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Experimental realization of Hamiltonian tomography by quantum quenches
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The parameter estimation of the Hamiltonian of an unknown quantum system is essential in quantum informa-
tion processing. However, the general methods based on quantum state tomography and process tomography are
resource demanding and challenging in large quantum systems. On the other hand, if the interaction form of a
system is known, one can adopt the quantum quench protocol to reconstruct the generic many-body Hamiltonian
with local interactions, requiring significantly lower complexity and measurement cost compared to the general
tomography technique. Here we report an experimental demonstration of the quench method to determine the
scalar coupling constants in a three-spin chain. In the experiments, we demonstrate that how the quality of
the estimation is affected by the duration of the quench and the number of input states. Our results show that
the quantum quench protocol is a promising strategy to implement Hamiltonian estimation for many-body
systems, especially when the cost of measurement is crucial in practical cases.
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I. INTRODUCTION

The ability to efficiently achieve the full knowledge of
quantum many-body Hamiltonians is a nontrivial problem in
quantum physics and quantum information science [1–4]. As
a universal approach to characterize the unknown quantum
states and dynamics, quantum tomography [5–7] has been
widely used on different physical systems, such as nuclear
magnetic resonance (NMR) [8], nitrogen-vacancy centers in
diamond [9–11], photonics [12,13], ion traps [14,15], and
superconducting circuits [16]. However, it is intractable to
perform a complete state or process tomography in large-scale
quantum many-body systems, due to the exponentially grow-
ing resources required, including the number of experiments
and computational time of postprocessing. Therefore, most of
the implementations are limited to small and special many-
body systems [8–21].

To overcome this obstacle, substantial schemes have been
proposed to reduce the complexity and resources in identify-
ing a system Hamiltonian, including via compressive sensing
and the machine-learning method [22–24], time-dependent
measurement records [25–31], and the Zeeman effect avoid-
ing the measurement on time-dependent quantities [32]. Here
we focus on the quantum quench protocol which can recon-
struct the generic local many-body Hamiltonian with only
local measurements on the initial and final evolving states
governed by the system Hamiltonian [33]. The basic ideal is to
solve a system of polynomial equations, derived from the gen-
eralized energy conservation at any time, with respect to the
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unknown parameters in the Hamiltonian. By means of many
pairs of initial and final states with a fixed quench duration,
it is immune to the complexity in experiment and computa-
tion, and the Hamiltonian can be determined uniquely. An
experiment is needed to bridge the gap between the theoretical
proposal and practical application.

In this work we report an experimental implementation of
this scheme to measure the scalar couplings of a three-spin
quantum system polarized in an NMR setup. Compared with
the results obtained through a Fourier transform on temporal
records of the system observables [34,35], our experiment
presents a fairly good estimation with many fewer experimen-
tal measurements performed and shorter dynamical evolution.

The rest of this paper is organized as follows. In Sec. II
we review the theoretical background of Hamiltonian to-
mography via the quantum quench method [33]. Section III
describes the experimental details of estimating the spin-spin
interaction strengths in a three-spin heteronuclear system by
taking the transverse radio-frequency (rf) field as the stan-
dard of calibration. Then we provide an error analysis of the
measurement, decoherence, and off-resonance effect. Finally,
a brief summary with a discussion is presented in Sec. IV.

II. THEORETICAL BACKGROUND

Here we briefly review the quantum quench scheme in
Ref. [33]. Consider a quantum many-body system with the
time-independent Hamiltonian

H =
n∑

α=1

cαOα, (1)
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where Oα is the Hermitian matrix, cα is the unknown param-
eter to be estimated, and n is the number of these unknown
parameters. Here n is assumed to scale polynomially with
the system size, which usually holds for realistic physical
systems. Given the initial state |ψ (0)〉, the system governed
by Eq. (1) can be described as |ψ (T )〉 = e−iHT |ψ (0)〉 at time
T , which satisfies

〈ψ (t )|Hm|ψ (t )〉 = 〈ψ (0)|Hm|�(0)〉 ∀ m ∈ N. (2)

Substituting Eq. (1) into Eq. (2) with m = 1, 2, 3, . . . yields a
system of polynomial equations in relation to the unknown pa-
rameters {cα}. In principle, these parameters can be uniquely
derived using any pair of states |ψ (0)〉 and |ψ (T )〉 with m =
1, 2, 3, . . . , n as long as the number of unknown parameters
n � D − 1, where D is the system dimension.

However, the complexity in experiment and computation,
resulting from the higher-order (m � 2) equations in Eq. (2),
will make it difficult to implement this scheme in practice.
Here we adopt the multiple quenches protocol [33] by using
m = 1 in Eq. (2) only and p pairs of initial and final states,

{|ψi(0)〉 → |ψi(T )〉 = e−iHT |ψi(0)〉, i = 1, 2, . . . , p}. (3)

Then we can obtain a linear system of equations M�c = 0,
where the column vector �c = [c1, c2, c3, . . . , cn]T and M rep-
resents a p × n matrix with the element in the ith row and the
αth column

Miα = 〈ψi(0)|Oα|ψi(0)〉 − 〈ψi(T )|Oα|ψi(T )〉. (4)

Note that these expectations could be measured in experiment.
To avoid confusion, M only denotes the theoretical matrix
above, and the symbol M is used to stand for the experimental
matrix throughout the text. Then we will have a linear ho-
mogeneous system of equations M�x = 0 with the symbol �c
replaced by the undetermined �x. If the rank of M is n − 1,
the solution of M�x = 0 will be �c up to a multiplier scale.
Hence, we can use at least n − 1 equations to exactly acquire
the parameters {cα} up to an overall multiplicative factor. In
experiment the noises will inevitably lead to the imperfection
of M and thus the deviations of unknown parameters; we
can use more than n − 1 pairs of initial and final states to
mitigate these deviations. In this case, the best estimation of
the solution of M�x = 0 is obtained from the least-squares
method, which is the right singular vector of M with the
smallest singular value (or, equivalently, the eigenvector of
MT M with the smallest eigenvalue) [33,36].

A summary of the general procedure for Hamiltonian to-
mography is as follows.

(a) Prepare the initial state |ψi(0)〉 randomly and
measure the expectations 〈Oα (0)〉 = 〈ψi(0)|Oα|ψi(0)〉, α =
1, 2, . . . , n. Note that if |ψi(0)〉 is the eigenstate of the system
Hamiltonian, this system will remain unchanged during evo-
lution except for a global phase; thus we cannot reconstruct
the Hamiltonian because the matrix M is just equal to zero.

(b) Steer the system under the Hamiltonian H for a fixed
quench time T towards the final state |ψi(T )〉 and mea-
sure the expectations 〈Oα (T )〉 = 〈ψi(T )|Oα|ψi(T )〉 with α =
1, 2, . . . , n.

(c) Obtain the M matrix according to Eq. (4) and solve
the linear system of equations M�x = 0 via the least-squares
method.

FIG. 1. (a) Molecule structure for diethyl fluoromalonate. (b) 13C
experimental spectra (blue thick lines) and fitting spectra (red thin
lines). The top line is the spectrum of state |000〉 after a π/2 pulse ap-
plied on the carbon channel. The other three lines denote the spectra
of the state 1√

2
(|0〉 − |1〉) ⊗ |0〉 ⊗ 1√

2
(i |0〉 + |1〉) by applying π/2

readout pulses along the x axis on 13C, 1H, and 19F, respectively.

From the above procedure it can be seen that the number
of measurements required is proportional to the number of el-
ements in the matrix M, i.e., O(n2), which provides promising
Hamiltonian tomography technology for the quantum systems
suffering from expensive and time-consuming measurements.
In addition, the computing cost of the postprocessing, i.e., the
singular value decomposition, is also polynomial with the size
of the matrix M [36].

III. EXPERIMENT

The experiment is conducted on a Bruker Advance III 400-
MHz spectrometer at room temperature. The quantum system
we study is the diethyl fluoromalonate molecule dissolved in
deuterated chloroform, whose structure is shown in Fig. 1(a),
with the 13C, 1H, and 19F spins being labeled as qubits 1, 2,
and 3, respectively. By setting the oscillating frequencies of
three transverse rf fields as the corresponding resonant fre-
quencies of the three spins, the Hamiltonian of this quantum
system in the rotating frame [37] is

Hint =
3∑

1� j<k

π

2
Jjkσ

j
z σ k

z , (5)

where σ
j

ν denotes the Pauli matrix of jth spin with ν =
x, y, z, and Jjk is the to-be-estimated scalar coupling constant
between spin j and k. In the whole experiment, we apply
assistant transverse rf fields to the three spins, which not only
can break the commutability in Eq. (5) to encode information
of the Hamiltonian to the M matrix, but also can be used as
a reference to determine the multiplicative factor. As a result,
the Hamiltonian of this physical system reads

Hphys = π

3∑
k=1

ωk
rfσ

k
x +

3∑
1� j<k

π

2
Jjkσ

j
z σ k

z , (6)

where ωk
rf is the rotation frequency (in hertz) of the kth qubit

driven by the rf field. Comparing Eq. (6) with Eq. (1), we

042429-2



EXPERIMENTAL REALIZATION OF HAMILTONIAN … PHYSICAL REVIEW A 103, 042429 (2021)

FIG. 2. (a) Experimental fidelities F and (b) mean absolute error δJ versus the number of quantum quenches p in five repeated experiments.
The colored crosses and yellow bars in (a) represent the fidelities and average values at every p, respectively. The different symbols in
(b) represent the mean absolute errors of couplings J12, J23, and J13 according to Eq. (10). Here the duration of quantum quench is set equal to
T = 10 ms.

now have a target Hamiltonian with {Oα (α = 1, 2, . . . , 6)} =
{σ 1

x , σ 2
x , σ 3

x , σ 1
z σ 2

z , σ 2
z σ 3

z , σ 1
z σ 3

z } and the relations

c1 = πω1
rf , c2 = πω2

rf , c3 = πω3
rf ,

c4 = π

2
J12, c5 = π

2
J23, c6 = π

2
J13. (7)

Then we will experimentally estimate the scalar couplings
of this liquid sample with the help of the aforementioned
method.

A. Experimental procedures and results

For the ith (i = 1, 2, 3, . . . , p) quench, the quantum system
is first initialized to

|ψi(0)〉 = |φ1〉 ⊗ |φ2〉 ⊗ |φ3〉 . (8)

Here |φ j〉 ( j = 1, 2, 3) can be randomly chosen from the pool
A = { 1√

2
(|0〉 ± |1〉), 1√

2
(i |0〉 ± |1〉), |0〉 , |1〉}, which consists

of the eigenstates of σν (ν = x, y, z). These types of ini-
tial states are sufficiently distinct from each other [33,38]
and can provide independent information about the Hamil-
tonian (6). From the (pseudo)pure state |000〉 prepared in
experiment [39,40], the initial state |ψi(0)〉 can be created eas-
ily through random local operations on three qubits from the
set U = {Rx( π

2 ), Rx (−π
2 ), Ry( π

2 ), Ry(−π
2 ), Ry(π ), I2}. Here

Rν (θ ) represents θ -rotation pulse along the ν axis and I2

represents the 2 × 2 identity operator. Then, driven under
the Hamiltonian Hphys for a fixed duration T , the final state
becomes |ψi(T )〉 = e−iHphysT |ψi(0)〉. Note that the auxiliary
transverse rf fields are applied on the three spins during the
whole quantum quench.

To obtain the elements in the M matrix, we use readout
operations R j

x ( π
2 ) ( j = 1, 2, 3) to measure the expectations of

local operators {Oα} for the initial state |ψi(0)〉 and final state
|ψi(T )〉. In our experiment, all the signals of 1H and 19F are
transferred to 13C and then read out from the 13C spectra [41].
For example, the experimental readout spectra for the first ini-
tial state |ψ1(0)〉 = 1√

2
(|0〉 − |1〉) ⊗ |0〉 ⊗ 1√

2
(i |0〉 + |1〉) are

displayed in Fig. 1(b). The expectation 〈Oα〉 can be obtained
from the peak intensities by fitting the spectra to a sum of
four Lorentz functions: The sum of all four real intensities
of the peaks gives the expectation 〈σ j

x 〉, and the expectation

〈σ j
z σ k

z 〉 (k 
= j) is obtained from a linear combination of the
four imaginary intensities [35].

According to the above process, we can obtain the p × 6
matrix M by quenching the quantum system p times and
get a general solution by solving M�x = 0 up to an over-
all multiplicative factor. Then, combined with Eq. (7), the
scalar couplings can be acquired directly from the last three
numbers in the solution. To analyze the performance of
this tomography proposal, we utilize the exact values of
scalar couplings by traditional method [34,35] as reference,
i.e., J12 = 160.6 ± 2.1 Hz, J23 = 48.0 ± 1.9 Hz, and J13 =
−194.4 ± 2.1 Hz. These values are obtained from the Fourier
transform on about 4 × 103 expectations measured over an
approximately 3 × 103 ms sampling duration (free-induction
decay signals). Here we define the fidelity between exact pa-
rameters �Jth and reconstructed parameters �Jexpt in experiments
as

F =
∣∣∣∣ �Jth · �Jexpt

‖ �Jth‖ · ‖ �Jexpt‖

∣∣∣∣, (9)

where �Jth = [J12,J23,J13], �Jexpt = [J12, J23, J13], and ‖ · ‖
represents the Euclidean norm. Equation (9) describes the
angle between vectors �Jexpt and �Jth and is independent of the
multiplicative factor.

In order to investigate the influence of the number of
quenches p on the final results in experiments, we fix the
time interval T = 10 ms and measure the reconstructed pa-
rameters �Jexpt for different p. As shown in Fig. 2(a), the mean
fidelity (yellow bar) of five repeated experiments (crosses)
goes up gradually as p increases: F is 0.960 for p = 5, while
it reaches 0.996 for p = 12. Moreover, the corresponding
standard deviation decreases from 0.047 to 0.003. To further
acquire the absolute scalar constants, we take the value of
the transverse field ω1

rf = 100 Hz applied in experiment as
reference. When the number of quantum quenches p = 12,
the couplings reconstructed in experiment are J12 = 175.3 Hz,
J23 = 39.3 Hz, and J13 = −198.0 Hz with the average devia-
tion δJ = 1

3

∑3
1� j<k |Ji j − Ji j | ≈ 9 Hz. Figure 2(b) shows that

the mean absolute error (MAE) δJi j of the three couplings in
these five repeated experiments decreases in general with the
increment of the number of quantum quenches p. Here the
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FIG. 3. (a) Experimental fidelities F and (b) mean absolute errors δJ versus quench duration T in five experiments. The number of quantum
quenches p is 12. In (a) the colored crosses represent the fidelities in five experiments. The dashed line represents the numerical simulation
results by adding random normal distribution errors (with standard deviation 0.04) to the ideal matrix M. Here each point in this line is averaged
over 2 × 104 results. In (b) the different symbols display the mean absolute errors of the three couplings measured in five experiments.

MAE δJi j is defined by

δJi j = 1

L

L∑
l=1

∣∣Jl
i j − Ji j

∣∣, (10)

with the lth experimental result Jl
i j and repeated L = 5 times.

Therefore, more pairs of initial and final states will make
the reconstructed results more robust against the noises in
practice.

We also explore how the time interval T influences the
performance of this proposal in experiment by setting quench
times p = 12 and changing the duration T . In five repeated
experiments, as shown in Fig. 3(a), the experimental fideli-
ties (crosses) have a considerable dispersion over a short
duration T . For example, the mean fidelity of the five ex-
periments is only 0.677 and the standard deviation is 0.250
when quench time T = 0.1 ms. Yet the fidelity will tend
to 1 and the standard deviation drops down synchronously
once the time T increases to a certain value, e.g., when
T = 1 ms, the mean value and standard deviation of the fi-
delities are 0.991 and 0.013, respectively. Figure 3(b) shows
how the MAE of the three couplings, i.e., δJi j defined by
Eq. (10), varies with respect to the time interval T . When
the time T is short, the final states are close to the initial
states, which makes the values in matrix M close to zero
(as illustrated in Fig. 4 for different quench times T ). As
a result, the solution for M�x = 0 is more sensitive to the
errors of the M matrix compared with the longer evolution
time case. When T is large enough, the MAEs of the es-
timated parameters decrease to a certain level and start to
oscillate due to the effect of other errors and fluctuations
in the experiments. In this case, if one wants to further sup-
press the MAE in experiment, more pairs of initial and final
states will work, as illustrated in Fig. 2. In addition, a too long
time evolution will also produce nonignorable decoherence
effects into the final results.

B. Analysis of the errors

The deviations between experimental couplings and theo-
retical results come from the imperfection of the M matrix. In
general, the errors in our experiments can be divided into the
following three types.

(i) Measurement error. Measurement error comes from the
stochastic fluctuations of NMR spectra when we measure the
expectation 〈Oα〉. The standard deviation of each expectation
is about � = 0.026 according to the signal-to-noise ratio. As
a result, the standard deviation of each element in the matrix
M influenced by measurement error can be obtained from the
error propagation formula

�m =
√

2� ≈ 0.037. (11)

Note that the value of every entry in the matrix M ranges from
−2 to 2 in theory.

(ii) Decoherence. The quantum system inevitably interacts
with the environment during the experimental process [42],
thus introducing errors into the M matrix. Here we take the
T = 10 ms case as an example and analyze the influence
of decoherence. We simulate the effects of decoherence by
introducing two noise channels into the ideal evolution [43].

FIG. 4. (a) and (c) Theoretical M matrices and (b) and (d) corre-
sponding experimental ones for the time intervals (a) and (b) T = 0.5
ms and (c) and (d) T = 10 ms. Here the number of quenches p is 12
and the color bar represents the values of M (M) matrices. According
to Eq. (16), the mean absolute errors �expt are about 0.077 and 0.053
for T = 10 and 0.5 ms, respectively.
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The first one is the phase damping channel EPD, which causes
the off-diagonal elements of the density matrix to decay ex-
ponentially to zero with time. The second one is generalized
amplitude damping EGAD, which describes the effect of dissi-
pation to the environment. For short duration �t , the influence
of the phase damping channel on the system density matrix ρ

is involved as ρ → E3
PD ◦ E2

PD ◦ E1
PD(ρ), where

E j
PD(ρ) = (1 − ξ j )ρ + ξ jσ

j
z ρσ j

z (12)

and ξ j = 1
2 [1 − exp(−�t/T j

2 )]. Here T j
2 is the transversal

relaxation time of the jth qubit: T 1
2 = 1.2 s, T 2

2 = 1.3 s, and
T 3

2 = 1.1 s [41]. Similarly, the generalized amplitude damp-
ing influence is characterized as ρ → E3

GAD ◦ E2
GAD ◦ E1

GAD(ρ)
and it is calculated by

E j
GAD(ρ) =

∑
s

E j
s ρE j

s
†
, (13)

where

E j
1 =

√
ξ0

(
1 0

0
√

1 − η j

)
, E j

2 =
√

1 − ξ0

(
0 0√
η j 0

)
,

E j
3 =

√
1 − ξ0

(√
1 − η j 0

0 1

)
, E j

4 =
√

ξ0

(
0

√
η j

0 0

)
,

(14)

with η j = 1 − exp(−�t/T j
1 ), ξ0 ≈ 1

2 , and T j
1 the longitudinal

relaxation time of the jth qubit: T 1
1 = 2.8 s, T 2

1 = 3.1 s, and
T 3

1 = 2.9 s [41]. The M matrix influenced by decoherence
can be determined numerically using the two noise channels
above. Compared with the theoretical M matrix, the deviation
�d for each element in the matrix M is less than 0.005. It can
be seen that the decoherence has little impact on the results
since the experimental evolution time T = 10 ms is much
shorter than the relaxation time.

(iii) Off-resonance error. During the experiments there ex-
ists thermal fluctuation of the NMR sample chemical shifts,
which would introduce additional terms in Eq. (6), i.e., off-
resonance effect [37]. Then the Hamiltonian of this physical
system becomes

Hphys = Hphys + π

3∑
k=1

ωk
offσ

k
z , (15)

where ωk
off is the additional off-resonance shift (in hertz) for

qubit k. In order to understand to what extent these shifts
will affect the experimental results, we set p = 12 and T =
10 ms and numerically simulate the Hamiltonian (15) by
randomly choosing ω1

off ∈ [−1, 1], ω2
off ∈ [−2, 2], and ω3

off ∈
[−2, 2]. The result shows that the standard deviation �shift for
each element in the M matrix is less than 0.005 over 3000
simulations.

From the above analysis, we conclude that the three errors
contribute to the total deviation �tot about 0.04 for each ele-
ment in the M matrix when T = 10 ms, and the measurement
error plays a major role in our experiments. Figure 4(d) illus-
trates that the measured matrix M in the case of T = 10 ms,

p = 12, and the mean absolute error �expt defined by

�expt = 1

p · n

p∑
i=1

n∑
α=1

|Miα − Miα| (16)

with respect to the theoretical matrix M [as shown in Fig. 4(c)]
is 0.077, which is bigger than 0.04. This is because the imper-
fections of the initial state preparation also contribute to the
errors in the experimental matrix M. However, there is reason
to ignore its influence on the final reconstructed parameters
because this method is suitable for any random initial state.

In addition, by adding random normal distribution er-
rors with standard deviation �tot to the perfect M, the
numerical results over 3000 simulations show that the recon-
structed scaler coupling values are J12 = 161.6 ± 20.3 Hz,
J23 = 48.1 ± 17 Hz, and J13 = −196.3 ± 36.9 Hz when we
take p = 12 and T = 10 ms. If we increase the number of
initial states p to about 400, the simulated results would
be J12 = 160.7 ± 3.0 Hz, J23 = 48.0 ± 3.2 Hz, and J13 =
−194.4 ± 3.3 Hz. We also compare this proposal with the
one using the Fourier transform on temporal records of system
observables [34]. Our NMR spectroscopy collects about 500
expectations 〈σx〉 and 〈σy〉 on three channels over a sampling
duration of about 30 ms, and the resolution of scalar coupling
constants obtained from the spectra are about 25 Hz. This
indicates that the quantum quench method has advantages in
both the number of measurements and experimental acquisi-
tion time.

IV. CONCLUSION

The quantum quench protocol can reconstruct the many-
body Hamiltonian with local measurements of a few pairs of
quantum states. In this work we implemented this method
to determine the scalar couplings of a three-spin quantum
system. By introducing the transverse rf field as reference, we
successfully estimated the scalar couplings, which are close
to the exact values. We also explored how the duration of the
quench and the number of input states affect the quality of
the estimation of this scheme. Future work may apply this
scheme to estimate the unknown parameters of a Hamiltonian
in more challenging systems like strong correlated systems,
which usually have complex dipole-dipole interactions and
short relaxation time. In short, our experiment proves the
validity of the quantum quench protocol and provides a
promising strategy to achieve many-body Hamiltonian tomog-
raphy in different physical systems, such as ion traps [44] and
superconducting circuits [45].
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