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Robust in practice: Adversarial attacks on quantum machine learning
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State-of-the-art classical neural networks are observed to be vulnerable to small crafted adversarial pertur-
bations. A more severe vulnerability has been noted for quantum machine learning (QML) models classifying
Haar-random pure states. This stems from the concentration of measure phenomenon, a property of the metric
space when sampled probabilistically, and is independent of the classification protocol. To provide insights into
the adversarial robustness of a quantum classifier on real-world classification tasks, we focus on the adversarial
robustness in classifying a subset of encoded states that are smoothly generated from a Gaussian latent space.
We show that the vulnerability of this task is considerably weaker than that of classifying Haar-random pure
states. In particular, we find only mildly polynomially decreasing robustness in the number of qubits, in contrast
to the exponentially decreasing robustness when classifying Haar-random pure states and suggesting that QML
models can be useful for real-world classification tasks.
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I. INTRODUCTION

Quantum machine learning (QML) protocols, by exploit-
ing quantum mechanics principles, such as superposition,
tunneling, and entanglement [1], have given hope of out-
performing their classical counterparts, even with noisy
intermediate-scale quantum (NISQ) [2] hardware in the near-
term [3]. For classification tasks where statistical patterns can
be revealed in complex feature spaces, the high-dimensional
Hilbert space of sizable quantum systems offers a naturally
advantageous starting ground for QML models. However,
many state-of-the-art classical machine learning models, such
as deep neural networks with complicated internal feature
mappings, have been shown vulnerable to small crafted per-
turbations to the input, namely to, adversarial examples [4,5].
These are intentional worst-case perturbations to the original
samples with an imperceptible difference, that are never-
theless misclassified by the classifier. This not only raises
questions as to why well-performing classifiers suffer from
such instabilities but also poses security threats to machine
learning applications that emphasize reliability, such as in
spam filtering [6]. To understand this unreliable behavior, the
transferability of these attacks across different architecture
and the robustness against perturbations has led to extensive
investigations in the classical machine learning community in
recent years [7–9]. Notably, some geometric and probabilistic
arguments, based on curvatures of decision boundaries [10]
and the concentration of measure [11–15], have been em-
ployed to quantify the risk of adversarial attacks in various
settings. It has been shown that any classifier will have an
adversarial robustness that is increasingly reduced by the
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dimension of the space on which it classifies, given the
concentration of measure phenomenon in certain metric prob-
ability spaces [11]. This has raised attention in the QML
community where the models take advantage of the high
dimensionality of quantum systems [16–19].

The concentration of measure is a phenomenon that de-
scribes the fact that, in certain metric probability spaces,
points tend to gather around the boundaries of subsets having
at least one half of the probability measure. As a result, there is
generically a high probability of obtaining values close to the
average for any reasonably smooth function that is evaluated
on the distribution [20–24]. This means that when samples
are selected from such a concentrated space, the confidences
predicted by the classifier tends to accumulate around the
critical value separating the correct and incorrect classes. As
such, small targeted perturbations can then easily move the
samples across the decision boundary. In particular, it has
been recognized that this phenomenon can lead to extreme
vulnerabilities of any quantum classifier on high-dimensional
Haar-random pure states [16]. Nevertheless, there is no indi-
cation of whether such vulnerability exists when classifying
on a subset of encoded pure states in a realistic task, such as
using a quantum classifier on classical images encoded in pure
states.

In this paper, we approach the task of classifying quantum
states from a geometric perspective. The quantum classifier
divides the Hilbert space into subsets, each of which belongs
to a certain class. We use this perspective here to study aspects
of the problem that are relevant to practical applications of
QML. In a practical classification task, such as in recog-
nizing natural images, the samples to be classified can be
generated from a Gaussian latent space by one of a number
of commonly-used generative models [25–30]. The success
of these models for real-world data generation ensures that

2469-9926/2021/103(4)/042427(15) 042427-1 ©2021 American Physical Society

https://orcid.org/0000-0002-6399-006X
https://orcid.org/0000-0003-1818-2677
https://orcid.org/0000-0003-2735-1380
https://orcid.org/0000-0002-7164-4757
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.103.042427&domain=pdf&date_stamp=2021-04-28
https://doi.org/10.1103/PhysRevA.103.042427


LIAO, CONVY, HUGGINS, AND WHALEY PHYSICAL REVIEW A 103, 042427 (2021)

the focus on QML models classifying a subset of encoded
pure states, where these states are sampled from a distribution
that is smoothly mapped from a Gaussian latent space [15],
will yield insight into the vulnerability of QML models in a
real-world classification task. This contrasts with the previous
analysis of the vulnerabilities when classifying Haar-random
pure states [16].

We demonstrate that the adversarial robustness over this
generated distribution decreases as O(1/

√
n) in the number of

qubits n, with the scaling measured in the trace norm. This
decline in the robustness is mild, indicating that a quantum
classifier can be robust to attacks on high dimensional quan-
tum states. In contrast, when considering prediction-change
adversarial settings where the inputs are pure states drawn
Haar-randomly, we show that the robustness decreases as
O(1/2n) in the number of qubits n, implying extreme vulnera-
bilities to attacks in high-dimensional quantum systems. This
second case parallels the result of Ref. [16], which considered
error-region adversarial settings and found the robustness also
decreases as O(1/2n) here. However, we argue that the ex-
treme vulnerability in this setting is not of concern in practice,
since the states to be classified are always sampled from a
distribution over some subsets of states, rather than from the
Haar-random distribution over the entire set of pure states.

The rest of the paper is structured as follows. In Sec. II,
we introduce the setups and preliminaries in both classical
and quantum adversarial attacks. In Sec. III, we describe the
prediction-change adversarial setting, which is often more
relevant to real-world classification tasks than the previously
employed error-region adversarial setting. We then derive the
prediction-change adversarial robustness of any quantum clas-
sifier on Haar-randomly distributed pure states and explain
its practical limitations. In Sec. IV, we derive the main re-
sults on the adversarial robustness of any quantum classifier
classifying a smoothly generated distribution over a subset of
encoded pure states of interest, and propose a feasible modifi-
cation to any quantum classifier to lower bound unconstrained
adversarial robustness. In Sec. V, a summary and discussion
of the derived robustness over the two types of distribution are
presented.

II. BACKGROUND

A. Classical adversarial attacks

Classical adversarial attacks were introduced to analyze
the instability of deep neural networks caused by a small
change to the input sample. Classically, the confidence is
often quantified as the probability corresponding to the la-
bel class in the output normalized discrete distribution, e.g.,
the largest softmax value in the output vector in a multi-
class logistic-regression convolutional neural network. As
numerically shown in various works, such an attack re-
sults in a significant drop in the confidence in the correct
class [4,8,31,32], and may also bring a significant increase
in the confidence in an incorrect class [5]. So far, some ar-
guments have been proposed to explain the vulnerabilities
of various classifiers to adversarial attacks and their trans-
ferability [5,14,33–35], yet no conclusive consensus has been
established [36].

The most common type of adversarial attack is the evasion
attack where the adversary does not interfere with the training
phase of a classifier and perturbs only the testing samples [7].
The adversary can devise white-box attacks if it possesses
total knowledge about the classifier architecture. Otherwise,
it can devise black-box attacks relying on the transferabil-
ity [7,8]. We shall focus here on white-box evasion attacks.

We introduce some notations and definitions used in this
paper. Let (X , d, μ) denote the sample set X with a metric d
and a probability measure μ. The notation x ← μ denotes that
a sample x is drawn with a probability measure μ. L denotes
the countable label set. For a subset S ⊆ X , we let d (x,S ) =
inf{d (x, y)|y ∈ S} and let Bε (x) = {x′|d (x, x′) � ε} be the ε-
neighborhood of x, where d is the metric on X . We also let
Sε = {x|d (x,S ) � ε} be the ε-expansion of S . h is a hypoth-
esis or a trained classifier that maps each x ∈ X to a predicted
label l ∈ L. c is the ground-truth function that maps each
x ∈ X to a correct label l ∈ L. hl denotes the set of samples
classified as label l , namely, hl = {x ∈ X |h(x) = l}. The error
region M is the set of samples on which the hypothesis dis-
agrees with the ground-truth, namely, M = {x|h(x) �= c(x)}.
We define the risk as R(h, c) = Prx←μ[h(x) �= c(x)] = μ(M).

The two relevant types of evasion attacks studied here are
based on the error region and the prediction change. In an
error-region attack, the ground-truth function c is accessible
and an attack occurs when a perturbation in the sample causes
h to disagree with c. In contrast, a prediction-change attack
emphasizes the instability of h. Here, an attack occurs when
a perturbation results in a different prediction by h, and c is
irrelevant. The precise definitions of these two types of attacks
are as follows.

Definition 1. The error-region adversarial risk under ε-
perturbation is the probability of drawing a sample such that
its ε-neighborhood intersects with the error region,

RER
ε (h, c, μ) = Pr

x←μ
[∃x′ ∈ Bε (x)|h(x′) �= c(x′)].

Definition 2. The prediction-change adversarial risk under
ε-perturbation is the probability of drawing a sample such that
its ε-neighborhood contains a sample with a different label,

RPC
ε (h, μ) = Pr

x←μ
[∃x′ ∈ Bε (x)|h(x) �= h(x′)],

or equivalently,

RPC
ε (h, μ) = Pr

x←μ

[
min
x′∈X

{d (x′, x)|h(x′) �= h(x)} � ε
]
.

In either type of attack, we refer to the nearest misclassified
examples as the adversarial examples. We say that h is more
robust if the induced risk of either type is lower for a certain
ε-perturbation. We shall refer to the minimal ε-perturbation
to x resulting in an adversarial example as the adversarial
perturbation or the robustness of x with h. In contrast, we
shall quantify the adversarial robustness of h as the size of
ε necessary for the adversarial risk of h to be upper bounded
by some constant. The main result of this paper is an upper
bound on the adversarial robustness of any quantum classifier
when the input states are smoothly generated from a Gaussian
latent space.
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FIG. 1. The solid curve depicts the decision boundary of a quan-
tum classifier. The states in blue are classified in a different class
from the states in red. The metric is the trace distance. The trace
distance between any pair of states generates an upper bound on the
difference between their quantum classification confidences. Thus,
ρ∗, the state closest to the decision boundary, is the ideal target of a
prediction-change adversarial attack if the adversary aims to achieve
misclassifications with minimal perturbations. On the other hand, if
the adversary aims to maximize confidence change to any state with
associated perturbations of size up to D, then all states between the
dashed lines can be perturbed to be misclassified, while all other
states can be perturbed to get closer to the boundary, resulting in
overall decreased confidence in predicting the correct class. The
concentration of measure phenomena implies that for a sufficiently
large class, samples tend to lie near the decision boundary.

B. Quantum adversarial attacks

For this work, a quantum classifier is a quantum channel
E that assigns labels l with some set of positive-operator-
valued measures (POVMs) {�l}. The quantum classifier takes
in an ensemble of identically prepared copies of a state and
assigns the state a label l . The confidence of a prediction
is quantified as the expectation value of the POVM for the
prediction l , namely, tr(E (ρ)�l ) for an input density matrix
ρ. We do not consider the number of copies of a state that is
required to implement any specific quantum classification pro-
tocol. To measure the perturbation size, the natural choice of
metric on quantum states—the trace distance—can be shown
to generate an upper bound on the difference between their
quantum classification confidence (see Appendix A), which
implies that no small variation can induce a large swing in
the predictive confidence. This property of the trace distance
is a consequence of its interpretation as the achievable upper
bound on the total variation distance [37] between probability
distributions arising from measurements performed on those
quantum states [38]. Furthermore, we show in Appendix A
that the Hilbert-Schmidt norm, the Bures distance, and the
Hellinger distance between two quantum states all generate
a similar upper bound. As a result, in quantum adversarial
attacks, the adversary either perturbs the states near the de-
cision boundary minimally to seek misclassification, or aims
to maximize confidence change to any state with associated
perturbations that are upper bounded by some considerable
size in these norms, as illustrated in Fig. 1. Our work analyzes
primarily the risks due to the former objective. In Appendix B,
we also propose a method for the latter objective exploiting
the reversibility of parametrized quantum circuits (see, e.g.,

Refs. [39,40]). We note that the latter adversarial setting is jus-
tified, since to assess the security of a classifier under attack, it
is reasonable—given a feasible space of modifications to the
input data—to assume that the adversary aims to maximize
the classifier’s confidence in wrong predictions, rather than
merely perturbing minimally in size [8].

There are two natural setups of adversarial attacks in QML
that can be specified. The first is when the input data to
the classifier is already quantized and any data transmitted
through the quantum communication network comes from
an untrusted party. In this case, the adversary, who may be
the sender or an interceptor, can perform an attack either by
perturbing each of the transmitted density matrices, or by in-
tercepting a fraction of the copies of the state and substituting
them entirely (see Appendix A). In a broader context, our
analysis can be extended to include the instability of clas-
sifying quantum states subject to decoherence. We focus on
this first setup in the current paper. The second setup is when
the input to the quantum classifier is classical. The quantum
classifier encodes the classical data before classifying. Since
the adversary is perturbing the classical input data, it is ef-
fectively attacking classically. If one views such a quantum
classifier as a black-boxed hypothesis function that maps each
input to a class, any classifier-agnostic classical analysis of
adversarial robustness can then be directly applied. For exam-
ple, Ref. [10] analyzes the robustness of any classifier against
random or semi-random perturbations, provided the curvature
of the decision boundary is sufficiently small, while Ref. [15]
analyzes the adversarial robustness of any classifier when
classical input vectors are smoothly mapped from a Gaussian
latent representation.

C. Quantum data encoding

We now explain the feature maps used throughout the
paper. Considering a normalized positive vector 
u of length
n, without loss of generality, we intuitively refer to it as a
gray-scale image with n pixels throughout the paper. We focus
on a particular set of encoding schemes where the normalized
gray-scale value of each pixel, i.e., ui ∈ [0, 1], i = 1, . . . , n, is
featurized into a qubit-encoding state |φi〉. The product state
|φ〉 to be classified is a tensor product state of these qubit-
encoded pixels in the 2n-dimensional Hilbert space [41–44],
namely,

|φ〉 =
n⊗

i=1

|φi〉 =
n⊗

i=1

[
cos

(π

2
ui

)
|0〉 + sin

(π

2
ui

)
|1〉

]
. (1)

The qubit-encoding states, Eq. (1), do not require a quantum
random access memory (QRAM) [45] and are efficient in time
to prepare. Other schemes including amplitude encoding (see,
e.g., Ref. [46]) are not considered here. We note that some
of our results are general and independent of the encoding
scheme. We further generalize Eq. (1) to qudits. In this case
each pixel is mapped to a Hilbert space of higher dimension
d � 2, with the coefficient of the jth component of the ith
qudit state given by

|φi〉 j =
√(

d − 1

j − 1

)
cosd− j

(π

2
ui

)
sin j−1

(π

2
ui

)
. (2)
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These qudit states are special cases of what are known as spin-
coherent states [41], and the qubit states in Eq. (1) correspond
to d = 2.

D. Concentration of measure phenomenon

To describe this phenomenon, let � ⊆ X be a Borel
set [47]. The concentration function, defined as

α(ε) = 1 − inf
�⊆X

{
μ(�ε )

∣∣μ(�) � 1
2

}
, (3)

has a smaller value when more points are aggregated in the
ε-expansion of a sufficiently large set �, for a fixed ε. In-
formally, a space X exhibits a concentration of measure if
α(ε) decays very fast as ε grows, and we shall refer to it
as a concentrated space. This is true for a simple example—
the standard Gaussian distribution [R, 	2,N (0, 1)]. Looking
at the Borel set � = (−∞, 0) whose probability measure is
1/2, the cumulative density outside its ε-expansion, namely,
R \ �ε = (ε,+∞), decreases at least as fast as exp(−ε2/2)
by the tail bound [48]. One can invoke isoperimetric in-
equality [49] to show that this clustering occurs around
any Borel set with measure at least 1/2 and applies to
any canonical m-dimensional Gaussian measure in the Eu-
clidean space (see Appendix G). More formally, a family
of N-dimensional spaces with corresponding concentration
functions αN (·) is called a (k1, k2)-normal Lévy family if
αN (ε) � k1 exp(−k2

2ε
2N ), where k1 and k2 are particular con-

stants. Consequently, the measure is more concentrated for
a higher dimension. Two notable normal Lévy families are
SU (N ) and SO(N ), both of which are equipped with the
Hilbert-Schmidt norm L2 and the Haar probability measure
ν [50,51]. An implication of this phenomenon is that when
points x are drawn from a highly concentrated space, for
any function f varying not rapidly, we have f (x) ≈ 〈 f 〉 with
high probability. Lévy’s Lemma [20,21] constitutes a specific
example of this.

E. Related work

The work in Ref. [11] considered any normal Lévy family
and derived the robustness for error-region adversarial attacks.
The results show that for a nice classification problem [52], if
μ(M) = �(1), the size of perturbations must be O(1/

√
N ) to

have the error-region adversarial risk upper bounded by some
constant, where N is the dimension of the concentrated space.
References [12,13] studied some specific concentrated spaces
and revealed the same scaling.

Reference [16] transforms the classification of pure states
|φ〉 into that of unitaries U in |φ〉 = U |
0〉 for some fixed
initial state |
0〉. These quantum classifiers then classify
samples drawn from SU (N ) equipped with the Haar proba-
bility measure ν and the Hilbert-Schmidt norm, which is a
(
√

2, 1/4)-normal Lévy family. Therefore, if μ(M) > 0, the
necessary condition on the perturbation size for the error-
region adversarial risk to be bounded above by 1 − γ for some
γ ∈ [0, 1] is O(1/

√
N ). Precisely, to have RER

ε (h, c, ν) � 1 −
γ , the ε-perturbation to any unitary must be upper bounded

as [53]

ε �
√

4

N

⎡
⎣
√

ln

( √
2

μ(M)

)
+

√
ln

(√
2

γ

)⎤
⎦. (4)

III. PROBLEMS WITH PRACTICAL CLASSIFICATIONS

The result in Eq. (4) claims that when classifying unitaries
in SU (N ) with the Haar measure, given that an adversary
can devise white-box attacks and μ(M) is not exponentially
suppressed by N , the robustness of any quantum classifier
decreases polynomially in the dimension of the input N . This
is daunting since the input has a dimension N = dn which is
exponential in the number of qudits.

To apply any result related to Eq. (4), a ground-truth func-
tion c on SU (N ) is needed to obtain the risk μ(M). However,
c may not be easily defined in a real-world machine learning
task. For instance, it is challenging to define what constitutes
a mistake for visual object recognition. After adding a per-
turbation to an image, it likely no longer corresponds to a
photograph of a real physical scene [54]. Furthermore, it is
difficult to define the labels for images undergoing gradual se-
mantic change. All of these factors complicate the evaluation
of μ(M). It thus motivates us to focus on prediction-change
adversarial risks (see, e.g., Refs. [10,13,54]) to avoid requiring
access to the ground-truth. The following theorem and corol-
lary then apply.

Theorem 1. Let SU (N ) be equipped with the Haar mea-
sure ν and the Hilbert-Schmidt norm L2. For any hypothesis
h : SU (N ) → L that is not a constant function, let η ∈
[0, 1/2] determine the measure of the dominant class such
that ν(hl ) � 1 − η,∀l ∈ L. Suppose U ∈ hl , V /∈ hl and a
perturbation U → V occurs, where ‖U − V ‖2 � ε. If the
prediction-change adversarial risk RPC

ε (h, ν) � 1 − γ , then ε

must satisfy

ε �
√

4

N

⎡
⎣
√

ln

(
2
√

2

η

)
+

√
ln

(
2
√

2

γ

)⎤
⎦. (5)

It is evident from Eq. (5) that the upper bound on the size
of the perturbation ε is suppressed as the dimension N of the
space increases. It is also suppressed when the measure of the
dominant class (1 − η) decreases and when the tolerance on
the adversarial risk (1 − γ ) decreases.

Corollary 1. With ρ = U |
0〉〈
0|U † and σ = V |
0〉〈
0|V †,
Eq. (5) translates to a necessary upper bound in the trace norm
between the pure-state density matrices

‖ρ − σ‖1 � 4

N
λ1,

where N = dn, λ1 = [ln(2
√

2/η)]1/2 + [ln(2
√

2/γ )]1/2 with
η and γ defined in Theorem 1, and the upper bound scales as
�(d−n). With the qudit encoding in Eq. (2), a naive translation
of this necessary upper bound to that in the 	1 norm of the
encoding vectors u and v gives,

‖u − v‖1 � 2n

π
cos−1

[(
1 − 2

N
λ1

) 1
(d−1)n

]
,

where the upper bound scales as �(d−n/2√n).
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The proofs can be found in Appendices D and E. The
interpretation of Theorem 1 and Corollary 1 is clear: Given
that no class occupies Haar-measure 1, any quantum classifier
on quantum states is more vulnerable to prediction-change
adversarial attacks on higher-dimensional pure states drawn
Haar-randomly, with the robustness decaying exponentially in
the number of qudits.

In what follows, we apply this theorem to a practical task
by presenting two perspectives on the application, to illustrate
the limitations of the theorem. Suppose that the objective of
the practical task is to classify a subset of quantum states,
for example, the pure product states in Sec. II C that encode
images displaying a digit 0 or 1. On one hand, if we label
unitaries not related to an actual image, together with unitaries
associated with noisy images not displaying a digit 0 or 1,
in a third-class, this class will have measure 1, since the
set of all unitaries that evolve the initial |
0〉 to some final
pure product state |φ〉 has Haar measure 0 in SU (N ) [55].
For example when n = 1, this can be seen by recognizing
that the encoded states {|φ〉} correspond to only a fraction
of the great circle passing through |0〉 and |1〉 on the Bloch
Sphere. This labeling renders Theorem 1 useless for any h
trained in this way because η = 0. On the other hand, if we
train a binary h to classify half of SU (N ), including unitaries
corresponding to 0-digit images, to l = 0, and the other half,
including unitaries corresponding to 1-digit images, to l = 1,
then η = 1/2. Using Eq. (5) then gives O(1/

√
dn) robustness

against prediction-change adversarial attacks, again suggest-
ing extreme vulnerabilities in high dimensions.

However, the interpretation of this result is not of prac-
tical interest, for the following reasons. We emphasize that
in applying Theorem 1 or Eq. (4), the notion of adversarial
risks by Definition 2 represents the probability of perturbing
a Haar-randomly selected unitary by some ε to its adversarial
example. It does not represent, for instance, the probability
of perturbing a particular unitary associated with a real image
to its adversarial example, nor does it represent the risk of
attacking a unitary drawn from any other distribution over
some subset. Therefore, if the task is to train and generalize
a quantum classifier on a subset of quantum states with some
distribution, this theorem cannot claim vulnerabilities that are
exponential in the number of qudits. It is also noted that, as far
as how Eq. (4) and Theorem 1 are formulated, the perturbed
states cannot be mixed states since the latter are mapped from
|
0〉〈
0| by a completely positive and tracing preserving (CPTP)
maps rather than by unitaries. In Sec. IV, we shall see that
this is an example of an in-distribution attack, which applies
to scenarios where both the original and perturbed states are
pure.

IV. CLASSIFICATIONS ON GENERATOR OUTPUT
DISTRIBUTIONS

A. Concentration in generated distributions

In practice, one is interested in the performance of a
classifier on a distribution over some subset of meaningful
samples, such as the subset of images displaying digits in-
cluding the MNIST data set [56]. It is this distribution on
which the adversarial risk should be computed to infer the

extent of the vulnerability. To ensure that the probability mea-
sure on the classifier-input space covers meaningful samples,
we resort to approximating the distribution over meaning-
ful samples using the image of a smooth generator function
on a concentrated latent space, trained on samples of inter-
est [15]. Following convention, we refer to the latter as a
real-data manifold. Such a generator can be a Normalizing
Flow model [25–27] or the generator of a Generative Adver-
sarial Network (GAN) [28–30], both with a Gaussian latent
space, trained on the same data set that the classifier will be
trained on. A generative model serving this purpose is also re-
ferred to as a spanner [57]. In this way, a major fraction of the
samples in the generator output S can be related to samples of
interest, despite the fact that the smoothness of the generator
may introduce some samples off the real-data manifold, such
as those undergoing gradual semantic change during interpo-
lations. This generative setup can be generalized to multiple
generators on the same latent space. However, each generator
maps to a disjoint part of the real-data manifold, overcoming
the problem of covering the off real-data manifold when the
latent space is globally connected [58]. This generalization
requires relaxing the demand that ω(0) = 0 in Eq. (6) below.
As a result, no data off the real-data manifold is generated
in S .

The reason that we require the latent space to be concen-
trated is so that we can study the concentration of samples
in the generator-output space resulting from the concentration
of the latent space. This connection is made by the assumption
that the generator is smooth, in the sense that it admits a mod-
ulus of continuity (i.e., it is uniformly continuous), namely, if
there exists a monotone invertible function ω(·) such that

‖g(z) − g(z′)‖ � ω(‖z − z′‖2), ∀z, z′ ∈ Z, (6)

where ‖ · ‖ is the metric equipped by the image of g. This is a
weaker condition than the Lipschitz continuity which results
when ω(·) is a linear function. In this paper, we assume ω(·)
to yield a tight upper bound in Eq. (6), and we demand ω(τ )
to be small for small τ for a smooth generator. The idea is that
any tendency to concentration of measure in the latent space
is preserved by such a smooth mapping to its image, and the
generated samples then follow a modified concentrated distri-
bution. We can imagine that if some pairs of latent variables
from different classes are within distance b across the class
boundary in the generator domain, their generator images
must be accordingly within distance at most ω(b) across the
boundary. This can also display a clustering. Although the
tendency to cluster is preserved, the extent to which the points
in the generator image gather is mediated by the modulus of
continuity. A tight upper bound with ω(·) that yields distances
larger than the typical distances in the output space means that
generated samples can be further apart, and vice versa. As far
as adversarial robustness is concerned, a larger ω(·) is then
favorable since it implies that larger perturbations are needed
to definitively perturb a larger number of generated samples
across decision boundaries.

In generating these to-be-classified samples, the fact that
a large probability density resides near the decision boundary
is not at odds with a trained classifier that predicts training
samples with high confidence. The training samples com-
prise only a subset of the support of the generator-output
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distribution. High confidence training samples result from
the classifier drawing the decision boundaries away from
them. When such a decision boundary encloses a sufficiently
large measure, it then inevitably encounters large probability
densities—as dictated by the concentration of measure phe-
nomenon on these distributions—that do not contribute to
training. As a result, when generalizing to test samples that
are similar to the training samples, some test samples may
locate near the boundary and constitute vulnerable targets to
adversarial attacks.

B. Robustness of QML models

We consider the quantum adversarial attack setup where
the input to the classifier is already quantized and transmitted
through a quantum communication network.

Let our latent space Z be, for example, Rm with the Eu-
clidean metric 	2 and the canonical m-dimensional Gaussian
measure Nm ≡ N (0, Im). So this is a concentrated space. Let
z ← Nm in Z . Suppose that a smooth generator g : Z → S ⊆
X is trained to generate a distribution ξ of concern, such as
some distribution of natural images, on a subset S of X . For a
sample g(z) ∈ S , we then have ξ [g(z)] = Nm(z).

Incorporated in the generator g = g2 ◦ g1, g1 maps the
latent space to a subset of n-pixel natural images, g2 then
encodes the natural image into a density matrix defined in
Eq. (2). That is, g(z) = |φ(z)〉〈φ(z)| = ρ(z) ∈ S ⊆ X , where
S—the image of g—is a subset of all density matrices X .
The metric on density matrices is the trace norm L1 unless
otherwise specified. The probability measure ξ , which is a
distribution mapped by g from the m-dimensional Gaussian
measure Nm on Z , is only supported on S over density ma-
trices capturing the natural image distribution. Any quantum
classifier h then classifies the dn × dn density matrices in
(X , L1, ξ ). Let us denote the intermediate stage—the set of
images with n pixels (normalized vectors with length n)—as
I, then the corresponding measure on I can be denoted as
ξ ◦ g2. The metric on I is, for instance, the 	1 norm. Diagram-
matically, these mappings are

Z g1−→ I g2−→︸ ︷︷ ︸
g

S ⊆ X −→
h

L.

It is noted that smoothness is a desirable property of gen-
erative models. It is hinted at by gradual transitions in the
features in the generated samples, which imply that the gener-
ator has learned relevant factors of variation [59]. We are then
justified in assuming that the real-data manifold on I can be
covered by a smooth generator g1 (see, e.g., Refs. [26–30]). In
what follows, we show that the overall generator g, mapping
from Z to the real-data manifold in the set of density matrices
X , is also smooth.

Proposition 1. Assuming that g1 : Z → I is smooth with
a modulus of continuity ω1(·) and the qudit encoding scheme,
Eq. (2), is applied, then the generator g = g2 ◦ g1 : Z → S ⊆
X is also smooth and admits a modulus of continuity ω(·) that
is lower bounded as

ω(τ ) �
√

1 − cos2n(d−1)
( π

2n
ω1(τ )

)
, ∀τ � 0.

The proof can be found in Appendix F. In terms of the
scaling with respect to n and d , when ω1(·) scales as �(1),
for instance, when g1 is Lipschitz continuous (e.g., the gener-
ator in Refs. [60,61]), Proposition 1 implies that the modulus
of continuity of the overall generator g, i.e., ω(·), scales
as �(

√
d/n). It is desirable to enforce Lipschitz continuity

on some generators, for example when imposing spectral
normalization [62] on the generator of a GAN to improve
training [61].

A distinction can be made concerning whether the adver-
sarial example σ must be also in the subset S . If so, then the
adversarial attack is called in-distribution, since the attacker
only looks for an adversarial example within the data manifold
S . Otherwise, we call it an unconstrained adversarial attack
since the perturbation is arbitrary in X , i.e., it is not confined
to the data manifold. We state the precise definitions, based on
prediction-change adversarial risks in Definition 2, as follows.

Definition 3. An in-distribution adversarial attack, or a
data-manifold attack, attempts to find the perturbation

εin(ρ) = min
r∈Z

{‖g(z + r) − ρ‖1|h(g(z + r)) �= h(ρ)}

= min
σ∈S

{‖σ − ρ‖1|h(σ ) �= h(ρ)},

which is within the data manifold (S, L1, ξ ). It induces an in-
distribution adversarial risk,

RPC
εin

(h, ξ ) = Pr
ρ←ξ

[εin(ρ) � εin].

Definition 4. An unconstrained adversarial attack attempts
to find

εunc(ρ) = min
σ∈X

{‖σ − ρ‖1|h(σ ) �= h(ρ)},

which is in (X , L1) not restricted to the data manifold S . It
induces an unconstrained adversarial risk,

RPC
εunc

(h, ξ ) ≡ RPC
ε (h, ξ ) = Pr

ρ←ξ
[εunc(ρ) � ε].

It is noted that when the generator is surjective on X ,
i.e., S = X , there is no distinction between the two types
of attacks. The setups in Theorem 1 and Eq. (4) consider
classifying on the subset of all pure-state density matrices in
X on which a Haar-random distribution ν is supported. Since
this requires both the original and perturbed states be pure,
the adversarial risks are considered in-distribution, although
we shall see in Sec. IV B that the same upper bound applies to
the unconstrained robustness for a general quantum classifier.

In-distribution Adversarial Robustness

The following theorem, depending on the distribution to be
classified as well as the specific classical-data generator g1 in
terms of ω1(·), then applies.

Theorem 2. Let h : X → L be any quantum classifier on
the set of density matrices. Considering in-distribution adver-
sarial attacks on the image of g, if ξ (hl ) � 1/2,∀l , i.e., the
classes are not too unbalanced, then for the prediction-change
risk RPC

εin
(h, ξ ) � 1 − γ , the distance between two density ma-
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trices εin must satisfy

εin � ω

[√
ln

(
π

2γ 2

)]
, (7)

where ω(·) is the modulus of continuity in Proposition 1.
The proof can be found in Appendix G. This result is

independent of the quantum data encoding scheme. It can
be generalized to quantum classifiers with arbitrary decision
boundaries, but in this case, the necessary upper bound on the
in-distribution robustness will not have a closed-form (see Ap-
pendix G). This upper bound is saturated when Eq. (6) is tight
and the quantum classifier induces linearly separable regions
in the latent space, namely, when h ◦ g is a linear function
on Z , giving rise to the maximally robust quantum classifier.
The nonsaturation of this upper bound when class regions are
not linearly separable in Z can be seen in the example of
the standard Gaussian in Sec. II D above. Suppose one looks
at �′ = (−∞,−2δ) ∪ (0, 2δ) for some δ > 0, which has the
same probability measure 1/2 as � = (−∞, 0) but is not
linearly separable in R. The measure outside the δ-expansion
of �′, i.e., R \ �′

δ = (3δ,+∞), is smaller than that outside of
the δ-expansion of �, namely, R \ �δ = (δ,+∞), implying
more concentration outside and near �′ than �.

The nonsaturation of this upper bound for nonlinearly
separable classification regions in Z also implies that it
is prone to misclassification with an increasing number of
equiprobable classes. The proof for cases with at least five
equiprobable classes can be found in Appendix G. Informally,
more equiprobable classes lead to more boundaries, enclos-
ing classes with sufficiently large total measure, that border
distinct classes. Then within a fixed distance beyond more
of those boundaries, there are more samples subject to some
prediction change.

We note that this upper bound is usually not saturated in
practice, since a quantum classifier is usually linear, such as
a parametrized quantum circuit and a unitary tensor network,
while the generator g is usually nonlinear, given that g1 is usu-
ally nonlinear and g2, the quantum feature map, is nonlinear.
Classically, some highly nonlinear state-of-the-art neural net-
works have robustness one or two orders of magnitude smaller
in the 	2 norm on some data sets than the corresponding
upper bound derived with similar arguments [15]. It would be
interesting to examine the amount of deviation from the upper
bound for QML models in future works.

Theorem 2 implies that when the quantum states to be
classified encode classical data generated with a modulus of
continuity scaling as �(1), the in-distribution robustness of
any quantum classifier decreases polynomially in the number
of qudits n and increases polynomially in the qudit dimension
d . To see this, we first note that according to Proposition 1,
when ω1(·) = �(1), which applies to generators such as
those enforcing Lipschitz continuity, ω(·) is lower bounded
by a function that scales as �(

√
d/n). This means that the

upper bound on the perturbation size εin between any two
in-distribution states, i.e., the right hand side of Eq. (7), is then
asymptotically bounded from below by

√
d/n.

As such, the vulnerability increases slightly with a larger
number of qudits n and by contrast, decreases slightly with
qudits of higher dimension d � 2. When the encoded classical

data manifold comes from generators for which Lipschitz con-
tinuity is not enforced, it requires numerical approximations
of the modulus of continuity ω1(·) to determine its scaling
in the output space, before obtaining the robustness scaling.
Compared to Theorem 1 where samples are Haar-random
pure states, the states to be classified here, which characterise
the adversarial risk, are similar to those considered in prac-
tical tasks. Specifically, they are a subset of encoded states
with a distribution smoothly generated from a Gaussian latent
space. Theorem 2 demonstrates that, contrary to previous
claims [16], there is no guarantee that quantum classifiers
are exponentially more vulnerable to in-distribution attacks in
higher-dimensional Hilbert space. We shall now show that the
theorem applies to unconstrained attacks as well.

Unconstrained Adversarial Robustness

Unconstrained adversarial attacks are arbitrary perturba-
tions in X to a sample ρ. In a broader context in which the
instability of the quantum classifier is concerned, this may
derive from density matrices subject to decoherence in a clas-
sification task. It is clear that εunc(ρ) � εin(ρ),∀ρ ∈ X and
thus by changing the in-distribution perturbations in Theo-
rem 2 to unconstrained ones the same bound in Eq. (7) applies.

We argue that there does not exist a tighter upper bound
that holds for general quantum classifiers for unconstrained
robustness. Consider a particular family of quantum classifiers
that project any state onto the data manifold, namely, to map
any state to its closest in-distribution state, before classify-
ing. These classifiers can be shown to satisfy 1/2εin(ρ) �
εunc(ρ) � εin(ρ),∀ρ ∈ X [63]. Even in the worst case where
εunc(ρ) = 1/2εin(ρ),∀ρ ∈ X , their unconstrained robustness
is as large as half of the in-distribution one. We stress that,
although robust, such a quantum classifier is inefficient in our
setting since there is no apparent tractable way to obtain the
closest pure product state to an arbitrary state.

Inspired by this strategy, we propose that one can construct
a family of efficient quantum classifiers h̃ on n-qubit den-
sity matrices X with unconstrained robustness εunc(ρ) lower
bounded for any ρ ∈ X . To be specific, we construct h̃ from
any h with the following procedure.

Let the original sample ρ ∈ S be a pure product-state den-
sity matrix with n qudits as in Eq. (1). A perturbation εunc ≡ ε

leads to a sample σ ∈ X . First, we perform single qubit to-
mography on every qubit of σ to reconstruct a product-state
density matrix from these single qubits. We denote this map-
ping as P : X → X , σ �→ ⊗n

i=1 tr{ j �=i}(σ ), where tr{ j �=i}(σ )
means tracing out all but the ith qubit of σ . Subsequently, we
numerically fit the pixel values {ui} to P(σ ) to find its closest
density matrix σ̃ within our data manifold S . We use a symbol
σ̃ to represent the density matrix attained from this procedure.
σ̃ is then replacing σ when fed to the quantum classifier h. We
now have the following theorem.

Theorem 3. For every n-qubit ρ ∈ S ⊆ X , let ρ̃ be the
density matrix within the data manifold attained from the
above procedure. For any quantum classifier h, let h̃ : X → L
be such that h̃(ρ) = h(ρ̃). Then

2 − 2

(
1 − εin(ρ)2

16

) 1
ne

� εunc(ρ) � εin(ρ),
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TABLE I. Summary of the adversarial robustness, namely, the size of perturbations necessary for the adversarial risk to be upper bounded
by some constant, of any quantum classifier obtained within the prediction-change adversarial attack setting. In this setting, the prediction-
change adversarial risk over the Haar-random distribution ν, RPC

ε (h, ν ), and over a smoothly generated distribution ξ , RPC
ε (h, ξ ), are both

upper bounded by (1 − γ ) (column 0). d denotes the qudit dimension in Eq. (2) and n denotes the number of encoded qudits or the length
of the encoding vectors (number of pixels in the image classification example). Parameters λ1 and λ2 are defined as λ1 = [ln(2

√
2/η)]1/2 +

[ln(2
√

2/γ )]1/2 and λ2 = √
ln [π/(2γ 2)]. Row 1 summarizes the adversarial robustness when a pure state ρ sampled from the Haar-random

distribution ν is perturbed to a state σ . The robustness is shown both in the trace norm (column 1), as well as in its translation to the robustness
measured in the 	1 norm of the set of encoding vectors (from Corollary 1 of Theorem 1) (column 2). Both upper bounds decrease exponentially
in n. Row 2 summarizes the adversarial robustness when a pure state ρ sampled from a smoothly generated distribution ξ from a Gaussian
latent space is perturbed to a state σ (column 1), and the robustness when the intermediate generated vector 
u is perturbed to 
v (column 2) (from
Proposition 1 and Theorem 2). Note that when the robustness in adversarially perturbing a vector scales as �(1), e.g., when the intermediate
vectors are generated Lipschitz continuously, the robustness in perturbing an encoded pure state scales as �(

√
d/n).

� 1 − γ ‖ρ − σ‖1 � ‖
u − 
v‖1 �

RPC
ε (h, ν ) 4d−nλ1 = �(d−n) 2n

π
cos−1 [(1 − 2d−nλ1)

1
(d−1)n ] = �(d− n

2
√

n)

RPC
ε (h, ξ ) ω(λ2) �

√
1 − cos2n(d−1)

[
π

2n ω1(λ2)
] = �

(√
d
n

)
ω1(λ2) = �(1)

where ne = n for even n and ne = n + 1 for odd n.
The proof can be found in Appendix H. We note that

the procedure can be applied to any product state encoding
scheme. This procedure yields an explicit lower bound to the
unconstrained adversarial perturbation when it is possible to
estimate the in-distribution adversarial perturbation by, for
example, sampling in the latent space [64] or gradient descent
search in the latent space [57] before mapping to the density
matrices. This h̃ constructed from h amounts to a feasible
tomographic preprocessing of input states. It guarantees that
the unconstrained robustness of each sample ρ is bounded
from below and may be used as a defense strategy against
unconstrained adversarial attacks in practice. However, we
note that when n is large, this lower bound can be several
orders of magnitude smaller than the upper bound.

V. DISCUSSION

A summary of the upper bounds on the prediction-change
adversarial robustness over pure states sampled from the Haar-
random distribution ν and a smoothly generated distribution ξ ,
is presented in Table I.

In this work, we first showed the prediction-change adver-
sarial robustness over Haar-randomly distributed pure states,
and compared this with the previously demonstrated error-
region robustness of Ref. [16] over the same distribution.
Both types of adversarial robustness show similar extreme
vulnerabilities exponential in the number of qudits. However,
in this work we have argued that these vulnerabilities for
Haar-random pure states are not of practical interest. This is
because, in practice, the adversarial risk of a quantum classi-
fier should be computed on a distribution over some subset of
meaningful states, such as a subset of qubit encoding states
featurizing some images, to infer the extent of the vulnerabil-
ity. In general, practical quantum classification tasks classify
a subset of encoded states with some commonly used qubit
encoding scheme. For such tasks, we have shown that we can
use the concentration of measure phenomenon to derive the
robustness of any quantum classifiers in situations where the
distribution of states to be classified can be smoothly gener-
ated from a Gaussian latent space, as quantified in Eq. (6).

In this situation, we have shown that one finds only a mildly
polynomially decreasing robustness in the number of such
encoded qubits, specifically with scaling as O(

√
1/n) in the

trace norm.
As noted for Theorem 2, it is the upper bound on the

perturbation size necessary for the adversarial risk to be
bounded from above that scales as �(

√
1/n). This upper

bound is usually not tight and the actual adversarial robust-
ness could therefore be smaller. We have also proposed a
feasible modification of any quantum classifier with product-
state inputs—namely, by performing single qubit tomography
before numerically fitting the closest encoded qubit state—to
obtain a lower bound on the unconstrained robustness and to
defend against unconstrained adversarial attacks.

Most importantly, our analysis provides QML protocols
some relief from adversarial attacks in real-world tasks. For
example, when classifying on some qubit states encoding
MNIST images, the robustness decreases only as O(

√
1/n),

in contrast to the extreme vulnerability of quantum classi-
fiers in classifying Haar-random pure states (Theorem 1 and
Ref. [16]). In future, it will be interesting to experimentally
compare the adversarial robustness of particular QML mod-
els for real-world data on a distribution of states smoothly
mapped from a Gaussian latent space with the bounds that
we have derived here.

We note that the polynomially decreasing robustness in n
is derived from the qudit encoding scheme. The concentration
of measure due to the Gaussian isoperimetric inequality for
the latent space only contributes to the argument of Eq. (7). It
will be interesting to investigate whether a different encoding
scheme can give better scaling in the robustness, and also to
determine whether quantum data that derives naturally from a
distribution other than the Haar-random distribution is robust
to attacks. In Appendix B, we propose a method to perform
white-box adversarial attacks on classically intractable input
states with QML models. It will be interesting to further
explore white-box attacks, assuming that the adversary is ca-
pable of devising these. In practice, with current NISQ-era
hardware, it will also be useful to examine how robust QML
models are against adversarial attacks under noise and deco-
herence.
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APPENDIX A: CONFIDENCE DIFFERENCE
AND DISTANCE BETWEEN STATES

We show that the predictive confidence difference in any
QML protocol is upper bounded by the distance between the
input density matrices up to some constant factor, where this
distance is measured in the trace norm L1, the Hilbert-Schmidt
norm L2, the Bures distance, or the Hellinger distance.

Considering density matrices ρ and σ , the trace norm be-
tween them is defined to be ‖ρ − σ‖1 = tr(|ρ − σ |). Consider
a set of POVMs {�l} and a quantum channel E such that
E (ρ) = ∑

i MiρM†
i and

∑
i M†

i Mi = I . We have

tr(E (ρ)�l ) − tr(E (σ )�l ) = tr

[∑
i

Mi(ρ − σ )M†
i �l

]

= tr

[
(ρ − σ )

∑
i

M†
i �lMi

]

≡ tr[(ρ − σ )E∗(�l )].

We note that E∗ is the dual map of E and {E∗(�l )} is still
a set of POVMs, since E∗(�l ) is hermitian, nonnegative be-
cause tr[ρE∗(�l )] = tr[E (ρ)�l ] � 0, and complete because∑

i,l M†
i �lMi = ∑

i M†
i Mi = I .

For each particular measurement, we can expand
in its eigenbasis E∗(�l ) = ∑

k bk|φk〉〈φk| ≡ ∑
k bkPk . Let

{|ψi〉} and {λi} be the eigenbasis and eigenvalues of
(ρ − σ ), so ‖ρ − σ‖1 = ∑

i |λi| ∈ [0, 2]. We then expand
E∗(�l ) = ∑

i, j,k bkaik|ψi〉a∗
jk〈ψ j | such that

∑
i |aik|2 = 1,∀k

and
∑

k bk = tr[E∗(�l )] � 0 due to the nonnegativity. We
have

tr[(ρ − σ )E∗(�l )] = tr

⎡
⎣(ρ − σ )

∑
i, j,k

bkaik|ψi〉a∗
jk〈ψ j |

⎤
⎦

=
∑

k

bktr

[∑
i, j

aika∗
jk〈ψ j |(ρ − σ )|ψi〉

]

=
∑
i,k

bk|aik|2λi �
∑

k

bk‖ρ − σ‖1

= tr[E∗(�l )]‖ρ − σ‖1. (A1)

Therefore,

|tr[E (ρ)�l ] − tr[E (σ )�l ]| � tr[E∗(�l )]‖ρ − σ‖1.

When tr[E∗(�l )] is not too large the above inequality sug-
gests that the confidence change will be small when the trace

norm between the two density matrices is small. However,
tr[E∗(�l )] may be very large in high dimensions and in that
case, the upper bound becomes very weak.

We resort instead to the physical interpretation of trace
distance being a generalization of the classical total variation
distance. The trace distance between two quantum states is
an achievable upper bound on the total variation distance
between probability distributions arising from measurements
performed on those states [38]:

1

2
‖ρ − σ‖1 = 1

2
max
{�l }

∑
l

|tr[(ρ − σ )�l ]|,

where the maximization is over all POVMs {�l} and the factor
of 2 is to restrict the maximal trace distance to be 1. Using the
contractive property of the trace norm under any CPTP map,
we conclude that the trace norm constitutes an upper bound to
the sum of confidence changes of all POVMs:∑

l

|tr[E (ρ − σ )�l ]| � ‖E (ρ) − E (σ )‖1 � ‖ρ − σ‖1.

(A2)

Considering the Hilbert-Schmidt norm defined as
‖ρ − σ‖2

2 = tr[(ρ − σ )2], if we regard ‖ρ − σ‖2 as
the inner product of the two vectors (1, 1, · · · , 1) and
(|λ0|, |λ1|, · · · , |λN−1|), then from the Cauchy-Schwarz
inequality we find ‖ρ − σ‖1 �

√
N‖ρ − σ‖2. But this bound

is very weak in high dimensional Hilbert space. A better upper
bound is given in Ref. [65] that ‖ρ − σ‖1 � 2

√
R‖ρ − σ‖2,

where R = rank(ρ)rank(σ )/[rank(ρ) + rank(σ )]. This
implies that, even when one state is full rank, if the other state
is low rank, then the Hilbert-Schmidt norm is of the same
order of magnitude as the trace norm. This is the case when
we consider any perturbation to an encoded pure state density
matrix ρ whose rank is 1. Combined with Eq. (A2), we arrive
at a similar upper bound,∑

l

|tr[E (ρ)�l ] − tr[E (σ )�l ]| � 2
√

R‖ρ − σ‖2.

Considering the Bures distance defined as ‖ρ − σ‖2
B =

2[1 − √
F (ρ, σ )], it is an extension to mixed states of the

Fubini-Study distance for pure states [66]. We have

‖ρ − σ‖1 � 2
√

1 − (
1 − 1

2‖ρ − σ‖2
B

)2

= 2
√

‖ρ − σ‖2
B − 1

4‖ρ − σ‖4
B � 2‖ρ − σ‖B,

where the first inequality is proven in Refs. [66,67] and sat-
urated for pure states. Therefore, together with Eq. (A2), we
conclude that∑

l

|tr[E (ρ)�l ] − tr[E (σ )�l ]| � 2‖ρ − σ‖B. (A3)

Finally, considering the Hellinger distance defined as ‖ρ −
σ‖2

H = 2 − 2tr(
√

ρ
√

σ ), it is shown that ‖ρ − σ‖B � ‖ρ −
σ‖H [66] and thus, the same upper bound applies by changing
‖ρ − σ‖B to ‖ρ − σ‖H in Eq. (A3).

In QML, if ρ and σ are close in these norms and are sepa-
rated by any class boundary, say between class l = s and class
l = t , then tr[E (ρ)�s] > tr[E (σ )�s], while tr[E (ρ)�t ] <
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tr[E (σ )�t ]. This suggests that no small perturbation to density
matrices in these norms can significantly change the mea-
surement outcome and thus, alter the prediction, unless the
original sample is near the boundary. In other words, viewing
tr[E (ρ)�s] as the confidence of predicting l = s, it implies
that no small perturbations can result in a high-confidence
sample in one class perturbed to a low-confidence sample
in the same class, or a high-confidence sample in a different
class.

APPENDIX B: ADVERSARIAL ATTACKS EXPLOITING
QUANTUM CLASSIFIER REVERSIBILITY

We propose a method to perform adversarial attacks in our
first setup in Sec. II B on quantized data. This method can
be carried out on a quantum hardware when the computa-
tion is classically intractable. We assume a noiseless QML
model for this analysis, so the quantum channel is unitary.
Considering, for example, the unitary tree tensor network
(TTN) in Ref. [39] among other types of parametrized unitary
quantum circuits, the adversary can run it reversely starting
from a density matrix with any designated wrong class la-
bel l = t such that tr(σ ′�t ) = 1 while tr(σ ′�l �=t ) = 0. Any
qubit that is traced out in the forward direction is initialized
to an arbitrary state and passes through the network in the
reverse direction. The output of the reversal circuit is a set of
density matrices {U †σ ′U } ≡ {σ } such that tr(UσU †�t ) = 1
whereas tr(UσU †�l �=t ) = 0. Thus, this set of density matri-
ces will be classified in the wrong class by the POVM �t

with high-confidence. Suppose that the original samples are
{ρ} in the class s �= t and tr(UρU †�s) = 1/2 + δ with some
δ ∈ (0, 1/2]. The adversary then replaces an ε-portion of the
transmitted quantum states {ρ} with the {σ } to attack the
receiver.

To achieve a prediction change, the adversary demands
tr(U [(1 − ε)ρ + εσ ]U †�s) < 1/2. This requires

ε > 1 − 1

1 + 2δ
, (B1)

which means that the portion of {ρ} being substituted with
{σ } increases with higher-confidence of {ρ}. We note that this
effectively creates a perturbation of size

‖ρ − [(1 − ε)ρ + εσ ]‖1 � ε
∑

l

|tr[U (ρ − σ )U †�l ]|

= ε
{∑

l �=t

tr(UρU †�l ) + [1 − tr(UρU †�t )]
}

= ε[2 − 2tr(UρU †�t )] � ε(1 + 2δ),

where the first inequality follows from Eq. (A2). As a result,
a misclassification by the attack demands a perturbation of
size ‖ρ − [(1 − ε)ρ + εσ ]‖1 � 2δ, where we substituted in
Eq. (B1).

APPENDIX C: PROOF OF EQ. (4)

We present a condensed proof based on the proof to
Theorem 3.7 in Ref. [11]. Let ε1 >

√
1/(Nk2) ln [k1/μ(M)]

and ε2 >
√

1/(Nk2) ln (k1/γ ). Then the concentration func-
tion satisfies α(ε1) < μ(M) and α(ε2) < γ . As such, by

directly applying Part 2 of Theorem 3.2 in Ref. [11], we
conclude RER

ε (h, c, ν) > 1 − γ for ε = ε1 + ε2. It can be
shown that SU (N ) is a (

√
2, 1/4)-normal Lévy family and

so k1 = √
2 and k2 = 1/4 [16]. The contrapositive statement

on RER
ε (h, c, ν) � 1 − γ then gives the necessary condition

Eq. (4).

APPENDIX D: PROOF OF THEOREM 1

Proof. We let ε1 >
√

1/(Nk2) ln (2k1/η) and ε2 >√
1/(Nk2) ln (2k1/γ ), then the concentration function

satisfies α(ε1) < η/2 and α(ε2) < γ/2. Therefore, by
applying Part 1 of Theorem A.2 in Ref. [11], we conclude
that for ε = ε1 + ε2, RPC

ε (h, ν) > 1 − γ . For completeness,
we present our explained version of the proof below.

Let ε = ε1 + ε2. By assumption that ν(hl ) � 1 − η,∀l ∈
L, it can be easily verified by contradiction that ∃l1 ∈ L s.t.
ν(hl1 ) ∈ (η/2, 1/2]. Let hl1,C = X \ hl1 . On one hand, we
know that ν(hl1 ) > η/2 > α(ε1) where the last inequality is
given by our assumption. We prove by contradiction that
ν(hl1

ε1
) > 1/2. Suppose not, then we have for S = X \ hl1

ε1
,

ν(S ) = 1 − ν(hl1
ε1

) � 1/2. Then by the definition of the con-
centration function in Eq. (3), ν(Sε1 ) � 1 − α(ε1). Combining
with what we obtained that ν(hl1 ) > α(ε1), we have ν(Sε1 ) +
ν(hl1 ) > 1. Thus, ∃x ∈ ν(Sε1 ) ∪ ν(hl1 ). This implies ∃y ∈
S|d (y, x) � ε1. But this same y must also be in hl1

ε1
since the

same x is also in hl1 . However, this raises a contradiction since
S and hl1

ε1
are disjoint by definition, i.e., �y|y ∈ S, y ∈ hl1

ε1
.

Now, ν(hl1
ε1

) > 1/2 means, by the definition of the concen-
tration function in Eq. (3), as well as the assumption that
γ /2 > α(ε2), we have ν(hl1

ε ) � 1 − α(ε2) > 1 − γ /2.
On the other hand, knowing that ν(hl1,C ) � 1/2, we have

that ν(hl1,C
ε2

) > 1 − γ /2 followed by simply replacing the
hl1

ε1
in the previous sentence with hl1,C since they both have

measure at least 1/2. We then also have ν(hl1,C
ε ) > 1 − γ /2.

Hence, using the inequality μ(∩n
i=1Ai ) �

∑n
i=1 μ(Ai ) − (n −

1), one can conclude that ν(hl1
ε ∩ hl1,C

ε ) > 1 − γ and so, by
the prediction-change risk’s definition, RPC

ε (h, ν) � ν(hl1
ε ∩

hl1,C
ε ) > 1 − γ .

It can be shown that SU (N ) is a (
√

2, 1/4)-normal Lévy
family and so k1 = √

2 and k2 = 1/4 [16]. The contrapositive
statement on RPC

ε (h, ν) � 1 − γ then gives the necessary con-
dition Eq. (5).

APPENDIX E: PROOF OF COROLLARY 1

Proof. We have from Theorem 1 that the necessary con-
dition for RPC

ε (h, ν) � 1 − γ on SU (N ) is ‖U − V ‖2 �√
4/Nλ1 where λ1 = [ln(2

√
2/η)]1/2 + [ln(2

√
2/γ )]1/2. Let

σ = V |
0〉〈
0|V †. From the Proof of Theorem 3 in Ref. [16], we
have ‖U − V ‖2

2 � 2N (1 − |〈φ|ψ〉|). The Fuchs-van de Graaf
inequality for pure states is

2 − 2
√

F (ρ, σ ) � ‖ρ − σ‖1 = 2
√

1 − F (ρ, σ ), (E1)

where the fidelity F (ρ, σ ) = |〈φ|ψ〉|2. Based on Eq. (E1), we
obtain

2N (1 − |〈φ|ψ〉|) � 2NT (ρ, σ )2

(1 + |〈φ|ψ〉|) � NT (ρ, σ )2,
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where T is the trace distance. As such, we need√
4

N
λ1 � ‖U − V ‖2 �

√
NT (ρ, σ ) =

√
N

2
‖ρ − σ‖1,

which gives ‖ρ − σ‖1 � 4/Nλ1 = 4d−nλ1.
We translate this upper bound on the distance between

two density matrices to that between their encoding vectors
g1(z) and g1(z′). Altogether with the necessary condition and
Eq. (E1), we have

4d−nλ1 � ‖ρ − σ‖1 � 2 − 2
√

F (ρ, σ ). (E2)

For density matrices ρ, σ ∈ X respective to two im-
ages, we have ρ = |φ〉〈φ| = ⊗

i |φi〉
⊗

i 〈φi| = ⊗
i |φi〉〈φi| =⊗

i ρi and σ = ⊗
i |ψi〉〈ψi| = ⊗

i σi, which are mapped from
images g1(z) = 
s and g1(z′) = 
t , respectively. All i-indices
run from 1 to n. And |φi〉 and |ψi〉 are featurized from pixels
of value si and ti, respectively. It can be shown by induction
that

F (ρ, σ ) =
∏

i

cos2(d−1)
(
|si − ti|π

2

)
. (E3)

For d = 2, we have that F (ρ, σ ) = tr(
⊗

i ρi
⊗

i σi ) =∏
i tr(ρiσi ) = ∏

i |〈φi|ψi〉|2 = ∏
i cos2(|si − ti|π/2). It then

suffices to show 〈φi|ψi〉 = cosd−1(|si − ti|π/2) for the qudit
encoding d > 2. We drop all π/2 factors and the subscripts i
in si and ti hereafter. Suppose for d = k, we have 〈φi|ψi〉 equal
to

k∑
j=1

(
k − 1

j − 1

)
cosk− j (s) cosk− j (t ) sin j−1(s) sin j−1(t )

= cosk−1(s − t ). (E4)

Then for d = k + 1, we have 〈φi|ψi〉 equal to

k+1∑
j=1

(
k

j − 1

)
cosk+1− j (s) cosk+1− j (t ) sin j−1(s) sin j−1(t )

= cos(s) cos(t )

[
k∑

j=1

β

(
k

j − 1

)
cosk− j (s) cosk− j (t )

× sin j−1(s) sin j−1(t )

]
+ sin(s) sin(t )

[
k+1∑
j=2

(1 − β )

×
(

k

j − 1

)
cosk+1− j (s) cosk+1− j (t ) sin j−2(s) sin j−2(t )

]
,

(E5)

where β = (k + 1 − j)/k.
Identifying the two expressions in the square brackets

as both equal to Eq. (E4), we obtain the desired outcome
〈φi|ψi〉 = cosk (s − t ), and the induction completes.

Combining Eqs. (E2) and (E3), we have

4d−nλ1 � 2 − 2
∏

i

cosd−1
(
|si − ti|π

2

)

� 2 − 2 cos(d−1)n

(∑
i |si − ti|

n

π

2

)
, (E6)

where the last inequality follows from the inequality
cosn(

∑
i xi/n) � ∏

i cos(xi ). It can be readily shown for n � 2
using the following trick. Consider any pair xi and x j and
let xm be their arithmetic average so xi = xm + d and x j =
xm − d for some d �= 0. Then cos(xi ) cos(x j ) = cos(xm +
d ) cos(xm − d ) = cos2(xm) − sin2(d ) � cos2(xm). Therefore,
one can maximize the overall cosine product, while maintain-
ing the sum of the arguments, by replacing any pair cos(xi )
and cos(x j ) with cos(xm) and cos(xm), and successively re-
placing every pair till every factor converges to cos(

∑
i xi/n)

with the same argument.
Solving for

∑
i |si − ti| = ‖g1(z) − g1(z′)‖1 in Eq. (E6)

yields the upper bound on the perturbation size in (I, 	1).

APPENDIX F: PROOF OF PROPOSITION 1

Proof. We decompose g into g2 ◦ g1 where g1 : (Z, 	2) →
(I, 	1) is desired to be smooth in practice. It can be gener-
alized to 	p norm on I and similar proof follows since the
	p norm of any given vector does not grow with p. We have
‖g1(z) − g1(z′)‖1 � ω1(‖z − z′‖2),∀z, z′ ∈ Z .

We show that it is also smooth for the qudit encoding g2 :
(I, 	1) → (X , L1) as in Eq. (2). Applying the qudit feature
map and similar to that in Appendix E, it can be shown that

‖ρ − σ‖1 = 2

√
1 −

∏
i

cos2(d−1)
(
|si − ti|π

2

)
. (F1)

Since ω(·) is used in an upper bound in Theorem 2, we need
to obtain the scaling of a lower bound to ω(·). The ω(·) that
forms a tight upper bound in Eq. (6) must have ω(‖z − z′‖2)
upper bounding Eq. (F1) for arbitrary z, z′ ∈ Z . Hence, it is
equivalent to find the scaling of a lower bound to Eq. (F1).
That is, we have ∀z, z′ ∈ Z ,

ω(‖z − z′‖2) � 2

√
1 −

∏
i

cos2(d−1)
(
|si − ti|π

2

)

� 2

√
1 − cos2(d−1)n

(∑
i |si − ti|

n

π

2

)

= 2

√
1 − cos2(d−1)n

( π

2n
‖g1(z) − g1(z′)‖1

)
,

where the second inequality follows from the inequality
cosn(

∑
i xi/n) � ∏

i cos(xi ) proven for Eq. (E6). Since the
above inequality holds for any z, z′ such that ‖z − z′‖2 = τ for
any τ , and since we assume ω(·) forms a tight upper bound in
Eq. (6), g is smooth with

ω(τ ) �
√

1 − cos2n(d−1)
( π

2n
ω1(τ )

)
, ∀τ > 0.

In terms of the scaling with respect to n and d , if ω1(·) =
�(1), such as when g1 is Lipschitz continuous, we have
ω(·) = �(

√
d/n).

APPENDIX G: PROOF OF THEOREM 2

Proof. If letting εin � ω(
√

ln [π/(2γ 2)]), then γ �√
π/2 exp[−ω−1(εin)2/2]. By the definition of the generator

and the latent space, we have Nm[g−1(ρ)] = ξ (ρ), ∀ρ ∈ S ⊆
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X . Let us define hi
→ = {ρ ∈ hi|d (ρ,∪ j �=ih j ) � εin} which is

the set of density matrices that are at positive distance at most
εin from ∪ j �=ih j , then following Definition 3,

RPC
εin

(h, ξ ) = Pr
ρ←ξ

{min
σ∈S

[‖σ − ρ‖1|h(σ ) �= h(ρ)] � εin}

= ξ (∪ih
i
→) = Nm[g−1(∪ih

i
→)], (G1)

since hi
→ are disjoint for different class i. Hence, it can

be shown that RPC
εin

(h, ξ ) � 1 − γ when ξ (hi ) � 1/2,∀i from
Theorem 1 in Ref. [15]. The contrapositive yields the nec-
essary condition Eq. (7). For completeness, we present our
condensed version of the proof below.

We write the cumulative distribution function of
the standard Gaussian distribution N (0, 1) as �(x) =
1/

√
2π

∫ x
−∞ exp(−u2/2)du.

Theorem 4 (Gaussian isoperimetric inequality [20,49]).
Let Nm be the canonical Gaussian measure on Rm. Let � ⊆
Rm be any Borel set and let �ε = {z ∈ Rm|∃z′ ∈ � s.t. ‖z −
z′‖2 � ε}. If Nm(�) = �(a) then Nm(�ε ) � �(a + ε).

Lemma 1 ([15]). Let p ∈ [1/2, 1], we have for all η > 0,

�(�−1(p) + η) � 1 − (1 − p)

√
π

2
e− η2

2 . (G2)

If p = 1 − 1/K for K � 5 and η � 1, then we have

�

(
�−1(1 − 1

K
) + η

)
� 1 − 1

K

√
π

2
e− η2

2 e−η

√
log ( K2

4π log(K ) ).

(G3)

We first introduce the following sets in the la-
tent space (Rm, 	2,Nm): Hi = g−1(hi ) and Hi

→ = {z ∈
Hi|d (z,∪ j �=iH j ) � ω−1(εin )}. We note that Hi

→
⋃∪ j �=iH j

is the set of points that are at distance at most ω−1(εin )
from ∪ j �=iH j . Then by Theorem 4 applied with � = ∪ j �=iH j

and a = a�=i ≡ �−1[Nm(∪ j �=iH j )], we have Nm(Hi
→) +

Nm(∪ j �=iH j ) � �[a�=i + ω−1(εin )]. Rearranging, Nm(Hi
→) �

�[a�=i + ω−1(εin )] − �(a�=i ). As Hi
→ are disjoint for different

class i, we have

Nm(∪iH
i
→) �

K∑
i=1

{�[a�=i + ω−1(εin )] − �(a�=i )}.

By the definition of ω(·), we have g(Hi
→) ⊆ hi

→. It
leads to Nm(g−1(hi

→)) � Nm(Hi
→) and Nm[∪ig−1(hi

→)] �
Nm(∪iH i

→). Therefore, we obtain the result for arbitrary deci-
sion boundary,

Nm(∪ig
−1(hi

→)) �
K∑

i=1

{�[a�=i + ω−1(εin )] − �(a�=i )}.

Equivalently by Eq. (G1),

RPC
εin

(h, ξ ) �
K∑

i=1

{�[a�=i + ω−1(εin )] − �(a�=i )}.

Suppose ξ (hi ) = Nm(Hi ) � 1/2 and Nm(∪ j �=iH j ) �
1/2,∀i. Using Eq. (G2) in Lemma 1 in the second inequality

below,

RPC
εin

(h, ξ ) �
K∑

i=1

(
�{�−1[Nm(∪ j �=iH

j )] + ω−1(εin)}

−Nm(∪ j �=iH
j )
)

�
K∑

i=1

{
1 − [1 − Nm(∪ j �=iH

j )]

√
π

2
e

−ω−1 (εin )2

2

−Nm(∪ j �=iH
i )
}

=
(

1 −
√

π

2
e

−ω−1(εin )2

2

) K∑
i=1

[1 − Nm(∪ j �=iH
i )]

= 1 −
√

π

2
e

−ω−1(εin )2

2 > 1 − γ ,

provided that γ >
√

π/2 exp[−ω−1(εin)2/2]. The contra-
positive yields the results in our Theorem 2 that εin �
ω(

√
ln [π/(2γ 2)]) is necessary for RPC

εin
(h, ξ ) � 1 − γ .

When there are at least five equiprobable classes [15],
substituting Eq. (G3) in Lemma 1 into the above inequality
yields

RPC
εin

(h, ξ ) � 1 −
√

π

2
e

−ω−1 (εin )2

2 e−εin

√
log ( K2

4π log(K ) ).

Hence, the in-distribution robustness of h decreases with the
number of equiprobable classes.

Alternatively, a numerically looser upper bound on εin

can be derived from the fact that (Rm, 	2,Nm) resembles a
normal Lévy family but the concentration function decays
independently of N . By Theorem 4, any Borel set � there
such that Nm(�) = �(a) satisfies Nm(�ε ) � �(a + ε). In
particular, for all Borel sets A with measure at least 1/2, we
have a � 0 and thus, 1 − Nm(Aε ) � 1 − �(ε) � exp(−ε2/2)
where the last inequality follows from the Gaussian tail bound.
By definition of the concentration function in Eq. (3), α(ε) =
supA{1 − Nm(Aε )} � exp(−ε2/2).

By substituting the statement and the proof of Theo-
rem 1 with k1 = 1 and k2 = 1/

√
2 and N = 1, we have

the following. Let η ∈ [0, 1/2] be such that Nm(Hl ) =
ξ (hl ) � 1 − η, ∀l ∈ L. If εin � ω(

√
ln(4/γ 2) +

√
ln(4/η2)),

then by acting ω−1(·), which is a strictly increasing func-
tion, on both sides, we obtain ω−1(εin) �

√
ln(4/γ 2) +√

ln(4/η2). This implies that RPC
ω−1(εin )(h,Nm) � 1 − γ . Since

RPC
ω−1(εin )(h,Nm) � RPC

εin
(h, ξ ) (this is equivalent to g(Hi

→) ⊆
hi

→), it therefore implies RPC
εin

(h, ξ ) � 1 − γ . The contrapos-
itive yields, for RPC

εin
(h, ξ ) � 1 − γ , it is necessary to have

εin � ω(
√

ln(4/γ 2) +
√

ln(4/η2)). When η = 1/2, it can be
verified that this necessary upper bound is looser than that in
Theorem 2 for the same γ .

APPENDIX H: PROOF OF THEOREM 3

Proof. We have the mapping to obtain a product state den-
sity matrix P : X → X , σ �→ ⊗n

i=1 tr{ j �=i}σ where n is the
number of qubits and tr{ j �=i}(σ ) means tracing out all but the
ith qubit of σ . This is not a CPTP map on the set of dn × dn
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density matrices X since it is nonlinear. Nonetheless, it can be
viewed as a CPTP map � on X⊗n as � : X⊗n → X , σ⊗n �→
tr{ j �=i}([σ⊗n]i ) where [σ⊗n]i, i ∈ {1, . . . , n}, denotes the ith
copy of σ in σ⊗n, since, � involves only partial tracing on
every σ copy in σ⊗n. In particular, for a product state ρ⊗a

with the integer a � 1, �(ρ⊗a) = ρ.
Consider ρ ∈ S ⊆ X an n-qubit density matrix, namely,

ρ = g(z) for some z ∈ Z . Let σ ∈ X . We have

‖ρ − P(σ )‖1 = ‖�(ρ⊗n) − �(σ⊗n)‖1 � ‖ρ⊗n − σ⊗n‖1

� 2
√

1 − F (ρ⊗n, σ⊗n) = 2
√

1 − F (ρ, σ )n,

where the first inequality follows from the contractive prop-
erty of the trace norm under any CPTP map and the last
equality follows from the multiplicativity of fidelity with re-
spect to tensor products. By Eq. (E1), we have F (ρ, σ ) �
(1 − ‖ρ − σ‖1/2)2. Substituting in, we obtain

‖ρ − P(σ )‖1 � 2

√
1 −

(
1 − ‖ρ − σ‖1

2

)2n

.

Let σ̃ ∈ S be the closest in-distribution sample to P(σ ), which
can be found by fitting parameters {ui} in Eq. (1). Therefore,
‖P(σ ) − σ̃‖1 � ‖P(σ ) − ρ‖. We then obtain

‖ρ − σ̃‖1 � ‖ρ − P(σ )‖1 + ‖P(σ ) − σ̃‖1

� 4

√
1 −

(
1 − ‖ρ − σ‖1

2

)2n

. (H1)

Recall that for the quantum classifier h̃, h̃(σ ) = h(σ̃ ). Tak-
ing minimum over all σ such that h̃(σ ) �= h̃(ρ) [i.e., h(σ̃ ) �=

h(ρ)],

εin(ρ) � min{‖ρ − σ̃‖1}

� 4

√
1 −

(
1 − min{‖ρ − σ‖1}

2

)2n

, (H2)

we obtain

εin(ρ) � 4

√
1 −

(
1 − εunc(ρ)

2

)2n

. (H3)

Notice that to obtain an inequality between εin(ρ) and
εunc(ρ) like in Eq. (H3), it is sufficient to have Eq. (H2) hold
after taking the minimum, and it is not necessary to have
Eq. (H1) hold for a generic σ . Since n-qubit density matrices
which are separable with respect to some equal bipartition of
the system, denoted as {ρb}, form a dense subset [68], we
can effectively realize the same minimum in Eq. (H2) over
σ ∈ {ρb} such that h̃(σ ) �= h̃(ρ) instead. For equal bipartite
states, the number of copies to make a CPTP map �′ acting
on them to obtain P(σ ) reduces to n/2 if n is even and reduces
to (n + 1)/2 if n is odd. For instance, given a 4-qubit σ whose
qubit 1 is only entangled with 2 and qubit 3 is only entangled
with 4, �′(σ⊗2) = tr{1,3}(σ ) ⊗ tr{2,4}(σ ) = P(σ ) = �(ρ⊗4).
Therefore, we can replace the exponent 1/(2n) in Eq. (H3)
with 1/n for even n and 1/(n + 1) for odd n.

We recall εunc(ρ) � εin(ρ), ∀ρ ∈ X and rearrange,

2 − 2

(
1 − εin(ρ)2

16

) 1
ne

� εunc(ρ) � εin(ρ),

where ne = n for even n and ne = n + 1 for odd n.
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