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Modeling noisy quantum circuits using experimental characterization
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Noisy intermediate-scale quantum (NISQ) devices offer unique platforms to test and evaluate the behavior
of quantum computing. However, validating circuits on NISQ devices is difficult due to fluctuations in the
underlying noise sources and other nonreproducible behaviors that generate computational errors. Here we
present a test-driven approach that decomposes a noisy, application-specific circuit into a series of bootstrapped
experiments on a NISQ device. By characterizing individual subcircuits, we generate a composite noise model
for the original quantum circuit. We demonstrate this approach to model applications of Greenberger-Horne-
Zeilinger(GHZ)-state preparation and the Bernstein-Vazirani algorithm on a family of superconducting transmon
devices. We measure the model accuracy using the total variation distance between predicted and experimental
results, and we demonstrate that the composite model works well across multiple circuit instances. Our approach
is shown to be computationally efficient and offers a trade-off in model complexity that can be tailored to the
desired predictive accuracy.
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I. INTRODUCTION

Quantum computing is a promising approach to accel-
erate computational workflows by solving problems with
greater accuracy or using fewer resources as compared
to conventional methods [1–4]. Testing and evaluation of
early applications on experimental quantum processing units
(QPUs) is now possible using prototypes based on supercon-
ducting transmons [5–8] and trapped ions [9–12] among other
technologies. Although these QPUs lack the fault-tolerant
operations required for known computational speedups, they
offer the opportunity to understand the behaviors of noisy
quantum computing [13].

Noisy, intermediate-scale quantum (NISQ) devices have
enabled a wide range of early application demonstrations
[6,14–18], but validating program performance in the pres-
ence of nonreproducible device behaviors remains a funda-
mental challenge. NISQ devices are characterized by noisy
and erroneous operations, where gate characterizations often
change in time and with the nature of the program being
implemented [19,20]. The experimental characterization of
individual gates has relied on high-fidelity physics models
for the underlying devices with common methods including
quantum state tomography [21], quantum process tomog-
raphy [22,23], gate set tomography [24], and randomized
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benchmarking [25–27]. Physics-driven characterizations offer
valuable insights into the underlying noise and errors that can
inform the design of new devices and control pulses. However,
translating from gate-level characterizations to circuit-level
applications is typically resource intensive because these
methods often scale exponentially with the size of the qubit
register to be characterized [28].

As NISQ applications evolve toward deeper and wider
quantum circuits, characterization methods must also extend
to these larger scales. There is also a growing need for
characterization techniques that can be executed swiftly and
repeatedly to provide context-specific characterization data.
Resource-intensive, physics-driven gate characterization tech-
niques are not a scalable solution to characterizing devices and
applications which are rapidly increasing in size and generally
do not allow for a high level of dynamic tuning. Quantum
circuit characterization methods may provide effective models
of device behaviors that are efficient to generate and easy to
interpret by a supporting programming environment, e.g., a
compiler [29–31]. In particular, the validation of application
behavior will require debugging methods and programming
techniques that support mitigating computational errors in
quantum circuits [32,33]. Effective models of noisy gates and
circuits have already informed robust programming methods
that lead to increased application performance [34–36], but a
general method for composing noisy quantum circuit models
is still needed.

Here, we introduce methods for generating effective mod-
els for noisy quantum circuits in NISQ devices derived
from experimental characterization. Our approach is based
on modeling application-specific circuits using a suite of
characterization tests that build a representative set of noisy
subcircuit models. We compose noisy subcircuit models to
generate noise models for more complicated circuits at larger

2469-9926/2021/103(4)/042603(11) 042603-1 Published by the American Physical Society

https://orcid.org/0000-0002-5747-9695
https://orcid.org/0000-0002-9449-0498
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.103.042603&domain=pdf&date_stamp=2021-04-02
https://doi.org/10.1103/PhysRevA.103.042603
https://creativecommons.org/licenses/by/4.0/


MEGAN L. DAHLHAUSER AND TRAVIS S. HUMBLE PHYSICAL REVIEW A 103, 042603 (2021)

scales, and we test the fidelity of the resulting model against
experimental data. We show how to iteratively adjust the
composite model selected for a noisy application circuit by
comparing the performance of the predicted behavior against
application observations using the total variation distance
(TVD) [34]. The iterative and flexible nature of this mod-
eling approach is demonstrated using applications based on
GHZ-state preparation and the Bernstein-Vazirani algorithm
for search. We develop model composition for the fixed-
frequency superconducting transmon devices available from
IBM, though we propose these techniques may extend to other
NISQ devices as well.

This characterization method is a coarse-grained yet fast
approach to characterization which scales linearly with the
number of elements in the device, e.g., qubits and couplings.
Furthermore, it allows for dynamic tuning of characterization
data to every execution of a particular application and can be
tailored to yield desired information, e.g., development of a
noise model using depolarizing parameters or performance
of an entangling gate creating an equal superposition.
The trade-off compared to physics-driven characterization
techniques is less total information received, which in some
cases may result in a lower accuracy in the final effective
description of the device.

We present the steps in the modeling methodology in
Sec. II followed by a series of examples using the case of
n-qubit GHZ states in Sec. III. In Sec. IV, we present re-
sults from experimental characterization for the GHZ state
on NISQ QPUs and discuss the role of model selection for
characterization accuracy. In Sec. V we show the performance
of our noise models composed from this characterization on
the GHZ state experimental results. In Sec. VI, we apply these
models to the case of the n-bit Bernstein-Vazirani algorithm,
while we offer a final conclusion in Sec. VII.

II. MODEL SELECTION METHODOLOGY

We begin by detailing the coarse-grain modeling methodol-
ogy before providing specific examples of its implementation.
Consider the input for noisy circuit modeling to be an ide-
alized quantum circuit C that is expressed in the available
instruction set architecture (ISA) for a given QPU [2]. While
the gates defined by the ISA may not be directly implemented
within the QPU, the representation used for the ideal circuit
will define the operators available for gate characterization.
The input circuit is decomposed into a set S(C) = {Si} of
idealized subcircuits Si that each represent a subsection of the
total area of circuit C. The area of C is defined by its width
(register size) and depth (length of the operation sequence).
The area of each subcircuit Si is defined by the selected subcir-
cuit width taken from C and the longest depth of the selected
gate sequence. For example, a circuit C composed of one- and
two-qubit gates as shown in Fig. 1 may be decomposed into a
set S of two-qubit subcircuits which have a depth of two gates
and a width of two qubits.

Circuit decomposition is not unique and a given de-
composition is selected based on trade-offs in the cost of
characterizing each subcircuit, prior knowledge of the sus-
pected device noise and error processes, and any potential

FIG. 1. An example of a subcircuit decomposition where subcir-
cuit set S = {Sblue, Sgreen}.

structure or symmetry in the circuit design. A complete char-
acterization requires every gate and register element within
the input circuit to be included in at least one subcircuit.
In general, the selected subcircuits need not be disjoint. The
ability to tune the decomposition enables coarse-graining of
the noisy circuit model, which is formed by composing the
results from subcircuit characterization.

Next we test each subcircuit to characterize the noise
present within the coarse-grained area. Each test circuit spec-
ifies an idealized outcome based on the input state and gate
sequence for the subcircuit instance. We select test circuits to
be informative yet limited in both number and circuit dimen-
sions in order to increase efficiency and improve scalability.
To test a subcircuit Si, we may select the full subcircuit Si

provided the ideal outcome is known, but we may select
additional test circuits to gain more information and refine our
noise models. The set of test circuits T = {Ti} is therefore at
least as large as S and generally larger. For example, given a
two-qubit subcircuit Si consisting of a one-qubit gate followed
by a two-qubit gate, we may select two test circuits—the first
circuit consisting of the one-qubit gate and the second circuit
consisting of both gates.

The process for selecting test circuits T (S) = {Ti} for each
Si follows a set of guidelines detailed below.

(1) Identify the components used in Si.
(a) Qubit register of size n with qubit identities qj ∈

{q0, q1, . . . , qn}.
(b) State preparation |ψ j〉.
(c) Measurement basis B.

(d) Gate sequence G.
(2) Generate measurement subcircuit Tmeas consisting of

initialization of |ψ j〉 and measurement in B for each q j . If |ψ j〉
is unknown or more tests are needed, select or add the com-
putational basis states |0〉 and |1〉. Additional input states may
include superposition states such as |ψ〉 = (|0〉 + |1〉)/

√
2 or

randomly generated input states |ψ〉 = α|0〉 + β|1〉.
(3) Identify the set g = {gk} of the gates or gate composi-

tions of G for which the expected outcomes may be calculated
for a given input.

(4) Select set g′ for testing. Elements of g′ are gates from g
or compositions of gates from g which represent sequences of
increasing depth from subcircuit Si. The selection of g′ may be
based on trade-off in the cost of characterization or informed
by prior knowledge of expected noise processes or iterative
refinement, similar to subcircuit selection.
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(5) For each element g′
k ∈ g′, generate a circuit Tk (g′

k )
which consists of initialization of |ψ j〉, application of g′

k ap-
plied to the q j identified from Si, and measurement in B.

(6) The set of test circuits is T = {Tmeas, Ti(g′
k ) ∀ g′

k}.
The implementation and execution of test circuits on a

QPU generates a corresponding set of measurement observa-
tions. Each test circuit is executed multiple times to gather
statistics from the distribution of results Ri that characterize
subcircuit Ti. The ith characterization is denoted as Hi =
(Ti, Ri ) and the set of all characterizations is given as H . The
number of characterizations is fixed by the number of test
circuits |T |, while the number of measurement observations
acquired for each test circuit is set by the sampling parameter
Ns. Assuming the same sampling for all tests, then there are
a total of Ns|T | measurement observations, i.e., experiments,
required for H .

The results of experimental characterization are used to
formulate concise approximate models of the subcircuits’
observed behaviors. We model each noisy subcircuit as the
idealized subcircuit followed by a quantum channel that ac-
counts for the noise [37]. Let the noisy subcircuit model
Mi = M(Si, pi ) representing subcircuit Si depend on model
parameters pi. We estimate the channel parameters using the
characterization Hi, where the method of parameter estima-
tion will vary with the selected model. Parameter estimation
may be either direct or optimized methods. For example,
least-square error estimates may be used to estimate param-
eters from noisy measurement observations by optimizing the
residual model error.

We quantify the error in the resulting models using the
TVD [34], which is defined as

dTV(Hi, Mi ) = 1

2

∑
k

|r (Hi )(k) − r (Mi )(k)|, (1)

where r (Hi )(k) is the probability of the kth outcome
of the test circuit Ti and r (Mi )(k) is the correspond-
ing probability predicted by the noisy circuit model. The
TVD vanishes as the predictions of the model become
more accurate in reproducing the observed results and
reaches a maximum of unity when the sets are completely
disjointed.

After estimating the model parameters p = {pi} for all
subcircuits, the corresponding noisy circuit model M(C, p) for
the input circuit C is composed. The method of composition of
the noisy subcircuit models is paired with the decomposition
method to ensure a consistent representation of the original
input circuit. In the examples below, we consider model-
ing methods based on independent noisy subcircuit models
that permit separable composition-decomposition methods
and defer discussion of nonseparable models, e.g., context-
dependent noise, to Sec. VII.

Final selection of the noisy circuit model is then guided
by the accuracy with which the composite model reproduces
the performance of the circuit C on the QPU. For clarity,
we define the actual executed circuit A = (C, Rc) with Rc the
recorded results, and we measure the accuracy of the noisy
circuit model as dTV(A, M ). The desired TVD sets an upper
bound on the threshold for model accuracy. If this user-defined
threshold is not satisfied, selection of the noisy subcircuit

models is revisited. This iteration may include refinement of
the noisy subcircuit models to improve the accuracy of each
Mi or redefinition of the circuit composition-decomposition
methods to manage the trade-offs in modeling complexity
and accuracy. The former requires repeated postprocessing
analysis of the characterization H , whereas the latter requires
additional characterization testing. In either case, model se-
lection continues until the threshold has been met. Once the
accuracy threshold has been satisfied, noisy circuit modeling
is complete.

The noisy subcircuit models can then be tested for robust-
ness in predicting the expected outcome from both the input
circuit and other circuits executed on the characterized device.
We again use TVD to measure the accuracy for selected mod-
els to characterize the behavior of other application circuits
within the same QPU context.

We summarize the complete procedure as follows.
(1) Identify ideal circuit C.
(2) Decompose the circuit into set S(C) = {Si} of ideal

subcircuits Si.
(3) Select set of test circuits T = {Ti} which define an input

state and ideal outcome for each element in S.
(4) Propose a noisy subcircuit model Mi = M(Si, pi ) for

each element in S parametrized by pi.
(5) Implement and execute T on QPU to generate ex-

perimental characterizations Hi = (Ti, Ri ) using results Ri

returned from QPU.
(6) Using a set of characterizations H = {Hi}, fit noise

parameters pi based on calculated expected probabilities for
each Mi.

(7) Compose the noisy circuit model M(C, p) for the target
circuit and compare the actual executed circuit A = (C, RC )
with recorded results RC from the QPU to the noisy circuit
model using dTV(A, M ).

(8) If dTV is not at threshold return to step (2), apply
refinements to steps (2), (3), and (4), and continue to (7) until
threshold is met.

For step (8), refinements to step (2) include additional
elements selected from the set g, addition of compositions
of elements in g such that the test components are larger,
or addition of elements to g not explicitly represented in
G. Refinements to step (3) include additional initializations
as test circuits. Refinements to step (4) include additional
noise model parameters pi or different noise channels to
define M.

III. APPLICATION TO GHZ STATES

We next illustrate the methodology of Sec. II using the
example of a GHZ-state preparation and measurement circuit.
We generate noisy quantum circuit models for this application
for various circuit sizes executed on the IBM Poughkeepsie
QPU, which has a register and layout as shown in Fig. 2. All
data for characterization tests and applications is collected in
a single job sent to Poughkeepsie, a process which typically
required under 30 min of execution time after queuing. As
the Poughkeepsie device is periodically calibrated, our exper-
imental demonstrations ensure that all data is collected within
one calibration window to preserve the QPU context. The
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FIG. 2. A graphical representation of the register connectivity in
the Poughkeepsie QPU at the time of data collection, in which each
node corresponds to a register element and directional edges indicate
the availability of a programmable two-qubit cross-resonance gate.

software implementation of our examples below as well as
all experiment and simulation details such as subcircuits and
noise models is available publicly [38].

We consider the example of preparing the n-qubit GHZ
state

|GHZ(n)〉 = 1√
2

(|01, 02, . . . , 0n〉 + |11, 12, . . . , 1n〉), (2)

where the subscript denotes the qubit and the schematic rep-
resentation of the input circuit C is given in Fig. 3. The
instruction set for this circuit is limited to the one-qubit
Hadamard (H ) and two-qubit controlled-NOT (CNOT) uni-
taries along with the initialization and readout gates acting
on a quantum register of size n. We study this example for

FIG. 3. Schematic representation of the quantum circuit used for
preparation of the n-qubit GHZ state defined by Eq. (2). The circuit
layout satisfies the connectivity constraints of the IBM Poughkeepsie
QPU shown in Fig. 2. The circuit uses a total of n − 1 CNOT gates and
n measurement gates. Colored boxes denote subcircuit selections.

a range of register sizes from n = 2 to 20 by composing
a noisy circuit model that represents GHZ-state preparation
on a QPU based on superconducting transmon technology
[39,40]. This example demonstrates the unique features of
superposition and entanglement using a circuit depth that is
within the capabilities of the NISQ devices [41,42].

We decompose the GHZ-state preparation circuit from
Fig. 3 into a set of subcircuits S based on the procedure
detailed in Sec. II. In this example, we identify a series of
overlapping two-qubit subcircuits for coarse-graining the n-
qubit state preparation. Spatial variability in the device noise
motivates a decomposition based on each register element qi.
We extend these subcircuits to generate a corresponding set of
test circuits T by the set g given as

g = {
Hq0 , CNOTq0,q1

}
(3)

from which we select

g′ = {
Hq0 , Hq0 ◦ CNOTq0,q1

}
. (4)

The expected outcomes of these particular test circuits are
simple to calculate from the truth tables for each operator [43].
We examine the models using these test circuits.

A. Noisy measurement model

We begin by characterizing the initialization and measure-
ment test circuits, which are necessary for modeling noisy
unitary gate behavior. The measurement process for each
register element discriminates an analog signal to generate a
classical bit [44], and errors in signal discrimination may lead
to the wrong value. Characterization of measurement records
the number and type of outcomes observed for each initial
state. We characterize each register element with respect to
both the 0 and 1 output states. The leading errors in the
observed results occur when the jth register element maps
an expected output value to its complement, i.e., 0 → 1 and
1 → 0.

We model measurement of the jth element as a binary
process subject to errors which act on the postmeasurement
classical bit string, and we consider two models for the mea-
surement error process: symmetric readout noise (SRO) and
asymmetric readout noise (ARO). The SRO model is defined
by a single parameter pSRO that specifies the probability for a
bit to flip, and we define a test circuit to characterize this pro-
cess as measurement immediately after initialization to state
|0〉. We directly estimate the value of pSRO from the number
of errors when preparing this computational basis state as
pSRO = r(1), where r(k) is the observed probability of k errors
recorded. This model implicitly delegates initialization errors
to the readout error model. The SRO model is developed by
test circuits T = {Tmeas(|0〉)} where the final SRO model is
defined by MSRO = M(Tmeas, pSRO).

By contrast, the ARO model uses two parameters: p0 for
the probability of error in readout of |0〉 and p1 as the prob-
ability of error in readout of |1〉. The ARO model therefore
represents a refinement of both the noise model parameters pi

and the test circuit suite T . We may estimate p0 using the same
test circuit above, but we must extend the characterization to
preparation and measurement of |1〉 to estimate p1. These ad-
ditional test circuits will require inclusion of the single-qubit
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X gate, and we also add a test circuit for the XX operation
of two successive X gates applied to a single qubit. The latter
reproduces the initial state |0〉, enabling the error in readout
of state |1〉 to be isolated from the error associated with the
X gate. The ARO model is therefore defined by MARO =
M(T, p0, p1) where T = {Tmeas(|0〉), Tmeas(|1〉), TXX (|0〉)}.

We model the test circuits for the ARO process using an
isotropic depolarizing channel parametrized by px to describe
noise in the X gate,

εDP(ρ) = (1 − px )IρI + px

3
(XρX + Y ρY + ZρZ ), (5)

where I , X , Y , and Z are the Pauli operators. Characteriza-
tion of the ARO model yields an overdetermined system of
equations relating the four experimentally observed probabil-
ities r (X )(0), r (X )(1), r (XX )(0), and r (XX )(1) to the parameters
p0, p1, and px. Of these parameters, only the latter two are
unknown since p0 is determined by the same method out-
lined above for pSRO. Because the experimental observations
directly relate to each other via r (X )(0) + r (X )(1) = 1 and
r (XX )(0) + r (XX )(1) = 1, we select the following system of
equations for each register element based on counts of r (·)(0).

r (X )(0) = 2px

3
(1 − p0) + p1

(
1 − 2px

3

)
, (6)

r (XX )(0) = (1 − p0)

[(
1 − 2px

3

)2

+
(

2px

3

)2]

+ p1

[
4px

3

(
1 − 2px

3

)]
. (7)

This system of equations is solved using the SciPy function
fsolve, which is based on Powell’s hybrid method for mini-
mization [45].

B. Noisy subcircuit models

Test circuits for characterizing noisy subcircuits generate
results that include measurement noise. We use the noisy
measurement model above to account for these behaviors
when modeling the results from test circuits. For the SRO
and ARO models discussed above, this directly estimates the
probabilities expected to be observed for each register. We use
this procedure when discussing the characterization below.

We first characterize the subcircuit representing the
Hadamard operation. The test circuit for a single Hadamard
is defined with respect to the expected values for input states
drawn from the computational basis, which yield a uniform
superposition of binary results upon ideal measurement. We
also use even-parity sequences of Hadamard gates as a second
test to estimate noise in the subcircuit. These test circuits T =
{TH (|0〉), THH (|0〉), T4H (|0〉), T6H (|0〉), . . . , TnH } are used to
characterize the Hadamard gate to yield MH (T, pH ).

We define test circuits for the CNOT operations that mirror
the subcircuits used in the target application. For GHZ-state
preparation, these are based on characterization of Bell-state
preparation. The test circuit specification shown in Fig. 4
produces the idealized result of a uniform distribution over
perfectly correlated binary values. These test circuits may be
defined across all pairings of register elements as represented
by Fig. 3. In particular, additional CNOT test circuits may be

FIG. 4. The test circuit for characterizing the CNOT operation
acting on register elements qj and qk . This test prepares the two-qubit
Bell state as an instance of n = 2 in Fig. 3.

added to the set g′ from the set g, and additional CNOT test
circuits for couplings not explicitly in G may be added as well.
For convenience, we will denote the Bell-state preparation
subcircuit as U BS

( j,k) = U (CNOT)
( j,k) H( j)|0 j, 0k〉.

The noisy test circuits for Bell-state preparation are
modeled by a pair of identical, independent depolarizing chan-
nels. Each channel, together defined as εDP

j,k = εDP
j ⊗ εDP

k , is
parametrized by pCNOT, which represents the probability of a
depolarizing error determined independently for each qubit in
the two-qubit CNOT gate. We therefore use the test circuit T =
{T BS

( j,k)(|0 j, 0k〉)} to compose model MCNOT = M(T, pCNOT).
The probability of observing bits a and b is given by

r j,k (ab) = Tr
[
�abε

DP
j,k

(
U BS

( j,k)|0 j, 0k〉〈0 j, 0k|U BS†
( j,k)

)]
, (8)

where the operator �ab projects onto the state |a, b〉, and the
resulting trace yields the probability of the ideal measurement.
The probabilities expected from the noisy Bell-state subcircuit
on qubits j, k with ideal measurement is then given by

r j,k (00) = r j,k (11) = 1
2 − 2

3 pCNOT + 4
9 p2

CNOT,

r j,k (01) = r j,k (10) = 2
3 pCNOT − 4

9 p2
CNOT. (9)

Errors in readout transform these probabilities according to
the noisy process, which may be either the SRO or the
ARO model. For example, the probability following readout
s j,k (00) under the ARO channel is given by

s j,k (00) = (
1 − pj

0

)(
1 − pk

0

)
r j,k (00) + (

1 − pj
0

)
pk

1r j,k (01)

+ pj
1

(
1 − pk

0

)
r j,k (10) + pj

1 pk
1r j,k (11). (10)

From the system of four equations generated by the readout
probabilities s j,k (cd ), we use the method of least squares to
estimate pCNOT. We minimize the sum of the squared residuals,∑

cd

[s j,k (cd ) − h j,k (cd )]2, (11)

where each residual is defined as the difference between the
modeled probability s j,k (cd ) and the experimentally observed
probability h j,k (cd ) for each state result cd . The value h j,k (cd )
represents the counts of state cd on qubits j, k measured dur-
ing a total number of experiments Ns. The value returned for
pCNOT is found using the SciPy fsolve function and bounded
between 0 and 1 [45].

IV. EXPERIMENTAL CHARACTERIZATION

In this section, we report on the results of experimen-
tal characterization and noisy circuit modeling of GHZ-state
preparation using a QPU based on superconducting transmon
technology developed by IBM. The IBM Poughkeepsie device
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has a register of 20 superconducting transmon elements that
encode quantum information as a superposition of charge
states [46]. Microwave pulses drive transitions between the
possible charge configurations and induce single-qubit gates.
Coupling between register elements uses a cross-resonance
gate that drives a mutual transition between transmons and
therefore only occurs between two spatially connected ele-
ments [39].

The layout of the 20-qubit register Poughkeepsie at the
time of data collection is shown in Fig. 2. A common edge
in the connectivity diagram specifies those register elements
that may interact through the cross-resonance operation. Indi-
vidual registers are measured through coupling to a readout
resonator, which results in a state-dependent change in the
resonator frequency. Amplification of the readout signal then
enables discrimination of the state using a quantum nondemo-
lition measurement [5,47].

Circuits are sent to the backend where they are translated
into the appropriate ISA. The ISA for Poughkeepsie consists
of the gates U1, U2, U3, CX , and ID [48]. The U1, U2, and U3

gates are unitary rotation operators, of which U1 is a “virtual”
gate performed in software and U2 and U3 are performed in
hardware. The identity gate ID is used as a placeholder to
create a timestep since it does not alter a quantum state. CX
represents the CNOT gate [49]. These instructions are imple-
mented using low-level hardware operations. For instance, the
CX operator is implemented in hardware using a sequence
consisting of cross-resonance gates and single-qubit rotation
gates [48,50,51].

The Poughkeepsie QPU is accessed remotely using a
client-server interface. We employ the Qiskit programming
language to specify the input circuit and test circuits for
the GHZ-state preparation application [52]. These Pythonic
programs are transpiled to the specifications and constraints
of the backend, including ISA, connectivity layout, and reg-
ister size. Additional inputs to the transpiler may include
optimization protocols for minimizing circuit operations or
noise levels. The transpiled programs are executed remotely
on the Poughkeepsie device, which returns the corresponding
measurements along with job metadata.

We use a shot count of 8192 for all of the circuits exe-
cuted on Poughkeepsie which represents the number of times
each circuit is individually executed and generates the dis-
tribution of output states from the input circuit. Therefore
each probability estimated by experiment is given by r(k) =
C(k)/Ns, where C(k) is the number of events observed for
each measurement and Ns is the shot count of 8192. These
measurements are subject to error due to variability in sam-
pling in experiment from the QPU distribution. We restrict our
sample size to a single experiment of 8192 shots to avoid in-
troducing effects from drift in the Poughkeepsie QPU. We use
the standard deviation of these measurements to report error
and statistical fluctuations, which is given by

√
(p(1 − p)/Ns)

where p is the binomial distribution probability parameter
measured from experiment.

We characterize measurement of all register elements in
Poughkeepsie and analyze the results using the SRO and
ARO models. The results for direct estimation of the ARO
model parameter p0 and p1 are shown in Fig. 5. The results
for the SRO model correspond with pSRO = p0. From these

FIG. 5. Error rates under the ARO channel for each qubit of
Poughkeepsie. The SRO channel is given by the error rates for state
0 shown here. Average p0 value is 0.0212 (standard deviation of
0.0101 across all qubits) and average p1 value is 0.0681 (standard
deviation of 0.0233). Each qubit is evaluated in a separate circuit,
e.g., X0|00, 01, . . . , 019〉 to generate Eq. (6) for qubit 0.

results, we observe a large spatial variability in readout error
as well as asymmetry per register element. The readout of
state |1〉 is almost always more error-prone than the readout of
state |0〉.

The results of estimating the parameter px for the depolar-
izing noise model of each X gate are shown in Fig. 6. From
these results, we see spatial variability in the recovered error
parameter. We observe one case of a negative error rate for
qubit 17 recovered from direct estimation using Eqs. (6) and
(7). Because an estimated error rate of zero is within the exper-
imental error, this is most likely due to statistical fluctuations.
However, it could also be attributable to inconsistencies in
the error behavior for the test circuits such that the model
cannot estimate a feasible parameter based on the results, or
to errors for this register that are not well described by a
depolarizing channel such that a different model may yield
a better solution. All other error rates are relatively small and
therefore we have not investigated model refinement for this
case because of the negligible contribution to the noise.

We next characterize the Hadamard gate. We characterize
error rates using test circuits generated from long sequences
of Hadamards acting on a single element. We observe small
error rates which correspond on average to 0.1% error per
gate. We attempted to model the Hadamard noise using a
depolarizing channel but it did not lead to a better TVD than
using a noiseless model for the gate.

FIG. 6. Depolarizing error rates associated with X gate applica-
tion for each qubit of Poughkeepsie. Average px value is 0.0033 with
standard deviation 0.00303.
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FIG. 7. Error rates for CNOT gates under the depolarizing chan-
nel for each coupled qubit pair of Poughkeepsie. These values are
fitted to include the ARO channel noise with rates shown in Fig. 5.
Reported error bars represent the upper limit of the error from the
least-squares calculation.

We also characterized gate error models based on unitary
rotation noise in X , Y , and Z for the Hadamard gate which
represents coherent errors. These characterizations did not
yield a smaller TVD than using a noiseless model. Our
choice to restrict characterizations to computational basis
measurements significantly limits the achievable accuracy or
effectiveness of this model. In general, such characterizations
are not capable of identifying arbitrary coherent noise and are
limited, e.g., only X and Y noise have an observable effect
in the Z measurement basis. Additional test circuits could
address this limitation at the expense of increased experiment
count. For our purposes, we concluded that error rates asso-
ciated with the Hadamard operation were negligible as this
noise was 100 times smaller than the next leading gate error.

We next characterize the Bell-state preparation circuits for
each pair of possible interactions shown in Fig. 2. We select
the depolarizing noise model because it is a well-understood
model for quantum noise that captures several different fun-
damental aspects of quantum behavior. We do not expect the
depolarizing model to be a perfect fit to experimental data
but this model provides a useful method to understand noise
levels in the system and how noise from different components
interacts. We use least-squares error estimation to find the
value of depolarizing parameter pCNOT that best fits the re-
sults while accounting for readout error as in Eq. (10). This
approach yields more consistent results than solving each
equation in the system explicitly and using a selection process
to determine the final pCNOT value from among these solutions
which are often highly varied. The estimated parameter values
are shown in Fig. 7. The magnitude of the error bars for
the parameter estimations highlights the relative magnitude of
gate noise to readout noise.

FIG. 8. Comparison of possible choices for the composite model.
The best performance is achieved in the ARO + DP case. Error bars
represent the distribution of TVD values across 100 sets of 8192
samples per simulation case.

We test the accuracy of the noisy subcircuit models with
estimated parameters from experimental characterization. For
these tests, we use explicit numerical simulation of the
quantum state prepared by each noisy subcircuit model. We
estimate the measurement outcomes for these modeled cir-
cuits using the simulated quantum state, and we compare these
simulated observables with the corresponding experimental
observations from the Poughkeepsie device. The accuracy of
the noisy subcircuit model is quantified using the TVD defined
in Eq. (1).

Our simulations of the quantum state use a numerical sim-
ulator bundled into the Qiskit software framework. The AER

software simulates both noiseless and noisy quantum circuits
using the same Qiskit programs sent to the Poughkeepsie
device as input. We constrain the simulator to a state-vector
simulation method. Within AER, we input the noise models
using the error rates and noise operators of depolarizing and
readout channels as defined in Sec. III. AER models gate noise
using error functions parametrized by these error rates which
create noisy descriptions of gates for simulation. When a
noisy simulation is run, these functions sample errors and
inject them as operations within the circuit. We tailor the
simulations to match the developed noisy subcircuit models.
Each test case acquired Ns samples in order to mimic the finite
statistics from experimental characterization. We generate a
number of simulation samples of 8192 shots per sample to cre-
ate a sampling distribution. We report the standard deviation
of this distribution which represents error due to variability in
sampling in simulation.

A comparison of accuracy for different noisy subcircuit
models is shown in Fig. 8 for simulating the Bell-state circuit
on qubits 0 and 1 on the Poughkeepsie device. We calcu-
late the TVD between experiment and simulation using six
different noise cases. We consider symmetric readout only
(SRO), asymmetric readout only (ARO), CNOT depolarizing
error only (DP), symmetric readout with CNOT error (SRO +
DP), and asymmetric readout with CNOT error (ARO + DP).
The error rate parameters are optimized for each composite
noise model, e.g., the optimal depolarizing parameter in the
SRO + DP case may not be the same value found for the
ARO + DP case. We also simulate a noiseless Bell state for
a baseline comparison.

The results shown in Fig. 8 clarify the noisy circuit model
yielding the smallest TVD is composed from the asymmetric
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FIG. 9. Performance of the selected noise model on n-qubit GHZ
states. The best performance is achieved with the fully spatial noise
model. Error bars represent the distribution of TVD values across six
sets of 8192 samples per simulation case.

readout channel with a CNOT depolarizing channel (ARO +
DP). Since each noise model achieves a clear improvement
in TVD as measured by a decrease from the noiseless case
that is outside of error bars, we can be confident that each
selected model is capturing some of the noise behavior present
in the system while also illustrating which models provide the
best descriptions of the noise. For example, in the noise model
case “DP” we have modeled a depolarizing channel for which
the pCNOT parameter is calculated to account for all noise in
the system. This model has a clear improvement on TVD and
therefore is likely to be an effective description of the noise in
the system. However, the addition of readout noise models for
the “SRO + DP” and “ARO + DP” cases is evidently a more
accurate noise model because these models achieve further
improvements in TVD.

V. PERFORMANCE TESTING RESULTS

We now present the performance of the selected composite
model on n-qubit GHZ-state preparation circuits. Using the
estimated ARO and CNOT error rates, we demonstrate itera-
tions of this composite noise model which represent varying
model complexity and experimental efficiency to achieve a
particular accuracy. These iterations are shown in Fig. 9. The
two-qubit average case represents the performance of a noise
model with only three parameters—p0, p1, pCNOT—which are
taken as the average of the error rates for only qubits 0 and
1. This represents a case of characterization using the fewest
quantum resources, requiring only seven experiments. We
also consider a case which uses these same three parameters
averaged over the entire register which retains low model
complexity of only three noise parameters but requires the
full suite of experiments. Our most detailed model accounts
for spatial variations in the error parameters and uses indi-
vidualized readout error rates for each qubit and CNOT error
rates for each coupling. As with the Bell state example in
Fig. 8, we show the noiseless case for the sake of context and
comparison. Finally, we also show the sum of the minimum
TVD achieved for noisy simulation of the Bell state across

FIG. 10. Scaled performance of selected noise model on n-qubit
GHZ states, where TVD is divided by the number of CNOT gates
in each circuit. Error bars represent the distribution of TVD values
across six sets of 8192 samples per simulation case.

each qubit pair for which a CNOT was applied in the GHZ
preparation circuit.

Figure 9 demonstrates a significant improvement in model
accuracy for GHZ-state preparation using our composite noisy
circuit model. The improvement is a threefold decrease in
TVD as compared to the noiseless simulation. Our fully spa-
tial model performs better than the coarser-grained models,
such as the average two-qubit model, particularly for larger
sizes of GHZ-state preparation. We also examine the scaling
in the error with respect to the area of the circuit. We normal-
ize the computed TVD by the number of CNOT gates in each
GHZ preparation circuit, and we find that the per-qubit model
accuracy is nearly constant across all GHZ circuit instances,
as shown in Fig. 10. This trend would also hold when TVD is
scaled by qubit count, since qubit count and CNOT count are
strongly linked in the GHZ example. Since the TVD increases
at a rate commensurate with CNOT count or qubit count, this
may indicate that higher levels of entanglement or larger
Hilbert spaces impact the predictability of noise in the device.

VI. BERNSTEIN-VAZIRANI APPLICATION

We next test the performance of this noisy circuit model
on a different application to evaluate its ability to capture
fundamental characteristics of the device. We test the per-
formance by modeling several quantum circuit instances of
the Bernstein-Vazirani algorithm. This algorithm considers a
black box function that is encoded by a secret binary string
which the Bernstein-Vazirani algorithm finds in one query
[53]. Figure 11 shows an example of our circuit implementa-
tion of this algorithm using a three-bit string. We use a phase
oracle qubit as the black box function encoded with the secret
string. Upon measurement of the nonoracle qubits we obtain
the secret binary string. We select the Bernstein-Vazirani al-
gorithm because it is implemented using the same gate set we
have characterized for the GHZ example, so we do not require
additional characterization circuits.

Given the connectivity constraints of the Poughkeepsie de-
vice, the maximum bit string we can test without introducing
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FIG. 11. Circuit implementation of the Bernstein-Vazirani algo-
rithm. The bottom qubit of the register is the oracle; the top three
yield the secret string, here given as 101 as an example. Other secret
strings are produced by changing the CNOT gate sequence such that
control qubits correspond to output bits of 1.

SWAP operations is of length three. We choose qubits 6, 8,
and 12 with oracle qubit 7 because this set has among the
lowest error parameters. We execute the Bernstein-Vazirani
algorithm for every possible encoding of the three-bit secret
string and record the accuracy as the probability that the
encoded string was observed. We include collection of these
measurements during the same job used to characterize the
device.

Figure 12 plots the simulated accuracy of the circuit out-
come using the fully spatial noise model alongside the exper-
imental accuracy. Our model captures the decrease in exper-
imental observed accuracy across the various binary strings.
The loss in accuracy scales with the number of one bits in the
secret string for both the experiment and simulation. However,
the accuracy predicted by simulation is consistently higher
than the accuracy observed experimentally, indicating a state-
dependent noise source remains missing from this model.

VII. CONCLUSION

We have presented an approach to noisy quantum cir-
cuit modeling based on experimental characterization. Our
approach relies on composing subcircuit models to satisfy
a desired accuracy threshold, model complexity, and ex-
perimental efficiency, which we implement using the total
variation distance. We have tested our ideas using the IBM
Poughkeepsie device, which enables evaluation of our char-
acterization methods as well as the comparison of predicted
performance for GHZ-state preparation and an instance of the
Bernstein-Vazirani algorithm. The initial example focused on

FIG. 12. Performance of Bernstein-Vazirani algorithm evaluated
as the measured probability of the prepared secret string. Simulation
is subject to noise defined by the fully spatial model.

GHZ-state preparation examined model fidelity with respect
to both width and depth of an input circuit. Models for the
readout and CNOT subcircuits accounted for a majority of the
model error. Our analysis of a second test circuit using in-
stances of the Bernstein-Vazirani algorithm reveals additional
sources of errors not captured in the original GHZ circuit
characterization. Because both tests depend on the same gates
for state preparation, the appearance of new errors suggests
a possible state-dependent noise model that warrants further
investigation. While our demonstrations have focused on spe-
cific devices and input circuits, the methodology provides a
robust and flexible framework by which to generate noisy
quantum circuit models on any device.

A significant feature of this approach to noise model
decomposition is to iteratively adjust the models until suf-
ficient accuracy is obtained. Improvements in accuracy may
be obtained by changing characterization circuits or param-
eter estimation. The Bell-state and GHZ-state preparation
examples demonstrate how this model adjustment may be per-
formed by varying the experimental efficiency and the input
to the model to change the accuracy of the final composite
model. Our demonstrations have focused on the depolarizing
channel for gate modeling, but circuit characterization can be
directly extended to account for new noise models, compo-
nents, applications, and algorithms. For example, in both the
GHZ and Bernstein-Vazirani results, we observe an increase
in TVD that scales with the number of CNOT gates applied
in the circuit. A more sophisticated CNOT noise model may
improve accuracy of the final noise model. Since placing
limitations on coarse-graining may introduce insensitivities
to certain error types (for instance, measurement only in the
computational basis creates insensitivity to Z error types),
it will likely be necessary to refine test circuits to address
more sophisticated models. Additionally, this methodology
assumes separability in composition-decomposition, i.e., it
assumes that the noise present in the decomposed subcircuits
is not substantially different from that of the composed circuit
and that any differences may be tuned away by refinement. If
this assumption is not true, there may be an upper limit to the
achievable accuracy of noise modeling using subcircuit test-
ing. Further model refinement and testing would be necessary
to demonstrate this nonseparability.

Our original motivation was to address the growing chal-
lenge of characterizing NISQ applications, for which efficient
and scalable methods are necessary. We have shown how to
construct a set of test circuits that scales with the area of the
input circuit C and the underlying decomposition strategy. In
the GHZ-state preparation example, the number of total exper-
iments needed for full spatial characterization scales with the
size of the register q and the number of couplings c according
to Ns(2q + 2c + 1). This resource requirement enables char-
acterization to be run alongside the state preparation circuit
when the job is sent to the QPU. This efficiency should help
ensure noise characterization is performed within the same
processor context as the sought-after circuit. We anticipate
such real-time characterizations to be valuable for dynamic
compiling and tuning of quantum programs [36,54,55].

Our approach to characterization has relied on model selec-
tion using minimization of the TVD between noisy simulation
and experimental results. This demonstration used a small
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set of the possible models for characterizing the observed
QPU behavior, and expanding the set of potential models is
possible for future work. There is a necessary balance, how-
ever, between the sophistication of the model and the utility
for characterizing QPU behavior. While fine-grain quantum
physical models are capable of capturing a more detailed
picture of the dynamics present on small scales, the dawning
of the NISQ era requires the addition of new techniques to our
toolbox that have a higher-level and larger-scale approach. For
scalable numerical analysis of quantum computational meth-
ods, it is essential that we develop coarse-grained, top-down
approaches to capture the core behavior of QPUs.

The Department of Energy will provide public access to
these results of federally sponsored research in accordance
with the DOE Public Access Plan [56].
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