂
− sin φ

sin φ̂

)
, (C29)

where

σ ′2 = 4

M ′
(
σ 2

c / cos2 φ̂ + σ 2
s / sin2 φ̂

)
. (C30)

Because we are focusing on the M → ∞ limit, the sign of μ

determines whether or not the integral over τ is 0 or 1. That
sign is determined by the quantity

(1 − λ2 sin2 φ) cos φ cos φ̂ + (1 − λ2 cos2 φ) sin φ sin φ̂

(C31)

= cos(φ − φ̂) − λ2(sin2 φ cos φ cos φ̂ + cos2 φ sin φ sin φ̂)

(C32)

= cos(φ − φ̂) − λ2 sin φ cos φ(sin φ cos φ̂ + cos φ sin φ̂)

(C33)

= cos(φ − φ̂) − λ2

2
sin(2φ) sin(φ + φ̂) (C34)

= cos δ − λ2

2
sin(2φ) sin(2φ + δ) (C35)

= cos δ − λ2

2
sin(2φ)[sin(2φ) cos δ + cos(2φ) sin δ] (C36)

= cos δ

[
1 − λ2

2
sin2(2φ)

]
+ λ2

4
sin(4φ) sin δ, (C37)

where δ = φ̂ − φ. This quantity is guaranteed to be posi-
tive if cos δ > 1/2, or equivalently |δ| < π/3. Then μ > 0
and, because σ ′′ → ∞ in the large-M limit being considered,
μ/σ ′′ → ∞, causing the integral over τ to go to unity:

p(φ̂) = 2μ√
cos φ̂ sin φ̂

Norm0,σ ′

(
cos φ

cos φ̂
− sin φ

sin φ̂

)
. (C38)

On the other hand, if μ < 0, the value of p(φ̂) is zero. Ab-
sorbing sin φ̂ cos φ̂ from the argument, we get

p(φ̂) = 2μ Norm0,σ0M ′−1/2 (sin(φ − φ̂)). (C39)

APPENDIX D: LIMITATIONS OF AN ALTERNATIVE, SET
FORMULATION OF RPE

In this Appendix, we consider only the case that Nk = 2k ,
and discuss an alternative formulation of RPE. In standard
RPE, a single angle θ̂k is selected at each generation. Instead,
one might imagine identifying sets �k of permitted angles,
selected on the basis of their proximity to �k . Contrast this
with the sets of angles used in Criteria 1, 2, and 3 developed
above, which are defined by proximity to a single selected
angle θ̂k . In particular, these �k are not necessarily a single
interval, and may be computationally intensive to track. One
might therefore expect to obtain additional deductive strength
by using these sets, since they require significantly more clas-
sical power to manage. However, we show that this alternative
formulation cannot tolerate errors greater than π/3 without
failing to exclude infinitely many false candidate values for
the angle, and therefore it provides no advantage over standard
RPE.

To make this protocol precise, assume that at every gener-
ation the measurements suffer an error no greater than some
fixed angle 2πα,

d (2πτ,�k ) < (2πα)2−k, (D1)

where 2πτ is the “true” angle we are attempting to mea-
sure, and we are guaranteeing that the measurements are
sufficiently accurate. One may ask the question, “If 2πα is
larger than the π/3 uniform-approximation limit (the limit
for standard RPE), can we still guarantee a valid estimate of
the true angle 2πτ?” Here, we provide a counterexample by
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FIG. 9. Uniform-local and intersequence consistency test failure points as a function of actual failure point.

showing that, for any 2πα > π/3 and integer j � 0, there is
a sequence of measurements satisfying Eq. (D1) that always
includes a false angle 2πφ, defined by

2πφ = 2π
2− j

3
. (D2)

In other words, for any 2πα > π/3, we demonstrate measure-
ments that satisfy the error bound, but converge to any one of
infinitely many incorrect 2πφ.

To construct the counterexample, we first clarify the exact
process of this generalized set formulation of RPE, which we
parametrize by some {βk}k�0, with βk > 0. As with standard
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FIG. 10. Probability-historical and angular-historical consistency test failure points as a function of actual failure point.

RPE, at every generation, Nk candidate values for θ are pro-
vided in �k . We define the permitted subset �k of the angular
space as

�k = �k−1 ∩ {θ | ∃θ̃k ∈ �k : |θ̃k − θ |2π < 2πβk}
=

⋂
k′�k

{θ | ∃θ̃k′ ∈ �k′ : |θ̃k′ − θ |2π < 2πβk′ }, (D3)

for k � 0, and letting �−1 = [−π, π ). βk must be at least
large enough that �k contains the true angle 2πτ , which can
be as far as 2πα from M(2πτ,�k ). Therefore we also require
that this generalized set formulation use

2πβk � 2πα2−k . (D4)
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Without loss of generality, we choose βk = α2−k to saturate
this inequality, because any larger choice of βk will necessar-
ily create a superset of �k , and therefore also fail to exclude
our pathological false angle φ.

If 2πφ is to serve as the angle in the counterexam-
ple, we need to show that 2πφ is a member of �k for
every k � 0. This will follow immediately from Eq. (D3)
if we show that 2πφ is within 2πβk of �k for each k,
i.e.,

2πφ ∈ {θ | ∃θ̃k ∈ �k : |θ̃k − θ |2π < 2πβk}. (D5)

Assume without loss of generality that τ = 0. Let the error in
the measured angle at generation k be 2πεk . Then all elements
of �k incur an error of 2π εk

Nk
, so

�k =
{

2π

Nk
(q + εk )

∣∣∣∣ q ∈ ZNk

}
. (D6)

If we insert this into Eq. (D5), i.e., replace θ̃k with 2π
Nk

(q + εk ),
then Eq. (D5) is equivalent to

∃q ∈ ZNk : 2π

∣∣∣∣ 1

Nk
(q + εk ) − φ

∣∣∣∣
2π

< 2πα2−k, (D7)

i.e.,

∃q ∈ ZNk : |q + εk − φNk|2π < α. (D8)

If we define F (x) = x − �x� to be the fractional part of the
real number x, then Eq. (D8) becomes

F (εk − φ2k ) < α or F (εk − φ2k ) > 1 − α. (D9)

Recall that |εk| � α, since α is defined to be the maximum
allowed error. Therefore, for any φ satisfying

F (φ2k ) < 2α or F (φ2k ) > 1 − 2α, (D10)

there exists εk such that φ satisfies Eq. (D9); i.e., φ is a
possible angle in the counterexample. Equivalently,∣∣F (φ2k ) − 1

2

∣∣ > 1
2 − 2α. (D11)

Now, suppose α > 1
6 . Then 1

6 > 1
2 − 2α. It therefore suf-

fices to satisfy ∣∣F (φ2k ) − 1
2

∣∣ > 1
6 (D12)

in order to satisfy Eq. (D11). If φ = 2− j

3 with j � k, F (φ2k )
is either 1

3 or 2
3 , both of which satisfy Eq. (D12). For j < k,

φ2k < 1/3, and Eq. (D12) is again also satisfied. This proves
the claim.

APPENDIX E: NUMERICAL DISTRIBUTIONS OF
PREDICTED FAILURES

In the numerical surveys of Sec. IV, 1000 realizations of
RPE were simulated, and consistency checks applied on each
of these RPE runs. The actual failure points were calculated
via Eq. (10), and the discrepancy of the predicted and actual
failure points is shown in Figs. 4 to 6. The distributions of
these discrepancies are shown in the shading, but one might
be additionally interested in each test’s ability to respond to
varying actual failure points. To address this, we include the
multiplot Figs. 9, 10, and 11, displaying the distribution of
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FIG. 11. Consecutive consistency test failure points as a function
of actual failure point.

discrepancies for each actual failure rate, for each test, and
for each error rate. Data are only shown for depolarization
error rates 1/8, 1/32, 1/128, and 1/512. The distributions
are shown as “violin plots,” with widths proportional to the
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number of realizations with a particular generation discrep-
ancy. The red dots are the means of the distribution, and the

white dots the mode. Notice the different y-axis scale of the
consecutive consistency check, shown in Fig. 11.
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