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Continuous real-time sensing with a nitrogen-vacancy center via coherent population trapping
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We propose and theoretically analyze the use of coherent population trapping of a single diamond nitrogen-
vacancy (NV) center for continuous real-time sensing. The formation of the dark state in coherent population
trapping prevents optical emissions from the NV center. Fluctuating magnetic fields, however, can kick the NV
center out of the dark state, leading to a sequence of single-photon emissions. A time series of the photon
counts detected can be used for magnetic field estimations, even when the average photon count per update
time interval is much smaller than 1. For a theoretical demonstration, the nuclear spin bath in a diamond lattice
is used as a model fluctuating magnetic environment. For fluctuations with known statistical properties, such
as an Ornstein-Uhlenbeck process, Bayesian inference-based estimators can lead to an estimation variance that
approaches the classical Cramer-Rao lower bound and can update dynamical information in real time with the
detection of just a single photon. Real-time sensing using coherent population trapping adds a powerful tool to
the emerging technology of quantum sensing.
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I. INTRODUCTION

Quantum sensing exploits the sensitivity of a simple
quantum system, such as solid-state spins, cold atoms, or
superconducting circuits, to a given physical quantity to de-
rive an estimate for the physical quantity. The near-term
prospect for emerging quantum technologies and the potential
for discoveries in wide ranging research areas have stimulated
intense research efforts in quantum sensing [1,2]. One of the
most promising systems for quantum sensing is a negatively
charged nitrogen-vacancy (NV) center in diamond, which can
enable sensing of magnetic field, electric field, temperature,
and strain with nanometer spatial resolution [3–6].

The most widely used quantum sensing approach has been
Ramsey interferometry or Ramsey fringes, which probe the
coherent time evolution of a single or a collection of two-level
systems [3,7]. Incorporation of Bayesian phase estimations,
adaptive measurements, and machine learning in Ramsey in-
terferometry can further improve the sensitivity, increase the
dynamical range, and reach the Heisenberg limited scaling of
the underlying sensing process [8–14]. Ramsey interferometry
is especially suitable for sensing of static as well as peri-
odic signals. Repeated Ramsey interferometric measurements
also allow the tracking of time-dependent fields [13,15,16].
Special Bayesian phase estimation and wave-form reconstruc-
tion techniques have been developed for the time-dependent
sensing [12,15,17]. Nevertheless, since each Ramsey inter-
ferometric measurement consists of three separate stages,
initialization, coherent time evolution, and read-out, Ramsey
interferometry cannot provide continuous real-time sensing.

Here we propose and theoretically analyze the use of
coherent population trapping (CPT) in a NV center for contin-
uous real-time sensing. In a CPT process, a �-type three-level
system is trapped in a dark state, i.e., a special superposi-

tion of the two lower states, which is decoupled from the
upper state due to destructive quantum interference [18]. The
formation of the dark state prevents optical emissions from
the NV center. A fluctuating magnetic environment, however,
can kick the NV center out of the dark state, leading to a
sequence of single-photon emissions from the NV center.
These single-photon emissions carry the information on the
fluctuating magnetic field and can in principle provide con-
tinuous real-time sensing of the magnetic field, as illustrated
schematically in Fig. 1. Nevertheless, the overall collection or
detection efficiency for optical emissions from a NV center
is only a few percent under typical experimental conditions.
For a realistic implementation, a primary challenge is to make
continuous real-time estimations of the magnetic field with the
few photons detected.

We show that this challenge can be overcome with the use
of Bayesian inference. For the theoretical analysis, we have
used the nuclear spin bath in diamond as a model fluctuat-
ing magnetic environment. We have employed the stochastic
Schrodinger equation (SSE) to simulate single-photon emis-
sions from a NV center in a CPT setting [19] and have treated
the nuclear spin bath as an Ornstein-Uhlenbeck (OU) pro-
cess [20–22]. Estimations of fluctuating magnetic fields are
obtained from a time series of photon counts, for which the
average number of photons per update time interval is much
smaller than 1. By taking advantage of the known statistical
properties of the fluctuating environment, we demonstrate that
the Bayesian estimator can provide dynamical information on
a time scale that is comparable to the inverse of the average
photon counting rate and specifically can update dynamical
information in real time with the detection of just a single
photon. Additional theoretical analysis also shows that the
Bayesian estimator can approach the classical Cramer-Rao
lower bound (CRLB).
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FIG. 1. Schematic of CPT-based continuous real-time sensing of
the fluctuating magnetic environment at a NV center. The fluctuating
magnetic field, which induces single-photon emissions from the NV
center, can be estimated from the time series of the photon counts
detected.

Note that continuous sensing using resonant fluorescence
of a two-level system has been proposed and analyzed in
earlier studies, for which the distribution of waiting times
between detected photon counts is used for Bayesian estima-
tions of parameters such as Rabi frequency or laser detuning
[23–26]. This scheme has also been extended to a �-type
three-level system, for which two-channel photon counting is
used, though the role of CPT was not examined. The Bayesian
estimations in these studies use the entire data set including
data pre- and post-time of interest, yielding information on
the past quantum state [27]. As such, these estimations do not
provide information in real time.

II. PHYSICAL MODEL

A. Coherent population trapping

For a NV center in diamond, several energy-level schemes
have been used for the realization of CPT [28–32]. Without
losing generality, here we consider two ground spin states,
ms = 0 and ms = 1, coupling to an excited state, |e〉, through
two dipole optical transitions with frequencies ν0 and ν1, re-
spectively. Two external optical fields with frequencies ω0 and
ω1 couple to the two respective optical transitions with equal
Rabi frequency �, as shown schematically in Fig. 1. With
ω0 ≈ ν0, ω1 ≈ ν1, and ρee � 1, the steady-state excited-state
population is given by [31]

ρee = �2

2�κ

[
1 − �2

2κ

γs + �2/2κ

(δ − ωB)2 + (γs + �2/2κ )2

]
, (1)

where γs and κ are the decay rates for the spin coherence and
optical dipole coherence, respectively, � is the spontaneous
emission rate of the excited state, δ = ω0 − ω1 is the laser de-
tuning, and ωB = ν0 − ν1 is the frequency separation between
the two spin states. CPT, which corresponds to the formation
of a dark state for the two lower spin states, occurs near the
Raman resonance with � = δ − ωB = 0. Note that the exter-
nal optical fields lead to a power broadening described by the
term �2/2κ in Eq. (1). The CPT process can be characterized

by a dimensionless cooperativity, defined as C = �2/2κ γ s.
CPT-based sensing will be carried out in the regime of C � 1.

B. Nuclear spin bath

We simulate the magnetic field fluctuations induced by the
nuclear spin bath as an OU process characterized by a memory
time τN [33], with

dx = − 1

τN
xdt +

√
2σ 2

τN
dWt , (2)

where x(t ) = ωB(t ) − 〈ωB(t )〉 represents the bath-induced
fluctuation in ωB, dWt denotes a Wiener increment that has
a Gaussian distribution with mean zero and variance dt , and
the autocorrelation function for x(t ) is characterized by

R(t ) = 〈x(t0)x(t0 + t )〉 = σ 2e−|t |/τN . (3)

For the two bath parameters, σ can be derived directly
from the decay of the Ramsey fringes and τN can be obtained
from additional experiments of spin echoes [22]. For the
numerical simulations in this paper, we take τN = 1 ms and
σ/2π = 0.13 MHz (which corresponds to a dephasing time
T ∗

2 = 1.7 μs [34]) for a 13C nuclear spin bath in diamond.
Figure 2(a) shows an example of the simulated x(t) and the
autocorrelation function averaged over 1000 runs.

C. Time series of photon counts

Magnetic field fluctuations induced by the nuclear spin
bath of the diamond carbon lattice lead to corresponding fluc-
tuations in ωB, which can kick a NV center out of or into the
dark state in a CPT setting. This in turn induces fluctuations in
the excited state population and leads to a sequence of single-
photon emissions. Note that the nuclear spin bath fluctuates
at a time scale many orders of magnitude slower than the NV
radiative lifetime (12 ns [35]). It takes only a few spontaneous
emission events for the NV center to reach the steady state, as
confirmed in an earlier experimental study [36]. In this CPT
setting, the single-photon emissions from the excited state
carry the information on the fluctuating nuclear spin bath.

We have used the SSE to simulate single-photon emis-
sions from a �-type three-level system in a CPT setting (see
Appendix A), for which we take �/2π = 13 MHz [35]. A
Rabi frequency of �/2π = 2.8 MHz and a Raman detuning
or bias of �0 = δ−〈ωB〉 = 2π×0.25 MHz are also used in
the numerical simulation. Figure 2(b) shows the time series of
the photons emitted by the three-level system, along with the
corresponding excited state population. Only a small fraction
of these photons are detected in a realistic sensing experiment.
Figure 2(c) plots the time series of the photons detected, for
which an overall collection or detection efficiency, η = 1.6%,
is used. Under these conditions, the average photon count
rate is approximately 10 000 per second. For comparison, the
underlying fluctuations in ωB are also plotted in Fig. 2(c).
Because of the very low photon counting rate, it is difficult
to directly discern the pattern of the fluctuations from the time
series of the detected photon counts.

Alternatively, we can simulate single-photon emissions us-
ing the population of the excited state with the assumption that
the system has a Poisson distributed probability to emit a pho-
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(a)

(b)

(c)

FIG. 2. (a) Simulated fluctuations in ωB (grey line) and the auto-
correlation R(t) (dot-dashed line). (b) The excited state population
(grey lines) as a function of time and the corresponding time se-
ries of photon counts emitted by the NV center (blue dots). (c)
The time series of the photon counts detected (orange diamond)
and the underlying fluctuation in ωB. The CPT parameters used
are (�, �,�0)/2π = (2.8, 13, 0.25)MHz. The step size used for the
photon counting is 0.1 μs.

ton with the average detection rate given by η �ρee. For this
simulation, we make the approximation that ρee adiabatically
follows the magnetic field of the bath, since the time scale
of the bath fluctuation is orders of magnitude longer than the
NV spontaneous emission lifetime. As shown in Appendix A,
magnetic field estimations using the single-photon emissions
obtained with the steady-state ρee exhibit the same behavior as
those obtained with the SSE. For numerical calculations that
require more than a few hundred runs, we have thus simulated
single-photon emissions using the steady-state ρee.

Note that for the simulation of single-photon emissions, we
have set γs = 0 since in the limit of C � 1, the CPT spectral

linewidth is completely dominated by power broadening, as
shown in Eq. (1). In this limit, intrinsic decoherence of the NV
center does not affect CPT-based real-time sensing, as will be
discussed in more detail in Appendix A.

III. ESTIMATORS

In this section, we discuss estimators, which we have
used to output a time series of estimated frequencies, {x̃n} =
{x̃1, x̃2, . . . , x̃n, . . .}, from a time series of photon counts,
{yn} = {y1, y2, . . . , yn, . . .}, where yn is the number of pho-
tons detected during the nth time interval and the duration
of the time interval τ is small compared with τN . We will
also discuss how close these estimations can be to the actual
frequencies, {xn} = {x1, x2, . . . , xn, . . .}.

A. Bayesian estimator

We have used the Bayesian inference described by the
Bayes update rule,

p(xn|yn, yn−1, . . . , y1) ∝ pȳn (yn|xn) × p′(xn|yn−1, . . . , y1).
(4)

to estimate x(t) from the time series of photon counts,
where p′(xn|yn−1, . . . , y1) is the prior probability distribu-
tion based on the previous time series of photon counts,
p(xn|yn, yn−1, . . . , y1) is the a posteriori probability distribu-
tion, and pȳn (yn|xn) is the likelihood of detecting yn photons
in the nth time interval given xn. The likelihood follows a
Poisson distribution,

pȳn (yn|xn) = ȳyn
n e−ȳn

yn!
, (5)

where ȳn = ητ�ρee(xn) is the average number of detected
photons expected for the given time interval and the update
interval τ is sufficiently short such that ȳn is small compared
with 1. The estimation of x(t) as a function of time is then
given by

x̃(t ) =
∫

p(x, t )xdx. (6)

The prior probability distribution for xn can be improved
if the statistical properties of the fluctuating field are known.
For the OU process, the probability of finding xn at t + τ given
xn−1 at t is given by a normal distribution,

pOU (xn, t + τ |xn−1, t )

= N{xn−1e−τ/τN , σ 2[1 − exp(−2τ/τN )]} (7)

where the normal distribution has a mean of xn−1e−τ/τN and
a variance of σ 2[1− exp(−2τ/τN )]. In this case, the prior
probability distribution for xn can be improved as

p′(xn = x|yn−1, . . . , y1)

=
∫

dωp(xn−1 = x − ω|yn−1, . . . , y1)

× pOU (xn = xn−1 + ω, t + τ |xn−1, t ) (8)

We will refer to this improved Bayesian estimation process
as the OU Bayesian estimator. Note that the OU Bayesian
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estimator has also been used in an earlier study on the esti-
mations of magnetic field fluctuations in an atomic ensemble
[37].

B. Average count estimator

For comparison, we have also used the photon counts de-
tected in a relatively long duration, τa, to directly estimate
x(t). Specifically, we carry out the estimation by using

y(a)
n = η�τaρee(xn), (9)

where y(a)
n is the number of photons detected between time

nτ − τa and nτ . For achieving acceptable photon counts (of
order 10), we took τa = 100τ for the results presented in
Sec. IV. This average count approach is not expected to be
able to track bath fluctuations that occur in a relatively short
time scale.

Note that electromagnetically induced transparency (EIT)
of an ensemble of NV centers, which is closely related to CPT,
has been used for static sensing [38]. CPT of an ensemble of
NV centers, which can feature orders of magnitude greater
photon counting rates than those of a single NV, can also
be exploited for time-dependent sensing. A single quantum
sensor, such as a single NV, however, is necessary for sensing
microscopic fluctuations or for sensing at nanometer resolu-
tion.

C. Cramer-Rao lower bound

How close an estimation is to the actual quantity is
characterized by the average estimation variance, defined as
Var[x̃n(y)] = 〈[x̃n(y) − xn(y)]2〉. Theoretically, the classical
CRLB sets a lower bound on the variance. As shown in
Appendix B, the CRLB for the OU-Bayesian estimation is
given by

Var[x̃n(y)] � σ 2√
1 + 2τNη�σ 2g(σ )

, (10)

where g(σ ) = 〈(∂ρee/∂x)2/ρee(x)〉x.
For real-time sensing, only the historical data can be used.

Data taken after the estimation event cannot be used for the
estimation. However, the CRLB in Eq. (10) assumes that the
entire data set can be used for the estimation. As shown in
Appendix B, the CRLB when only the historical data can be
used is revised as

Var[x̃n(y)] � σ 2√
1 + 2τNη�σ 2g(σ )

× 2

1 + 4/
√

1 + 32τNη�σ 2g(σ )
, (11)

where we have assumed that τNη�σ 2g(σ ) > 2 (which is sat-
isfied in most cases). In the limit that τNη�σ 2g(σ ) � 1, the
CRLB for estimations using the historical data set is twice that
using the entire data set.

It should be noted that a necessary condition for achiev-
ing CRLB is that the posterior is a Gaussian distribution
[39]. For our system, the posterior, p(xn|yn, yn−1, . . . , y1), is
approximately Gaussian only when ρee depends linearly or
quadratically on x.

FIG. 3. (a) Estimations obtained with the average photon account
estimator, the simple Bayesian estimator, and the OU Bayesian es-
timator. The CPT and bath parameters used are the same as those
for Fig. 2, with an average count per time interval of 0.1. (b), (c)
Comparison of the detected photon counts (orange dots) with the
corresponding estimations obtained with the OU Bayesian estimator.
The average photon count per time interval is 0.2 and 0.05 for (b)
and (c), respectively, with other conditions the same as those used in
(a). The solid grey lines in (a)–(c) plot the actual fluctuations.

IV. RESULTS AND DISCUSSION

We have used the three estimators discussed in Sec. III
for estimations of ωB from a sequence of single-photon emis-
sions. The estimations as a function of time shown in Fig. 3(a)
are based on the simulated fluctuations and the corresponding
time series of photon counts shown in Appendix A. The up-
date time interval used is τ = 10 μs and the average photon
count per time interval is 0.1. As shown in Fig. 3(a), the
estimations obtained with the average count estimator exhibit
considerable deviations from the true frequency due to the
low photon count rate. The estimations also feature significant
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delays with respect to the fluctuations in the actual frequency.
The delays are due to the relatively long photon counting
period τa needed to avoid excessive fluctuations in the photon
counts used for the estimation. In comparison, the estimations
obtained with the simple Bayesian estimator provides a good
estimate for the relatively long time behavior of the frequency
fluctuations. However, the photon counts are too low for the
estimator to provide dynamical information on a relatively
short time scale.

Much improved estimations are obtained with the OU
Bayesian estimator, as shown in Fig. 3(a). By taking advan-
tage of the known statistical properties of the OU process, the
Bayesian estimator is able to yield dynamical information on
a time scale much shorter than that achieved with the sim-
ple Bayesian estimator. The OU Bayesian estimator provides
continuous real-time sensing of the fluctuating magnetic field,
even when the time scale of the fluctuation is comparable to
the inverse of the average photon count rate.

Figures 3(b) and 3(c) compare directly the detected photon
counts with the corresponding estimations obtained with the
OU Bayesian estimator, for which we varied the detection effi-
ciency to achieve an average photon count per time interval of
0.2 (with η = 3.2%) and 0.05 (with η = 0.8%), respectively,
with other conditions the same as those used for Fig. 3(a).
As shown in Figs. 3(b) and 3(c), the Bayesian estimator can
update dynamical information of the bath in real time with
the detection of just a single photon. In comparison, an earlier
study has used the complete CPT spectrum of a single NV
for the sensing of the nuclear spin bath in diamond [29], for
which it takes about 100 detected photons (or about 5 ms) to
obtain a single estimation.

For a quantitative analysis of the effectiveness of the
estimators, we have numerically calculated the estimation
variances and have compared these variances with those ex-
pected from the CRLB. The variances shown in Fig. 4 are
the averaged results of 100 runs. Each run covers the time
duration from t = 2 ms to t = 10 ms and uses sequences of
single photon emissions generated from the steady-state ρee,
as discussed in Sec. II C. The parameters used for the bath and
the CPT process are the same as those used for Fig. 2 unless
otherwise specified.

Figure 4(a) shows the variances obtained with the three
different estimators as a function of the memory time τN of
the nuclear spin bath. For comparison, Fig. 4(a) also plots
the theoretically expected CRLB for the OU Bayesian estima-
tor and the variance σ 2 of the actual frequency fluctuations.
As expected, the variances obtained with the average count
estimator are far above the CRLB. These variances also ex-
ceed σ 2. The variances obtained with the simple Bayesian
estimator fall below σ 2 but are still far above the CRLB. In
comparison, the variances obtained with the OU Bayesian
estimator nearly approach the CRLB. Both the variances and
the CRLB improve gradually with increasing τN . By taking
advantage of the known statistical properties of the fluctuating
fields, the OU Bayesian estimator extracts nearly the maxi-
mum amount of information from the detected single photons.

For the OU Bayesian estimator, the estimations are ex-
pected to depend on deviations of the statistical parameters
used in the estimator from the true parameters. Figure 4(b)
shows the ratio of the estimation variances over the corre-

(a)

(b)

FIG. 4. (a) The average variances for estimations obtained with
the average count estimator, simple Bayesian estimator, and OU
Bayesian estimator as a function of the bath memory time τN . The
estimation variances are also compared with the CRLB of the OU
Bayesian estimator and with σ 2, the variance of the fluctuating
ωB. (b) The ratio of the estimation variance over the CRLB as τN

and σ used in the OU Bayesian estimator deviate from the true
parameters, τ ′

N = 1 ms and σ ′/2π = 0.13 MHz.

sponding CRLB as τN and σ used in the estimator move away
from the true parameters. Variances close to the CRLB can
still be obtained when the deviations of τN and σ from the
true parameters are within 20%. The estimation variances,
however, can exceed those obtained from the simple Bayesian
estimator when τN and σ deviate from the true parameters by
more than 50%. As discussed earlier, τN and σ can be deduced
from experiments such as Ramsey fringes and spin echoes.
For the experimental implementation of the OU Bayesian
estimator, feedback control, which uses the estimations to
keep the NV in the dark state, can also be employed for the
further optimization of the statistical parameters used in the
estimator. In addition, the feedback control can also serve as a
verification for the estimations.

The choice of the CPT parameters, including Rabi fre-
quency � and bias �0 = δ−〈ωB〉, also strongly affects the
effectiveness of the estimations. For example, little informa-
tion on the magnetic field fluctuations can be obtained from a
sequence of single-photon emissions when �0 is set to near 0.
Figure 5(a) shows the variances for the OU Bayesian estimator
as a function of � and �0, with all other parameters the
same as those in Fig. 2. In this case, the optimal estimation
is achieved with �/2π = 2.5 MHz and �0/2π = 0.2 MHz.
In comparison, the corresponding CRLBs shown in Fig. 5(b)
decrease with decreasing � and �0, which is expected from
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(a)

(b)

FIG. 5. (a) Estimation variances vs � and bias (i.e., �0). The
color bar corresponds to Var/σ 2. (b) CRLBs for the OU Bayesian
estimator vs � and bias. The color bar corresponds to CRLB/σ 2.

Eq. (11). As can be seen from Eq. (11), the CRLB is mini-
mized when g(σ ) = 〈(∂ρee/∂x)2/ρee(x)〉x reaches maximum.

The optimal CPT parameters for the OU Bayesian esti-
mator shown in Fig. 5(a) reflect a tradeoff between a steep
∂ρee/∂x and the need to avoid the zero bias region. As dis-
cussed in more detail in Appendix C, this also corresponds to
the tradeoff between the working range of the sensing process
and how sensitive the sensing process can be. Note that as
discussed in Sec. III C, the CRLB is only achievable when the
posterior is a Gaussian distribution [39], which occurs when
ρee depends either linearly or quadratically on x. Near zero
bias, the CRLB can no longer be achieved.

V. CONCLUSION

We have shown theoretically that CPT can enable contin-
uous real-time sensing using a single quantum sensor such as
a NV center in diamond. The use of Bayesian inference for
the real-time sensing allows effective estimation of magnetic
fields from a time series of detected photon counts, for which
the average photon count per time interval is much smaller
than 1, and can lead to estimation variances that approach
the CRLB and to a time resolution that is comparable to
the inverse of the average photon counting rate. Combining
CPT with Bayesian inference that can take advantage of the
known statistical properties of the bath makes it possible to
update dynamical information of the bath in real time with the
detection of just a single photon.

While a NV center along with the surrounding nuclear spin
bath has been used as a model system for the theoretical anal-

ysis, other spin systems such as defect centers in SiC can also
serve as CPT-based quantum sensors [40]. In addition to the
nuclear spin bath, the real-time sensing can be applied to stud-
ies of time-varying magnetic field changes or fluctuations in
a variety of systems, for example, two-dimensional materials
on a diamond surface [41,42]. Real-time sensing of a single
nuclear spin is also possible, provided that the nuclear spin in
question features a magnetic field that exceeds considerably
that induced by the nuclear spin bath [43,44]. Together with
feedback control techniques, the real-time sensing can also
be used for the protection of a spin qubit from the surround-
ing magnetic fluctuations [16]. Overall, CPT-based real-time
sensing can add a powerful tool to the emerging technology
of quantum sensing.
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APPENDIX A: SIMULATION OF TIME SERIES
OF PHOTON COUNTS

For the �-type three-level system in Fig. 1 and with ω0 =
ν0, the Hamiltonian in the rotating frame is given by

H (t ) = h̄�

2
(|e〉〈0| + |e〉〈1| + |0〉〈e| + |1〉〈e|)

+ h̄[�0 + x(t )]|1〉〈1|. (A1)

For CPT-based real-time sensing, we operate the CPT pro-
cess with C � 1. In this regime, the power broadening [see
Eq. (1)] far exceeds the intrinsic decoherence rate (γs/2π ≈
0.1 kHz [45]). We have thus set γs = 0 in our simulation
unless otherwise specified. The master equation is then given
by

ρ̇(t )=− i

h̄
[H (t ), ρ(t )] + �

2
D(|0〉〈e|)ρ(t ) + �

2
D(|1〉〈e|)ρ(t ),

(A2)

where D(Ô)ρ(t ) = Ôρ(t )Ô+ − {Ô+Ô, ρ(t )}/2 and we have
also assumed κ = �/2.

We have used the SSE to simulate single-photon emissions
from the three-level system. The SSE, which tracks every
collapse of the system, is given by (with h̄ = 1)

d|ψ〉 = − i

(
H − i�

2
|e〉〈e|

)
|ψ〉dt + �

2
〈|e〉〈e|〉|ψ〉dt

+
( |0〉〈e|√〈|e〉〈e|〉 − 1

)
|ψ〉dN0

+
( |1〉〈e|√〈|e〉〈e|〉 − 1

)
|ψ〉dN1, (A3)

where N0 and N1 are the accumulated photon counts from
the |e〉 ↔ |0〉 and |e〉 ↔ |1〉 transitions, respectively. Without
any optical emission, the system evolves under an effective
Hamiltonian, H−i�(|e〉〈e| − 〈|e〉〈e|〉)/2. When a photon is
emitted via the |e〉 ↔ |0〉 (or |e〉 ↔ |1〉) transition, the system
collapses to the |0〉 (or |1〉) state.
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(a)

(b)

FIG. 6. (a) Time series of photon counts generated by the SSE
(orange dots), along with the underlying fluctuations in ωB (grey
lines). The step size for photon counting is 10 μs. (b) Estimation
variances obtained from time series of photon counts generated by
the SSE (solid orange lines) and those by the steady-state (SS)
population of the excited state (dashed green line with γs = 0 and
dot-dashed red line with γs/2π ≈ 0.1 kHz). The results shown are
averages over 100 runs. All other parameters used are the same as
for Fig. 3(a).

Figure 6(a) shows, along with the underlying fluctuations
in ωB, the calculated time series of photons detected with η =
1.6% and with the collection and detection loss modeled as a
random process. The parameters used are the same as those for
Fig. 2(c), except that the step size used for the photon counting
is 10 μs for Fig. 6(a) and is 0.1 μs for Fig. 2(c). The data set
in Fig. 6(a) are used for the estimations shown in Fig. 3(a).

We have also used the steady-state population of the ex-
cited state to model the single photon emission process. In
this case, the steady-state solution to Eq. (A2) is obtained
for a given xn. The �-type three-level system in the excited
state has a Poisson distributed probability to emit photons,
with a mean detected photon count, ȳn = ητ �ρee(xn), for
a given time interval τ . Figure 6(b) compares the estima-
tion variances derived from the time series of photon counts
obtained with the SSE and those obtained with the steady-
state population, for which we have used the OU Bayesian
estimator and the same parameters as for Fig. 6(a). As can
be seen from Fig. 6(b), estimations obtained with these two
simulation approaches exhibit essentially the same behaviors.
In addition, we have also included in Fig. 6(b) results obtained
with the steady-state population and with γs/2π ≈ 0.1 kHz,
which confirms that with C � 1, the intrinsic decoherence of

the NV center does not affect the CPT-based real-time sensing
process.

APPENDIX B: DERIVATION OF THE CRAMER-RAO
LOWER BOUND

For the estimation of a time series of parameters, there
exists a theoretical lower bound for the estimation variance
(i.e., the CRLB), Var[x̃i(y)] � (F−1)ii, where (F−1)ii is the
diagonal component of the inverse Fisher information matrix.
The Fisher matrix consists of two parts, Fi j = FM

i j + FB
i j , with

FM
i j =

〈
∂lnp(y|x)

∂xi

∂lnp(y|x)

∂x j

〉
, (B1)

FB
i j =

〈
∂lnp(x)

∂xi

∂lnp(x)

∂x j

〉
. (B2)

For the OU-Bayesian estimations, FM
i j represents the in-

formation provided by the time series of the photon counts,
whereas FB

i j contains the information provided by the correla-
tions inherent in the fluctuations [39].

We can evaluate the Fisher matrix analytically, with FM
i j =

�ητg(σ )δi j [46]. In the limit that the update interval τ → 0,
we have

F M (ti, t j ) = lim
τ→0

FM
i j

τ 2
= �ηg(σ )δ(ti − t j ). (B3)

In this limit, the Fourier transform of FB
i j is given by [46]

F{F B(ti, t j )} = F
{

lim
τ→0

FB
i j

τ 2

}
= 1

2πF{σ 2e−|ti−t j |/τN } . (B4)

Using the above results, we have derived the lower bound
for the estimation variance,

Var[x̃t (y)] � F−1(0) = σ 2√
1 + 2�ησ 2τN g(σ )

. (B5)

The CRLB in Eq. (B5) is for the entire data set and occurs
near the middle of the time series. However, only the historical
information can be used in real-time sensing. In this case, the
estimation effectively takes place at the end of the available
data set. The CRLB for the real-time sensing can thus be
obtained via the ratio between F−1

T,T , the diagonal element
of the inverse Fisher matrix at the end of the data set, and
F−1

T/2,T/2, the diagonal element of the inverse Fisher matrix at
the middle of the data set.

It can be shown that F−1
T,T /F−1

T/2,T/2 = det(F′
T )/det(F′

T/2)2,
where

F′
T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − τ 4
0 τ 3

0 − τ0

τ 3
0 − τ0 1 − τ 4

0
. . .

. . .
. . .

. . .

. . . 1 − τ 4
0 τ 3

0 − τ0

τ 3
0 − τ0 1 − τ 2

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
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+ g0

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
. . .

. . .

. . .

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(B6)

is a matrix of order n = T/τ , with g0 = �ηg(σ )τσ 4
0 /σ 2, τ0 =

e−τ/τN , and σ 2
0 = σ 2(1−τ 2

0 ). Using recurrence relations, we
obtain

F−1
T,T

F−1
T/2,T/2

=
(
Arn

1 + Brn
2

)
(
Arn/2

1 + Brn/2
2

)2 , (B7)

where A, B, r1, r2, which are determined by the boundary
conditions, are functions of τ0, g0. In the limit that n � 1, we
have

F−1
T,T

F−1
T/2,T/2

≈ AeTC+ + BeTC−

A2eTC+ + B2eTC− + 2ABeT (C++C− )/2
, (B8)

where C± = (−8 ±
√

1 + 32�ηg(σ )σ 2τN )/4τN . For our
choice of parameters, �ηg(σ )σ 2τN > 2. The CRLB when
only historical information can be used is then given by

F−1
T,T � F−1(0) · lim

T →∞
AeTC+ + BeTC−

A2eTC+ + B2eTC− + 2ABeT (C++C− )/2

= 2F−1(0)

1 + 4/
√

1 + 32�ησ 2τN g(σ )
. (B9)

APPENDIX C: TRADEOFF BETWEEN WORKING
RANGE AND SENSITIVITY

For sensing of a constant parameter, the minimum de-
tectable signal, which scales inversely with the total detection
time, is defined as the signal amplitude that yields unit signal-
to-noise ratio and the sensitivity is defined as the minimum
detectable signal per unit time [1]. However, this definition of
sensitivity is no longer applicable for sensing a time-varying

FIG. 7. Estimation variances vs �, for which the optimal �0 is
used for each �, with other parameters the same as for Fig. 5(a).

parameter with a given distribution, for which we would like
to know the estimation performance averaged over the entire
distribution rather than at a single point. In this case, we
can choose the estimation variance Var[x̃n(Y)] as an effective
measure of how good the sensing process is [17]. Note that√

Var[x̃n(Y)] is not the minimum detectable signal.
Although it is difficult to define a sensitivity for the sens-

ing of a time-varying parameter, for our case it is apparent
that the sharper the CPT dip is [more precisely the greater
(∂ρee/∂x)2/ρee(x) is], the more sensitive the sensing process
becomes. In comparison, the working range of the sensing
process, which is the maximum range of the distinguishable
signal, scales with the width of the CPT dip. There is thus
a tradeoff between the working range and how sensitive the
sensing process is. Since the power broadening of the CPT
dip is given by �2/�, the optimal choice of � for the sensing
process reflects this tradeoff.

To illustrate this tradeoff, Fig. 7 shows the calculated es-
timation variance as a function of �, for which the optimal
bias �0 is used for each �. When � is too small, the working
range is small compared with the actual range of the frequency
fluctuation, which is a few times of σ . Whereas when � is too
large, the sensing process becomes relatively insensitive. Both
cases result in relatively large Var[x̃n(Y)], as shown in Fig. 7.
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