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We study the average quantum coherence over the pure state decompositions of a mixed quantum state. An
upper bound of the average quantum coherence is provided, and sufficient conditions for the saturation of the
upper bound are shown. These sufficient conditions always hold for two- and three-dimensional systems. This
provides a tool to estimate the average coherence experimentally by measuring only the diagonal elements,
which remarkably requires less measurements compared with state tomography. We then describe the pure state
decompositions of the qubit state in the Bloch sphere geometrically. For any given qubit state, the optimal
pure state decomposition achieving the maximal average quantum coherence as well as three other pure state
decompositions are shown in the Bloch sphere. The order relations among their average quantum coherence
are invariant for any coherence measure. The results presented in this paper are universal and suitable for all
coherence measures.
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I. INTRODUCTION

Quantum coherence, an important feature in quantum
world, is a valuable resource in many areas of quantum com-
putation and quantum communication processing, such as
quantum algorithms, quantum metrology, quantum channel
discrimination, quantum thermodynamics, etc. [1–4]. In this
context, the formulation of quantifying quantum coherence is
initiated, and some coherence measures, such as the l1 norm of
coherence [5], the relative entropy of coherence [5], intrinsic
randomness of coherence [6], coherence concurrence [7], dis-
tillable coherence [8], robustness of coherence [9], geometric
coherence [10], and coherence number [11] are proposed from
different aspects to characterize quantum coherence. These
coherence measures are not separate but connected with each
other quantitatively [12,13].

For pure states, the quantification of coherence is well
understood, and the restrictions of all coherence measures
to pure states are identical to some real symmetric concave
functions mathematically [14,15]. However, for mixed states
which have infinitely different pure state decompositions, the
quantification is more complicated and relatively difficult to
study. Technically, most quantifiers focus on the density ma-
trices of quantum states. But, in fact, the quantum ensembles
store more information than is available solely from the den-
sity matrix. In this paper we will study the quantum coherence
from the aspect of the average coherence with respect to the
pure state decompositions to reveal the features of the coher-
ence in mixed states.

Operationally, the average quantum coherence can be in-
terpreted in the following way. Suppose Alice holds a state
ρA with coherence C(ρA). Bob holds another part of the pu-
rified state of ρA. The joint state between Alice and Bob is

∑
k pk|ψk〉A ⊗ |k〉B with ρA = ∑

k pk|ψk〉〈ψk|. Bob performs
local measurements {|k〉} and informs Alice of the measure-
ment outcomes by classical communication. Alice’s quantum
state will be in a pure state ensemble {pk, |ψk〉} with average
coherence

∑
k pkC(|ψk〉〈ψk|). In this process the coherence in

Alice can be increased from C(ρA) to the average coherence∑
k pkC(|ψk〉〈ψk|) because of the convexity of the coherence

measure. This is called the assisted coherence distillation. For
the average coherence, its maximum which quantifies a one
way coherence distillation rate is called the coherence of as-
sistance [16,17], and its minimum is identified as a coherence
measure [14,15].

Since the average coherence depends on the pure state de-
compositions of mixed states, the order relation of the average
coherence with respect to different pure state decompositions
may change with different coherence measures generally. Let

us consider the quantum state ρ =
(

2/3 1/3
1/3 1/3

)
with two

pure state decompositions. One pure state decomposition is
D1 = {pi, |ψi〉}2

i=1, |ψ1〉 = 1√
2
(|0〉 + |1〉) with probability

p1 = 2
3 , |ψ2〉 = |0〉 with probability p2 = 1

3 . The second
pure state decomposition is the spectral decomposition

D2 = {p′
i, |ψ ′

i 〉}2
i=1, |ψ ′

1〉 = (−1 + √
5)/

√
10 − 2

√
5|0〉 +√

2/(5 − √
5)|1〉 with probability p′

1 = 3+√
5

6 , |ψ ′
2〉 =

−(1 + √
5)/

√
10 + 2

√
5|0〉 +

√
2/(5 + √

5)|1〉 with proba-

bility p′
2 = 3−√

5
6 . For these two pure state decompositions D1

and D2, the first average coherence is larger than the second
for the relative entropy of coherence measure whereas the
reverse is true for the l1 norm of coherence measure. This
inconsistency is expected because each coherence measure
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just describes one aspect of the coherence. Surprisingly, in a
single qubit system, we find the order relation to be invariant
of the average quantum coherence for some pure state
decompositions. The order relation of the average quantum
coherence remains the same for all coherence measures. The
average quantum coherence and the corresponding pure state
decompositions are intrinsic features hidden in the pure state
decompositions of mixed states.

In this paper, we study the average quantum coherence over
the pure state decomposition for a mixed quantum state. In
Sec. II, an upper bound for the average quantum coherence is
derived. This upper bound is only a function of the diagonal
entries of the quantum state. Two sufficient conditions for
the saturation of the upper bound are shown which hold for
two- and three-dimensional systems. One surprising result is
that the pure state decomposition attaining the upper bound
is deterministic and independent of the explicit coherence
measure. In Sec. III, we study the pure state decompositions
of a qubit state in a Bloch sphere geometrically. For any given
qubit state, the optimal pure state decomposition reaching
the maximal average quantum coherence, the spectral decom-
position as well as other two pure state decompositions are
shown in the Bloch sphere. Their average quantum coherence
are compared, and the order relations are invariant for all
coherence measures. In Sec. IV, we conclude these results
with a summary.

II. THE UPPER BOUND OF THE AVERAGE
QUANTUM COHERENCE

In this section, we will evaluate the average quantum co-
herence over pure state decompositions for a given mixed
state. First let � = {(x1, x2, . . . , xn)T | ∑i xi = 1, xi � 0} be
the probability simplex. A real-valued function f is called a
concave function on the probability simplex �, if

f (λx1 + (1 − λ)x2)) � λ f (x1) + (1 − λ) f (x2) (1)

for any x1 and x2 in � and any 0 � λ � 1. Especially, f is
strictly concave if inequality (1) is strict inequality whenever
x1 �= x2 and 0 < λ < 1. Let Fsc = { f } be the set of real func-
tions on the probability simplex satisfying the following three
conditions: (i) f [(1, 0, · · · , 0)T ] = 0; (ii) f is symmetric,
which means f is invariant under any permutation transfor-
mation, f (x) = f (Pπx) with Pπ any permutation matrix. (iii)
f is concave.

For any f ∈ Fsc \ {0}, we can obtain a coherence measure
for pure state |ψ〉 = ∑n−1

i=0 ψi|i〉 under the reference basis
{|i〉}n−1

i=0 as follows:

Cf (|ψ〉) = f (|ψ0|2, |ψ1|2, . . . , |ψn−1|2). (2)

The vector (|ψ0|2, |ψ1|2, . . . , |ψn−1|2)T is called the coher-
ence vector of a pure state |ψ〉 [14,15]. Conversely, the
restriction of any coherence measure C to pure states is iden-
tical to Cf for certain f ∈ Fsc \ {0} [14,15].

For any coherence measure C and any given mixed state ρ,
the average quantum coherence with respect to the pure state
decomposition D = {pk, |ψk〉} of ρ is

C̄(D) =
∑

k

pkCf (|ψk〉). (3)

Generally, the average quantum coherence of ρ changes with
different pure state decompositions.

Theorem 1. For any mixed quantum state ρ =∑
i, j ρi j |i〉〈 j|, its average quantum coherence is bounded

from above by C̄ � f (ρ00, ρ11, . . . , ρn−1,n−1). The equality
holds if there is a pure state decomposition {pk, |ψk〉} of ρ

such that �(|ψk〉〈ψk|) = �(ρ) for all k. Here �(ρ) denotes
the diagonal matrix having the same diagonal entries as ρ.

Proof. Suppose D = {pk, |ψk〉} is an arbitrary pure
state decomposition of ρ with |ψk〉 = ∑

i ψ
(k)
i |i〉,

then
∑

k pk|ψ (k)
i |2 = ρii for all k and i. So C̄(D) =∑

k pkCf (|ψk〉) = ∑
k pk f (|ψ (k)

0 |2, |ψ (k)
1 |2, . . . , |ψ (k)

n−1|2)

� f (
∑

k pk|ψ (k)
0 |2, ∑

k pk|ψ (k)
1 |2, . . . , ∑

k pk|ψ (k)
n−1|2) =

f (ρ00, ρ11, . . . , ρn−1,n−1), where the inequality is because
of the concavity of the function f . The equality holds if the
vectors (|ψ (k)

0 |2, |ψ (k)
1 |2, . . . , |ψ (k)

n−1|2)T are the same for all
k. �

Theorem 1 provides an upper bound for the average
quantum coherence in terms of the diagonal entries of
quantum state. Since ρii is the probability corresponding
to the outcome of the projective measurement |i〉〈i|, so in
order to derive this upper bound experimentally, one just
needs to perform the projective measurements {|i〉〈i|}n−1

i=0 . The
required number of the measurements for estimating the av-
erage coherence is much less than for full quantum state
tomography.

To verify the saturation of the upper bound in Theo-
rem 1, we have employed the dephasing operation �(ρ) =∑

i |i〉〈i|ρ|i〉〈i|. In fact, we also can use correlation matrices
(positive semidefinite Hermitian matrices with all diago-
nal entries equal to one [18]) to examine the saturation
of the upper bound. For quantum state ρ, let MC (ρ) =
�(ρ)−(1/2)ρ�(ρ)−(1/2), then MC (ρ) is a correlation matrix. So
whether the average coherence of ρ attains the upper bound
f (ρ00, ρ11, . . . , ρn−1,n−1) is equivalent to whether MC (ρ) can
be decomposed as the convex combination of rank-one corre-
lation matrices.

Theorem 2. The average coherence C̄ reaches the upper
bound f (ρ00, ρ11, . . . , ρn−1,n−1) if MC (ρ) is the convex com-
bination of rank-one correlation matrices.

Proof. If MC (ρ) is the convex combination of rank-one
correlation matrices, MC (ρ) = ∑

k pkAk with all Ak rank one,
Ak = |vk〉〈vk|, with unnormalized vectors |vk〉 for all k and∑

k pk = 1, then there exists a pure state decomposition
{pk, |ψk〉} with |ψk〉 = �(ρ)1/2|vk〉 and ρ = ∑

k pk|ψk〉〈ψk|.
Furthermore, �(|ψk〉〈ψk|) = �(ρ)1/2�(|vk〉〈vk|)�(ρ)1/2 =
�(ρ). By Theorem 1, {pk, |ψk〉} is a pure state de-
composition of ρ such that C̄ reaches the upper bound
f (ρ00, ρ11, . . . , ρn−1,n−1). �

Since the set of correlation matrices is convex and its
extreme points are rank one in two- and three-dimensional
systems [18], therefore, all correlation matrices MC (ρ) related
to the quantum state ρ in two- and three-dimensional systems
can be decomposed as the convex combination of rank-one
correlation matrices. Combining this fact with Theorem 2, we
obtain the following result.

Corollary 1. In two- and three-dimensional systems, the
maximum of C̄ is f (ρ00, ρ11, . . . , ρn−1,n−1) for any quantum
state ρ.
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Now we show the optimal pure state decompositions of
mixed state reaching the upper bound in Theorem 1 by two
explicit examples.

Example 1. For any qubit state ρ = ∑1
i, j=0 ρi j |i〉〈 j|,

the corresponding correlation matrix is MC (ρ) =(
1 ρ01/

√
ρ00ρ11

ρ10/
√

ρ00ρ11 1

)
, which can be de-

composed as MC (ρ) = p1|φ1〉〈φ1| + p2|φ2〉〈φ2| with
|φ1〉 = |0〉 + e−i arg(ρ01 )|1〉, p1 = 1

2 (1 + |ρ01|/√ρ00ρ11),
and |φ2〉 = |0〉 − e−i arg(ρ01 )|1〉, p2 = 1

2 (1 − |ρ01|/√ρ00ρ11)
for nonzero ρ00 and ρ11, arg(ρ01) is the argument of ρ01, and
the i denotes the imaginary unit. Then ρ can be decomposed
as the pure state decomposition D = {pk, |ψk〉}k=0,1 whose
average coherence attains the maximum, C̄(D)= f (ρ00, ρ11),
where |ψ1〉=√

ρ00|0〉 + e−i arg(ρ01 )√ρ11|1〉, |ψ2〉 = √
ρ00|0〉 −

e−i arg(ρ01 )√ρ11|1〉 with the same weights p1 and p2 as MC (ρ).
Example 2. In high-dimensional systems, for the incoherent

state ρ = ∑n−1
i=0 ρii|i〉〈i|, since MC (ρ) = I = 1

n

∑
k |φk〉〈φk|

with |φk〉 = ∑n−1
j=0 e2π i(k−1) j/n| j〉 for k = 1, 2, . . . , n, so D =

{pk, |ψk〉} with |ψk〉 = ∑n−1
j=0 e2π i(k−1) j/n√ρ j j | j〉 and pk = 1

n
for k = 0, 1, . . . , n − 1 is an optimal pure state decomposi-
tion of ρ reaching the maximal average coherence C̄(D) =
f (ρ00, ρ11, . . . , ρn−1,n−1).

Especially, if the function f is strictly concave, then one
can check the proof of Theorem 1 and get the equality holds
if and only if there exists a pure state decomposition such that
all the coherence vectors are the same for all pure states. This
makes the condition in Theorem 1 necessary and sufficient
for strictly concave function. Because the conditions in
Theorems 1 and 2 are equivalent, the condition in Theorem
2 becomes also necessary and sufficient for the strictly
concave function. In fact, most of the symmetric concave
functions related to the coherence measures in the literature
are strictly concave. For example, for the relative entropy of
coherence Cr (ρ) [5] and intrinsic randomness of coherence
CR(ρ) [6], the corresponding symmetric concave function is
f (|ψ0|2, |ψ1|2, . . . , |ψn−1|2) = H (|ψ0|2, |ψ1|2, . . . , |ψn−1|2)
where H is the entropy function. For the l1 norm
of coherence Cl1 [5] and coherence concurrence Ccon
[7], the corresponding symmetric concave function is
f (|ψ0|2, |ψ1|2, . . . , |ψn−1|2) = ∑

i �= j |ψiψ j |. For the fidelity-
based measure of coherence CF (ρ) [19,20], the corresponding
symmetric concave function is f (|ψ0|2, |ψ1|2, . . . , |ψn−1|2) =√

1 − max{|ψ0|2, |ψ1|2, . . . , |ψn−1|2}. These functions are all
strictly concave. In this case, the average coherence reaches
its upper bound f (ρ00, ρ11, . . . , ρn−1,n−1) if and only if
there is a pure state decomposition {pk, |ψk〉} of ρ such that
�(|ψk〉〈ψk|) = �(ρ) for all k.

Now we evaluate the distance between the average coher-
ence and its maximum by explicit examples. Here we consider
the l1 norm of coherence Cl1 and the quantum states in the
form of ρ(x) = 1/2|0〉〈0| + x|0〉〈1| + x|1〉〈0| + 1/2|1〉〈1|
with real variable 0 � x � 1/2. The eigenvectors of
ρ(x) are |+〉 = 1√

2
(|0〉 + |1〉) and |−〉 = 1√

2
(|0〉 − |1〉)

which are independent of the variable x. Suppose
λ1(x) and λ2(x) are the eigenvalues of ρ(x) corre-
sponding to the eigenvectors |+〉 and |−〉, so we have
ρ(x) = λ1(x)|+〉〈+| + λ2(x)|−〉〈−|. Let

√
p1(x)|ψ1(x)〉 =

cos α
√

λ1(x)|+〉 + sin α
√

λ1(x)|−〉, √
p2(x)|ψ2(x)〉 =

0.5 1.0 1.5

0.2

0.4

0.6

0.8

1.0

C&MSD

x=0.1
x=0.2
x=0.3
x=0.4

FIG. 1. The average coherence (solid lines) and MSD (dashed
lines) with respect to the pure state decomposition D(x) for ρ(x) with
x = 0.1, 0.2, 0.3, 0.4. The plots are symmetric at α = π

4 in the inter-
val [0, π

2 ]. In the interval [0, π

4 ], the maximum average coherence of
ρ(x) is 1, which is arrived at α = 0. The minimum average coherence
of ρ(x) is 2x for α ∈ [ 1

2 arccos 2x, π

4 ]. The average coherence of
ρ(x1) and ρ(x2) overlap on the interval [0, 1

2 arccos 2x2] for 0 �
x1 � x2 � π

4 . The MSD reaches its maximum at α = 1
2 arccos 2x

and minimum at α = 0 and α = π

4 .

− sin α
√

λ1(x)|+〉 + cos α
√

λ2(x)|−〉 with probability
p1(x) = cos2 αλ1(x) + sin2 αλ2(x) and probability p2(x) =
sin2 αλ1(x) + cos2 αλ2(x), then D(x) = {pk (x), |ψk (x)〉}k=1,2
is any pure state decomposition of ρ(x) with two
components. The average l1 norm of coherence of ρ(x)
with respect to the pure state decomposition D(x) is
C̄l1 (D(x)) = ∑

k pk (x)Cl1 (|ψk (x)〉). See Fig. 1 for the average
coherence and the mean square deviation (MSD) of ρ(x)
with respect to the pure state decomposition D(x) with α in
the interval [0, π

2 ]. Now we consider the interval [0, π
4 ] for

α due to the symmetry. The maximum average coherence
of ρ(x) is 1, which is arrived at α = 0. The minimum
average coherence of ρ(x) is 2x for α ∈ [ 1

2 arccos 2x, π
4 ].

The average coherence of ρ(x1) and ρ(x2) overlap on the
interval [0, 1

2 arccos 2x2] for 0 � x1 � x2 � π
4 . The MSD of

ρ(x) is MSD(D(x)) = ∑
k pk (x){Cl1 [|ψk (x)〉] − C̄l1 (D(x))}2.

The MSD reaches its maximum at α = 1
2 arccos 2x and

minimum at α = 0 and α = π
4 . The average coherence

decreases with α in the interval [0, π
4 ] and the MSD

which is the distance between the pure state coherence
and its average coherence increases with α in the interval
[0, 1

2 arccos 2x] and decreases with α in the interval
[ 1

2 arccos 2x, π
4 ].

III. THE GEOMETRICAL DESCRIPTION OF THE PURE
STATE DECOMPOSITIONS IN THE QUBIT SYSTEM

In this section, we study the geometrical description of
the pure state decompositions based on the average quantum
coherence in qubit system. On the Bloch sphere, any pure state
|ψ〉 = cos θ

2 |0〉 + ei φ sin θ
2 |1〉 is associated with a unit Bloch

vector 	n(|ψ〉) = (sin θ cos φ, sin θ sin φ, cos θ ), 0 � θ �
π, 0 � φ � 2π. θ is the angle between the Bloch vector
	n(|ψ〉) and the axis 〈σ3〉. φ is the angle between the Bloch
vector 	n(|ψ〉) and the axis 〈σ1〉. The coherence of |ψ〉 is
C(|ψ〉) = f (| cos θ

2 |2, | sin θ
2 |2) = f (| cos θ

2 |2, 1 − | cos θ
2 |2)

by Eq. (2) which only depends on angle θ . Any mixed state
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(a) (b) 

(c) (d) 

FIG. 2. The four pure state decompositions D(M ), D(s), D(m1 ), and D(m2 ) in the Bloch sphere. (a) The pure state decomposition D(M ),
(b) the spectral decomposition D(s), (c) the pure state decomposition D(m1 ), and (d) the pure state decomposition D(m2 ). The central (yellow)
disk in (a) is the set of mixed states with spectral decompositions reaching the maximal average coherence.

ρ = 1
2 (I + 	n · 	σ ) is also associated with a Bloch vector

	n = n(sin θ cos φ, sin θ sin φ, cos θ ) with the length of the
Bloch vector n � 1, where 	σ = (σ1, σ2, σ3) with the Pauli

matrices σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

Next we study and compare the average coherence
with respect to four different pure state decompositions
D(M ), D(s), D(m1 ), and D(m2 ) of the mixed state ρ. Without
loss of generality, we assume 0 � θ � π/2 and 0 � φ � π/2
which means the Bloch vector 	n is in the first octant of the
Bloch sphere.

(1) The pure state decomposition D(M ) = {p(M )
k , |χ (M )

k 〉}2
k=1

reaching the maximal average coherence. Here
|χ (M )

1 〉 = cos θo
2 |0〉 + ei φ sin θo

2 |1〉 with probability p(M )
1 =

1
2 (1 + n sin θ

sin θo
), |χ (M )

2 〉 = cos θo
2 |0〉 − ei φ sin θo

2 |1〉 with prob-

ability p(M )
2 = 1

2 (1 − n sin θ
sin θo

) of which the Bloch vectors are

	n(|χ (M )
1 〉) = (sin θo cos φ, sin θo sin φ, cos θo), 	n(|χ (M )

2 〉) =
[sin θo cos(π + φ), sin θo sin(π + φ), cos θo] with θo =

arccos n cos θ [see (a) in Fig. 2 ]. For this pure state
decomposition, the average coherence is

C̄(D(M ) ) = f

(∣∣∣∣cos
θo

2

∣∣∣∣
2

,

∣∣∣∣sin
θo

2

∣∣∣∣
2)

. (4)

This average coherence is at its maximum because this pure
state decomposition satisfies the sufficient condition in The-
orem 1. The pure state decompositions in the circle θ = θo

[the bold circle in (a) in Fig. 2] on the surface of the Bloch
sphere are all optimal and are the only optimal pure state
decompositions for strictly concave function f . In the Bloch
sphere, we can see the maximal average coherence of ρ is only
determined by the length n of the Bloch vector 	n and the angle
θ with axis 〈σ3〉.

(2) The spectral decomposition D(s) = {p(s)
k , |ψ (s)

k 〉}2
k=1.

Here |ψ (s)
1 〉 = cos θ

2 |0〉 + ei φ sin θ
2 |1〉 with probabil-

ity p(s)
1 = 1+n

2 , |ψ (s)
2 〉 = sin θ

2 |0〉 − ei φ cos θ
2 |1〉 with
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probability p(s)
2 = 1−n

2 of which the Bloch vectors
are 	n(|ψ (s)

1 〉) = (sin θ cos φ, sin θ sin φ, cos θ ) and

	n(|ψ (s)
2 〉) = [sin(π − θ ) cos(π + φ), sin(π − θ ) sin(π +

φ), cos(π − θ )] = −	n(|ψ (s)
1 〉) [see (b) in Fig. 2]. For the

spectral decomposition the average coherence is

C̄(D(s) ) = p(s)
1 f

(∣∣∣∣cos
θ

2

∣∣∣∣
2

,

∣∣∣∣sin
θ

2

∣∣∣∣
2)

+ p(s)
2 f

(∣∣∣∣sin
θ

2

∣∣∣∣
2

,

∣∣∣∣cos
θ

2

∣∣∣∣
2)

= f

(∣∣∣∣cos
θ

2

∣∣∣∣
2

,

∣∣∣∣sin
θ

2

∣∣∣∣
2)

. (5)

(3) The pure state decomposition D(m1 ) =
{p(m1 )

k , |ψ (m1 )
k 〉}2

k=1. Here |ψ (m1 )
1 〉 = cos θ3

2 |0〉 +
ei φ sin θ3

2 |1〉 with probability p(m1 )
1 = (−1 + n2 sin2 θ −

n cos θ
√

1 − n2 sin2 θ )/(−2 + 2n2 sin2 θ ), |ψ (m1 )
2 〉 =

sin θ3
2 |0〉 + ei φ cos θ3

2 |1〉 with probability p(m1 )
2 = (−1 +

n2 sin2 θ + n cos θ
√

1 − n2 sin2 θ )/(−2 + 2n2 sin2 θ ),
of which the Bloch vectors are 	n(|ψ (m1 )

1 〉) =
(sin θ3 cos φ, sin θ3 sin φ, cos θ3), 	n(|ψ (m1 )

2 〉) = [sin(π −
θ3) cos φ, sin(π − θ3) sin φ, cos(π − θ3)] with θ3 =
arccos

√
1 − n2 sin2 θ [see (c) in Fig. 2]. For this pure

state decomposition the average coherence is

C̄(D(m1 ) ) = f

(∣∣∣∣cos
θ3

2

∣∣∣∣
2

,

∣∣∣∣sin
θ3

2

∣∣∣∣
2)

. (6)

(4) The pure state decomposition D(m2 ) =
{p(m2 )

k , |ψ (m2 )
k 〉}2

k=1. Here |ψ (m2 )
1 〉 = |1〉 with proba-

bility p(m2 )
1 = (1 − n2)/[2(1 + n cos θ )], |ψ (m2 )

2 〉 =
cos θ4

2 |0〉 + ei φ sin θ4
2 |1〉 with probability p(m2 )

2 = (1 + n2 +
2n cos θ )/[2(1 + n cos θ )]. The Bloch vectors 	n(|ψ (m2 )

1 〉) =
(0, 0,−1), 	n(|ψ (m2 )

2 〉) = (sin θ4 cos φ, sin θ4 sin φ, cos θ4)
with θ4 = arccos[(1 + 2n cos θ + n2 cos 2θ )/(1 + n2 +
2n cos θ )] [see (d) in Fig. 2]. For this pure state
decomposition the average coherence is

C̄(D(m2 ) ) = p(m2 )
2 f

(∣∣∣∣cos
θ4

2

∣∣∣∣
2

,

∣∣∣∣sin
θ4

2

∣∣∣∣
2)

. (7)

Now we compare the average coherence of these four
pure state decompositions. Here we employ the concepts
of majorization relation and Schur concavity. Let x =
(x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) be two vectors in the
probability simplex � with coordinates in decreasing order.
x is majorized by y denoted as x ≺ y, if

∑k
i=1 xk � ∑k

i=1 yk

for 1 � k � n. For any real-valued function f , it is called
Schur concave if x ≺ y ⇒ f (x) � f (y). Factually every real
symmetric concave function is Schur concave [21].

By the first two pure state decompositions we can see
C̄(D(s) ) � C̄(D(M ) ). The inequality becomes equality if and
only if θ = π

2 . So the spectral decomposition reaches the
maximal average coherence if and only if the mixed state ρ

lies in the central disk of the Bloch sphere [see (a) in Fig. 2].

On one hand, since | cos θ3
2 |2 > | cos θ

2 |2, we get

(| cos θ
2 |2, | sin θ

2 |2) ≺ (| cos θ3
2 |2, | sin θ3

2 |2), which means

f (| cos θ3
2 |2, | sin θ3

2 |2) � f (| cos θ
2 |2, | sin θ

2 |2) because f
is Schur concave. Therefore, the order relations among
the average coherence for the pure state decompositions
D(m1 ), D(s), and D(M ) is

C̄(D(m1 ) ) � C̄(D(s) ) � C̄(D(M ) ). (8)

On the other hand since | cos θ4
2 |2 > | cos θ

2 |2, we

get (| cos θ
2 |2, | sin θ

2 |2) ≺ (| cos θ4
2 |2, | sin θ4

2 |2) and

f (| cos θ4
2 |2, | sin θ4

2 |2) � f (| cos θ
2 |2, | sin θ

2 |2). Therefore,
the order relations among the average coherence for the pure
state decompositions D(m2 ), D(s), and D(M ) are

C̄(D(m2 ) ) < C̄(D(s) ) � C̄(D(M ) ). (9)

The order relations (8) and (9) are invariant for all co-
herence measures. This result is peculiar because the order
relation of the average coherence with respect to differ-
ent pure state decompositions probably change for different
coherence measures. Typically, for any mixed state ρ, its
average coherence with respect to pure state decomposi-
tion D = {pk, |ψk〉}d

k=1 with |ψk〉 = cos θk
2 |0〉 + ei φk sin θk

2 |1〉
is C̄(D) = ∑d

k=1 pk f (| cos θk
2 |2, 1 − | cos θk

2 |2), which a mul-
tivariable function. So it is not easy to compare two average
coherence, not to mention the invariance of their order re-
lations. The invariance of the order relations (8) and (9) is
attributed to the symmetry of these pure state decompositions.
Because of the symmetry of the distribution of Bloch vectors
in the sphere, the average coherence of D(M ), D(s), and D(m1 )

turns to a single variable function. Because of the incoherent
component in the pure state decomposition D(m2 ), the average
coherence C̄(D(m2 ) ) is bounded from above by the same single
variable function. So this makes the comparison of these four
average coherences possible. Finally, thanks to the concavity
of function f , we find the order relations (8) and (9) are
invariant for all coherence measures.

For any given mixed state ρ, the coherence is not only
embodied in the off-diagonal entries of its density matrix, but
also hides in its pure state decompositions. Intuitively, there
may be order relations among the average coherence of the
pure state decompositions for one coherence measure, but
there is the possibility that is probably different for another
coherence measure. The invariance of the order relations of
the average coherence as in (8) and (9) for all coherence
measures is surprising. As an application, it is helpful to the
assisted coherence distillation in which one needs to know the
pure state decomposition with average coherence as much as
possible in order to enhance the coherence assisted by another
party [16,17]. The invariance of the order relations among the
average coherence of the pure state decompositions provides
the possible pure state decompositions which is independent
of explicit coherence measures. This universality is one of the
intrinsic features of coherence.

For the above four pure state decompositions
D(M ), D(s), D(m1 ), and D(m2 ), and for the coherence
measures, such as the relative entropy of coherence Cr (ρ)
or intrinsic randomness of coherence R(ρ), the l1 norm
of coherence Cl1 , or coherence concurrence Ccon and the
fidelity-based measure of coherence CF (ρ), the order relation
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TABLE I. The average coherence of four pure state decompositions D(M ), D(s), D(m1 ), and D(m2 ) with respect to the relative entropy of
coherence Cr or intrinsic randomness of coherence CR, the l1 norm of coherence Cl1 , or coherence concurrence Ccon, and the fidelity based
measure of coherence CF .

Cr (CR) Cl1 (Ccon ) CF

f H (|ψ0|2, |ψ1|2)
∑

i �= j |ψiψ j |
√

1 − max{|ψ0|2, |ψ1|2}
D(M ) H (| cos θo

2 |2, | sin θo
2 |2) | cos θo

2 sin θo
2 |

√
1 − max {| cos θo

2 |2, | sin θo
2 |2}

D(s) H (| cos θ

2 |2, | sin θ

2 |2) | cos θ

2 sin θ

2 |
√

1 − max {| cos θ

2 |2, | sin θ

2 |2}
D(m1 ) H (| cos θ3

2 |2, | sin θ3
2 |2) | cos θ3

2 sin θ3
2 |

√
1 − max {| cos θ3

2 |2, | sin θ3
2 |2}

D(m2 ) p(m2 )
2 H (| cos θ4

2 |2, | sin θ4
2 |2) p(m2 )

2 | cos θ4
2 sin θ4

2 | p(m2 )
2

√
1 − max {| cos θ4

2 |2, | sin θ4
2 |2}

of the average coherence is

C̄(D(m1 ) ) � C̄(D(m2 ) ) < C̄(D(s) ) � C̄(D(M ) ). (10)

The explicit average coherence are summarized in Table I.
Furthermore, the pure state decomposition D(M ) is optimal
for reaching the maximal average coherence, and D(m1 ) is
optimal for reaching the minimal average coherence for these
coherence measures. By the fact that the pure state decom-
position D(M ) is optimal for the maximal average coherence
for all coherence measures, one may conjecture the pure
state decomposition D(m1 ) is optimal for the minimal av-
erage coherence for all coherence measures. However, the
answer is negative. Let us consider the function f defined on
the two-dimensional probability simplex as f (|ψ0|2, |ψ1|2) =
1 − [2(|ψ0|2 − 1/2)]2k for |ψ0|2 � 1/2 and f (|ψ0|2, |ψ1|2) =
f (|ψ1|2, |ψ0|2) for |ψ0|2 < 1/2. One can verify that f is a real
symmetric concave function. So the corresponding Cf as de-
fined in Eq. (2) is a coherence measure for pure states. When
k is large enough, the average coherence C̄ f (D(m1 ) ) is strictly
larger than the average coherence C̄ f (D(m2 ) ). Therefore, the
pure state decomposition which achieves the minimal average
coherence for any fixed density matrix is not unique for all
coherence measures.

IV. CONCLUSIONS

In conclusion, we have studied the average quantum coher-
ence over the pure state decompositions of a quantum state.

We obtain an upper bound of the average quantum coherence
solely as a function of the diagonal entries of the quantum
state. Hence, one can estimate the average quantum coherence
by measuring only the diagonal entries, instead of getting the
full ensemble information. Two sufficient conditions for the
saturation of the upper bound is shown which always holds for
two- and three-dimensional systems. The pure state decompo-
sition reaching the maximal average coherence is independent
of any explicit coherence measure. Our second result exhibits
an interesting geometrical description of the pure state decom-
positions of a qubit state in the Bloch sphere. For any given
qubit state, the optimal pure state decomposition reaching the
maximal average quantum coherence, the spectral decompo-
sition, as well as other two pure state decompositions are
shown in the Bloch sphere. The order relations among their
average quantum coherence are invariant for all coherence
measures. We hope these universal results can strengthen the
understanding of quantum coherence.
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