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Reducing measurement errors in multiqubit quantum devices is critical for performing any quantum algorithm.
Here we show how to mitigate measurement errors by a classical postprocessing of the measured outcomes. Our
techniques apply to any experiment where measurement outcomes are used for computing expected values of
observables. Two error-mitigation schemes are presented based on tensor product and correlated Markovian noise
models. Error rates parametrizing these noise models can be extracted from the measurement calibration data
using a simple formula. Error mitigation is achieved by applying the inverse noise matrix to a probability vector
that represents the outcomes of a noisy measurement. The error-mitigation overhead, including the number of
measurements and the cost of the classical postprocessing, is exponential in εn, where ε is the maximum error
rate and n is the number of qubits. We report experimental demonstration of our error-mitigation methods on
IBM Quantum devices using stabilizer measurements for graph states with n � 12 qubits and entangled 20-qubit
states generated by low-depth random Clifford circuits.
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I. INTRODUCTION

Quantum computing experiments are beginning a shift
from few-qubit demonstrations of entangling gates and short
quantum circuits to larger multiqubit quantum algorithms at-
tempting to address practically important computational prob-
lems. Although available devices are noisy, error-mitigation
methods have emerged as a possible near-term solution of the
fault-tolerance problem [1–5]. Error mitigation schemes are
particularly attractive because they introduce no overhead in
terms of the number of qubits and gates. These methods have
recently enabled a reliable simulation of shallow quantum cir-
cuits on a noisy hardware without resorting to quantum error
correcting codes [6,7]. The key idea behind error mitigation
is to combine outcomes of multiple experiments in a way that
cancels the contribution of noise to the quantity of interest;
see [1–3] for details.

Readout errors introduced by imperfect qubit measure-
ments are often the dominant factor limiting scalability of
near-term devices. Here we introduce methods for mitigat-
ing readout errors for a class of quantum algorithms, where
measurement outcomes are used only for computing mean
values of observables. Notable examples of such algorithms
are variational quantum eigensolvers [8,9], quantum ma-
chine learning [7], and tomography of entangled states [10].
However, our techniques are not applicable to single-shot
measurements. The latter are indispensable to many appli-
cations such as quantum teleportation, measurement-based
computation, and quantum error correction.

Prior work [11–15] demonstrated that readout errors in
quantum devices based on superconducting qubits can be well
understood in terms of purely classical noise models. Such
models describe a noisy n-qubit measurement by a matrix of

transition probabilities A of size 2n × 2n such that Ay,x is the
probability of observing a measurement outcome y provided
that the true outcome is x. It is common to simplify the noise
model further by assuming that the noise acts independently
on each qubit [9,16]. This defines a tensor product noise
model such that A is a tensor product of 2 × 2 noise matrices.
The model depends on 2n error rates describing single-qubit
readout errors 0 → 1 and 1 → 0. The open-source software
package Qiskit [17] provides a toolkit for calibrating A and
mitigating readout errors for either a tensor product or a gen-
eral noise model.

Although the tensor product noise model is appealingly
simple, it leaves aside cross-talk errors encountered in real-
world setups. Cross-talk during readout can arise from the
underlying qubit-qubit coupling and spectral overlap of read-
out resonators with stray couplings or multiplexing [18]. Here
we introduce a correlated noise model based on continuous
time Markov processes (CTMPs). The corresponding noise
matrix has the form A = eG, where G is a sum of local op-
erators generating single- and two-qubit readout errors such
as 01 → 10, 11 → 00, etc. The model depends on 2n2 error
rates.

Measurement calibration aims at learning the unknown
parameters of a noise model. This is achieved by preparing a
set of well-characterized input states (we use the standard ba-
sis vectors) and repeatedly performing n-qubit measurements
on each input state. We show how to extract parameters of
the considered noise models from the calibration data using
simple analytic formulas. The number of input states required
to calibrate the tensor product and CTMP noise models scales
linearly with the number of qubits n.

Once parameters of the noise model are known, error
mitigation proceeds by applying the inverse noise matrix to
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a probability vector that represents the noisy measurement
outcomes. We show how to sidestep the explicit computation
of the inverse noise matrix, which may be prohibitive for
a large number of qubits. Instead, we follow ideas of [1]
and cancel errors by sampling noise matrices from a suitable
quasiprobability distribution. The total error-mitigation over-
head, including the number of measurements and the cost of
classical postprocessing, scales as e4γ poly(n), where γ is a
parameter quantifying the noise strength, as formally defined
below. For example, if each qubit independently undergoes a
bit-flip readout error with probability ε, then γ = nε. Thus
our methods are practical whenever γ is a small constant. For
comparison, all previously studied readout error-mitigation
techniques require manipulations with probability vectors of
size 2n, which limits their scalability. Importantly, both tensor
product and CTMP error-mitigation methods provide an un-
biased estimator of the ideal mean value to be measured. For
a fixed number of qubits, the cost of approximating the ideal
mean value with a specified error tolerance δ scales as δ−2.

The proposed error-mitigation techniques are demon-
strated using a 20-qubit IBM Quantum device. The device has
a few-percent readout error rate. For small number of qubits
(n � 7), a comparison is performed between the full noise
matrix A, the tensor product, and the CTMP noise models. It
is found that the CTMP model provides a considerably more
accurate approximation of the readout noise. Error-mitigated
stabilizer measurements of n-qubit graph states are reported
for n � 12. Finally, we perform error-mitigated stabilizer
measurements on 20-qubit states generated by low-depth ran-
dom Clifford circuits. The classical postprocessing associated
with the error mitigation, including the measurement calibra-
tion and the noise inversion steps, can be done on a laptop in
a few-seconds time frame for each of these experiments. Note
that the error-mitigation runtime is crucial for VQE-type algo-
rithms [9] where quantum mean value estimation is repeatedly
used in a feedback loop.

Let us briefly discuss the previous work. Seif et al. [19]
considered a system of trapped-ion qubits and the prob-
lem of discriminating between different basis states based
on data collected by an array of photon detectors. It was
shown that a neural network trained on the measurement
calibration data can realize a high-fidelity state discrimina-
tion [19]. It remains to be seen whether similar methods can
address the problem of high-precision mean value estimation
considered here. Our techniques build off earlier work from
Kandala et al. [9] and are most closely related to the work of
Sun and Geller [16,20,21] who showed how to characterize
readout errors in multiqubit devices. In particular, Ref. [16]
introduced a noise model based on single- and two-qubit
correlation functions which can be viewed as an analog of the
CTMP model considered here. Reference [22] elucidated how
performance of readout error-mitigation methods is affected
by the quality of the measurement calibration, number of
measurement samples, and the presence of coherent (nonclas-
sical) measurement errors; see also [11,23]. Reference [24]
pointed out a surprising connection between quantum readout
error-mitigation methods and unfolding algorithms used in
high-energy physics to cope with a finite resolution of par-
ticle detectors [25]. However, the classical processing cost of
unfolding methods may be prohibitive for multiqubit exper-

iments since they require manipulations with exponentially
large probability vectors. Applications of the noise matrix
inversion method in the context of variational quantum algo-
rithms are discussed in [26].

After completion of the present paper we became aware of
a closely related work by Hamilton et al. [27] which devel-
oped a scalable characterization of readout errors based on a
cumulant expansion. The latter can be viewed as a counterpart
of the CTMP noise model considered here. Namely, both
methods provide a recipe for combining single- and two-qubit
noise matrices into the full noise matrix describing a multi-
qubit device.

The paper is organized as follows. Section II defines an
error-mitigated mean value of an observable and shows that
it provides an unbiased estimator of the ideal mean value.
The tensor product and CTMP noise models are discussed
in Secs. III and IV. The parameters of these noise models
can be extracted from the measurement calibration data as
described in Sec. V. The experimental demonstration of our
error-mitigation methods is reported in Sec. VI. Appendixes
A, B, and C prove technical lemmas used in the main text and
provide additional details on the implementation of our algo-
rithms. The experimental hardware is described in Appendix
D.

II. UNBIASED ERROR MITIGATION

Let ρ be the output state of a (noisy) quantum circuit acting
on n qubits. Our goal is to measure the expected value of a
given observable O on the state ρ within a specified precision
δ. For simplicity, below we assume that the observable O is
diagonal in the standard basis and takes values in the range
[−1, 1], that is,

O =
∑

x∈{0,1}n

O(x)|x〉〈x|, |O(x)| � 1.

Consider M independent experiments where each experiment
prepares the state ρ and then measures each qubit in the
standard basis. Let si ∈ {0, 1}n be the string of measurement
outcomes observed in the ith experiment. In the absence of
measurement errors one can approximate the mean value
Tr(ρO) by an empirical mean value

μ = M−1
M∑

i=1

O(si). (1)

By Hoeffding’s inequality, |μ − Tr(ρO)| � δ with high prob-
ability (at least 2/3) if we choose M = 4δ−2. Furthermore, μ

is an unbiased estimator of Tr(ρO).
Suppose now that measurements are noisy. The most gen-

eral model of a noisy n-qubit measurement involves a POVM
with 2n elements {�x} labeled by n-bit strings x. The probabil-
ity of observing a measurement outcome x is given by P(x) =
Tr(ρ�x ). In the ideal case one has �x = |x〉〈x| while in the
presence of noise �x could be arbitrary positive semidefinite
operators that obey the normalization condition

∑
x �x = I .

To enable efficient error mitigation, we make a simplifying
assumption that all POVM elements �x are diagonal in the
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standard basis, that is,

�y =
∑

x

〈y|A|x〉 |x〉〈x|

for some stochastic matrix A of size 2n. In other words, 〈y|A|x〉
is the probability of observing an outcome y provided that the
true outcome is x. For example, suppose n = 1 and

A =
[

0.9 0.2
0.1 0.8

]
.

Then the probability of measuring 1 on a qubit prepared in the
state |0〉 is 10%. The probability of measuring 0 on a qubit
prepared in the state |1〉 is 20%. For brevity, we shall refer to
such readout errors as 0 → 1 and 1 → 0, respectively. In this
section we assume that the matrix A is known (this assumption
is relaxed in Sec. V). By analogy with Eq. (1), define an error-
mitigated empirical mean value as

ξ = M−1
M∑

i=1

∑
x

O(x)〈x|A−1|si〉. (2)

Lemma 1. The random variable ξ is an unbiased estimator
of Tr(ρO) with the standard deviation σξ � 	M−1/2, where

	 = max
y

∑
x

|〈x|A−1|y〉|. (3)

A proof of the lemma is given in Appendix A. By Ho-
effding’s inequality, |ξ − Tr(ρO)| � δ with high probability
(at least 2/3) if the number of measurements is

M = 4δ−2	2. (4)

Recall that M ∼ δ−2 in the ideal case. Thus the quantity
	2 can be viewed as an error-mitigation overhead. In other
words, error mitigation increases the number of measurements
required to achieve a given precision δ by a factor of 	2

compared with the case of ideal measurements.

III. TENSOR PRODUCT NOISE

Consider first a simple case when A is a tensor product of
2 × 2 stochastic matrices,

A =
[

1 − ε1 η1

ε1 1 − η1

]
⊗ · · · ⊗

[
1 − εn ηn

εn 1 − ηn

]
. (5)

Here ε j and η j are error rates describing readout errors 0 →
1 and 1 → 0, respectively. The error-mitigated mean value ξ

defined in Eq. (2) can be easily computed when the observable
O has a tensor product form,

O = O1 ⊗ · · · ⊗ On.

For example, O could be a product of Pauli Z operators on
some subset of qubits. Alternatively, O could project some
subset of qubits onto 0 or 1 states. Define a single-qubit state
|e〉 = |0〉 + |1〉. From Eqs. (2) and (5) one gets

ξ = M−1
M∑

i=1

n∏
j=1

〈e|Oj

[
1 − ε j η j

ε j 1 − η j

]−1∣∣si
j

〉
. (6)

Here si ∈ {0, 1}n is the outcome observed in the ith measure-
ment and si

j ∈ {0, 1} is jth bit of si. The single-qubit matrix

element that appears in Eq. (6) can be computed in constant
time for any fixed pair i, j. Thus one can compute ξ in time
≈ nM, that is, the classical postprocessing runtime is linear in
the number of qubits and the number of measurements. The
above algorithm is generalized to arbitrary observables O in
Appendix C. The algorithm has runtime ≈ nMτ , where τ is
the cost of computing the observable O(x) for a given x.

Suppose the noise is weak such that ε j, η j � 1/2 for all j.
Substituting the definition of A into Eq. (3) one gets

	 =
n∏

j=1

1 + |ε j − η j |
1 − ε j − η j

. (7)

We show how to extract the error rates ε j and η j from the
readout calibration data in Sec. V. Then Eqs. (4) and (7)
determine the number of measurements M, as a function of
the desired precision δ. Assuming that ε j, η j 	 1 one gets
	 ≈ e2γ , where γ is the noise strength defined as

γ =
n∑

j=1

max {ε j, η j}.

The error-mitigation overhead thus scales as 	2 ≈ e4γ .

IV. CORRELATED MARKOVIAN NOISE

In this section we propose a noise model based on continu-
ous time Markov processes (CTMPs) [28]. It naturally extends
the tensor product noise model and accounts for correlated
(cross-talk) errors. Define a CTMP noise model as a stochastic
matrix A of size 2n × 2n such that1

A = eG, G =
2n2∑
i=1

riGi, (8)

where eG = ∑∞
p=0 Gp/p! is the matrix exponential, ri � 0 are

error rates, and Gi are single-qubit or two-qubit operators from
the following list:

Generator Gi Readout error Number of generators

|1〉〈0| − |0〉〈0| 0 → 1 n
|0〉〈1| − |1〉〈1| 1 → 0 n
|10〉〈01| − |01〉〈01| 01 → 10 n(n − 1)
|11〉〈00| − |00〉〈00| 00 → 11 n(n − 1)/2
|00〉〈11| − |11〉〈11| 11 → 00 n(n − 1)/2

Each operator Gi generates a readout error on some bit or
some pair of bits (errors 10 → 01 are equivalent to 01 → 10
with the reversed order of bits). The right column shows the
number of ways to choose qubit(s) acted upon by a generator.
The negative terms in Gi ensure that A is a stochastic matrix.
The CTMP model depends on 2n2 parameters ri, as can be
seen by counting the number of generators Gi of each type.

1Although our definition makes no reference to time, one can ex-
press A as a solution of a differential equation Ȧ(t ) = GA(t ) with
the initial condition A(0) = I . Thus G serves as a generator of a
continuous time Markov process such that 〈y|G|x〉 is the rate of
transitions from a state x to a state y �= x.
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We show how to extract the error rates ri from the readout
calibration data in Sec. V. Furthermore, the tensor product
model Eq. (5) is a special case of CTMP with ri = 0 for all
two-qubit errors. Indeed, in this case Eq. (8) defines a tensor
product of single-qubit stochastic matrices[

1 − ε η

ε 1 − η

]
= eG,

G = − ln (1 − ε − η)

ε + η

[−ε η

ε −η

]
.

Here we assume that ε + η < 1.
Next let us show how to compute the error-mitigated mean

value ξ defined in Eq. (2). Since ξ itself is only a δ-estimate
of the true mean value Tr(ρO), it suffices to approximate ξ

within an error ≈ δ. We use a version of the well-known
Gillespie algorithm [28] for simulating continuous Markov
processes combined with the following lemma proved in
Appendix B.

Lemma 2. Suppose A is an invertible stochastic matrix.
There exist stochastic matrices Sα and real coefficients cα such
that ‖c‖1 ≡ ∑

α |cα| � 	 and

A−1 =
∑

α

cαSα. (9)

Furthermore, ‖c‖1 = 	 for some decomposition as above.
Here 	 is the quantity defined in Eq. (3). Suppose we have

found a decomposition Eq. (9) for the inverse CTMP noise
matrix A−1 = e−G. Then the error-mitigated mean value ξ

defined in Eq. (2) can be approximated using the following
algorithm.

Algorithm 1:

T ← 4δ−2‖c‖2
1

for t = 1 to �T � do
Sample i ∈ [M] uniformly at random
Sample α from the distribution qα = |cα|/‖c‖1

Sample x from the distribution 〈x|Sα|si〉
ξt ← sgn(cα )O(x)

end for
return ξ ′ = T −1‖c‖1

∑T
t=1 ξt

Here cα, Sα are the same as in Lemma 2. We claim that
the output of this algorithm satisfies |ξ ′ − ξ | � δ with high
probability (at least 2/3). Indeed, substituting Eq. (9) into
Eq. (2) one gets

ξ = M−1‖c‖1

M∑
i=1

∑
α

∑
x

qαsgn(cα )O(x)〈x|Sα|si〉, (10)

that is,

ξ = ‖c‖1Ei,α,x sgn(cα )O(x(i, α)). (11)

Here i ∈ [M] is picked uniformly at random, α is sam-
pled from qα , and x(i, α) is sampled from the distribution
〈x|Sα|si〉 with fixed i, α. Accordingly, a random variable
‖c‖1sgn(cα )O(x(i, α)) is an unbiased estimator of ξ with the
variance at most ‖c‖2

1. By Hoeffding’s inequality, |ξ ′ − ξ | � δ

with high probability (at least 2/3).

In the special case of tensor product noise one can effi-
ciently compute a decomposition A−1 = ∑

α cαSα defined in
Lemma 2 with ‖c‖1 = 	; see Appendix C. This yields an
instantiation of Algorithm 1 that computes a δ-estimate of ξ

in time roughly

n	2δ−2 ∼ nM. (12)

Here M is the number of measurements determined by Eq. (4).
Further details on the implementation of Algorithm 1 for the
tensor product noise can be found in Appendix C.

Next, let us show how to implement Algorithm 1 for the
CTMP model A = eG. Define a parameter

γ = max
x∈{0,1}n

−〈x|G|x〉. (13)

We shall see that the error-mitigation overhead introduced
by the CTMP method scales as e4γ . To avoid a confusion
with individual error rates ri we shall refer to the quantity
γ as the CTMP noise strength. The function −〈x|G|x〉 can
be viewed as a classical Ising-like Hamiltonian with two-spin
interactions. Although finding the maximum energy of such
Hamiltonians is NP-hard in the worst case, this can be easily
done for moderate system sizes, say, n � 50, using heuristic
optimizers such as simulated annealing. Below we assume
that the noise strength γ has been already computed.

First we note that γ � 0 since G has nonpositive diagonal
elements. Define a matrix

B = I + γ −1G. (14)

Using Eq. (13) and the fact that G has zero column sums, one
can check that B is a stochastic matrix. Furthermore,

A−1 = e−G = eγ e−γ B =
∞∑

α=0

eγ (−γ )α

α!
Bα ≡

∞∑
α=0

cαSα, (15)

where

Sα = Bα and cα = eγ (−γ )α

α!
. (16)

Clearly, Sα is a stochastic matrix for any integer α � 0. Thus
Eqs. (15) and (16) provide a stochastic decomposition of A−1

stated in Lemma 2 with the 1-norm

‖c‖1 =
∞∑

α=0

eγ γ α

α!
= e2γ . (17)

From Eq. (4) and Lemma 2 one infers that the number of
measurements required for error mitigation scales as M ∼
e4γ . Thus the quantity e4γ determines the error-mitigation
overhead. The probability distribution

qα = |cα|/‖c‖1 = e−γ γ α

α!
(18)

is the Poisson distribution with the mean γ . Substitute the
decomposition of Eqs. (15) and (16) into Algorithm 1. The
only nontrivial step of the algorithm is sampling x from
the distribution

〈x|Sα|si〉 = 〈x|Bα|si〉.
This amounts to simulating α steps of a Markov chain with
the transition matrix B. Note that B is a sparse efficiently
computable matrix. More precisely, each column of B has
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≈ n2 nonzero elements. Thus one can simulate a single step of
the Markov chain in time ≈ n2. Since E(α) = γ , simulating α

steps of the Markov chain on average takes time ≈ γ n2. The
overall runtime of Algorithm 1 becomes

n2γ ‖c‖2
1δ

−2 ∼ n2γ e4γ δ−2.

Here we used Eq. (17). We note that the above algorithm is
well defined as long as γ � −〈x|G|x〉 for all x. Indeed, this
ensures that the matrix B in Eq. (14) is stochastic. Thus one
can choose γ as an arbitrary upper bound on the optimal
solution of the optimization problem (13).

Assuming that cross-talk errors result from short-range
interactions between qubits, one should expect that each qubit
participates in a constant number of generators Gi indepen-
dent of n. If this is the case, each column of G has at most Cn
nonzero elements for some constant C. Then γ � Cεn, where
ε = maxi ri is the maximum error rate. Thus the exponential
term in the runtime of Algorithm 1 becomes e4Cεn. Experi-
mental data presented in Sec. VI are consistent with a linear
scaling γ ∼ n; see Fig. 5.

V. MEASUREMENT CALIBRATION

Calibration aims at learning parameters of the noise model
from experimental data. A single calibration round initializes
the n-qubit register in a basis state |x〉 and performs a noisy
measurement of each qubit, keeping the record of the mea-
sured outcome y. Let m(y, x) be the number of rounds with the
input state x and the measured output state y. We fix some set
of input states C ⊆ {0, 1}n and perform Ncal calibration rounds
for each input state x ∈ C. Thus

∑
y m(y, x) = Ncal if x ∈ C

and m(y, x) = 0 if x /∈ C. The calibration requires Ncal · |C|
experiments in total.

Learning the full noise matrix requires calibration of each
possible input state, that is, C = {0, 1}n. Let Afull be the empir-
ical estimate of the full noise matrix, that is,

〈y|Afull|x〉 = m(y, x)

Ncal
, (19)

where x, y ∈ {0, 1}n.
To learn error rates of the tensor product or the CTMP

model it suffices to calibrate a small subset of basis states.
Consider first the tensor product model. To ensure that each
possible single-qubit readout error is probed on some input
state, we assume that for any qubit j the set C contains at least
one state x with x j = 0 and at least one state with x j = 1. Let
ε j and η j be the rates of errors 0 → 1 and 1 → 0 on the jth
qubit; see Eq. (5). We set

ε j =
∑

x,y m(y, x)〈1|y j〉〈x j |0〉∑
x,y m(y, x)〈x j |0〉 ,

η j =
∑

x,y m(y, x)〈0|y j〉〈x j |1〉∑
x,y m(y, x)〈x j |1〉 . (20)

For example, ε j is the fraction of calibration rounds that re-
sulted in a readout error 0 → 1 on the jth qubit among all
rounds with x j = 0. Let Atp be the tensor product noise matrix
defined by the rates ε j, η j and Eq. (5).

Next consider the CTMP model. Recall that the model is
defined by 2n2 error rates describing readout errors 0 ↔ 1,

01 ↔ 10, and 00 ↔ 11. To ensure that each possible two-
qubit readout error is probed on some input state, we assume
that for any pair of qubits j �= k and for any v j, vk ∈ {0, 1}
the set C contains at least one state x such that x j = v j and
xk = vk . For example, C could include bit strings 0n, 1n, and
all weight-1 strings. Fix a pair of qubits j �= k. Given a bit
string x ∈ {0, 1}n, let xin ∈ {0, 1}2 be the restriction of x onto
the bits j, k and xout ∈ {0, 1}n−2 be the restriction of x onto
all remaining bits i /∈ { j, k}. We choose CTMP error rates on
qubits j, k by defining a local noise matrix A( j, k) and fitting
A( j, k) with a two-qubit CTMP model. More formally, A( j, k)
is a stochastic matrix of size 4 × 4 with matrix elements

〈w|A( j, k)|v〉 =
∑

x,y m(y, x)〈w|yin〉〈xin|v〉〈xout|yout〉∑
x,y m(y, x)〈xin|v〉〈xout|yout〉 .

Here v,w ∈ {0, 1}2. In words, 〈w|A( j, k)|v〉 is the fraction of
calibration rounds that resulted in a readout error v → w on
qubits j, k and no errors on qubits i /∈ { j, k} among all rounds
with xin = v that resulted in no errors on qubits i /∈ { j, k}. Let

G( j, k) = ln A( j, k)

be the matrix logarithm of A( j, k). We choose the branch of
the ln function such that G( j, k) = 0 if A( j, k) = I . The rates
of two-qubit errors occurring on the qubits j, k are chosen as
shown in the following list:

Readout error CTMP error rate

01 → 10 〈10|G′( j, k)|01〉
10 → 01 〈01|G′( j, k)|10〉
00 → 11 〈11|G′( j, k)|00〉
11 → 00 〈00|G′( j, k)|11〉

Here G′( j, k) is a matrix obtained from G( j, k) by setting to
zero all negative off-diagonal elements. Let r0→1

j and r1→0
j

be the rates of single-qubit readout errors 0 → 1 and 1 → 0
occurring on the jth qubit. We set

r0→1
j = 1

2(n − 1)

∑
k �= j

〈10|G′( j, k)|00〉 + 〈11|G′( j, k)|01〉,

r1→0
j = 1

2(n − 1)

∑
k �= j

〈00|G′( j, k)|10〉 + 〈01|G′( j, k)|11〉.

Here we noted that two-qubit errors 01 ↔ 10 or 00 ↔ 11 on
qubits j, k can be generated only by the local noise matrix
A( j, k). Meanwhile, single-qubit errors 0 ↔ 1 on the jth qubit
can be generated by any local noise matrix A( j, k) with k �= j.
The above definition of single-qubit error rates amounts to
taking the average over all such possibilities. Let Actmp be
the CTMP noise model defined by the above error rates and
Eq. (8).

The calibration method described above is well defined
only if the set of input states C is complete in the sense that
any two-bit readout error can be probed on some input state
x ∈ C. More formally, let us say that a set of n-bit strings C is
complete if for any pair of bits 1 � a < b � n and for any bit
values α, β ∈ {0, 1} there exists at least one string x ∈ C such
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FIG. 1. A complete set of input states for CTMP calibration on
n = 10 qubits. Each row of the matrix defines a bit string x ∈ C. One
can check that any pair of columns contains 00, 01, 10, and 11 in at
least one row. Thus any two-bit readout error can be probed on some
input x ∈ C. We numerically checked that |C| � 6 for any complete
set C ⊆ {0, 1}10.

that xa = α and xb = β; see Fig. 1 for an example. Below we
describe complete sets of input states used in our experiments.

Weight-1 calibration: the set C includes all n-bit strings
with the Hamming weight 0, 1, n. For example, if n = 4 then
C includes 0000, 1111, and all permutations of 1000.

Weight-2 calibration: the set C includes all n-bit strings
with the Hamming weight 0,1,2. For example, if n = 4 then C
includes 0000, all permutations of 1000, and all permutations
of 1100.

Hadamard calibration: Let p be the smallest integer such
that n < 2p. Given an integer a in the range [0, 2p − 1], let
a1, . . . , ap ∈ {0, 1} be the binary digits of a. We choose C =
{x0, . . . , x2p−1}, where xa ∈ {0, 1}n is defined by

xa
b =

p∑
i=1

aibi (mod 2)

for b = 1, . . . , n. For example, if n = 4 then C includes all
even-weight bit strings x ∈ {0, 1}4. In general, |C| � 2n. One
can easily check that each two-bit error is probed on exactly
2p−2 input states x ∈ C. Thus the calibration resources are
allocated evenly among all possible errors.

VI. EXPERIMENTAL RESULTS

All experiments are performed using n-qubit registers of
the 20-qubit IBM Quantum device called ibmq_johannesburg;
see Appendix D for details. Only the chosen n-qubit register
is used for readout calibration. The unused qubits are initial-
ized in the |0〉 state in each calibration round. Measurement
outcomes on the unused qubits are ignored. All experiments
were performed with Ncal = 8192 calibration rounds.

First, let us discuss how well the tensor product (TP) and
the CTMP models approximate the readout noise observed
in the experiment. We quantify the difference between a pair
of n-qubit noise matrices A and A′ using the total variation
distance (TVD)

TVD(A, A′) = 1

2
max

x

∑
y

|〈y|A|x〉 − 〈y|A′|x〉|.

The TVD provides an upper bound on the probability of
distinguishing output distributions A|p〉 and A′|p〉 for any in-
put distribution p. This enables a comparison between noise
models in the worst-case scenario rather than for a specific
quantum state and a specific observable.

FIG. 2. Distance from the full A-matrix. A comparison is
made between the full A-matrix, the tensor product, and the
CTMP noise models. The plot shows the total variation distance
TVD(Afull, Actmp) (blue bars) and TVD(Afull, Atp) (red bars) for n =
4, 5, 6, 7 qubits. For each number of qubits we performed 16 inde-
pendent experiments.

For small number of qubits, n � 7, all three calibration
methods described in Sec. V have been performed. Let Afull be
the full noise matrix. Let Atp and Actmp be the noise matrices
predicted by the TP and CTMP models with weight-2 calibra-
tion. Figure 2 shows the observed distances TVD(Afull, Actmp)
and TVD(Afull, Atp) for n = 4, 5, 6, 7 qubits (with the qubits
chosen for n < 7 consisting of subsets of the n = 7 case)
and 16 independent experiments per each number of qubits.
It indicates that the CTMP model provides a more accurate
approximation of the readout noise achieving 2× reduction in
the TVD metric for n = 6, 7 qubits. The increased separation
between TP and CTMP models for larger numbers of qubits
indicates that readout crosstalk is larger in the additional
qubits used for the circuits with more qubits. Note that this
improvement comes at no additional cost since both models
have access to exactly the same calibration data set.

In order to compare the methods of measurement miti-
gation on relevant quantum circuits, we use graph states as
an example of a highly entangled state that can serve as
a benchmark for quantum devices. We estimate the fidelity
with stabilizer measurements for n-qubit graph states [29] of
the form

|Gn〉 =
(

n−1∏
j=1

CZ j, j+1

)
H⊗n|0n〉. (21)

The corresponding graph is a path with n vertices. The state
|Gn〉 is a stabilizer state with the stabilizer group S gener-
ated by Pauli operators S1 = X1Z2, Sn = Zn−1Xn, and S j =
Zj−1XjZ j+1 for 1 < j < n. Let ρ be an approximate version of
|Gn〉 prepared in the laboratory by executing the quantum cir-
cuit (21). The fidelity 〈Gn|ρ|Gn〉 can be estimated by picking
a random element of the stabilizer group S ∈ S and measuring
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FIG. 3. (a) Average mean values of graph state stabilizers for
4 � n � 12 qubits obtained using different error-mitigation meth-
ods (full A-matrix in black circles, CTMP in blue stars, TP in red
diamonds) and without error mitigation (raw, gray squares) with
the difference, �F , between CTMP and full A-matrix (blue) and
TP and full A-matrix (red) below. To avoid clutter, data points on
the plot (a) that represent the error-mitigated results (black, blue,
and red) are offset along the horizontal axis. The fidelity was es-
timated by averaging the stabilizer mean value over ≈100 random
stabilizers. For each stabilizer 16 independent experiments were per-
formed to estimate error bars. (b) Differences in the error-mitigated
mean values ξctmp(S) − ξfull(S) (blue) and ξtp(S) − ξfull(S) (red) for
stabilizers S of the six-qubit graph state from (a) obtained using
the CTMP, the tensor product, and the full A-matrix noise models.
Data sets are averaged over all stabilizers of the same weight, indi-
cated on the horizontal axis. The graph state has no stabilizers with
weight = 1, two stabilizers with weight = 2, eight stabilizers with
weight = 3, etc.

its mean value on the state ρ,

F = 〈Gn|ρ|Gn〉 = 2−n
∑
S∈S

Tr(ρS) = ESTr(ρS). (22)

A comparison between the error-mitigated fidelity F obtained
using the full A-matrix, TP, and CTMP methods with weight-1
calibration is shown in Fig. 3(a). We also show raw values
of F obtained without error mitigation. The full A-matrix
model was used only for n � 7. The data suggest that CTMP
provides much more accurate estimates of the fidelity, com-
pared with the TP model which systematically overestimates
the fidelity. The mean value of each stabilizer was estimated

FIG. 4. Combined rate of correlated two-qubit readout errors for
each pair of qubits 0 � q, q′ < n. (a) 12-qubit graph state experi-
ment; (b) 20-qubit random Clifford circuit experiment.

by measuring M = 8192 copies of the graph state |Gn〉. The
entire experiment (calibration and mean value measurements)
was repeated 16 times in order to estimate error bars.

For the six-qubit graph state, there are few enough stabi-
lizers that we can measure all of them. Let ξfull(S), ξtp(S),
and ξctmp(S) be the error-mitigated mean values Tr(ρS) of
a stabilizer S obtained using the full A-matrix, the TP, and
the CTMP method, respectively. Figure 3(b) shows the dif-
ferences ξfull(S) − ξtp(S) and ξfull(S) − ξctmp(S) averaged over
stabilizers of the same weight, |S|. It can be seen that the
TP method systematically overestimates the mean values for
stabilizers with the weight 3,4,5,6, while CTMP shows a
much better agreement with the full A-matrix method. The
difference between CTMP and TP increases for higher weight
stabilizers, which we expect to be more sensitive to correlated
readout errors. Figure 4(a) shows the combined rate of cor-
related two-qubit errors 01 ↔ 10 and 00 ↔ 11, as described
by the CTMP model, for each pair of qubits in the chosen
12-qubit register. It can be seen that some pairs of qubits, such
as (7,8), experience correlated errors with a few-percent rate.
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FIG. 5. CTMP noise strength γ = maxx −〈x|G|x〉, where G is
is generator matrix of the CTMP model such that Actmp = eG. The
error-mitigation overhead introduced by the CTMP method scales
as e4γ . The data suggest a linear scaling, γ ≈ 0.05n. We observed
γ ≈ 1.1 in the n = 20 experiment.

Recall that the error-mitigation overhead introduced by
the CTMP method is roughly e4γ , where γ is the noise
strength defined in Eq. (13). Figure 5 shows the noise strength
γ observed in the graph state experiments as a function of
the number of qubits. Error bars were estimated from 16
independent experiments. The data are consistent with a linear
scaling, γ ≈ 0.05n, and with single-qubit readout fidelities
of a few percent (see Appendix D for more details on the
readout errors in the hardware). We observed γ � 0.7 for all
experiments reported above. The error-mitigation overhead is
therefore at most e4·0.7 � 20, indicated a factor of 20 increase
in the number of measurements required. Our last exper-
iment demonstrates error-mitigated stabilizer measurements
on an entangled 20-qubit state |ψ〉 generated by a random
depth-4 Clifford circuit. The circuit consists of two layers
of CNOT gates on nearest-neighbor pairs of qubits and two

layers of single-qubit Clifford operators; see Fig. 6. Such a
state |ψ〉 can be specified by a group of Pauli-type stabi-
lizers S ∈ ±{I, X,Y, Z}⊗20 such that S|ψ〉 = |ψ〉. We have
measured mean values 〈ψ |S|ψ〉 for ≈500 stabilizers S chosen
randomly such that the weight of S varies between 1 and 20.
In the absence of readout and gate errors one has 〈ψ |S|ψ〉 = 1
for all stabilizers S. Our results for the error-mitigated mean
values 〈ψ |S|ψ〉 obtained with the TP and CTMP methods
and Hadamard-type calibration are shown in Fig. 6. In con-
trast to the graph state experiment, error rates associated with
correlated two-qubit errors 01 ↔ 10 and 00 ↔ 11 observed
in the 20-qubit experiment are less than 1% for all pairs of
qubits; see Fig. 4(b). Accordingly, the difference between
error-mitigated mean values obtained using the TP and CTMP
methods is less pronounced.

The 20-qubit experiment showcases the scalability of our
method. For example, computing the error-mitigated mean
value of a 20-qubit stabilizer using the CTMP method with
T = 106 samples in Algorithm 1 takes about 2 sec on a laptop
computer (recall that T affects the cost of a classical postpro-
cessing but not the number of experiments). Extracting CTMP
error rates from the 20-qubit calibration data takes about 1 sec.
Thus we expect that our methods can be scaled up to a larger
number of qubits.

VII. CONCLUSIONS

We introduced scalable methods of mitigating readout er-
rors in multiqubit experiments. Our methods are capable of
mitigating correlated cross-talk errors and enable efficient im-
plementation of the calibration and the noise inversion steps.
The proposed error-mitigation methods are demonstrated ex-
perimentally for measurements of up to 20 qubits. We believe
that our techniques will be useful for many near-term quantum
applications, and their scalability will be increasingly impor-
tant as the problem sizes become larger.

FIG. 6. Error-mitigated stabilizer measurements performed on a 20-qubit state |ψ〉 generated by a random depth-4 Clifford circuit. The
circuit consists of alternating layers of single-qubit Clifford operators and entangling layers composed of nearest-neighbor CNOT gates. (a) The
coupling map for the 20-qubit device, ibmq_johannesburg. The patterns of CNOTs in the two entangling layers are indicated by single and
double solid lines, with unused physical connections in dotted lines. (b) Error-mitigated and raw mean values 〈ψ |S|ψ〉 for ≈500 stabilizer
operators S chosen such that the weight of S varies between 1 and 20. Each data point represents the average over all stabilizers S with a given
weight. In the absence of gate and readout errors each stabilizer S has mean value +1. Error mitigation was performed using the CTMP and
Tensor Product methods with the Hadamard-type calibration. Black circles indicate raw mean values measured without error mitigation.

042605-8



MITIGATING MEASUREMENT ERRORS IN MULTIQUBIT … PHYSICAL REVIEW A 103, 042605 (2021)

ACKNOWLEDGMENTS

The authors thank Kristan Temme for helpful discussions
and Neereja Sundaresan for experimental contributions. This
work was supported in part by ARO under Contract No.
W911NF-14-1-0124 and by the IBM Research Frontiers In-
stitute. The authors declare that they have no competing
interests.

APPENDIX A: PROOF OF LEMMA 1

Represent the measurement outcomes s1, . . . , sM by a
probability vector |ψ〉 = M−1 ∑M

i=1 |si〉. Then

ξ =
∑

x

O(x)〈x|A−1|ψ〉

and

E(ξ 2) =
∑
x,y

O(x)O(y)〈x|A−1E(|ψ〉〈ψ |)(A−1)T |y〉. (A1)

Let P(x) = 〈x|ρ|x〉 and |P〉 = ∑
x P(x)|x〉. Then

E(|ψ〉〈ψ |) = M − 1

M
A|P〉〈P|AT + 1

M

∑
x

|x〉〈x|〈x|A|P〉.

(A2)

Substituting Eq. (A2) into Eq. (A1) gives

E(ξ 2) � E(ξ )2 + 1

M

∑
x,y

O(x)O(y)〈x|A−1D(A−1)T |y〉,

(A3)

where D is a diagonal operator with entries 〈x|D|x〉 =
〈x|A|P〉. Since 〈x|A|P〉 is a normalized probability distribu-
tion, one concludes that E(ξ 2) − E(ξ )2 is upper bounded by

1

M
max

z

∑
x,y

|O(x)O(y)||〈x|A−1|z〉||〈y|A−1|z〉|. (A4)

By assumption, |O(x)| � 1 for all x, which gives
E(ξ 2) − E(ξ )2 � M−1	2. Thus the standard deviation of
ξ is at most M−1/2	.

APPENDIX B: PROOF OF LEMMA 2

Suppose M is a real N × N matrix (we shall be interested
in the case M = A−1). Let us state necessary and sufficient
conditions under which M admits a decomposition

M =
∑

a

caSa, (B1)

where Sa are stochastic matrices and ca are real coefficients.
Define the jth column sum of M as σ j (M ) = ∑N

i=1 Mi, j .
Lemma 3. A matrix M admits a decomposition Eq. (B1)

iff all column sums of M are the same.
Proof. From Eq. (B1) one gets σ j (M ) = ∑

a ca for all j.
Conversely, suppose σ j (M ) = γ for all j. For any integers

i, j ∈ [N] define a matrix T (i, j) = |1〉〈 j| − |i〉〈 j|. Note that
all column sums of T (i, j) are zero. One can easily verify that

T (i, j) is a linear combination of two stochastic matrices. Let

M ′ = M +
N∑

i=2

N∑
j=1

Mi, jT (i, j).

The matrix M ′ has zero rows 2, 3, . . . , N and M ′
1, j = γ for all

j. Thus M ′ = γ S for a stochastic matrix S. This shows that M
is a linear combination of stochastic matrices.

As a corollary, the inverse of any stochastic matrix can be
written as a linear combination of stochastic matrices. Indeed,
if M = A−1 for some stochastic matrix A then all column sums
of M are equal to one.

Given a matrix M let 	(M ) be the maximum 1-norm of its
columns,

	(M ) = max
j

N∑
i=1

|Mi, j |.

Lemma 2 is a special case of the following.
Lemma 4. Suppose all column sums of M are the same.

Then any decomposition Eq. (B1) obeys ‖c‖1 � 	(M ) and
‖c‖1 = 	(M ) for some decomposition.

Proof. Suppose M is written as in Eq. (B1). By triangle
inequality,

	(M ) =
∑

i

|Mi, j | �
∑

a

|ca|
∑

i

〈i|Sa| j〉 = ‖c‖1. (B2)

Conversely, let �(M ) be the minimum 1-norm ‖c‖1, where
the minimum is over all decompositions Eq. (B1). From
Eq. (B2) one infers that �(M ) � 	(M ). It suffices to
prove that

�(M ) � 	(M ). (B3)

Let k be the number of nonzero elements in M. We shall prove
Eq. (B3) using induction in k. The base of induction is k = 0.
In this case M is the all-zeros matrix and �(M ) = 	(M ) = 0.

Suppose we have already proved Eq. (B3) for all matrices
M with at most k nonzeros. Consider a matrix M with k + 1
nonzeros. Let γ = σ j (M ) be the column sum of M (by as-
sumption, it does not depend on j). We shall consider two
cases.

Case 1: γ �= 0. Then all columns of M are nonzero and
each column contains a nonzero entry Mi, j with the same sign
as γ . Let ω be a smallest magnitude nonzero entry of M with
the same sign as γ . Assume wlog that ω = M1,1 (otherwise,
permute rows and/or columns of M). Choose any function
f : [N] → [N] such that f (1) = 1 and M f ( j), j is a largest
magnitude entry in the jth column with the same sign as γ .
Define a new matrix

M ′ = M − ω

N∑
j=1

| f ( j)〉〈 j|. (B4)

Note that M ′ has at most k nonzeros since M f ( j), j �= 0 for all
j and M ′

1,1 = 0. Since
∑N

j=1 | f ( j)〉〈 j| is a stochastic matrix,
Eq. (B4) gives

�(M ) � �(M ′) + |ω|. (B5)

We claim that

	(M ′) � 	(M ) − |ω|. (B6)
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Indeed, let 	 j (M ) and 	 j (M ′) be the 1-norm of the jth column
of M and M ′, respectively. We have 	1(M ′) = 	1(M ) − |ω|
since the first column of M ′ is obtained from the one of M by
setting to zero the entry M1,1 = ω. If j � 2 then

	 j (M
′) = |M f ( j), j − ω| +

∑
i �= f ( j)

|Mi, j |

= sgn(ω)(M f ( j), j − ω) +
∑

i �= f ( j)

|Mi, j |

= 	 j (M ) − |ω|.
Here we used sgn(ω) = sgn(M f ( j), j ) and |ω| � |M f ( j), j |. This
proves Eq. (B6). By induction hypothesis, �(M ′) � 	(M ′).
Combining this and Eqs. (B5) and (B6) one arrives at

�(M ) � �(M ′) + |ω| � 	(M ′) + |ω| � 	(M ). (B7)

Case 2: γ = 0. Then each nonzero column of M contains
at least one positive and at least one negative entry. Let ω be
a nonzero entry of M with the smallest magnitude. Assume
wlog that ω = M1,1. Choose any function f : [N] → [N] such
that f (1) = 1 and M f ( j), j is the largest magnitude entry in
the jth column with the same sign as ω. If the jth column
is zero, then set f ( j) arbitrarily. Define a new matrix M ′ using
Eq. (B4). The same arguments as above show that 	1(M ′) =
	1(M ) − |ω| and 	 j (M ′) � 	 j (M ) − |ω| whenever the jth
column of M is nonzero. Suppose now that the jth column
of M is zero. Then 	 j (M ) = 0 and 	 j (M ′) = |ω|. We claim
that 	(M ) � 2|ω|. Indeed, by assumption, M has at least one
nonzero column. Such column must have at least two nonzero
entries with the magnitude at least |ω|, that is, 	(M ) � 2|ω|.
Thus, if the jth column of M is zero then 	 j (M ′) = |ω| �
	(M ) − |ω|. This proves Eq. (B6).The same arguments as
above give �(M ) � 	(M ).

APPENDIX C: ERROR MITIGATION
FOR PRODUCT NOISE

Here we instantiate Algorithm 1 for the tensor product
noise defined in Eq. (5). For each j ∈ [n] define the following
quantities:

c j0 = 2 − ε j − η j

2(1 − ε j − η j )
, c j1 = − ε j + η j

2(1 − ε j − η j )
,

c j2 = ε j − η j

2(1 − ε j − η j )
, c j3 = η j − ε j

2(1 − ε j − η j )
.

Define single-bit Boolean functions F0, F1, F2, F3 as

F0(b) = b, F1(b) = 1 ⊕ b, F2(b) = 0, F3(b) = 1.

Here b ∈ {0, 1}. Consider the following algorithm.

Algorithm 2:

T ← 4δ−2	2

for t = 1 to �T �
ξ t ← 1
Sample i ∈ [M] uniformly at random.
xt ← si

for j = 1 to n
Sample α ∈ {0, 1, 2, 3} with probabilities
qjα = |c jα|(|c j0| + |c j1| + |c j2| + |c j3|)−1

xt
j ← Fα (xt

j )
ξ t ← ξ t · sgn(c jα )

end for
end for
return ξ ′ = T −1	

∑T
t=1 ξt O(xt )

FIG. 7. Histograms of the (a) two-qubit CX (b) single-qubit and (c) readout error rates across the full 20-qubit device, ibmq_johannesburg,
for a typical set of calibrations.
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Here xt
j ∈ {0, 1} is the jth bit of xt . We claim that Al-

gorithm 2 is a special case of Algorithm 1. Indeed, define
stochastic matrices

Aj =
[

1 − ε j η j

ε j 1 − η j

]
and Vi =

∑
b=0,1

|Fi(b)〉〈b|.

A simple calculation shows that

A−1
j = c j0V0 + c j1V1 + c j2V2 + c j3V3 (C1)

and

|c j0| + |c j1| + |c j2| + |c j3| = 1 + |ε j − η j |
1 − ε j − η j

. (C2)

Taking n-fold tensor product of stochastic decompositions
defined in Eq. (C1) one gets A−1 = ∑

α cαSα , where Sα is
a tensor product of stochastic matrices Vi and cα are real
coefficients such that ‖c‖1 = 	. The inner loop of Algorithm
2 samples xt from the distribution Sα|si〉, where α is sampled
from qα = |cα|/	. Thus Algorithm 2 is indeed a special case

of Algorithm 1. We conclude that the output of Algorithm
2 satisfies |ξ ′ − ξ | � δ with high probability (at least 2/3).
The algorithm has runtime ≈ nT τ ∼ nMτ , where M is the
number of measurements determined by Eqs. (4) and (7) and
τ is the cost of computing the observable O(x) for a given
x. For simplicity, here we assume that each sampling step in
Algorithm 2 can be done in unit time.

APPENDIX D: EXPERIMENTAL HARDWARE

All experiments were performed on the 20-qubit IBM
Quantum device called ibmq_johannesburg. The device cou-
pling map is shown in Fig. 6(a) above. Typical mean error
rates are (1.75 ± 1.05) × 10−2 for CX gates, (4.35 ± 1.70) ×
10−4 for single-qubit gates and (3.44 ± 1.72) × 10−2 for
readout errors; a more detailed breakdown of the error rates
is given in the histograms in Fig. 7. The graph state experi-
ments in Fig. 3 were performed on n-qubit subsets of qubits 0
through 11.
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and C. Eichler, Rapid High-Fidelity Multiplexed Readout
of Superconducting Qubits, Phys. Rev. Appl. 10, 034040
(2018).

[19] A. Seif, K. A. Landsman, N. M. Linke, C. Figgatt, C. Monroe,
and M. Hafezi, Machine learning assisted readout of trapped-
ion qubits, J. Phys. B: At., Mol. Opt. Phys. 51, 174006 (2018).

[20] M. R. Geller, Rigorous measurement error correction, Quantum
Sci. Tech. 5, 03LT01 (2020).

[21] M. R. Geller and M. Sun, Efficient correction of multiqubit
measurement errors, arXiv:2001.09980.

[22] F. B. Maciejewski, Z. Zimborás, and M. Oszmaniec, Mitigation
of readout noise in near-term quantum devices by classical

042605-11

https://doi.org/10.1103/PhysRevLett.119.180509
https://doi.org/10.1103/PhysRevX.7.021050
https://doi.org/10.1103/PhysRevX.8.031027
https://doi.org/10.1103/PhysRevA.99.012338
https://doi.org/10.1103/PhysRevA.98.062339
https://doi.org/10.1038/s41586-019-1040-7
https://doi.org/10.1038/s41586-019-0980-2
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1038/nature23879
https://doi.org/10.1038/nature09416
https://doi.org/10.1103/PhysRevA.100.052315
https://doi.org/10.1103/PhysRevA.81.062325
https://doi.org/10.1103/PhysRevA.91.022118
https://doi.org/10.1103/PhysRevA.87.062119
https://doi.org/10.1103/PhysRevLett.109.060501
http://arxiv.org/abs/arXiv:1810.10523
https://qiskit.org
https://doi.org/10.1103/PhysRevApplied.10.034040
https://doi.org/10.1088/1361-6455/aad62b
https://doi.org/10.1088/2058-9565/ab9591
http://arxiv.org/abs/arXiv:2001.09980


SERGEY BRAVYI et al. PHYSICAL REVIEW A 103, 042605 (2021)

post-processing based on detector tomography, Quantum 4, 257
(2020).

[23] J. Sun, X. Yuan, T. Tsunoda, V. Vedral, S. C. Benjamin,
and S. Endo, Mitigating Realistic Noise in Practical Noisy
Intermediate-Scale Quantum Devices, Phys. Rev. Appl. 15,
034026 (2021).

[24] B. Nachman, M. Urbanek, W. A. de Jong, and C. W. Bauer,
Unfolding quantum computer readout noise, npj Quantum Inf.
6, 84 (2020).

[25] G. Cowan, A survey of unfolding methods for particle physics,
in Proc. Advanced Statistical Techniques in Particle Physics,
Durham (2002).

[26] K. E. Hamilton and R. C. Pooser, Error-mitigated data-driven
circuit learning on noisy quantum hardware, Quantum Machine
Intelligence 2, 10 (2020).

[27] K. E. Hamilton, T. Kharazi, T. Morris, A. J. McCaskey, R. S.
Bennink, and R. C. Pooser, Scalable quantum processor noise
characterization, in 2020 IEEE International Conference on
Quantum Computing and Engineering (QCE) (IEEE, 2020),
pp. 430–440.

[28] D. T. Gillespie, Exact stochastic simulation of coupled chemical
reactions, J. Phys. Chem. C 81, 2340 (1977).

[29] R. Raussendorf and H. J. Briegel, A One-Way Quantum
Computer, Phys. Rev. Lett. 86, 5188 (2001).

042605-12

https://doi.org/10.22331/q-2020-04-24-257
https://doi.org/10.1103/PhysRevApplied.15.034026
https://doi.org/10.1038/s41534-020-00309-7
https://doi.org/10.1007/s42484-020-00021-x
https://doi.org/10.1021/j100540a008
https://doi.org/10.1103/PhysRevLett.86.5188

