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Quantum mechanics allows operations to be in indefinite causal order, leading to advantages in computational
and communication tasks. However, basic notions such as communication capacity have not yet been formalized.
In light of this, through the process matrix formalism, we formulate different classical capacities for a bipartite
quantum process. For one-way communication, we find that general quantum processes satisfy a generalization
of the Holevo bound, i.e., we can send, at most, one bit per qubit. The result also holds for processes with
indefinite causal order and with shared entanglement between the sender and the receiver. We further extend
known bounds to classical channel capacities, showing that general processes cannot outperform causally
separable ones. Next, we study bidirectional communication through a causally separable process. Our result
shows that a bidirectional protocol cannot exceed the limit of a one-way communication protocol. Finally, we
generalize this result to a multiparty broadcast communication protocol through a definite ordered process.
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I. INTRODUCTION

One of the key questions in quantum information is the
rate at which a quantum channel can transmit classical infor-
mation, as quantified by the classical capacity of the channel
[1,2]. Holevo’s seminal result [3], and following works [4,5],
provide upper bounds on the classical capacity, showing that
each qubit can communicate, at most, one bit of classical
information.

In a typical quantum communication protocol, the parties
act in a fixed order. However, more general situations are
possible, where causal order might be uncertain or even not
defined. A practical example can be a distributed system,
such as the internet, where different nodes communicate with
each other. In such systems, local clocks can suffer from ran-
dom errors and delays, leading to uncertainty in the ordering
of the events [6]. Even more radically, recent developments
have shown possibilities of indefinite causal structure, i.e.,
scenarios where the lack of order between the parties cannot
be reduced to classical ignorance [7,8]. From a foundational
point of view, this is relevant, for example, in quantum gravity
scenarios, where quantum superposition of spacetimes can
result in an indefinite causal order of events [9–11]. Prag-
matically, quantum control of causal order has been proposed
as a resource for computation and communication [7,12–20],
with several experimental implementations already performed
[21–27].

In light of the foundational and applied relevance, it is
important to understand how general quantum causal struc-
ture affects classical communication. In particular, given the
possibility to violate causal inequalities [8,28–30] and the ad-
vantage in certain communication tasks [13,14,16], one may

*k.goswami@uq.edu.au
†f.costa@uq.edu.au

wonder whether an indefinite causal structure can augment
the classical communication capacity and possibly exceed the
Holevo bound [4,5]. However, despite much work on various
communication protocols, the notion of classical capacities
in situations where the communicating parties themselves are
indefinitely ordered has not yet been developed. One of the
challenges is the fact that the definition of capacity involves
asymptotically many independent uses of the communication
resource but, for indefinite causal order, the notion of repeated
use turns out to be problematic [31,32].

We address this gap through the process matrix formal-
ism [8]. We introduce an asymptotic setting appropriate to a
communication scenario without predefined causal order. This
allows us to develop expressions for the asymptotic capacity
of a process, under different encoding and decoding settings,
reducing to analog expressions for quantum channels. We
find that in each case, the classical communication from a
sender to a receiver cannot exceed what is achievable in a
definite causal order. In particular, the Holevo bound extends
to general processes: the classical capacity cannot exceed one
bit per received qubit. This is despite the fact that unlike in
conventional channels, the receiver has access to an output
system that can signal back to the sender, which constitutes
an extra communication resource (for example, for the vi-
olation of causal inequalities). We also explore two-party
communication protocols when causal order is definite but
unknown (probabilistic). In such situations, the total bidirec-
tional communication cannot exceed the maximum one-way
communication—again, at most one bit per qubit in either
direction. This extends to a similar bound for communication
between multiple parties in a definite (but possibly probabilis-
tic) causal order.

We present the work as follows. In Sec. II, we give an
introduction to classical communication through quantum
channels. In Sec. III, we introduce the framework of the pro-
cess matrix. In Sec. IV, we introduce asymptotic setting for
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processes, and subsequently we define classical capacities of
a process and develop a bound for one-way communication.
In Sec. V, we develop a bound for a bidirectional communica-
tion protocol. We then generalize the bound for a multiparty
broadcast communication protocol.

II. CLASSICAL COMMUNICATION THROUGH A
QUANTUM CHANNEL

Let us first review how one can use ordinary quantum
channels to send classical information [2,33]. In a one-way
communication protocol, Alice has a classical message m,
prepared according to some probability distribution P(m),
and encodes it into a quantum state ρm. She then sends it
to Bob through a noisy quantum channel N . Upon receiv-
ing the state, Bob extracts the message by using a positive
operator-valued measure (POVM) {Em′ }m′ , where Em′ � 0,∑

m′ Em′ = 1. Here, m′ denotes the measurement outcome.
The conditional probability of Bob receiving a message m′
given that Alice sends the message m is

p(m′|m) = Tr[Em′N (ρm)]. (1)

The probability of error for a particular message m is

pe(m) = p(m′ �=m|m) = 1 − p(m|m). (2)

The goal of the protocol is to minimize the maximal proba-
bility of error, p∗

e := maxm pe(m). An asymptotic setting is a
scenario where Alice can use n copies of the channel to send a
k-bit message m ∈ {0, 1}k , where both k and n can be arbitrar-
ily large. In other words, she encodes k bits into an (n � k)-bit
message X (n)

m ∈ {0, 1}n and subsequently an n-qubit state ρ (n)
m ,

and then sends each qubit through an independent copy of the
channel. The classical capacity of the quantum channel N is
defined as the maximal rate C = k/n such that asymptotically,
n → ∞, one can achieve noiseless communication, p∗

e → 0
[2,34].

Different encoding and decoding strategies can lead to
different asymptotic settings, resulting in different classical
communication capacities for a channel N , which we review
below. A quantification of classical communication possible
through a channel N is given by the Holevo quantity [3],
defined as

χ (N ) := max
p(m),ρm

S
[ ∑

p(m)N (ρm)
]

−
∑

p(m)S(N (ρm)).

(3)

Here, S(.) is the von Neumann entropy. Having introduced
the Holevo quantity for a channel, it is interesting to see how
this quantity is related to different classical capacities corre-
sponding to different asymptotic configurations of channels.
We discuss it below.

Product encoding and product decoding. Let the input
quantum state be a product state of the form ρ (n)

m = ⊗n
i=1 ρi and

the measurement operation E (n)
m′ = ⊗n

i=1 Ei, with each Ei acting
on the qubit N (ρi ). Let us consider the measurement result
producing an n-bit string Y (n)

m′ ∈ {0, 1}n corresponding to the
message m′. In the asymptotic setting, n→∞, the capacity
in this setup is given by the conventional definition of classi-
cal capacity obtained by maximizing the regularized mutual
information, I (Y (n)

m′ :X (n)
m )/n, between Alice’s input and Bob’s

output over the input probability distribution, the encoded
quantum states, and the decoding measurement operators. The
central idea of Shannon’s capacity formula is that the mutual
information I (Y (n)

m′ :X (n)
m ) is additive. Thus, the corresponding

capacity is called product capacity, C(1)(N ). This capacity
is determined by the single use of the channel N , with the
optimized mutual information I (Y (1)

m′ :X (1)
m ) corresponding to

the single-copy input and output variables X (1)
m and Y (1)

m′ , re-
spectively, i.e.,

C(1)(N ) = lim
n→∞ max

p(m),ρ (n)
m ,E (n)

m′

I
(
Y (n)

m′ :X (n)
m

)
n

= max
p(m),ρ (1)

m ,E (1)
m′

I
(
Y (1)

m′ :X (1)
m

)
. (4)

Holevo’s theorem [3] states that this quantity is upper bounded
by

C(1)(N ) � χ (N ), (5)

with the χ (N ) defined in Eq. (3). Hereinafter, for the sake of
clarity, we are going to represent I (Y (1)

m′ :X (1)
m ) with I (m′:m).

Product encoding and joint decoding. The difference with
the previous case is that Bob can perform a joint mea-
surement on the n-qubit system. The Holevo-Schumacher-
Westmoreland (HSW) capacity, C(N ), associated with this
strategy is simply equal to the Holevo quantity [4,5],

C(N )=χ (N ). (6)

It is worth mentioning that the HSW capacity for some
channels can be strictly greater than one-shot capacity, i.e.,
C(N )>C(1)(N ). This is also known as superadditivity.

Joint encoding and joint decoding. Here, Alice uses an
entangled n-qubit state to encode the information and Bob
performs a joint measurement on his output. The capacity as-
sociated with this strategy is given by the regularized Holevo
quantity [3–5],

C∞(N )=χreg(N ), (7)

with

χreg(N )= lim
n→∞

χ (N⊗n)

n
. (8)

It has been shown in [35] that the capacity C∞(N ) can be
strictly greater than the HSW capacity: C∞(N )>C(N ). Thus,
in general, we can write C∞(N ) � C(N ) � C(1)(N ).

The Holevo quantity χ (N ), and consequently the regular-
ized Holevo quantity χreg(N ), are further upper bounded by
log2(d ), where d is the output dimension of the channel N .
With this, we summarize a sequence of inequalities:

I (m′:m) � C(1)(N ) � C(N ) = χ (N )

� C∞(N ) = χreg(N ) � log2(d ), (9)

with I (m′:m) being the unoptimized mutual information be-
tween Alice’s input m and Bob’s output m′. A consequence of
this chain of inequalities is that for any communication set-
ting, a d-dimensional quantum channel cannot transfer more
than log2(d ) bits. In other words, quantum systems can carry,
at most, one bit per qubit.

042606-2



CLASSICAL COMMUNICATION THROUGH QUANTUM … PHYSICAL REVIEW A 103, 042606 (2021)

III. THE PROCESS FRAMEWORK

In conventional quantum communication protocols, the
communicating parties act in a well-defined order. However,
quantum mechanics allows for possibilities where the order
between the communicating parties is unknown or even in-
definite [7,9]. This possibility can be modeled within the
so-called process matrix formalism [8,36,37]. Consider a sit-
uation involving two parties, Alice and Bob, each acting in a
local laboratory. In each run of the experiment, each of them
receives a quantum system in their respective laboratories,
performs some operation on it, and sends it out [38]; Alice’s
(Bob’s) input and output systems will be denoted by AI (BI )
and AO (BO), respectively. Most generally, each party’s oper-
ation consists in letting the system of interest interact with an
additional “probe” system. The parties can use their probes
to input information (by preparing them in arbitrary states)
and to extract information, through arbitrary measurements.
The most general operation is, therefore, a completely positive
(CP) map M : XI⊗X ′

I →XO⊗X ′
O, where, for X = A, B, X ′

I , X ′
O

denote the additional system and we use the system’s label to
represent the corresponding state space.

It is convenient to represent CP maps as positive-
semidefinite matrices, M∈XI⊗X ′

I ⊗XO⊗X ′
O, using the Choi

isomorphism [39],

MXI X ′
I XOX ′

O =
dXI dX ′

I∑
i, j=1

|i〉〈 j|XI X ′
I ⊗ M(|i〉〈 j|XI X ′

I ). (10)

Here, the set {|i〉} represents an orthonormal basis in XI ⊗ X ′
I

and dX represents the dimension of X . If the map M is com-
pletely positive and trace preserving (CPTP), then the Choi
representation gives an additional constraint,

TrXOX ′
O
MXI X ′

I XOX ′
O = 1XI X ′

I . (11)

A CPTP map (also called channel) represents an operation
that can be performed with probability one, while a CP, trace-
nonincreasing map is generally the conditional transformation
corresponding to a particular outcome of a measurement.

The resource connecting the two communicating parties is
described by the process matrix W AI AOBI BO . This encodes the
background process that governs how the systems on which
the parties act relate to each other, be it a shared state, a
channel from one to the other, or more general scenarios.
We can view the process as a higher-order map, transforming
input quantum maps (the local operations) to output quantum
maps (a channel acting on the probe system). The process
matrix W has to satisfy a set of constraints:

W � 0, (12)

TrW = dAO dBO , (13)

BI BOW =AOBI BO W, (14)

AI AOW =BOAI AO W, (15)

W =AO W +BO W −AOBO W. (16)

Here, xW := 1x/dx ⊗ TrxW is the “trace-and-replace” nota-
tion [36], which discards subsystem x and replaces it with the
normalized identity. Here appropriate reordering of the tensor
factors is implied.

=W

FIG. 1. A process W AI AOBI BO with two CPTP maps AA′
I AI AO and

BBI BOB′
O forms a new channel N (A,B,W ), as in Eq. (18), with

input system A′
I and output system B′

O. Alice can use this channel to
communicate to Bob by encoding the quantum state ρm at her input
system and Bob performing a POVM measurement Em′ at his output
system.

To compose two CP maps, as well as a CP map and the
process, we use the link product denoted by “*”[40,41]. For
two positive-semidefinite operators P and Q with the respec-
tive Hilbert spaces P and Q, the composition P ∗ Q is given
as

P ∗ Q := TrP∩Q[(1P\Q ⊗ PTP∩Q )(Q ⊗ 1Q\P )]. (17)

Here, P and Q are the Hilbert spaces associated with P and Q,
and the superscript “TP∩Q” represents partial transpose on the
shared Hilbert spaces. Note that if the operators do not share
Hilbert spaces, P∩Q=∅, then the link product reduces to the
tensor product, P∗Q=P⊗Q. In contrast, when the operators
do not have any nonoverlapping spaces, P\Q∪Q\P=∅, the
link product yields a scalar number, P ∗ Q=Tr(PT Q).

The link product generalizes the state transformation,
composition of channels, and state measurement; a state ρ

transformed by a channel N is given by N (ρ)=ρ∗N , where
N is the Choi representation of N . A sequential composi-
tion M1◦M2 : X1→X3, with the Choi representation MX1X3

3 ,
is given by MX1X3

3 =MX1X2
1 ∗MX2X3

2 . Here we assume the con-
stituent channels to be M1 : X1→X2 and M2 : X2→X3 with
the Choi representations M1 and M2, respectively. Finally, we
can rewrite the state measurement in Eq. (1) as p(m′|m)=ET

m′ ∗
N (ρm)=ET

m′ ∗ ρm ∗ N . Note that the Choi representation of a
POVM element Em′ is its transpose ET

m′ .
The link product also captures the action of the process on

the local operations. In our case, the action of W on Alice’s
and Bob’s local operations MA and MB is given by (MA ∗
MB)∗W . Here, MA (MB) is the Choi representation of the map
MA (MB).

IV. ONE-DIRECTIONAL COMMUNICATION THROUGH
AN INDEFINITELY ORDERED PROCESS

In this section, we introduce our classical communication
protocol through an arbitrary process, as shown in Fig. 1.
In this protocol, both Alice and Bob can use some quantum
channels A and B. Alice’s channel A has A′

I AI as input and
AO as output, while Bob’s channel B has BI as input and BOB′

O
as output.
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(a) (b) (c)

(d) (e) (f)

FIG. 2. Encoding and decoding schemes. Here we show two copies of process W . (a)–(c) Product encoding–product decoding, product
encoding–joint decoding, and joint encoding–joint decoding, respectively. Product encoding is achieved using the joint state ρ (1)

m ⊗ρ ′(1)
m and

joint encoding is achieved using the entangled state ρ (2)
m . Similarly, we use E (1)

m′ ⊗E ′(1)
m′ for product decoding and E (2)

m′ for joint decoding. (d)–(f)
The simplifications due to Theorems 1 and 2. Relevant labeling of the Hilbert spaces is described in the text.

The process matrix W AI AOBI BO acting on these channels
forms a new quantum channel N (A,B,W ) with input quan-
tum system A′

I and output quantum system B′
O, as shown in

Fig. 1. The Choi representation of this new channel is

N (A,B,W )A′
I B′

O := (AA′
I AI AO ∗ BBI BOB′

O ) ∗ W AI AOBI BO

= (AA′
I AI AO ⊗ BBI BOB′

O ) ∗ W AI AOBI BO . (18)

Here, A and B are the Choi representations of the quantum
channels A and B, respectively.

It is worth stressing that turning a process into a channel
does not yet provide an estimate of the communication ca-
pacity. This is because the channel’s input and output, A′

I and
B′

O, can have arbitrary dimensions, which, in principle, could
encode an arbitrary amount of information. For example, Bob
could have a single-qubit BI and BO and a two-qubit B′

O. One
of the two qubits is simply BI , while the other can be a qubit
entangled with BO (that is to say, he sends through his output
part of an entangled state while measuring the other part
together with BI ). For a process with indefinite causal order,
Bob’s output is not discarded and one could expect that the
correlations between BO and Alice’s systems could allow her
to encode two bits into B′

O, exceeding the Holevo bound. As
we will see, this is in fact not possible, as the receiver’s output
turns out to be useless in a one-way communication scenario,

even for processes with indefinite causal order. Before we can
get to this, however, we have to define appropriate asymptotic
settings for general processes.

A. Asymptotic setting

Similar to the conventional classical communication
through quantum channels, we need to introduce a notion of
asymptotic setting for the process, namely, to formalize the
notion of repeated use of independent copies of a process. The
goal turns out to be nontrivial as one can construct asymptotic
settings by allowing joint local operations across different
copies of processes [31,32], resulting in nontrivial constraints
on the admissible operations and processes [42,43]. For ex-
ample, Alice could feed the output of her first channel to her
second one. This, however, would require extra knowledge
about the causal relations between the different uses of the
process and, for a process with bidirectional signaling, it
would be incompatible with Bob sending his second output
to the first input. As we are investigating causal structures as
communication resources, we assume that all available causal
relations are encoded in the process itself, which leads to the
asymptotic setting, first introduced in Ref. [19], where only
product operations across different parties are allowed.

Our choice of asymptotic setting results in a set of inde-
pendent channels, N j = N (A j,B j,W ), as shown in Fig. 2.
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Here, A j , B j are the local operations performed by Alice and
Bob, respectively. Alice encodes her message m in a quantum
state ρ (n)

m ∈ ⊗n
j=1 A′ j

I and sends the state to Bob through the
channels {N j}. After receiving the transformed state, Bob
performs a POVM on his quantum system, ⊗n

j=1B′ j
O . With this,

we conceptualize a protocol for one-way communication from
Alice to Bob (A→B) in the following way:

Definition 1. Given a bipartite processes matrix W AB, we
define an A→B protocol with n uses of W as

(i) a set of local operations {A j,B j}n
j=1, where

A j : A′ j
I ⊗ Aj

I →Aj
O,

B j : B j
I → B j

O ⊗ B′ j
O

are CPTP maps;
(ii) a state encoding m �→ ρ (n)

m ∈ ⊗n
j=1 A′ j

I , where ρ (n)
m � 0

and Trρ (n)
m = 1;

(iii) a decoding POVM {E (n)
m′ }m′ , where E (n)

m′ � 0 and∑
m′ E (n)

m′ = 1.
Such a protocol produces a classical channel described by

the conditional probabilities

P(m′|m) = Tr

[
E (n)

m′

n⊗
j=1

N j
(
ρ (n)

m

)]
. (19)

We say that two protocols for the same process W are
equivalent if they produce the same conditional probabilities
P(m′|m).

In general, the ancillary spaces A′ j
I , B′ j

O need not be iso-
morphic for different j. However, we can always embed each
of them into a space that is isomorphic to one of the highest
dimension. In the following, we assume that all spaces are
of equal dimension and are identified through a choice of
canonical basis.

Note that when we consider multiple copies of processes,
in general, the local CPTP maps of Alice and Bob need not be
identical. Thus the asymptotic setting of the quantum process
results in multiple copies of different channels, also known
as a nonstationary asymptotic setting. Formulating communi-
cation capacity of such a setup poses a nontrivial challenge
[44,45]. To alleviate this issue, we employ a scheme to make
the channels stationary. Specifically, we replace the local op-
erations {A j} and {B j} with fixed local operations {A} and
{B}, respectively, with the support of additional local CPTP
maps E j and F j , where A j=A∗E j and B j=F j∗B. Thus we
have multiple independent and identical copies of the channel
N=N (A,B,W ). The feasibility of this approach is due to the
fact that in an A → B protocol, Bob’s output system BO can be
discarded, i.e., in such a protocol a process matrix W can be
replaced by BOW , as shown in Fig. 3 and in Refs. [7,8,46,47].
As we are going to use this fact multiple times, we formulate
it as a lemma and prove it below for completeness.

Lemma 1. If Alice has trivial ancillary output (dA′
O
=1), i.e.,

A : A′
I ⊗ AI → AO, we can replace W with BOW ,

N (A,B,W ) = N (A,B, BOW ). (20)

Proof. It is sufficient to show A∗W = A∗BOW . Using
condition (16), we can write A∗W = A∗AOW + A∗BOW −
A∗AOBOW . As the second and third terms are already in the

W = W =

FIG. 3. Pictorial depiction of Lemma 1. A one-way communica-
tion from Alice to Bob through a channel N (A,B,W ) simplifies
to a channel N (A,B,BO W ). The rightmost picture shows further
simplification to a quantum state �(Am,W ) with the system BO being
discarded, as in Eq. (39).

desired form, we only need to look at the first term,

A∗AOW = TrAI AO

[
AA′

I AI AO

(
1AO

dA
O

⊗ TrAOW

)]

= 1

dA
O

TrAI

[(
TrAO AA′

I AI AO
)(

TrAOW
)]

= 1

dA
O

TrAI

[
1A′

I AI
(
TrAOW

)]

= 1A′
I

dA
O

⊗ TrAI AOW = 1A′
I

dA
O

⊗ TrAI AO

(
BO

W
)
, (21)

where we used TrAO AA′
I AI AO = 1A′

I AI (because AA′
I AI AO is CPTP)

in the third line and Eq. (15) in the last line. �
This lemma allows us to replace Bob’s operation B j by

σ BO ⊗ (TrBOB j )
BI B′

O , with σ BO being an arbitrary state. For the
encoding operation A j , on the other hand, we extend the input
system to make it a controlled operation, while treating the
control state as Alice’s extended encoded message. Thus we
present the following theorem.

Theorem 1. Every A → B protocol is equivalent to one with
fixed local operations,

Ā : A′′ j
I ⊗ Aj

I → Aj
O, (22)

B̄ : B j
I → B j

O ⊗ B′′ j
O , (23)

state encoding,

ρ̄ (n)
m =

n⊗
j=1

E j
(
ρ (n)

m

)
, (24)

and decoding POVM,

Ē (n)
m′ =

n⊗
j=1

F†
j

(
E (n)

m′
)
, (25)

where E j :A
′ j
I →A′′ j

I , F j :B
′ j
O→B′′ j

O are CPTP and F† denotes
the Hilbert-Schmidt adjoint, defined through Tr[A†F (B)] =
Tr[F†(A†)B].

Proof. (See Fig. 4 for a pictorial representation of the
proof.) Let us start with the decoding. Since Alice only per-
forms CPTP maps with no ancillary output, we can apply
Lemma 1 and replace the process matrix W with BOW , which
is equal to identity on BO. This implies that any A → B
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=W W

FIG. 4. Pictorial depiction of Theorem 1. We convert a nonsta-
tionary channel N (A j,B j,W ) to a stationary channel N (Ā, B̄,W ).
Due to Lemma 1, Bob’s system BO can be set to a fixed state σ and

corresponding operation B̄ = σ B j
O ⊗ IB j

I →B′′ j
O . Alice’s operation, on

the other hand, can be extended to a controlled CPTP map Ā as
described in Eq. (27).

protocol is equivalent to one where we replace the local op-
erations B j with σ B j

O ⊗ TrB j
O
B j for some arbitrary state σ .

Choosing the space B′′ j
O isomorphic to B j

I , we see that the
original combination of local operations B j and decoding
POVM is equivalent to performing the fixed operation B̄ =
σ B j

O ⊗ IB j
I →B′′ j

O in each laboratory, and decoding POVM as in
Eq. (25), with F j = (TrB j

O
B j ◦ IB j

I →B′′ j
O )B′ j

O .

Now for the encoding side, we set A′′ j
I = X j⊗A′ j

I and de-
fine the controlled operation Ā : X j⊗A′ j

I → Aj
O as

Ā(σ ⊗ ρ) =
n∑

j=1

〈 j|σ | j〉A j (ρ)Aj
O . (26)

Here, each X j is a state space isomorphic to the operator space
L(Cn). The operation Ā is manifestly CPTP. For canonical
basis states in X j , this map gives

Ā(| j〉〈 j| ⊗ ρ) = A j (ρ), (27)

so the choice of local operation can be encoded into a choice
of initial state, expanding the original encoding state as in
Eq. (24), with the maps E j : A′ j

O → A′′ j
O defined as

E j
(
ρA′ j

I
) = (| j〉〈 j| ⊗ ρ)A′′ j

I . (28)

�
The relevance of this theorem is twofold. First, it shows

that any protocol involving a different choice of local opera-
tions can be reproduced by fixing the local operations once
and for all. This means that an asymptotic setting for pro-
cesses can always be mapped to an asymptotic setting where
the same channel is used n times, N (Ā, B̄,W )⊗n. We call a
protocol of this type stationary. Second, state encoding and
decoding POVMs of an arbitrary protocol transform into those
of a stationary one through product maps, given by Eqs. (24)
and (25). This means that the transformation preserves the na-
ture of the asymptotic setting, viz., joint or product encoding
or decoding. From now on, we will represent Ā, B̄, ρ̄ (n)

m , and
Ē (n)

m′ without the bar on top.

B. Classical capacities of a quantum process

Holevo quantity for a process. Having introduced a sta-
tionary protocol with an asymptotic setting of the channel
N (A,B,W ), as shown in Theorem 1, we can define the
corresponding Holevo quantity for a process W as

χ (W )A→B := max
A,B

χ [N (A,B,W )]. (29)

We also introduce the nth extension χ (W ⊗n)A→B of the above
quantity as

χ (W ⊗n)A→B := max
A,B

χ [N (A,B,W )⊗n]. (30)

Communication capacity for a process. We can associate
different communication capacities to an arbitrary process as

C�(W )A→B = max
A,B

C�(N (A,B,W )r), (31)

where C� = C(1),C,C∞. Here, C(1)(W )A→B represents the
product encoding–product decoding capacity, as in Eq. (4),
C(W )A→B represents product encoding–joint decoding capac-
ity, as in Eq. (6), and, finally, C∞(W )A→B represents joint
encoding–joint decoding capacity, as in Eq. (8).

We can relate the Holevo quantity for a process to different
C�(W )A→B capacities. We show this in the following lemma.

Lemma 2. Different capacities associated with an arbitrary
process W are related to the Holevo quantity χ (W )A→B in the
following way.

Product encoding–product decoding:

C(1)(W )A→B � χ (W )A→B. (32)

Product encoding–joint decoding:

C(W )A→B = χ (W )A→B. (33)

Joint encoding–joint decoding:

C∞(W )A→B = lim
n→∞

χ (W ⊗n)

n
. (34)

Proof. Product encoding–product decoding: Using
Eqs. (31), (5), and (29), we can write

C(1)(W )A→B = max
A,B

C(1)(N (A,B,W ))

� max
A,B

χ (N (A,B,W ))

= χ (W )A→B. (35)

Product encoding–joint decoding: Using Eqs. (31), (6), and
(29), we can write

C(W )A→B = max
A,B

C(N (A,B,W ))

= max
A,B

χ (N (A,B,W ))

= χ (W )A→B. (36)
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Joint encoding–joint decoding: Using Eqs. (31), (7), (8), and
(30), we can write

C∞(W )A→B = max
A,B

C∞(N (A,B,W ))

= max
A,B

χreg(N (A,B,W ))

= max
A,B

lim
n→∞

χ [N (A,B,W )⊗n]

n

= lim
n→∞

χ (W ⊗n)

n
. (37)

�

C. Bounds on the classical capacities of a quantum process

Although we have been able to reduce the classical capac-
ities of processes to that of channels, our results so far do
not provide an upper bound on how much information can
be transmitted through a process. This is because the channel
N (A,B,W ) can have arbitrary input and output dimensions.

To establish a bound, we first describe our protocol from a
slightly different point of view. With Alice’s input ensemble
{p(m), ρm}, we can introduce a concatenation of ρm with the
channel A as AAI AO

m = ρ
A′′

I
m ∗ AA′′

I AI AO , with Am being the Choi
representation of the resulting CPTP map Am. Similarly, we
can combine Bob’s channel B and POVM operation {Em}
to describe a set of CP maps, {BBI BO

m′ = BBI BOB′′
O ∗ (ET

m′ )B′′
O}m′ ,

where
∑

m′ BBI BO
m′ is a CPTP map and (ET

m′ )B′′
O is the Choi rep-

resentation of Em′ . The superscript “T ,” denoting the transpose
operator, is due to definition (10), according to which the Choi
of a measurement operator Em′ is its transpose, ET

m′ .
With this in mind, we present two theorems, which apply,

respectively, to the product and joint encoding scenarios.
Theorem 2. In a one-way communication scenario, the

optimization of the Holevo quantity of a process W can be
simplified as

χ (W )A→B = max
ρm,A,p(m)

S
[ ∑

p(m)�(Am,W )
]

−
∑

p(m)S[�(Am,W )]. (38)

Here, the �(Am,W ):=Am∗TrBOW/dBO is a map that trans-
forms the Choi representation of the CPTP operation Am

and the process matrix W to a quantum state on Bob’s input
space BI .

Proof. The reduced process [36] on which Bob applies
his CPTP map BBI BO

m′ is described by AAI AO
m ∗ W AI AOBI BO . Now,

using Lemma 1, we can write

AAI AO
m ∗W AI AOBI BO=1BO⊗

(
AAI AO

m ∗TrBOW

dBO

AI AOBI
)

= 1BO⊗�(Am,W )BI , (39)

where �(Am,W ):=Am∗TrBOW/dBO . In other words, as shown
in Fig. 3, we can simplify Alice’s CPTP map and the pro-
cess to a quantum state �(Am,W ) in the Hilbert space BI ,
with Bob’s output at BO being discarded. The maximum
classical information that can be encoded in the ensemble
{p(m), �(Am,W )} is given by Eq. (38) [3], where we only
need to optimize over the free parameters p(m), ρm, and A.

This implies that one does not need to optimize over
Bob’s operation to obtain the Holevo quantity for the
process. �

A direct consequence of this theorem is that χ (W )A→B �
log2(dBI ) because we have reduced the Holevo quantity of
a process to that of an ensemble of states in BI . In turn,
this allows us to establish a bound on the product encod-
ing capacities, i.e., C(1)(W )A→B and C(W )A→B, according to
Eq. (35) and Eq. (36), respectively. However, for joint en-
coding schemes, we need to evaluate the regularized Holevo
quantity for the optimum channel N (A,B,W ), as shown in
Eq. (34). In light of this, we introduce the following theorem
that bounds the capacity, C∞(W )A→B.

Theorem 3. The joint encoding capacity for a pro-
cess, C∞(W )A→B, is limited to Alice’s joint CPTP map
A(n)

m =ρ (n)
m ∗A⊗n with n → ∞, and the distribution p(m),

C∞(W )A→B = lim
n→∞ max

ρ
(n)
m ,A,p(m)

1

n

{
S
[ ∑

p(m)�
(
A(n)

m ,W
)]

−
∑

p(m)S
[
�

(
A(n)

m ,W
)]}

. (40)

Here the map � transforms the joint CPTP map A(n)
m and

the process W to an entangled state at Bob’s input space
⊗n

j=1B j
I .

Proof. First, we apply Lemma 1 to each copy of the chan-
nel N (A,B,W ) and replace it with N (A,B, B j

O
W ). Then,

in a joint encoding scheme, we apply ⊗ jN (A,B, B j
O
W ) to

a (possibly entangled) joint state ρ (n)
m . Combining this joint

state with the n copies of Alice’s operation A, we obtain
a joint CPTP map A(n)

m : ⊗ jA
j
I → ⊗ jA

j
O, with Choi repre-

sentation A(n)
m = ρ (n)

m ∗A⊗n. Plugging A(n)
m into the n copies

B j
O
W , we get A(n)

m ∗(⊗ jB j
O
W ) = 1⊗n

j=1B j
O ⊗ �(A(n)

m ,W ), where

�(A(n)
m ,W ) ∈ ⊗n

j=1 B j
I is a (possibly entangled) state, defined

as

�
(
A(n)

m ,W
) =

A(n)
m ∗ (

Tr⊗n
j=1B j

O
W ⊗n

)
�n

j=1dB j
O

. (41)

One can extend this setup to n→∞ and achieve a joint state
at Bob’s input Hilbert space ⊗∞

j=1B j
I . Similar to Theorem 2,

we calculate the maximum amount of classical information
encoded in the ensemble {p(m), �(A(n)

m ,W )} and regularize it
to obtain the joint encoding capacity C∞(W )A→B, where the
free parameters are, of course, p(m), ρ (n)

m , and A. Thus we
obtain Eq. (40). �

Corollary 1. The capacity C∞(W )A→B is upper bounded by
the logarithm of the dimension of Bob’s input Hilbert space,
i.e., C∞(W )A→B � log2(dBI ).

Proof. This is the consequence of Holevo’s theorem [3].
The information content of the ensemble {p(m), �(A(n)

m ,W )}
cannot exceed the logarithm of the dimension of �(A(n)

m ,W ),
i.e., n log2(dBI ). Regularizing this quantity proves the
corollary. �

Now we summarize our results. If we consider Alice’s in-
put message m and Bob’s output message m′, we can introduce
a chain of inequalities for different classical capacities of the
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process W ,

I (m′ : m) � C(1)(W )A→B � C(W )A→B = χ (W )A→B

� C∞(W )A→B � log2(dBI ). (42)

One can write a similar chain of inequalities for a communi-
cation protocol from Bob to Alice. Note that this inequality
holds even for a process W that contains shared entanglement
between Alice’s and Bob’s input Hilbert spaces. This does not
contradict the higher capacity achievable in an entanglement-
assisted communication protocol, such as superdense coding
[48], because, when applying the inequalities in Eq. (42), one
has to consider the total dimension of Bob’s input Hilbert
space, which consists of the part of the shared entangled
state in Bob’s possession and the quantum state that Alice
communicates to him.

V. BROADCAST COMMUNICATION

Having established the notion of one-way communication
through a process, we proceed to explore scenarios where all
communicating parties can transmit and receive information.

Two-party communication. Let us first consider the two-
party situation, where Alice (Bob) sends the message m(k)
and Bob (Alice) receives the message m′(k′). The possibility
to violate causal inequalities indicates that indefinite causal
order can indeed provide an advantage in some two-party
games [8,28]; however, it is unclear if this advantage results
in a communication enhancement. To address this question,
it is necessary to find limits on two-way communication for
causally separable processes. In this section, we address this
question.

There are at least two ways a process can be used as
a resource for bidirectional communication, depending on
whether Alice’s and Bob’s instruments are fixed or if they are
chosen depending on the direction of communication that is
attempted. In the first case, the parties produce a single prob-
ability distribution P(m′, k′|m, k) from the process, and one
looks for communication in the marginals P(m′|m), P(k′|k).
In the second case, the parties can generate different prob-
ability distributions depending on who is sending and who
is receiving. The one-directional capacities for the first case
are upper bounded by those in the second case, as the best
instrument to receive a message might differ from the best to
send a message. In this section, we will be mostly concerned
with the second case.

Let us then consider a scenario where the order be-
tween Alice’s and Bob’s local operations is determined based
on a random outcome. We represent a process where Al-
ice can signal to Bob, but not the other way around, by
W A≺B = BOW A≺B, and the reversed direction of signaling by
W B≺A= AOW B≺A. The process matrix Wsep in this case is a
convex combination of W B≺A and W A≺B [36],

Wsep = λW B≺A + (1 − λ)W A≺B, (43)

where 0 � λ � 1 is the probability for Bob to be first. We
call such a process a causally separable process [8]. We
investigate a scenario where both Alice and Bob are trying
to send information to each other through the background
process Wsep. A reasonable attempt to quantify this bidirec-

tional communication is to evaluate the sum of two product
capacities, C(1)(W )A→B and C(1)(W )B→A. We investigate this
quantity and evaluate an operationally significant upper bound
from the perspective of the classical capacity of the process.

Theorem 4. For a bidirectional communication protocol
through a causally separable process, defined in Eq. (43), the
following inequality holds:

C(1)(Wsep)A→B+C(1)(Wsep)B→A

�λ log2

(
dAI

)+(1−λ) log2

(
dBI

)
. (44)

Proof. Considering a fixed input probability distribution
P(a), the following linear relationship among marginal con-
ditional probabilities holds for a causally separable process
[8]:

P(a′|a)Wsep = λP(a′|a)W B≺A + (1 − λ)P(a′|a)W A≺B . (45)

In our protocol, we consider a∈{m, k} to be the inputs and
a′∈{m′, k′} to be the outputs. Let us consider A→B communi-
cation. Consequently, we can write

C(1)(Wsep)A→B = max I (m′ : m)

� max [λI (m′:m)W B≺A + (1 − λ)I (m′:m)W A≺B ]

= (1 − λ) max I (m′:m)W A≺B

�(1 − λ) log2(dBI ). (46)

Here, the first equation is due to Eqs. (4) and (31). The
maximization is taken over Alice’s and Bob’s local operations,
their message ensembles, and the POVM operations. The first
inequality is due to the fact that mutual information I (a′:a)
is a convex function of p(a′|a) for a fixed input probability
distribution p(a) [49]. We obtain the second equality because,
for a definite ordered scenario B ≺ A, output m′ of Bob’s local
laboratory becomes independent of Alice’s input. This makes
I (m:m′)W B≺A = 0. The final inequality is due to Eq. (42). We
apply a similar set of reasoning to obtain a bound for B → A
communication to obtain

C(1)(Wsep)B→A � λ log2(dAI ). (47)

Adding Eqs. (46) and (47), we find

C(1)(Wsep)A→B + C(1)(Wsep)B→A

� λ log2

(
dAI

) + (1 − λ) log2

(
dBI

)
. (48)

�
For the particular case dAI =dBI =d , we see that the sum

of two product capacities is upper bounded by log2(d ). In
other words, the total communication in causally separable
processes can be no more than maximal one-way commu-
nication. We note that a weaker version of this inequality
holds for the scenario where the parties’ instruments are
fixed regardless of the attempted direction of communica-
tion. In this case, the single-shot capacities coincide with the
mutual information obtained from a single conditional prob-
ability distribution P(m′, k′|m, k), resulting in the inequality
I (m′:m) + I (k′:k)� log2(d ). This is an example of an entropic
causal inequality, first considered in Ref. [50]. Remarkably,
no violation of this inequality is known, and our own numer-
ical search also did not reveal any violation of Eq. (44). This
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suggests that the bound on the total bidirectional communica-
tion might hold for general processes.

We note that the bound we established applies to all the
quantum processes for which a physical interpretation is
known. For example, in a process with coherent control of
causal order, such as the quantum switch [40], tracing out the
control leads to a separable bipartite process, to which the
bound applies. More generally, it has been shown that any
bipartite processes that admit a unitary extension are causally
separable [51,52].

Multiparty communication. The above-mentioned protocol
can be extended to multiple parties. In that case, each party
tries to communicate his or her information to the remaining
parties. Similarly to above, we consider a process for N par-
ties, A(1), A(2), . . . , A(N ), that can be written as a probabilistic
mixture of permutations of different causal order,

W N
sep =

∑
σ

qσW σ . (49)

Here, σ denotes the different permutations of the communi-
cating parties and qσ denotes the probability of occurrence
of each permutation. Although this is not the most general
process with definite causal order [37,53], it is one of par-
ticular interest as it represents a scenario where the order
among parties can be set by external, random variables, but
is independent of the parties’ actions.

Motivated by the previous section, we intend to find an
upper bound to the quantity

∑
i, j C(1)(W N

sep)i→ j . Here, i→ j
refers to signaling from the party A(i) to the party A( j) and
C(1)(W N

sep)i→ j is the one-way capacity defined for the bipartite
reduced process for A(i) and A( j), obtained by fixing CPTP
maps for all other parties, and maximized over the other
parties’ CPTP maps.

Theorem 5. If the dimensions of all the input Hilbert spaces
of the communicating parties are equal (d), then∑

i, j

C(1)
(
W N

sep

)i→ j�N (N − 1)

2
log2(d ). (50)

Proof. We can write the conditional probability P( �m′| �m) =∑
σ qσ Pσ ( �m′| �m). We can write the marginals P(m′

j |mi ) =∑
σ qσ Pσ (m′

j |mi ) ∀i, j. By the convexity of mutual informa-
tion and the inequalities introduced in Eq. (42),

C(1)
(
W N

sep

)i→ j � max
∑

σ

qσ Iσ (m′
j : mi )

= max
∑

∀{i, j} | σ (i)≺σ ( j)

qσ Iσ (m′
j : mi )

�
∑

∀{i, j} | σ (i)≺σ ( j)

qσ log2

(
dAj

I

)
=

∑
∀{i, j} | σ (i)≺σ ( j)

qσ log2(d ). (51)

The maximization is taken over all communicating parties’
local operations, their message ensembles, and the POVM op-
erations. The first inequality is due to the convexity of mutual
information relative to mixtures of conditional probabilities
(as in the bipartite case). The first equality follows from the
fact that if the party σ ( j) is in the causal past of the party
σ (i), then I (m′

j :mi ) = 0. dAj
I

is the dimension of the input

Hilbert space of the party Aj . The second equality follows
because of our assumption of all the dimensions of the input
Hilbert spaces being equal. Now, it is easy to see that the nth
party has total n−1 parties in his or her causal past. There-
fore, considering each party trying to communicate with the
remaining N−1 parties, the total number of available channels
is N (N−1) − ∑N

n=1(n−1) = N (N−1)/2. This results in

∑
i, j

C(1)(W N
sep

)i→ j � N (N − 1)

2
log2(d ). (52)

�
The key property that leads to the above bounds is the

convexity of mutual information under probabilistic mixtures
of classical channels. With this in mind, we see that the above
results can be extended directly to the product encoding–joint
decoding setting, replacing the product capacity C(1) with the
HSW capacity C. Indeed, we have seen that C is given by
the (maximized) Holevo quantity χ of the one-way channel
generated by a process and, just like mutual information, χ is
convex over the probabilistic mixture of channels. It remains
an open question whether higher total transmission rates can
be achieved in a joint encoding setting.

VI. CONCLUSION

We have formalized classical communication through a
general quantum causal structure, which may be probabilistic
or indefinite. We have defined the Holevo quantity as well
as different classical capacities for an arbitrary process and
established relationships among them. We have found that
for one-way communication, the various capacities can be
reduced to those of ordinary channels, up to an optimization
over the operations performed in local laboratories. We have
further shown that for one-way communication, the classical
capacity of a process cannot exceed the Holevo bound—at
most, one classical bit per received qubit—even in the case
of indefinite causal order.

Next, we have quantified bidirectional and, more gener-
ally, broadcast communication protocols for processes with
definite but classically uncertain causal order. We have
demonstrated that the total amount of communication be-
tween two parties cannot exceed the maximal one-way
capacity in a fixed causal order, with a similar bound ex-
tending to multipartite broadcast communication. One can
ask whether a process with an indefinite causal structure can
violate these bounds. We have answered this negatively for
coherent control of causal order, as in the quantum switch
[40]. It is an open question whether a more general process
can violate the bounds. As we have not found any violation,
it is an interesting possibility that the bounds we have found
might constitute a universal limit to the total communication
possible in any process.
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