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Quantum communication channels benefit from nonbinary entanglement-assisted stabilizer codes using
preshared entangled states for achieving better error correction capability compared to those that do not use
preshared entanglement, making them indispensable for realizing large-scale quantum computing and communi-
cation systems over qudits. We provide a previously unreported design architecture of the syndrome computation
unit for qudit stabilizer codes based on classical additive codes using discrete Fourier transform gates, ADD
gates, and multiplication gates. The proposed syndrome computation circuit architectures are necessary toward
the implementable realization of such entanglement-assisted and -unassisted qudit stabilizer codes within the
quantum transceiver system. We further provide an equivalent design architecture of the syndrome computation
unit that decomposes into two syndrome computation units based on X errors and Z errors separately for
entanglement-assisted and -unassisted qudit CSS codes. The proposed quantum error correction architectures
are useful for building high-density coded quantum memories for archival quantum storage.
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I. INTRODUCTION

The ability to transfer and store quantum information re-
liably is of prime importance in quantum communication
and storage channels. The quantum states in the commu-
nication and storage channels decohere on interacting with
the environment, leading to the loss of quantum informa-
tion that we view as quantum errors. Using quantum error
mitigation or correction techniques that involve performing
additional measurements or adding redundant information,
quantum errors can be reduced or corrected, respectively. Re-
dundancy introduced in the quantum information by quantum
error correction codes (QECCs) protect the information from
errors; hence, they are vital for building reliable quantum
systems [1].

Gottesman [2] proposed the stabilizer framework to con-
struct quantum codes over qubits. The code design involves
constructing an Abelian subgroup of the Pauli group called the
stabilizer group [3,4]. The code is the set of all simultaneous
+1-eigenstates of the stabilizer group elements. Brun et al.
[5] constructed quantum codes over qubits from non-Abelian
subgroups of the Pauli group by extending their elements to a
higher-dimensional space through quantum operators to form
an Abelian group and constructing a stabilizer code from this
Abelian group. The qubits used for extension are assumed to
be maintained error free at the receiver end throughout. These
codes from non-Abelian groups require preshared entangled
states between the transmitter and the receiver; hence, they
are called entanglement-assisted (EA) codes. Using the EA
framework, EA codes with better error correction capability
compared to the stabilizer codes that do not use preshared
entanglement can be obtained [6].

Higher-dimensional qudits have an increased sensitivity to
eavesdropping and a decreased sensitivity to noise compared
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to qubits, improving the robustness and reliability of the quan-
tum system [7,8]. Qudits can be implemented by utilizing
different degrees of freedom of a single photon or using mul-
tiple energy levels of atoms or ions [9,10]. These qudits can
be manipulated using programmable filters and modulators or
using microwave pulses [9–11].

Ashikhmin and Knill [12] generalized the stabilizer frame-
work for qubits to qudits of dimension pm for construction
of entanglement-unassisted stabilizer codes, where p is prime
and k ∈ Z+. Ketkar et al. [13] provided described the theory
of qudit stabilizer codes over finite fields. Luo et al. [14]
generalized the construction of EA stabilizer codes to qudits
of prime dimension. Galindo et al. [15] proposed the EA
stabilizer code construction similar to CSS codes over qudits
(q = pm) from classical linear codes but not classical additive
codes.

A coding-theoretic framework for the construction of EA
stabilizer codes over qudits of dimension q = pm was pro-
posed in Ref. [16] that are analogous to classical additive
codes1 over Fpm . The well-known frameworks of binary EA
stabilizer codes [5], entanglement-unassisted qudit stabilizer
codes [12], and EA qudit stabilizer codes based on classi-
cal linear codes [14,15] are special cases of this framework.
QECCs can be constructed from well-known classical codes,
such as Reed-Solomon codes [17], tensor product codes [18],
etc., using the results in Ref. [16]. These codes can be
used for encoding higher-dimensional quantum states [11] for
applications within quantum communication systems for
transmitting or storing more information.

Error correction using an EA stabilizer code involves
first computing the syndrome, which is a function of the

1Classical additive codes are more generalized compared to classi-
cal linear codes. All classical linear codes are additive codes, but a
classical additive code need not be a linear code.
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erroneous codeword that characterizes the error and is in-
dependent of the codeword. From the syndrome, the error
is deduced and the inverse error operation is applied to
obtain the codeword when the error is correctable. The syn-
drome computation circuit architectures2 for qubit stabilizer
codes and qudits stabilizer codes based on linear codes
have been provided in Ref. [19, Fig. 10.16] and Ref. [20],
respectively. However, the explicit form of the syndrome
computation circuit architectures for stabilizer codes over
qudits of dimension pm based on classical additive codes
are previously unreported. The design of circuit architectures
is absolutely necessary toward the implementable realiza-
tion of these codes, motivating the work in this article. In
this paper, we provide syndrome computation circuit archi-
tectures for entanglement-assisted and -unassisted stabilizer
codes over qudits of dimension pm based on classical ad-
ditive codes using discrete Fourier transforms (DFT) over
finite fields, ADD gates, and multiplication gates. The error
correction circuit architectures involve computing the syn-
drome using the syndrome computation unit, deducing the
error based on the syndrome, and applying the inverse oper-
ation to recover the information. The syndrome computation
circuits for entanglement-unassisted qubit and qudit stabilizer
codes based on classical linear codes provided in Ref. [19,
Fig. 10.16] and Ref. [20], respectively, are special cases of the
syndrome computation units provided in this paper obtained
by considering q = 2 and q = pm with the stabilizer codes
based on classical linear codes, respectively.

We also provide an equivalent syndrome computation
architecture, useful for correction of X and Z errors sepa-
rately for entanglement-assisted and entanglement-unassisted
CSS codes. The syndrome computation circuit architectures
for entanglement-unassisted qubit stabilizer codes provided
in Ref. [19, Fig. 10.17] is a special case of our circuit
architecture.

We note that the stabilizers of nonbinary stabilizer codes
are not Hermitian operators. Thus, the syndrome cannot be
extracted by measuring all observables in the stabilizers of
nonbinary stabilizer codes, unlike the qubit case [21]. Thus,
the proposed syndrome computation circuit is vital within
the framework of channel encoding for quantum communica-
tion and storage. Quantum memories with embedded QECCs
over qudits proposed in this work, implemented using the
qudit gates in Ref. [9], could be used for archival quantum
storage.

This paper is organized as follows: In Sec. II, we briefly
review the qudit states and operators representation and
entanglement-assisted and -unassisted qudit stabilizer codes
required toward the rest of the paper. In Sec. III, we discuss
the flow of information in coded quantum systems. In Sec. V,
we briefly discuss the error correction procedure for qudit
stabilizer codes. In Sec. V, we design the syndrome computa-
tion circuits for entanglement-unassisted and -assisted qudit
stabilizer codes. In Sec. VI, we provide an application of

2We use the term circuit architecture as we provide the circuit at
the gate level. A circuit would require the knowledge of the physical
component and techniques used to implement them.

the proposed error correction circuits for archival quantum
storage, followed by conclusions in Sec. VII.

II. QUDIT STABILIZER CODES

Let us consider a qudit of prime power dimen-
sion, i.e., q = pm, where p is prime and m∈Z+, as
stabilizer codes use finite fields [22]. We represent a
qudit as a normalized superposition of the pm basis
states {|β〉pm}β∈Fpm , i.e., |ψ〉 = ∑

β∈Fpm aβ |β〉pm , where aβ ∈
C and

∑
β∈Fpm |aβ |2 = 1. We also represent the qubit by

[aβ] ∈ Cpm
. Let the representation of β ∈ Fpm using the

polynomial basis {1, α, . . . , αm−1} be β = bm−1α
m−1 +

· · · + b1α + b0, where bm−1, . . . , b1, b0 ∈ Fp, then |β〉pm =
|bm−1〉p ⊗ · · · ⊗ |b1〉p ⊗ |b0〉p [23]. Each component |bi〉p is
called a subqudit of the qudit |β〉pm , where i ∈ {0, 1, . . . ,

m − 1}.
We define the field trace of an element β ∈ Fpm as the

Fp-linear function Trpm/p(β ) = ∑m−1
i=0 β pi ∈ Fp. The quantum

operators on qudits of dimension pm belong to the unitary
group U(pm) and can be represented using the following uni-
tary basis of Cpm×pm

:

G (b)
pm = {X(pm )(β )Z(pm )(γ )|β, γ ∈ Fpm}, (1)

where X(pm )(β )|θ〉pm = |β + θ〉pm ∀ θ ∈ Fpm , Z(pm )(γ )|θ〉pm =
ωTrpm/p(γ θ )|θ〉pm ∀ θ ∈ Fpm , and ω = e

i2π
p . We represent the

basis operators X(pm )(β )Z(pm )(γ ) by its field isomorphism
[β|γ ]pm over Fpm , where the subscript pm denotes that its
elements belong to Fpm .

Similarly to the case of the basis states, we obtain [23]:

X(pm )(β ) =
m−1⊗
i=0

X(p)(b(m−1−i) ), (2)

Z(pm )(γ ) =
m−1⊗
i=0

Z(p)[Trpm/p(γα(m−1−i) )], (3)

where β, γ ∈ Fpm and the Fp-ary representation of β

is [b(m−1) · · · b0]; hence, X(pm )(β )Z(pm )(γ ) ≡ [β|γ ]pm ≡
[b(m−1) · · · b0|Trpm/p(γα(m−1)) · · · Trpm/p(γ )]p. We note that
an operation can be performed on one subqudit physically by
performing an appropriate operation over the qudit in which
the subqudit physically resides.

In this paper, we use the following notations to denote
X(q)(·) or Z(q)(·) operating only on the gth qudit or subqudit
among the n qudits or subqudits:

X(q)
(g,n)(·) := I⊗(g−1)

q ⊗ X(q)(·) ⊗ I⊗(n−g)
q , (4)

Z(q)
(g,n)(·) := I⊗(g−1)

q ⊗ Z(q)(·) ⊗ I⊗(n−g)
q , (5)

where Iq is the identity operator on a qudit (q = pm) or a
subqudit (q = p). Let P(q)(i, j) := |i〉q〈 j|q be the projector
with i, j ∈ Fq. Then the operator with the projector P(q)(i, j)
operating on the gth qudit or subqudit out of the n qudits or
subqudits is represented by

P(q)
(g,n)(i, j) := I⊗(g−1)

q ⊗ P(q)(i, j) ⊗ I⊗(n−g)
q .
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Two n qudit basis operators commute as follows [13]:(
n⊗

i=1

X(pm )(βi )Z
(pm )(γi )

)(
n⊗

i=1

X(pm )(θi )Z
(pm )(νi )

)

= ωs

(
n⊗

i=1

X(pm )(θi)Z
(pm )(νi )

)(
n⊗

i=1

X(pm )(βi )Z
(pm )(γi )

)
,

where s is the symplectic product of the basis operators.

s = Symp(O1, O2) := Trpm/p

(
n∑

i=1

γiθi −
n∑

i=1

βiνi

)
. (6)

A. Entanglement-unassisted qudit stabilizer codes

Let Gpm be the group generated by G (b)
pm when p �= 2 and

generated by G (b)
pm and iIq when p = 2 [24]. The stabilizer

code is obtained from an Abelian subgroup S of G⊗n
pm as the

set of all quantum states stabilized by operators in S. As each
nonidentity element in G⊗n

pm has p distinct eigenvalues, namely

{ωl}p−1
l=0 , when S contains pρ elements, the code dimension is

p(mn−ρ) [12]. From an Abelian subgroup S of G⊗n
pm that has ρ

minimal stabilizer generators and does not contain any zero
weight nonidentity element, a ((n, p(mn−ρ), d ))pm stabilizer
code is obtained [13], where d is the minimum weight of the
elements in NS\S. NS\S form the set of undetected errors of
the code that transforms one codeword to another.

The minimal generators {Si ≡ [ai|bi]}ρi=1 of S are com-
pactly represented by the check matrix HS = [HX|HZ]pm ,
where ai, bi ∈ Fn

pm , HX = [ai]
ρ
i=1, and HZ = [bi]

ρ
i=1. When

the stabilizer code is obtained from an Abelian subgroup S
of G⊗n

pm , it does not require preshared entangled states be-
tween the encoder and the decoder; hence, it is called an
entanglement-unassisted stabilizer code.

B. Entanglement-assisted qudit stabilizer codes

Quantum codes are constructed from a non-Abelian sub-
group R of G⊗n

pm by extending the elements of R with a few
subqudit operators that form an Abelian group S, from which
a stabilizer quantum code is obtained. The extensions of the
elements of R are designed such that the phase in the commu-
tativity relations between the operators added for extension
of elements of R cancel out the phase in the commutativity
relations between the elements of R. The stabilizer codes
obtained by considering the Abelian group S as the stabi-
lizer group requires preshared entangled states between the
transmitter and the receiver during encoding [25,26]; hence,
they are called entanglement-assisted stabilizer codes. The
subqudits used for extension of the elements of R correspond
to the receiver end subqudits of the preshared entangled states
and are assumed to be maintained error free throughout.

Let n′
e be the minimum number of preshared entangled

subqudit pairs required between the encoder and the decoder.
We note that we use n′

e to denote the number of entangled sub-
qudits states and ne to denote the number of entangled qudits
states. An ((n, K, d; n′

e))pm quantum code has a codelength n,
code dimension K , where K = pl for some l ∈ Z+, minimum
distance d , and requires at least n′

e preshared entangled subqu-

dit pairs to construct the code. The subscript pm in the notation
denotes that the code is over qudits of dimension pm.

Let R be generated by minimal generators R1, R2, . . . , Rρ

that form a noncommuting set. Let S1, S2, . . . , Sρ be the op-
erators obtained by extending R1, R2, . . . , Rρ by n′

e subqudit
operators such that they form an Abelian group. One such
extension procedure is provided in Ref. [16]. The group S gen-
erated by S1, . . . , Sρ is an Abelian subgroup of G⊗n

pm ⊗ G⊗n′
e

p

with pρ elements. An ((n, p(mn+n′
e−ρ), d; n′

e)) EA stabilizer
code is obtained based on a non-Abelian subgroup R of G⊗n

pm

that has ρ minimal generators over n qudits [16], where n′
e

is based on the commutativity relations between elements of
R. The minimum distance d of the code is obtained from
the normalizer NR of R as the receiver end subqudits are
considered to be error free.

The quantum code QC based on R is given by

QC = {|ψ〉 ∈ Cp(mn+n′
e ) |T (E )(Ri )|ψ〉 = |ψ〉∀ i ∈ {1, . . . , ρ}}

where T (E )(Ri ) = Si is obtained by extending Ri.
Encoding procedures for EA qudit stabilizer codes based

on classical linear and additive codes have been provided in
Ref. [15] and Ref. [26], respectively. EA qudit stabilizer codes
can be encoded by operating Clifford operators such as ADDp,
DFTp, etc., on the message |φ〉, a few ancilla subqudits, and
n′

e entangled subqudit pairs, where ADDp = ∑
x,y∈Fp

|x〉〈x| ⊗
|x + y〉〈y| and

DFTp = 1√
p

∑
i, l∈Fp

ωil |i〉p〈l|p. (7)

Remark 1. In this paper, we assume that the n′
e receiver

end subqudits of the n′
e preshared entangled subqudit pairs are

implemented as parts of qudits and stored in registers at the
receiver. We also assume that the receiver has the knowledge
about the location of the receiver end subqudits in the register
that correspond to a particular codeword as these subqudits are
required for computing the syndrome during error correction.

III. QUANTUM COMMUNICATION PROTOCOL

In coded quantum systems, the information to be transmit-
ted or stored is encoded by adding redundancy in the quantum
information through the use of entanglement-assisted or
entanglement-unassisted stabilizer codes. When the encoded
quantum information is sent through a quantum communi-
cation channel, it interacts with the environment leading to
quantum decoherence, which we view as an error. This error
is corrected using the error correction circuit at the receiver
end, followed by decoding to obtain the codeword.

In Fig. 1, we illustrate the flow of quantum information
through a coded quantum system. For entanglement-assisted
stabilizer codes, initially, the maximally entangled subqudit
pairs are generated and distributed between the transmitter
and the receiver, where they are stored in quantum registers.
We consider the stabilizer codes to have ρ minimal stabilizer
generators.

A. Entangled pair generation and encoding

We consider the maximally entangled state to be |η〉 =∑p−1
i=0

1√
p |i〉p|p − i〉p [26]. The state |η〉 is generated by
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FIG. 1. Information flow in coded quantum systems: The maximally entangled state |η〉 is generated by performing DFT−1
p and ADD−1

p

operations on |00〉p, where |00〉p are two subqudits implemented with two different sets of qudits. One set of qudits is sent to the transmitter
and the other to the receiver, where they are stored in quantum registers. In the transmitter, using encoding operation E , the n′

m subqudit
unencoded quantum information |φ〉 is encoded to the codeword |ψ〉 using n′

a ancilla subqudits in state |0〉p and the transmitter end subqudits
of n′

e maximally entangled states. The transmitter end qudits of |ψ〉 are transmitted through a quantum communication or storage channel that

introduces an error U . Error correction is performed over (U ⊗ I⊗n′
e

p )|ψ〉 using n′
s syndrome subqudits initially in state |0〉p by computing the

syndrome |s〉 using the syndrome computation circuit, followed by error deduction and recovery. The decoding operation E−1 is performed on
the first n qudits of the codeword to obtain the estimated unencoded quantum information |φe〉.

performing the DFT−1
p operation on the first subqudit of |00〉p,

followed by the ADD−1
p (1, 2) operation [26] as shown in

Fig. 1. The two subqudits in each maximally entangled pair
are implemented with two different sets of qudits. One set of
these qudits is sent to the transmitter, while the other set is sent
to the receiver, where they are stored in quantum registers.
These preshared entangled subqudits between the transmitter
and the receiver end are used to encode the quantum informa-
tion using EA stabilizer codes.

When the quantum information |φ〉 needs to be transmitted
or stored, an encoding operation E is performed on |φ〉, with
n′

a ancilla subqudits in state |0〉p, and the transmitter end sub-
qudits of the n′

e preshared entangled pairs to obtain the state
over the n transmitter end qudits, along with the n′

e receiver
end subqudits to be the codeword |ψ〉, where n′

a = ρ − 2n′
e.

B. Quantum channel and error model

The n transmitter end qudits of |ψ〉 are transmitted or
stored, which we view as passing them through a quantum
transmission or storage channel. We consider the quantum
channel to be a quantum depolarizing channel that introduces
each nonidentity error with probability pd/(p2m − 1) and no
error occurs with probability (1 − pd ), where pd is the de-
polarizing probability. We assume the receiver end subqudits
are at the receiver end throughout and are maintained error
free. We also assume noise-free operations in the maximally
entangled state generation circuit, in the transmitter, and the
receiver.

C. Error correction

Let U be the error introduced by the communication or
storage channel. The state of the codeword subqudits at the
receiver is (U ⊗ I⊗n′

e
p )|ψ〉, where I⊗n′

e
p depicts that the receiver

end subqudits are maintained error free.
To correct the error, n′

s syndrome subqudits, initially in
state |0〉p are obtained from a quantum register, where n′

s =
ρ. The erroneous codeword (U ⊗ I⊗n′

e
p )|ψ〉 along with the

syndrome subqudits are passed through the error correction
circuit to obtain the estimated codeword |ψe〉 and the syn-
drome subqudits in state |s〉, where |s〉 corresponds to the
eigenvalue-based syndrome.

The error correction procedure comprises two steps,
namely (a) syndrome computation and (b) error deduction
and recovery. The syndrome computation procedure involves
computing the eigenvalue-based syndrome state |s〉 using the
stabilizers Sis of the code. Using the syndrome state |s〉 ob-
tained, the error is deduced and the inverse error operation is
performed to recover the codeword. The error deduction and
recovery circuit consists of control-based gates to apply the
inverse error operator by using the syndrome subqudits as the
control subqudits. This circuit is based on the code used. Fi-
nally, the decoding operation, i.e., the inverse of the encoding
operation, is performed on the first n qudits of |ψe〉 to obtain
the estimated quantum information |φe〉. When the error U is
a correctable error of the EA stabilizer code, |ψe〉 = |ψ〉 and
|φe〉 = |φ〉.

In quantum memories, the n′
e receiver end codeword sub-

qudits are stored back in the quantum register for the quantum
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memories to use for error correction in the next period. In
quantum communication systems, these n′

e subqudits are dis-
carded.

For a coded quantum system that uses entanglement-
unassisted stabilizer codes, the flow of information is similar
to the flow illustrated in Fig. 1, except that there is no circuit
for the generation of the maximally entangled states and no
preshared entangled pairs are involved, i.e., n′

e = 0.
The encoding circuit architectures for entanglement-

unassisted and entanglement-assisted qudit stabilizer codes3

based on classical additive codes is provided in Ref. [26].
In this article, we provide the architectures of the syn-
drome computation circuit for the entanglement-assisted and
entanglement-unassisted stabilizer codes. The error deduction
and recovery circuit is based on a specific code; hence, we do
not provide it explicitly in this article.

IV. ERROR CORRECTION WITH QUDIT
STABILIZER CODES

In this section, we briefly discuss the error correction
procedure, which comprises the following two steps: (a)
the syndrome computation and (b) the error deduction and
recovery.

There has not been any prior work that provides the syn-
drome computation circuit schematic4 for stabilizer codes
over qudits based on classical additive codes; hence, motivat-
ing this work as part of this article.

We represent the error by a unitary operator U . At
the receiver, the erroneous information is corrected using
the syndrome based error correction procedure. The syn-
drome is obtained based on the eigenvalues of the stabilizer
generators considering the erroneous state as the eigen-
state. For any basis error B from G⊗n

pm , ωSymp(Si,B) is an
eigenvalue of the erroneous state B|ψ〉, for i ∈ {1, . . . , ρ},
as SiB|ψ〉 = ωSymp(Si,B)BSi|ψ〉 = ωSymp(Si,B)B|ψ〉. The syn-
drome comprises the values Symp(Si, B) for all Si’s. We note
that these values belong to Fp. The eigenvalues correspond
to the phase involved in the commutative relations of the
stabilizer generators with the basis operators.

As the normalizer NS is a subgroup of Gpm , cosets of NS

are formed in G⊗(mn+n′
e )

p . Two elements G1 and G2 in the
same coset of the normalizer NS are related as G2 = G1N ,
where N ∈ NS . As N ∈ NS , we note that SiN = NSi for any
stabilizer Si. The elements in the same coset correspond to the
same set of eigenvalues and the same syndrome as SiG2|ψ〉 =
SiG1N |ψ〉 = ωSymp(Si,G1 )G1SiN |ψ〉 = ωSymp(Si,G1 )G1NSi

|ψ〉 = ωSymp(Si,G1 )G1N |ψ〉 = ωSymp(Si,G1 )G2|ψ〉. Similarly, el-
ements from different cosets5 have different syndrome.

3The encoding circuit idea for entanglement-assisted qudit stabi-
lizer codes based on classical linear codes is provided in Ref. [15].

4The syndrome computation circuit is an important part of the error
correction circuit as the error correction of stabilizer codes is based
on the eigenvalue-based syndrome; hence, they are vital toward the
practical implementation of coded quantum communication and stor-
age systems.

5Neglecting phase, Gpm contains pρ cosets of the normalizer NS .

In stabilizer codes, the coset representative is chosen as
the least weight operator in the coset as it corresponds to the
most probable error in the coset. To correct the error based on
the syndrome, the error correction technique for all the errors
having the same syndrome should be the same. For stabilizer
codes, we note that the set of correctable errors are the errors
of weight less than or equal to t = �(d − 1)/2�, where d is
the minimum distance of the code [2].

A. Error correction routine

For error correction, we introduce n′
s = ρ ancilla sub-

qudits termed as the syndrome subqudits. Let U =∑
g,h∈Fn

pm
agh

⊗n
i=1 X(pm )(gi )Z(pm )(hi ), where agh ∈ C, g =

[gi]n
i=1 and h = [hi]n

i=1, be the unitary error. For the
entanglement-assisted stabilizer code, as receiver end sub-
qudits are maintained error free throughout, the error on
the (mn + n′

e) subqudits of the codeword is (U
⊗

I
⊗

n′
e

p ).
For the entanglement-unassisted stabilizer code, n′

e = 0. Thus,
the state of the erroneous codeword along with the ancilla
subqudits for the stabilizer code is as follows:

(
U ⊗ I⊗n′

e
p

)|ψ〉|0〉⊗n′
s

p

=
⎡
⎣
⎛
⎝ ∑

g,h∈Fn
pm

agh

n⊗
i=1

X(pm )(gi )Z
(pm )(hi )

⎞
⎠⊗ I⊗n′

e
p

⎤
⎦|ψ〉|0〉⊗n′

s
p .

(8)

Later in this section, in Lemma 1, we propose the syn-
drome computation operator S ′. When S ′ is performed on
the state (U ⊗ I⊗n′

e
p )|ψ〉|0〉⊗n′

s
p in Eq. (8), the state |0〉⊗n′

s
p

transforms to the syndrome state |sgh〉, where sgh is the
n′

e-symbol syndrome over Fp based on the basis error

(
⊗n

i=1 X(pm )(gi )Z(pm )(hi ) ⊗ I⊗n′
e

p ). The resultant state obtained
is as follows:

S ′(U ⊗ I⊗n′
e

p

)|ψ〉|0〉⊗n′
s

p

=
∑

g,h∈Fn
pm

agh

(
n⊗

i=1

X(pm )(gi )Z
(pm )(hi ) ⊗ I⊗n′

e
p

)
|ψ〉|sgh〉. (9)

On performing measurement on the syndrome subqudits in
S ′(U ⊗ I⊗n′

e
p )|ψ〉|0〉⊗n′

s
p in Eq. (9), the state of the syndrome

subqudits collapse based on the measurement outcome to a
state |sgh〉 for some g, h ∈ Fn

pm . As only errors in the same
coset have the same syndrome, only the terms corresponding
to the errors in the particular coset corresponding to the syn-
drome remain. For entanglement-assisted stabilizer codes, as
the error performs nonidentity operation on the first n qudits
of the codeword, we consider the cosets of NR instead of
the cosets of NS . We note that for entanglement-unassisted
stabilizer code, NR = NS .

Let Ql = [qlx|qlz] be the coset representative of the par-
ticular coset of NR whose syndrome sqlxqlz is obtained as the
measurement outcome. Let V be the projective measurement
operator over the syndrome subqudits. Then, by representing
the other elements in the coset as QlN , where N ∈ NR, from
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Eq. (9), we obtain

VS ′(U ⊗ I⊗n′
e

p

)|ψ〉|0〉⊗n′
s

p

=
( ∑

N∈NR

aNQl

(
QlN ⊗ I⊗n′

e
p

)|ψ〉
)∣∣sqlxqlz

〉
, (10)

where aNQl = agh such that NQl ≡ [g|h].

The state VS ′(U ⊗ I⊗n′
e

p )|ψ〉|0〉⊗n′
s

p in Eq. (10) is the state
obtained after performing the syndrome computation opera-
tor, followed by the measurement on the syndrome subqudits.
We note that the total number of possible syndromes are pρ

as the syndrome vector sgh is obtained from the eigenvalues
with respect to the ρ stabilizer generators and the eigenvalues
belong to Fp.

We next consider a unitary operator W = ∑pρ

f =1 Q†
f ⊗

I⊗n′
e

p ⊗ |sqfxqfz〉〈sqfxqfz | that performs the inverse operation Q†
l

on the state VS ′(U ⊗ I⊗n′
e

p )|ψ〉|0〉⊗n′
s

p in Eq. (10) to correct
the error Ql based on the syndrome sqlxqlz . Applying W to

VS ′(U ⊗ I⊗n′
e

p )|ψ〉|0〉⊗n′
s

p in Eq. (10), we obtain

WVS ′(U ⊗ I⊗n′
e

p

)|ψ〉|0〉⊗n′
s

p

=
∑

N∈NR

aNQ
(
N ⊗ I⊗n′

e
p

)|ψ〉∣∣sqlxqlz

〉
. (11)

When N ∈ NR, the operators having the form (N ⊗ I⊗n′
e

p )
belong to NS . The only correctable errors in NS are the oper-
ators in S; hence, the coefficients aNQs are nonzero only when

(N ⊗ I⊗n′
e

p ) ∈ S. Thus, from Eq. (11), we obtain

WVS ′(U ⊗ I⊗n′
e

p

)|ψ〉|0〉⊗n′
s

p

=
∑

N :(N⊗I⊗n′
e

p )∈S

aNQ
(
N ⊗ I⊗n′

e
p

)|ψ〉∣∣sqlxqlz

〉

=
∑

N :(N⊗I⊗n′
e

p )∈S

aNQ|ψ〉∣∣sqlxqlz

〉
.

Assuming
∑

N :(N⊗I⊗n′
e

p )∈S
aNQ to be a global phase factor, we

have corrected the error to obtain the codeword |ψ〉.
We next design the syndrome computation operator S ′ for

entanglement-unassisted and -assisted qudit stabilizer codes.
Let E := (QlN ⊗ I⊗n′

e
p ). The syndrome computation operator

S ′ acts on the erroneous codeword and the syndrome sub-
qudits, and transforms E |ψ〉|0〉⊗ρ

p to E |ψ〉|sE〉, where |sE〉 is
the syndrome corresponding to E , a basis operator. Let SiE =
ωli ESi ∀ i ∈ {1, . . . , ρ}. As the syndrome is obtained from the
eigenvalues of the stabilizer generators Sis with respect to the
erroneous state E |ψ〉, the syndrome is |sE〉 = |l1l2 . . . lρ〉. In
general, we refer to |sE〉 as |s〉.

B. Error deduction and recovery

The error deduction and recovery step involves deducing
the error based on the syndrome and applying the inverse
operation of the error to obtain the codeword. This step could
involve one of the following two procedures:

(a) Perform measurement on the syndrome subqudits,
classically deduce the error, and apply its inverse operation, or

(b) Perform control-based operations like controlled-X
and controlled-Z operations to perform the inverse operation
of the error based on the syndrome.

V. SYNDROME COMPUTATION CIRCUIT
ARCHITECTURES

In this section, we provide the explicit form of the syn-
drome computation circuit schematic for the entanglement-
unassisted and -assisted qudit stabilizer code based on
classical additive codes. We note that the syndrome compu-
tation circuit schematic provided in this Section works for all
qudit stabilizer codes based on classical additive codes over
finite fields.

A. Utility of the DFT in syndrome computation

We first provide the idea to obtain the syndrome compu-
tation operator. The syndrome is based on the eigenvalue of
the minimal stabilizer generators with respect to the erroneous
state E |ψ〉.

Let S1 be a minimal stabilizer generator whose eigenvalue
we need to obtain with respect to the eigenvector E |ψ〉. Let
S1E |ψ〉 = ωiE |ψ〉. We first introduce a syndrome subqudit in
state |0〉p. We perform DFTp operation on the syndrome sub-
qudit to obtain |sI〉 = DFTp|0〉 = 1√

p

∑
l∈Fp

|l〉p. The state of
the erroneous state E |ψ〉 along with the syndrome subqudits
is

E |ψ〉|sI〉 = (
I⊗mn

p ⊗ DFTp
)
(E |ψ〉|0〉p). (12)

We next choose the following operator S ′
1 = ∑

j∈Fp
S j

1 ⊗
| j〉p〈 j| to compute the syndrome with respect to S1, where

S j
1s act on the codeword subqudits and | j〉p〈 j| acts on the syn-

drome subqudit. We note that the eigenvalue of S j
1 with respect

to the eigenstate E |ψ〉 is ωi j as S j
1E |ψ〉 = ωi jE |ψ〉. Hence,

using S ′
1, we obtain a superposition of | j〉s with coefficients

being the corresponding eigenvalue ωi j of S j
1 with respect to

E |ψ〉, i.e.,

S ′
1(E |ψ〉|sI〉) = E |ψ〉 ⊗ 1√

p

∑
j∈Fp

ωi j | j〉p. (13)

When DFTp operates on the state |i〉p, where i ∈ Fp, it
produces the superposition of the states as follows:

DFTp|i〉p = 1√
p

∑
j∈Fp

ωi j | j〉p, where i ∈ Fp. (14)

Substituting Eq. (14) in Eq. (13), we obtain

S ′
1(E |ψ〉|sI〉) = E |ψ〉 ⊗ DFTp|i〉p. (15)

On performing DFT†
p operation on the syndrome subqudit of

S ′
1(E |ψ〉|sI〉) in Eq. (15), we obtain(

I⊗mn
p ⊗ DFT†

p

)
S ′

1(E |ψ〉|sI〉) = E |ψ〉 ⊗ |i〉p. (16)

Thus, using the DFTp, S ′
1, and DFT†

p operators, we have trans-
ferred the eigenvalue based information, i.e., the value of i in
S1E |ψ〉 = ωiE |ψ〉, to the syndrome subqudit |i〉p. From Equs.
(12), (15), and (16), the operators (I⊗mn

p ⊗ DFTp), S ′
1, and
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FIG. 2. The syndrome computation operator based on stabilizer S1: (a) The scaled addition operation ScAddp(l ) over subqudits is obtained
using the multiplication gates Ml and Ml−1 and the ADDp gate, where l ∈ Fp. (b) Using the scaled addition operators over subqudits, a scaled
addition operator ScAdd(κ ) over a qudit is obtained, where κ = ∑m−1

j=0 κ jα
j . For ScAdd(κ ) the control subqudit is a single subqudit and the

target is either k subqudits or a qudit. (c) Using DFT operations over qudits and subqudits, and the scaled addition operators over qudits with the
syndrome subqudit as the control and the codeword qudits as the target, the syndrome computation is performed. Post syndrome computation,
the syndrome qudits are in state |i〉, where i = Symp(S1, E ).

(I⊗mn
p ⊗ DFT†

p) used to transform E |ψ〉|0〉p to E |ψ〉 ⊗ |i〉p
are invertible; hence there is a bijection between the eigen-
value ωi corresponding to E |ψ〉 and the state |i〉p obtained in
(E |ψ〉) ⊗ |i〉p.

Using standard basis measurements on the qudit that com-
prises the syndrome subqudit, the value of i is obtained. We
note that the measurement is not performed on the codeword
subqudits.

1. Implementation of the operator S′
1

The operator S ′
1 can be implemented using one and two

qudit operators,6 similar to the operator shown in Ref. [20].
In Ref. [20], the operators are over qudits, while in this paper,
the operators are over subqudits.

Let S1 = ⊗n
i=1 X(pm )(βi )Z(pm )(γi), then, we obtain

S ′
1 =

⎛
⎝∑

j∈Fp

n⊗
i=1

X(pm )( jβi) ⊗ | j〉p〈 j|
⎞
⎠(DFT⊗n

pm ⊗ Ip
)

×
⎛
⎝∑

j∈Fp

n⊗
i=1

X(pm )( jγi ) ⊗ | j〉p〈 j|
⎞
⎠((DFT†

pm )⊗n ⊗ Ip),

(17)

where∑
j∈Fp

n⊗
i=1

X(pm )( jβi ) ⊗ | j〉p〈 j| =
n∏

i=1

∑
j∈Fp

X(pm )
(i,n) ( jβi) ⊗ | j〉p〈 j|.

(18)∑
j∈Fp

X(pm )
(i,n) ( jβi ) ⊗ | j〉p〈 j| are scaled addition operations

with the syndrome subqudits as the control and codeword
qudits as the target. Obtaining the scaled addition operations
using multiplication operations and addition operations and

6A one or two subqudit operator can be represented as a one or two
qudit operator by tensoring with identity operators appropriately and
using Eqs. (2) and (3).

obtaining the syndrome computation operation using multipli-
cation, addition, and DFT operations are shown in Fig. 2. The
detailed derivations are provided in the Supplemental Material
[27].

We note that the operator S ′
1 based on the scaled addition

operators extracts the information of the eigenvalue of S1 with
respect to E |ψ〉 and transfers it to the syndrome subqudits.
The DFTp operation and its inverse transform the information
in the power of ω, i.e., i in ωi into the measurement basis state
|i〉, where i ∈ {0, . . . , p − 1}.

B. Syndrome computation operator for
entanglement-unassisted qudit stabilizer code

In this subsection, we provide the syndrome computation
circuit schematic for the entanglement-unassisted stabilizer
code.

We next provide the syndrome computation operator in
Lemma 1. We use the operation DFTp in Lemma 1 to first
obtain the superposition of all the basis states as shown in
Eq. (14). Then, we apply the stabilizer generators to obtain
the eigenvalues, followed by applying the DFT† operator and
performing the standard basis measurement.

We will use the following two relations of a function f (i, r)
in Lemma 1 to obtain the syndrome computation operator:

ρ⊗
i=1

∑
r∈Fp

f (i, r) =
∑

r1,...,rρ∈Fp

(
ρ⊗

i=1

f (i, ri )

)
, (19)

ρ∏
i=1

∑
r∈Fp

f (i, r) =
∑

r1,...,rρ∈Fp

(
ρ∏

i=1

f (i, ri )

)
. (20)

We define an operator SD as follows:

SD =
∑

j1,..., jρ∈Fp

S j1
1 S j2

2 . . . S jρ
ρ ⊗ | j1 j2 . . . jρ〉〈 j1 j2 . . . jρ |.

(21)

We use the subscript D as it corresponds to the syndrome
computation operator in the DFT basis.
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Lemma 1. The syndrome computation operator S ′ corre-
sponding to the stabilizer generators S1, . . . , Sρ is

S ′ = (
I⊗n

pm ⊗ (DFT†
p)⊗ρ

)
SD

(
I⊗n

pm ⊗ DFT⊗ρ
p

)
.

Proof. Let us consider the basis error operator E such
that SiE = ωli ESi ∀ i ∈ {1, . . . , ρ}. For codeword |ψ〉, let the
erroneous codeword be E |ψ〉. We note that the syndrome
obtained based on the eigenvalues ωli s is [l1 l2 . . . lρ]. We
show that S ′ is the syndrome computation operator by prov-
ing that S ′(E |ψ〉|0〉⊗ρ

p ) = E |ψ〉|l1l2 . . . lρ〉, where |l1l2 . . . lρ〉
is the syndrome state. We first simplify the operator S ′ as
follows:

S ′ = (
I⊗n

pm ⊗ (DFT†
p)⊗ρ

)⎛⎝ ∑
j1,..., jρ∈Fp

S j1
1 S j2

2 . . . S jρ
ρ ⊗ | j〉〈 j|

⎞
⎠

× (
I⊗n

pm ⊗ DFT⊗ρ
p

)
, where j = [ j1 . . . jρ]

=
∑

j1,..., jρ∈Fp

S j1
1 S j2

2 . . . S jρ
ρ ⊗

(
ρ⊗

i=1

DFT†
p| ji〉〈 ji|DFTp

)
.

(22)

We simplify DFT†
p| j〉〈 j|DFTp = DFT†

p| j〉(DFT†
p| j〉)† in

Eq. (22) by using DFT†
p| j〉 = ( 1√

p

∑
s∈Fp

ω−s j |s〉) similarly to
DFTp| j〉 in Eq. (14) to obtain

DFT†
p| j〉〈 j|DFTp = 1

p

∑
s,t∈Fp

ω(t−s) j |s〉〈t |.

Let us consider r = s − t . Thus, s = t + r and

DFT†
p| j〉〈 j|DFTp

= 1

p

∑
r∈Fp

ω−r j
∑
t∈Fp

|t + r〉〈t |,

= 1

p

∑
r∈Fp

ω−r jX(p)(r). (From definition of X(p)(r)) (23)

Substituting Eq. (23) in Eq. (22), we obtain

S ′ =
∑

j1,..., jρ∈Fp

S j1
1 S j2

2 . . . S jρ
ρ ⊗

⎛
⎝ ρ⊗

i=1

1

p

∑
r∈Fp

ω−r ji X(p)(r)

⎞
⎠,

When S ′ operates on E |ψ〉|0〉⊗ρ
p , we obtain

S ′(E |ψ〉|0〉⊗ρ
p

)

= 1

pρ

∑
j1,..., jρ∈Fp

S j1
1 S j2

2 . . . S jρ
ρ E |ψ〉 ⊗

⎛
⎝ ρ⊗

i=1

∑
r∈Fp

ω−r ji |r〉p

⎞
⎠.

(24)

FIG. 3. Syndrome computation circuit schematic for qudit sta-
bilizer codes: The DFTp operations are first performed on the ρ

syndrome subqudits, followed by SD on the codeword subqudits
along with the syndrome subqudits. Finally, the DFT†

p operation is
performed on the ρ syndrome subqudits to obtain the syndrome
|l1 . . . lρ〉 over the syndrome subqudits.

For i ∈ {1, . . . , ρ}, as SiE = ωli ESi, S ji
i E = ω ji li ES ji

i , and
Si|ψ〉 = |ψ〉, we obtain

S j1
1 S j2

2 . . . S jρ
ρ E |ψ〉 = ω

∑ρ
g=1 jglgE |ψ〉. (25)

The sum of roots of unity is 0, i.e.,∑
j∈Fp

ω jy = pδy,0. Substituting
⊗ρ

i=1

∑
r∈Fp

ω−r ji |r〉p =∑
r1,...,rρ∈Fp

⊗ρ
i=1 ω−ri ji |ri〉p obtained using Eqs. (19) and (25)

in Eq. (24),

S ′(E |ψ〉|0〉⊗ρ
p

)
= 1

pρ

∑
j1,..., jρ∈Fp

ω
∑ρ

g=1 jglgE |ψ〉⊗
∑

r1,...,rρ∈Fp

(
ρ⊗

i=1

ω−ri ji |ri〉p

)
,

= E |ψ〉 ⊗ 1

pρ

∑
r1,...,rρ∈Fp

(
ρ⊗

i=1

|ri〉p

) ∑
j1,..., jρ∈Fp

ρ∏
i=1

ω ji (li−ri ),

= E |ψ〉 ⊗ 1

pρ

∑
r1,...,rρ∈Fp

(
ρ⊗

i=1

|ri〉p

)
ρ∏

i=1

∑
ji∈Fp

ω ji (li−ri ),

[From Eq. (20)]

= E |ψ〉 ⊗ 1

pρ

∑
r1,...,rρ∈Fp

(
ρ⊗

i=1

|ri〉p

)
ρ∏

i=1

pδli,ri ,

= E |ψ〉 ⊗ |l1l2 . . . lρ〉 = E |ψ〉|l1l2 . . . lρ〉. (26)

�
From Lemma 1, we obtained the syndrome computa-

tion operator that involves transformations S j1
1 . . . S jρ

ρ on the
received state based on the control subqudits being the syn-
drome subqudits in state | j1 . . . jρ〉.

Based on the syndrome computation operator S ′ from
Lemma 1, we provide the syndrome computation circuit
schematic in Fig. 3.

The syndrome computation circuit for qubit stabilizer
codes and qudit stabilizer codes based on Fpm -linear codes
provided in Ref. [19] and Ref. [20] are special cases of
the syndrome computation circuit provided in Lemma 1
by considering pm = 2 and by considering the stabilizers
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based on classical linear codes,7 respectively. We note that
SD = ∏ρ

i=1 S ′
i , where S ′

i s are based on Sis, similarly to S ′
1

in Sec. V A [27].

1. Equivalent circuit schematic for syndrome computation

We next propose an equivalent circuit schematic that per-
forms the transformations on the syndrome subqudits with the
received state being the control subqudits.

Let P : Fpm → Fpm be a transformation such that

P (β ) =
m−1∑
g=0

Trpm/p(βα(m−1−g) )α(m−1−g). (27)

We note that the transformation P is based on the expansion of
Z(pm )(·) over Z(p)(·) in Eq. (3). The transformation P is unique
[16].

Let the stabilizer generators be Sy =⊗n
i=1 X(pm )(βyi )Z(pm )(γyi); then the syndrome computation

operator S ′ can also be written as follows:

S ′ =
ρ∏

y=1

[((
DFT⊗nm

p

)† ⊗ I⊗ρ
p

)( n∏
i=1

X ′
βyi

(i, y)

)(
DFT⊗nm

p ⊗ I⊗ρ
p

)( n∏
l=1

X ′
P (γyl )(l, y)

)]
, (28)

where, for some β = b0 + b1α + · · · + b(m−1)α
(m−1) ∈ Fpm with b0, . . . , b(m−1) ∈ Fp,

X ′
β (i, y) =

∑
j0,..., j(m−1)∈Fp

P(p)
(i,n)(ζ , ζ ) ⊗ X(p)

(y,ρ)( j(m−1)b(m−1) + · · · + j0b0),

X ′
P (β )(l, y) =

∑
j0,..., j(m−1)∈Fp

P(p)
(l,n)(ζ , ζ ) ⊗ X(p)

(y,ρ)[ j(m−1)Trpm/p(βα(m−1)) + · · · + j0Trpm/p(βα0)], where ζ =
m−1∑
l=0

jlα
l

We prove Eq. (28) through a series of lemmas, i.e., Lem-
mas 4–7 in Appendix A, with the final result in Lemma 7.
In Fig. 4, we illustrate that X ′

β (i, y) and X ′
P (β )(l, y) can be

implemented using scaled addition gates8 provided in Fig. 2,
that are further implemented using ADDp gates and multi-
plication gates. The detailed derivations are provided in the
supplemental material [27].

We note that the form of S ′ in Eq. (28) contains only
the DFTp and DFT†

p operations over the codeword qudits
along with the codeword qudits being the control qudits in
the X ′

βi
(i, y) and X ′

P (γl )(l, y) operations. However, in S ′ in
Lemma 1, the codeword qudits are considered to be the target
qudits for the operation SD.

When the probability of an error occurring on the control
qudits of the quantum gate is less compared to that on the
target qudit, the form of the syndrome computation operator
in Eq. (28) is preferred over the form in Lemma 1 for building
the circuit, especially for CSS codes as shown in Fig. 5. We
note that our equivalent circuit is analogous to the equivalent
circuit provided in Ref. [19, Figure 10.17] for stabilizer codes
over qubits.

Let X (βy, y) := ∏n
i=1 X ′

βyi
(i, y) and XP (γy, y) :=∏n

l=1 X ′
P (γyl )(l, y). The operators X (βy, y) and XP (γy, y)

are control-X(p) operators with control qudits as the codeword
qudits and target subqudits as the syndrome subqudits.

7We note that the syndrome computation circuit provided in
Lemma 1 can be obtained using the syndrome computation circuit
in Ref. [20] for stabilizer codes of dimension p and the relations in
Eqs. (2) and (3).

8The interested reader must note that these scaled addition gates
consider the codeword subqudits are the control subqudits and the
syndrome subqudits are the target subqudits, unlike the operators in
Lemma 1 [27].

Using the operators X (βy, y) and XP (γy, y), we provide the
equivalent syndrome computation circuit schematic in Fig. 4,
based on the following expression obtained from Eq. (28):

S ′ =
ρ∏

y=1

[((
DFT⊗nm

p

)† ⊗ I⊗ρ
p

)
X (βy, y)

× (
DFT⊗nm

p ⊗ I⊗ρ
p

)
XP (γy, y)

]
.

FIG. 4. Equivalent syndrome computation circuit schematic for
qudit stabilizer codes. (a) The operator X ′

β is computed using scaled

addition operations from Fig. 2 based on bis, where β = ∑m−1
i=0 biα

i.
(b) The operator X (βy, y) is obtained from a series of X ′

β operations.
XP (γy, y) can be obtained similarly. (c) The operator Sy is obtained
from X (βy, y), XP (γy, y) and DFTp operations. (d) The syndrome
computation circuit involves a series of Sy operations, where y ∈
{1, . . . , ρ}, on the erroneous state E |ψ〉 along with the syndrome
subqudits in state |0〉p each to obtain E |ψ〉 and the syndrome state
|l1 l2 . . . lρ〉.
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We note that the blocks corresponding to ((DFT⊗nm
p )† ⊗

I⊗ρ
p )X (βy, y)(DFT⊗nm

p ⊗ I⊗ρ
p ) and XP (γy, y) should not be

exchanged. This is because X(pm )(·) and Z(pm )(·) operators
need not commute with each other and will not give the
desired syndrome.

For the CSS codes, the check matrix HS is of the following
form [17]:

HS =
[

B1 0
0 B2

]
, (29)

where B1 and B2 are (mρ1 × n) and (mρ2 × n) matrices, ρ1

and ρ2 are integers, and mρ1 + mρ2 = ρ.
From Eq. (29), for the CSS code, for y ∈ {1, . . . , mρ1},

γyl = 0 for all l ∈ {1, . . . , n} and for y ∈ {mρ1 + 1, . . . , ρ},
βyi = 0 for all i ∈ {1, . . . , n}; hence, from Eq. (28), the syn-
drome computation operator S ′ is

FIG. 5. Equivalent syndrome computation circuit schematic for
CSS codes over qudits: The syndrome computation circuit involves
two parts: (a) Syndrome computation operator for the X(pm ) errors
using a series of XP (γy, y) operations, where y ∈ {mρ1 + 1, . . . , ρ};
and (b) Syndrome computation operator for the Z(pm ) errors us-
ing DFTp operations, a series of X (βy, y) operations, where y ∈
{1, . . . , mρ1}, and DFT†

p operations. After syndrome computation,
the syndrome subqudits are in syndrome state |s〉, while the codeword
subqudits remain in state E |ψ〉.

S ′ =
ρ∏

y=1

[((
DFT⊗nm

p

)† ⊗ I⊗ρ
p

)( n∏
i=1

X ′
βyi

(i, y)

)(
DFT⊗nm

p ⊗ I⊗ρ
p

)( n∏
l=1

X ′
P (γyl )(l, y)

)]
,

=
(

mρ1∏
y=1

[((
DFT⊗nm

p

)† ⊗ I⊗ρ
p

)( n∏
i=1

X ′
βyi

(i, y)

)(
DFT⊗nm

p ⊗ I⊗ρ
p

)])⎡⎣ ρ∏
y=kρ1+1

(
n∏

l=1

X ′
P (γyl )(l, y)

)⎤⎦,

=
[((

DFT⊗nm
p

)† ⊗ I⊗ρ
p

)(mρ1∏
y=1

n∏
i=1

X ′
βyi

(i, y)

)(
DFT⊗nm

p ⊗ I⊗ρ
p

)][ ρ∏
y=mρ1+1

(
n∏

l=1

X ′
P (γyl )(l, y)

)]
. (30)

where the last step is obtained from Eq. (A14) in Appendix A as DFTpDFT†
p = Ip. From Eq. (30), we obtain

S ′ =
[((

DFT⊗nm
p

)† ⊗ I⊗ρ
p

)(mρ1∏
y=1

X (βy, y)

)(
DFT⊗nm

p ⊗ I⊗ρ
p

)]( ρ∏
y=mρ1+1

XP (γy, y)

)
. (31)

We note that the blocks corresponding to (DFT⊗nm
p )† ⊗ I⊗ρ

p )(
∏mρ1

y=1 X (βy, y))(DFT⊗nm
p ⊗ I⊗ρ

p ) and
∏ρ

y=mρ1+1 XP (γy, y) can
be exchanged as the stabilizer generators either consist X(pm )(·) operators or Z(pm )(·) operators.

From Eq. (31), the syndrome computation circuit schematic can be viewed to have two parts,9 namely, one based
on X ′

βyi
(i, y) with DFTp and its inverse, and the other based on X ′

P (γyl )(l, y), as shown in Fig. 5. The component

[((DFT⊗nm
p )† ⊗ I⊗ρ

p )(
∏mρ1

y=1 X (βy, y))(DFT⊗nm
p ⊗ I⊗ρ

p )] of S ′ in Eq. (31) corresponds to the syndrome computation operator with
respect to the Z(pm ) error as it corresponds to the X(pm ) stabilizer from Lemma 4 in Appendix A.

Similarly, from Lemma 5 in Appendix A, the component (
∏ρ

y=mρ1+1 XP (γy, y)) of S ′ in Eq. (31) corresponds to the syndrome
computation operators with respect to the X(pm ) error.

Let the CSS code be constructed from two classical codes C1[n, k1, d1] and C2[n, k2, d2] over Fpm with parity check matrices

H1 and H2 that satisfy the dual-containing criteria C⊥
1 ⊂ C2. The check matrix of the CSS code is HS = [H1 ⊗ a 0

0 H2 ⊗ a

]
, where

a = [1 α . . . αm−1]. Using the stabilizers in the check matrix HS and based on the symplectic product in Eq. (6), the syndrome
can be obtained using the operator in Eq. (31). Alternatively, we note that the number of stabilizer generators is a multiple of m
for CSS codes. Thus, for error E ≡ [eX|eZ], the syndromes |sX〉 = |H2eT

X〉 and |sZ〉 = |H1eT
Z〉 based on the X and Z errors can

be obtained over ρ1 and ρ2 qudits, where ρi = n − ki for i = {1, 2}. Let H1 = [βyi] and H2 = [γyi]. The syndrome computation

9We note that such a decomposition of the syndrome computation circuit into two parts can be obtained for any qudit stabilizer code whose
check matrix has the form in Eq. (29).
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operator used to obtain |sX〉 = |H2eT
X〉 and |sZ〉 = |H1eT

Z〉 is

S ′ =
[((

DFT⊗n
pm

)† ⊗ I⊗σ
pm

)( ρ1∏
y=1

B(βy, y)

)(
DFT⊗n

pm ⊗ I⊗σ
pm

)]( σ∏
y=ρ1+1

B(γy, y)

)
, (32)

where DFTpm = 1√
pm

∑
θκ∈Fpm ω−Trpm/p(θκ )|θ〉〈κ|, σ = ρ1 + ρ2, and

B(βy, y) :=
n∏

i=1

B′
βyi

(i, y), where B′
βyi

(i, y) =
∑

j∈Fpm

P(pm )
(i,n) ( j, j) ⊗ X(pm )

(y,σ )( jβyi). (33)

The proof of Eq. (32) has been provided in Appendix B. We note that B′
βyi

(i, y) is a scaled addition operator over qudits as
provided in Fig. 2, where the codeword qudits are the control qudits and the syndrome qudits are the target qudits [27]. The
circuit schematic for the syndrome computation operator is similar to Fig. 5 by replacing X (βi, j) and X (γi, j) by B(βy, y) and
B(γy, y). In the Supplemental Material [27], we have provided an example of syndrome computation operator for qudit CSS
codes that can be decomposed into two parts, one based on X(pm ) error and the other based on Z(pm ) error.

Remark 2. As the syndrome computation operator S ′ is a unitary operator and does not involve measurement to obtain the
syndrome, we can obtain the syndrome entangled to the basis operator without measurement. Using controlled basis operations
with the syndrome subqudits as control and the received state as target, we can correct each basis operator to obtain the
codeword |ψ〉.

C. Syndrome computation operator for entanglement-assisted qudit stabilizer code

Consider an EA stabilizer code defined by check operators R1, . . . , Rρ . Let these check operators be extended to stabilizer gen-
erators S1, . . . , Sρ . Let n′

e be the number of subqudits used for the extension of check operators. The error correction procedure
for the EA stabilizer code constructed from these stabilizer generators is similar to the procedure for the entanglement-unassisted
stabilizer codes.

The syndrome computation operator is performed on the received subqudits and the entangled subqudits present at the receiver
end. Although the receiver end entangled subqudits are assumed to be error free, we need to consider them because the encoded
state |ψ〉 is stabilized by the stabilizers Sis, and not by the check operators Ris. We provide the syndrome computation operator
S ′ and its equivalent form for the entanglement-assisted stabilizer code.

In Lemma 2, we provide the syndrome computation operator for the EA stabilizer code. As the EA stabilizer code is also
a stabilizer code, the syndrome computation operator is similar to the operator S ′ in Lemma 1. The only difference between
the syndrome computation operators in Lemmas 1 and 2 is that the syndrome computation operator in Lemma 1 operates on
(mn + ρ) subqudits, while the operator in Lemma 2 operates on (mn + n′

e + ρ) subqudits.
Lemma 2. The syndrome computation operator S ′ corresponding to the stabilizer generators S1, . . . , Sρ is

S ′ = (
I⊗(nm+n′

e )
p ⊗ (DFT†

p)⊗ρ
)
SD

(
I⊗(nm+n′

e )
p ⊗ DFT⊗ρ

p

)
.

Proof. Let us consider the basis error operator E ∈ G⊗(nm+n′
e )

p . As the receiver-end entangled subqudits are considered error

free, E = E ′ ⊗ I⊗n′
e

p , where E ′ ∈ G⊗n
pm . From Eqs. (2) and (3), we note that G⊗n

pm = G⊗nm
p .

Let SiE = ωli ESi ∀ i ∈ {1, . . . , ρ}. For codeword |ψ〉, let the erroneous codeword be E |ψ〉. We show that S ′ is the syndrome
computation operator by proving that S ′(E |ψ〉|0〉⊗ρ

p ) = E |ψ〉|l1l2 . . . lρ〉 as the syndrome obtained from the eigenvalues of Sis
with respect to E |ψ〉 is [l1l2 . . . lρ].

We first simplify the operator S ′ as follows:

S ′ = (
I⊗(nm+n′

e )
p ⊗ (DFT†

p)⊗ρ
)( ∑

j1,..., jρ∈Fp

S j1
1 S j2

2 . . . S jρ
ρ ⊗ | j1 j2 . . . jρ〉〈 j1 j2 . . . jρ |

)(
I⊗(nm+n′

e )
p ⊗ DFT⊗ρ

p

)
,

=
∑

j1,..., jρ∈Fp

S j1
1 S j2

2 . . . S jρ
ρ ⊗

(
ρ⊗

i=1

DFT†
p| ji〉〈 ji|DFTp

)
. (34)

We note that Sis are defined over (nm + n′
e) subqudits and E |ψ〉 is a (nm + n′

e)-subqudit state. We also note that Eq. (34) is
same as Eq. (22) but defined for a different dimensional quantum system. From Eqs. (22) and (26), we obtain S ′(E |ψ〉|0〉⊗ρ

p ) =
E |ψ〉|l1l2 . . . lρ〉. �

Similarly to the syndrome computation operator for the entanglement-unassisted stabilizer codes in Eq. (28), in Lemma 3, we
obtain an equivalent form for the syndrome computation operator of the entanglement-assisted stabilizer code.
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Lemma 3. Let {Sy}ρy=1 be the stabilizer generators of the entanglement-assisted qudit stabilizer code, where Sy =⊗nm+n′
e

i=1 X(p)(byi )Z(p)(gyi ). The syndrome computation operator S ′ has the following equivalent form:

S ′ =
ρ∏

y=1

((
DFT⊗(nm+n′

e )
p

)† ⊗ I⊗ρ
p

)⎛⎝nm+n′
e∏

i=1

X ′
byi

(i, y)

⎞
⎠(DFT⊗(nm+n′

e )
p ⊗ I⊗ρ

p

)⎛⎝nm+n′
e∏

l=1

X ′
gyi

(l, y)

⎞
⎠,

where

X ′
byi

(s, t ) =
∑

j

P(p)
(s,nm+n′

e )( j, j) ⊗ X(p)
(t,ρ)( jbyi ).

Proof. Based on the relation of the quantum basis states and quantum operators of quantum systems with q = pm with those
of quantum systems with q = p provided in Eqs. (2) and (3), we mathematically represent the codeword and the stabilizers Sms as
the quantum states and operators in quantum system with q = p. We note that this is only a mathematical representation. Physi-
cally, they still corresponds to quantum systems with q = pm. In Eq. (28), substituting k = 1 and Sy = ⊗nm+n′

e
i=1 X(p)(byi )Z(p)(gyi )

and length of the codeword as (nm + n′
e) (here m need not be 1), we obtain

S ′ =
ρ∏

y=1

⎡
⎣((DFT⊗(nm+n′

e )
p

)† ⊗ I⊗ρ
p

)⎛⎝nm+n′
e∏

i=1

X ′
byi

(i, y)

⎞
⎠(DFT⊗(nm+n′

e )
p ⊗ I⊗ρ

p

)⎛⎝nm+n′
e∏

l=1

X ′
P (gyi )(l, y)

⎞
⎠
⎤
⎦. (35)

From the definition of P in Eq. (27), when gyi ∈ Fp, P (gyi ) = ∑m−1
s=0 Trpm/p(gyiα

m−1−s)αm−1−s. As we consider m = 1 while
using Eq. (28), we obtain P (gyi ) = ∑m−1

s=0 Trpm/p(gyiα
m−1−s)αm−1−s = Trpm/p(gyi ) = gyi as gyi ∈ Fp. Substituting P (gyi ) = gyi

in Eq. (35),

S ′ =
ρ∏

y=1

⎡
⎣((DFT⊗(nm+n′

e )
p

)† ⊗ I⊗ρ
p

)⎛⎝nm+n′
e∏

i=1

X ′
byi

(i, y)

⎞
⎠(DFT⊗(nm+n′

e )
p ⊗ I⊗ρ

p

)⎛⎝nm+n′
e∏

l=1

X ′
gyi

(l, y)

⎞
⎠
⎤
⎦. �

The syndrome computation circuit schematics of the
entanglement-assisted stabilizer codes are similar to the cir-
cuit schematics provided in Figs. 3 and 4, except that the
erroneous state E |ψ〉 is over (mn + n′

e) subqudits. The error
correction procedure involves syndrome computation using S ′
followed by correction of the error E based on the syndrome.
The correction of the error is achieved using control-based
operations, where the syndrome subqudits are the control
subqudits and E−1 is performed on the codeword subqudits.

VI. APPLICATIONS TOWARD QUDIT CODED
ARCHIVAL QUANTUM STORAGE

Using the proposed encoding and syndrome computa-
tion circuit schematic, coded quantum memories for archival
quantum storage can be built. A three-dimensional quantum
memory can be viewed as an array of atoms trapped in lattices,
where the atoms correspond to the qudits. The quantum infor-
mation is initially encoded into a codeword |ψ〉 and stored
in the quantum memory. The receiver end subqudits of a
codeword are stored as the message information in another
codeword; hence, they are maintained error free. In archival
quantum storage as quantum data are rarely accessed, we pro-
pose using a quantum sensing circuit to periodically monitor
the qudits within the quantum memory and perform error
correction on them.

Prior to quantum error correction, let the state of the code-
word qudits be in an erroneous state E |ψ〉, where E is the
error that has occurred on the codeword qudits. The codeword
qudits in state E |ψ〉 along with n′

s subqudits in state |0〉
are passed through the syndrome computation operation to

obtain the codeword qudits unchanged in state E |ψ〉 and the
syndrome subqudits in the syndrome state |s〉. When the code
used is an entanglement-assisted stabilizer code, the syndrome
computation circuit also requires the n′

e receiver end subqudits
stored as a message in another codeword.

The error deduction and recovery circuit deduces the error
and recovers the codeword by either of the following two
methods: (a) Perform measurement on the syndrome subqu-
dits in state |s〉, classically deduce the error, and then perform
the inverse quantum error operation on the state E |ψ〉 to
obtain the codeword or (b) using control-based operations
with the syndrome subqudits as the control and the codeword
qudits in state E |ψ〉 as the target, correct the error based
on the syndrome, and obtain the codeword in state |ψ〉. The
codeword qudits in state |ψ〉 are stored back into the quantum
memory. This coded quantum memory could be used within
the context of archival quantum storage.

VII. CONCLUSION

Practical quantum coded systems require syndrome com-
putation circuits toward error deduction and recovery. The
proposed syndrome computation architectures are essential
for realizing entanglement-unassisted and entanglement-
assisted qudit coded systems using a few preshared entangled
states within the quantum transceiver system. We provided
an equivalent syndrome computation circuit for realizing a
two-level error correction circuit. We illustrated the imple-
mentation of proposed syndrome computation architectures
using one and two qudit gates. Finally, we provided an
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application where coded quantum states could be used within
the context of archival quantum storage.
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APPENDIX A: PROOF OF EQUIVALENT SYNDROME
COMPUTATION OPERATOR

To prove Eq. (28), we first note that the stabilizers belong to
G⊗n

pm whose generators are of the form X(pm )
(s,n)(β ) and Z(pm )

(s,n)(β ),
where β ∈ Fpm and s ∈ {1, . . . , n}. Thus, we first prove the
Eq. (28) for these generators X(pm )

(s,n)(β ) and Z(pm )
(s,n)(β ) in Lemma

4 and Lemma 5, respectively. Using Lemmas 4 and 5, we
prove Eq. (28) for stabilizer generators Sis of arbitrary form
in Lemma 7.

1. Equivalent syndrome computation operator for stabilizer of form X(pm )
(s,n)(β)

We first prove Eq. (28) for the stabilizer generator of the form X(pm )
(s,n)(β ) in Lemma 4.

Lemma 4. Let β = b0 + b1α + · · · + b(m−1)α
(m−1), where b0, b1, . . . , b(m−1) ∈ Fp and β ∈ Fpm . Then, (I⊗n

pm ⊗
(DFT†

p)⊗ρ )Xβ (s, t )(I⊗n
pm ⊗ DFT⊗ρ

p ) = ((DFT⊗nm
p )† ⊗ I⊗ρ

p )X ′
β (s, t )(DFT⊗nm

p ⊗ I⊗ρ
p ), where

Xβ (s, t ) =
∑
j∈Fp

X(pm )
(s,n)( jβ ) ⊗ P(p)

(t,ρ)( j, j),

X ′
β (s, t ) =

∑
j0,..., j(m−1)∈Fp

P(pm )
(s,n)(ζ , ζ ) ⊗ X(p)

(t,ρ)( j(m−1)b(m−1) + · · · + j0b0)

and ζ = ∑m−1
l=0 jlαl .

Proof. We note that the operator (I⊗n
pm ⊗ (DFT†

p)⊗ρ )Xβ (s, t )(I⊗n
pm ⊗ DFT⊗ρ

p ) is equal to the operator S ′ in Lemma 1 when

the t th stabilizer generator St is considered to be X(pm )
(s,n)(β ) and all other stabilizer generators Sis are considered to be the

identity operator. Thus, to show that Eq. (28) is satisfied when one stabilizer generator is of the form X(pm )
(s,n)(β ) with all other

stabilizer generators being identity operators, we need to prove that (I⊗n
pm ⊗ (DFT†

p)⊗ρ )Xβ (s, t )(I⊗n
pm ⊗ DFT⊗ρ

p ) = ((DFT⊗nm
p )† ⊗

I⊗ρ
p )X ′

β (s, t )(DFT⊗nm
p ⊗ I⊗ρ

p ).
To obtain the result, we first simplify ((DFT⊗nm

p )† ⊗ I⊗ρ
p )X ′

β (s, t )(DFT⊗nm
p ⊗ I⊗ρ

p ) as follows:

((
DFT⊗nm

p

)† ⊗ I⊗ρ
p

)
X ′

β (s, t )
(
DFT⊗nm

p ⊗ I⊗ρ
p

)

= ((
DFT⊗nm

p

)† ⊗ I⊗ρ
p

)⎛⎝ ∑
j0,..., j(m−1)∈Fp

P(pm )
(s,n)(ζ , ζ ) ⊗ X(p)

(t,ρ)( j(m−1)b(m−1) + · · · + j0b0)

⎞
⎠(DFT⊗nm

p ⊗ I⊗ρ
p

)
, (A1)

where ζ = ∑m−1
l=0 jlαl . We note that the operator

∑
j0,..., j(m−1)∈Fp

P(pm )
(s,n)(ζ , ζ ) ⊗ X(p)

(t,ρ)( j(m−1)b(m−1) + · · · + j0b0) in Eq. (A1)

performs only identity operator on the n codeword qudits, except for the sth qudit. Thus, the (DFT⊗m
p )† operator in ((DFT⊗nm

p )† ⊗
I⊗ρ

p ) on each of the first n qudits except the sth qudit cancels the DFT⊗m
p operator in (DFT⊗nm

p ⊗ I⊗ρ
p ). Thus, from Eq. (A1), we

obtain((
DFT⊗nm

p

)† ⊗ I⊗ρ
p

)
X ′

β (s, t )
(
DFT⊗nm

p ⊗ I⊗ρ
p

)
=

∑
j0,..., j(m−1)∈Fp

((
DFT⊗m

p

)†
P(pm )(ζ , ζ )DFT⊗m

p

)
(s,n) ⊗ X(p)

(t,ρ)( j(m−1)b(m−1) + · · · + j0b0),

=
∑

j0,..., j(m−1)∈Fp

⎡
⎣m−1⊗

i=0

⎛
⎝1

p

∑
r∈Fp

ω− j(m−1−i)rX(p)(r)

⎞
⎠
⎤
⎦

(s,n)

⊗ X(p)
(t,ρ)( j(m−1)b(m−1) + · · · + j0b0), [from Eq. (23)]

= 1

pm

∑
j0,..., j(m−1)∈Fp

⎛
⎝ ∑

r0,...,r(m−1)∈Fp

m−1⊗
i=0

ω− j(m−1−i)ri X(p)(ri)

⎞
⎠

(s,n)

⊗ X(p)
(t,ρ)( j(m−1)b(m−1) + · · · + j0b0), [from Eq. (19)]

= 1

pm

∑
r0,...,r(m−1)∈Fp

∑
j0,..., j(m−1)∈Fp

ω
∑m−1

g=0 − j(m−1−g)rg

(
m−1⊗
i=0

X(p)(ri )

)
(s,n)

⊗
[

m−1∏
g=0

X(p)
(t,ρ)( j(m−1−g)b(m−1−g) )

]
, (∵ X(p)(γ )X(p)(ζ )=X(p)(γ+ζ ))
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= 1

pm

∑
r0,...,r(m−1)∈Fp

(
m−1⊗
i=0

X(p)(ri )

)
(s,n)

⊗
∑

j0,..., j(m−1)∈Fp

[
m−1∏
g=0

ω− j(m−1−g)rgX(p)
(t,ρ)( j(m−1−g)b(m−1−g) )

]
,

=
∑

r0,...,r(m−1)∈Fp

(
m−1⊗
i=0

X(p)(ri )

)
(s,n)

⊗
m−1∏
g=0

⎡
⎣1

p

∑
j∈Fp

ω− jrgX(p)
(t,ρ)( jb(m−1−g) )

⎤
⎦, [from Eq. (20)]. (A2)

We change the variable in the summation from j to l = jb(m−1−g). Due to the closure property of Fp, the summation over all j
in Fp changes to the summation over all l in Fp. From Eq. (A2), we obtain((

DFT⊗nm
p

)† ⊗ I⊗ρ
p

)
X ′

β (s, t )
(
DFT⊗nm

p ⊗ I⊗ρ
p

)

=
∑

r0,...,r(m−1)∈Fp

(
m−1⊗
i=0

X(p)(ri )

)
(s,n)

⊗
m−1∏
g=0

⎛
⎝1

p

∑
l∈Fp

ω−lb−1
(m−1−g)rgX(p)

(t,ρ)(l )

⎞
⎠,

=
∑

r0,...,r(m−1)∈Fp

(
m−1⊗
i=0

X(p)(ri )

)
(s,n)

⊗
m−1∏
g=0

(
DFT†

p

∣∣b−1
(m−1−g)rg

〉〈
b−1

(m−1−g)rg

∣∣DFTp
)

(t,ρ), (A3)

where the last step follows from Eq. (23).
We simplify

∏m−1
g=0 DFT†

p|b−1
(m−1−g)rg〉〈b−1

(m−1−g)rg|DFTp in Eq. (A3) as follows:

m−1∏
g=0

DFT†
p

∣∣b−1
(m−1−g)rg

〉〈
b−1

(m−1−g)rg

∣∣DFTp = DFT†
p

∣∣b−1
(m−1)r0

〉〈
b−1

(m−1)r0

∣∣DFTpDFT†
p

∣∣b−1
(m−2)r1

〉
〈
b−1

m−2r1

∣∣DFTp . . . DFT†
p

∣∣b−1
0 r(m−1)

〉〈
b−1

0 r(m−1)

∣∣DFTp, = DFT†
p

∣∣b−1
(m−1)r0

〉〈
b−1

0 r(m−1)

∣∣DFTpδb−1
(m−1)r0,b

−1
(m−2)r1

. . . δb−1
1 rm−2,b

−1
0 r(m−1)

,

⇒ r1 = b(m−2)b
−1
(m−1)r0,

⇒ r2 = b(m−3)b
−1
(m−2)r1 = b(m−3)b

−1
(m−1)r0,

In general, ri = b(m−1−i)b
−1
(m−1)r0 ∀ i ∈ {0, . . . , (m − 1)}. (A4)

Substituting Eqs. (A4) and ri = b(m−1−i)b
−1
(m−1)r0 in Eq. (A3), we obtain

((
DFT⊗nm

p

)† ⊗ I⊗ρ
p

)
X ′

β (s, t )
(
DFT⊗nm

p ⊗ I⊗ρ
p

)
=

∑
r0,...,r(m−1)∈Fp

(
m−1⊗
i=0

X(p)(ri)

)
(s,n)

⊗ (
DFT†

p

∣∣b−1
(m−1)r0

〉〈
b−1

0 r(m−1)

∣∣DFTp
)

(t,ρ)δb−1
(m−1)r0,b

−1
(m−2)r1

. . . δb−1
1 r(m−2),b

−1
0 r(m−1)

,

=
∑
j∈Fp

[
m−1⊗
i=0

X(p)( jb(m−1−i) )

]
(s,n)

⊗ (
DFT†

p| j〉〈 j|DFTp
)

(t,ρ)
, where j = b−1

(m−1)r0,

=
∑
j∈Fp

X(pm )
(s,n)( jβ ) ⊗ (DFT†

p| j〉〈 j|DFTp)(t,ρ), [from Eqs. (2) and (3)]

=
∑
j∈Fp

X(pm )
(s,n)( jβ ) ⊗ ((DFT†

p)⊗ρ )P(p)
(t,ρ)( j, j)DFT⊗ρ

p , (∵ DFT†
pDFTp = Ip)

= (
I⊗n

pm ⊗ (DFT†
p)⊗ρ

)⎛⎝∑
j∈Fp

X(pm )
(s,n)( jβ ) ⊗ P(p)

(t,ρ)( j, j)

⎞
⎠(I⊗n

pm ⊗ DFT⊗ρ
p

)
,

= (
I⊗n

pm ⊗ (DFT†
p)⊗ρ

)
Xβ (s, t )

(
I⊗n

pm ⊗ DFT⊗ρ
p

)
. �

2. Equivalent syndrome computation operator for stabilizer of form Z(pm )
(s,n)(β)

We next prove Eq. (28) for the stabilizer generator of the form Z(pm )
(s,n)(β ) in Lemma 5, where β ∈ Fpm .

We note that the transformation P (β ) = ∑m−1
g=0 Trpm/p(βα(m−1−g) )α(m−1−g) is based on the expansion of Z(pm )(·) over Z(p)(·)

in Eq. (3) and is used in the syndrome computation operator as Lemma 5 is based on the stabilizer of form Z(pm )
(s,n)(β ).
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Lemma 5. Let β = b0 + b1α + · · · + b(m−1)α
(m−1), where b0, b1, . . . , b(m−1) ∈ Fp and β ∈ Fpm . Then, (I⊗n

pm ⊗
(DFT†

p)⊗ρ )Zβ (s, t )(I⊗n
pm ⊗ DFT⊗ρ

p ) = X ′
P (β )(s, t ), where

Zβ (s, t ) =
∑
j∈Fp

Z(pm )
(s,n)( jβ ) ⊗ P(p)

(t,ρ)( j, j),

X ′
P (β )(s, t ) =

∑
j0,..., j(m−1)∈Fp

P(pm )
(s,n)(ζ , ζ ) ⊗ X(p)

(t,ρ)( j(m−1)Trpm/p(βα(m−1)) + · · · + j0Trpm/p(βα0)),

where ζ = ∑m−1
l=0 jlαl .

Proof. We note that the operator (I⊗n
pm ⊗ (DFT†

p)⊗ρ )Zβ (s, t )(I⊗n
pm ⊗ DFT⊗ρ

p ) is equal to the operator S ′ in Lemma 1 when the

t th stabilizer generator St is considered to be Z(pm )
(s,n)(β ) and all other stabilizer generators Sis are considered to be the identity

operator. Thus, to show that Eq. (28) is satisfied when one stabilizer generator is of the form Z(pm )
(s,n)(β ) with all other stabilizer

generators being identity operators, we need to prove that (I⊗n
pm ⊗ (DFT†

p)⊗ρ )Zβ (s, t )(I⊗n
pm ⊗ DFT⊗ρ

p ) = X ′
P (β )(s, t ).

To obtain the result, we first prove that Z(p)(b) = DFTpX(p)(b)DFT†
p. From the definition of DFTp in Eq. (7),

DFTpX(p)(b)DFT†
p =

⎛
⎝ 1√

p

∑
r,s∈Fp

ωrs|r〉〈s|
⎞
⎠
⎛
⎝∑

t∈Fp

|t + b〉〈t |
⎞
⎠
⎛
⎝ 1√

p

∑
u,v∈Fp

ω−uv|u〉〈v|
⎞
⎠,

= 1

p

∑
r,t,v∈Fp

ω(r(t+b)−tv)|r〉〈v| = 1

p

∑
r,v∈Fp

ωrb|r〉〈v|
∑
t∈Fp

ω(t (r−v))

= 1

p

∑
r,v∈Fp

ωrb|r〉〈v|pδr,v =
∑
r∈Fp

ωrb|r〉〈r| = Z(p)(b). (A5)

Thus, for β = b0 + b1α + · · · + b(m−1)α
(m−1) and j ∈ Fp,

Z(pm )( jβ ) =
m−1⊗
g=0

Z(p)(Trpm/p( jβα(m−1−g) )), [from Eq. (3)]

=
m−1⊗
g=0

Z(p)( jTrpm/p(βα(m−1−g) )), (∵ Trpm/p is Fp-linear)

=
m−1⊗
g=0

DFTpX(p)( jTrpm/p(βα(m−1−g) ))DFT†
p, [from Eq. (A5)]

= DFT⊗m
p

[
m−1⊗
g=0

X(p)( jTrpm/p(βα(m−1−g) ))

]
(DFT†

p)⊗m. (A6)

Considering the stabilizer generator as Z(pm )
(s,n)(β ), the syndrome computation operator (I⊗n

pm ⊗ (DFT†
p)⊗ρ )Zβ (s, t ) (I⊗n

pm ⊗ DFT⊗ρ
p )

based on S ′ in Lemma 1 is simplified as(
I⊗n

pm ⊗ (DFT†
p)⊗ρ

)
Zβ (s, t )

(
I⊗n

pm ⊗ DFT⊗ρ
p

)
= (

I⊗n
pm ⊗ (DFT†

p)⊗ρ
)⎛⎝∑

j∈Fp

Z(pm )
(s,n)( jβ ) ⊗ P(p)

(t,ρ)( j, j)

⎞
⎠(I⊗n

pm ⊗ DFT⊗ρ
p

)
,

= (
I⊗n

pm ⊗ (DFT†
p)⊗ρ

)⎛⎝∑
j∈Fp

(
DFT⊗m

p

[
m−1⊗
g=0

X(p)( jTrpm/p(βα(m−1−g) ))

]
(DFT†

p)⊗m

)
(s,n)

⊗ P(p)
(t,ρ)( j, j)

⎞
⎠(I⊗n

pm ⊗ DFT⊗ρ
p

)
,

[from Eq. A6)]

= (
I⊗n

pm ⊗ (DFT†
p)⊗ρ

)(
DFT⊗mn

p ⊗ I⊗ρ
p

)⎛⎝∑
j∈Fp

[m−1⊗
g=0

X(p)( jTrpm/p(βα(m−1−g) ))

]
(s,n)

⊗ P(p)
(t,ρ)( j, j)

⎞
⎠
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× (
(DFT†

p)⊗mn ⊗ I⊗ρ
p

)(
I⊗n

pm ⊗ DFT⊗ρ
p

)
, (∵ DFTpDFT†

p = Ip)

= (
I⊗n

pm ⊗ (DFT†
p)⊗ρ

)(
DFT⊗mn

p ⊗ I⊗ρ
p

)⎛⎝∑
j∈Fp

X(pm )
(s,n)

[
m−1∑
g=0

jTrpm/p(βα(m−1−g) )α(m−1−g)

]
⊗ P(p)

(t,ρ)( j, j)

⎞
⎠

× (
(DFT†

p)⊗mn ⊗ I⊗ρ
p

)(
I⊗n

pm ⊗ DFT⊗ρ
p

)
, (from Eq. (2)]

= (
DFT⊗mn

p ⊗ I⊗ρ
p

)(
I⊗n

pm ⊗ (DFT†
p)⊗ρ

)⎛⎝∑
j∈Fp

X(pm )
(s,n)( jP (β )) ⊗ P(p)

(t,ρ)( j, j)

⎞
⎠(I⊗n

pm ⊗ DFT⊗ρ
p

)(
(DFT†

p)⊗m ⊗ I⊗ρ
p

)
, (A7)

where P : Fpm → Fpm is a transformation of field element β ∈ Fpm to P (β ) = ∑m−1
g=0 Trpm/p(βα(m−1−g) )α(m−1−g).

Using Lemma 4, we replace (I⊗n
pm ⊗ (DFT†

p)⊗ρ )(
∑

j∈Fp
X(pm )

(s,n)( jP (β )) ⊗ P(p)
(t,ρ)( j, j)) (I⊗n

pm ⊗ DFT⊗ρ
p ) with ((DFT⊗nm

p )† ⊗
I⊗ρ

p )X ′
β (s, t )(DFT⊗nm

p ⊗ I⊗ρ
p ) in Eq. (A7) to obtain

(
I⊗n

pm ⊗ (DFT†
p)⊗ρ

)
Zβ (s, t )

(
I⊗n

pm ⊗ DFT⊗ρ
p

) = (
DFT⊗mn

p ⊗ I⊗ρ
p

)((
DFT⊗nm

p

)† ⊗ I⊗ρ
p

)
X ′

P (β )(s, t )(
DFT⊗nm

p ⊗ I⊗ρ
p

)(
(DFT†

p)⊗k ⊗ I⊗ρ
p

)
, = X ′

P (β )(s, t ). (∵ DFTpDFT†
p = Ip). �

3. Equivalent syndrome computation operator for stabilizer of form Sy = ⊗n
i=1 X(pm )(βi )Z(pm )(γi )

As every stabilizer generator is a basis operator, it is of the form Sy = ⊗n
i=1 X(pm )(βi )Z(pm )(γi ). Using Lemmas 4 and 5, we

next prove Eq. (28) for the stabilizer generator of the form Sy in Lemma 6, where βi, γi ∈ Fpm . We note that, we consider the
other (ρ − 1) stabilizer generators to be identity operators.

Lemma 6. Let Sy = ⊗n
i=1 X(pm )(βi )Z(pm )(γi ) for β1, . . . , βn, γ1, . . . , γn ∈ Fpm . Let Sy = (I⊗n

pm ⊗ (DFT†
p)⊗ρ ) (

∑
j∈Fp

S j
y ⊗

P(p)
(y,ρ)( j, j))(I⊗n

pm ⊗ DFT⊗ρ
p ), then the following relations hold true:

(a) Sy = ((I⊗n
pm ⊗ (DFT†

p)⊗ρ )
∏n

i=1 Xβi (i, y)(I⊗n
pm ⊗ DFT⊗ρ

p )) ((I⊗n
pm ⊗ (DFT†

p)⊗ρ )
∏n

l=1 Zγl (l, y)(I⊗n
pm ⊗ DFT⊗ρ

p )).
(b) Sy = ((DFT⊗nm

p )† ⊗ I⊗ρ
p )(

∏n
i=1 X ′

βi
(i, y)) (DFT⊗nm

p ⊗ I⊗ρ
p )(

∏n
l=1 X ′

P (γl )(l, y)).

Proof. Let Sy = ⊗n
i=1 X(pm )(βi )Z(pm )(γi ). We note that the operator Sy = (I⊗n

pm ⊗ (DFT†
p)⊗ρ ) (

∑
j∈Fp

S j
y ⊗ P(p)

(y,ρ)( j, j))

(I⊗n
pm ⊗ DFT⊗ρ

p ) is equal to the operator S ′ in Lemma 1 when the yth stabilizer generator is Sy and all other stabilizer generators
Sis are considered to be the identity operator. Thus, to show that Eq. (28) is satisfied when one stabilizer generator is of
the form Sy = ⊗n

i=1 X(pm )(βi )Z(pm )(γi ) with all other stabilizer generators being identity operators, we need to prove that
Sy = ((DFT⊗nm

p )† ⊗ I⊗ρ
p )(

∏n
i=1 X ′

βi
(i, y))(DFT⊗nm

p ⊗ I⊗ρ
p )(

∏n
l=1 X ′

P (γl )(l, y)).
To prove the result, we first simplify Sy as follows:

Sy = (
I⊗n

pm ⊗ (DFT†
p)⊗ρ

)⎛⎝∑
j∈Fp

S j
y ⊗ P(p)

(y,ρ)( j, j)

⎞
⎠(I⊗n

pm ⊗ DFT⊗ρ
p

)
,

= (
I⊗n

pm ⊗ (DFT†
p)⊗ρ

)[∑
j∈Fp

(
n⊗

i=1

X(pm )(βi )Z
(pm )(γi )

) j

⊗ P(p)
(y,ρ)( j, j)

](
I⊗n

pm ⊗ DFT⊗ρ
p

)
,

= (
I⊗n

pm ⊗ (DFT†
p)⊗ρ

)(∑
j∈Fp

n∏
i=1

X(pm )
(i,n) ( jβi)

n∏
l=1

Z(pm )
(l,n)( jγl ) ⊗ P(p)

(y,ρ)( j, j)

)(
I⊗n

pm ⊗ DFT⊗ρ
p

)
, (A8)

where the last step is obtained from properties X(pm )(ζ )X(pm )(ξ ) = X(pm )(ζ + ξ ) and Z(pm )(ζ )Z(pm )(ξ ) = Z(pm )(ζ + ξ ).

We next show that the sum of products (
∑

j∈Fp

∏n
i=1 X(pm )

(i,n) ( jβi )
∏n

l=1 Z(pm )
(l,n)( jγl ) ⊗ P(p)

(y,ρ)( j, j)) in Eq. (A8) can be written as
product of sums.

We first show that
∏n

i=1

∑
j∈Fp

X(pm )
(i,n) ( jβi ) ⊗ P(p)

(y,ρ)( j, j) = ∑
j∈Fp

∏n
i=1 X(pm )

(i,n) ( jβi) ⊗ P(p)
(y,ρ)( j, j) as follows:

n∏
i=1

∑
j∈Fp

X(pm )
(i,n) ( jβi ) ⊗ P(p)

(y,ρ)( j, j) =
∑

j1,..., jn∈Fp

n∏
i=1

X(pm )
(i,n) ( jiβi ) ⊗ P(p)

(y,ρ)( j, j), [from Eq. (20)] (A9)

=
∑

j1,..., jn∈Fp

(
n∏

i=1

X(pm )
(i,n) ( jiβi )

)
⊗
(

n∏
i=1

P(p)( ji, ji )

)
(y,ρ)

,
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=
∑

j1,..., jn∈Fp

(
n∏

i=1

X(pm )
(i,n) ( jiβi )

)
⊗
(

| j1〉
jn−1∏
l=1

〈 jl | jl+1〉〈 jn|
)

(y,ρ)

,

=
∑
j∈Fp

n∏
i=1

X(pm )
(i,n) ( jβi ) ⊗ P(p)

(y,ρ)( j, j), (A10)

where j = j1 = · · · = jn. Similarly to Eq. (A10),

n∏
l=1

∑
j∈Fp

Z(pm )
(l,n)( jγl ) ⊗ P(p)

(y,ρ)( j, j) =
∑
j∈Fp

n∏
l=1

Z(pm )
(l,n)( jγl ) ⊗ P(p)

(y,ρ)( j, j). (A11)

Multiplying Eqs. (A10) and (A11), we obtain⎛
⎝ n∏

i=1

∑
jx∈Fp

X(pm )
(i,n) ( jxβi ) ⊗ P(p)

(y,ρ)( jx, jx )

⎞
⎠( n∏

l=1

∑
jz∈Fp

Z(pm )
(l,n)( jzγl ) ⊗ P(p)

(y,ρ)( jz, jz )

)

=
⎛
⎝∑

jx∈Fp

n∏
i=1

X(pm )
(i,n) ( jxβi ) ⊗ P(p)

(y,ρ)( jx, jx )

⎞
⎠(∑

jz∈Fp

n∏
l=1

Z(pm )
(l,n)( jzγl ) ⊗ P(p)

(y,ρ)( jz, jz )

)
,

=
∑

jx, jz∈Fp

n∏
i=1

X(pm )
(i,n) ( jxβi )

n∏
l=1

Z(pm )
(l,n)( jzγl ) ⊗ (| jx〉〈 jx| jz〉〈 jz|)(y,ρ),

=
∑
j∈Fp

n∏
i=1

X(pm )
(i,n) ( jβi )

n∏
l=1

Z(pm )
(l,n)( jγl ) ⊗ P(p)

(y,ρ)( j, j), (A12)

where j = jx = jz. Substituting Eq. (A12) in Eq. (A8), we obtain

Sm = (
I⊗n

pm ⊗ (DFT†
p)⊗ρ

)⎛⎝ n∏
i=1

∑
j∈Fp

X(pm )
(i,n) ( jβi ) ⊗ P(p)

(y,ρ)( j, j)

⎞
⎠
⎛
⎝ n∏

l=1

∑
j∈Fp

Z(pm )
(l,n)( jγl ) ⊗ P(p)

(y,ρ)( j, j)

⎞
⎠(I⊗n

pm ⊗ DFT⊗ρ
p

)
. (A13)

Let us consider K = (I⊗n
pm ⊗ DFT⊗ρ

p ), then K† = (I⊗n
pm ⊗ (DFT†

p)⊗ρ ). We know that KK† = I⊗n
pm ⊗ I⊗ρ

p as DFTpDFT†
p = Ip. For

operator Tis that have the same dimension as K , where i ∈ {1, . . . , l}, we obtain

K†T1 . . . TlK = K†T1KK†T2K . . . K†TlK =
l∏

i=1

K†TiK. (A14)

Based on Eq. (A14), from Eq. (A13), we obtain

Sy =
((

I⊗n
pm ⊗ (DFT†

p)⊗ρ
)⎛⎝ n∏

i=1

∑
j∈Fp

X(pm )
(i,n) ( jβi ) ⊗ P(p)

(y,ρ)( j, j)

⎞
⎠(I⊗n

pm ⊗ DFT⊗ρ
p

))

×
[(

I⊗n
pm ⊗ (DFT†

p)⊗ρ
)⎛⎝ n∏

l=1

∑
j∈Fp

Z(pm )
(l,n)( jγl ),⊗P(p)

(y,ρ)( j, j)

⎞
⎠(I⊗n

pm ⊗ DFT⊗ρ
p

)]
, (from Lemmas 4 and 5)

=
[(

I⊗n
pm ⊗ (DFT†

p)⊗ρ
) n∏

i=1

Xβi (i, y)
(
I⊗n

pm ⊗ DFT⊗ρ
p

)][(
I⊗n

pm ⊗ (DFT†
p)⊗ρ

) n∏
l=1

Zγl (l, y)
(
I⊗n

pm ⊗ DFT⊗ρ
p

)]
,

=
[

n∏
i=1

(
I⊗n

pm ⊗ (DFT†
p)⊗ρ

)
Xβi (i, y)

(
I⊗n

pm ⊗ DFT⊗ρ
p

)][ n∏
l=1

(
I⊗n

pm ⊗ (DFT†
p)⊗ρ

)
Zγl (l, y)

(
I⊗n

pm ⊗ DFT⊗ρ
p

)]
, (A15)

where the last step follows from Eq. (A14).
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From Lemmas 4 and 5, we obtain

Sm =
[

n∏
i=1

((
DFT⊗nm

p

)† ⊗ I⊗ρ
p

)(
X ′

βi
(i, y)

)][ n∏
l=1

(
DFT⊗nm

p ⊗ I⊗ρ
p

)(
X ′

P (γl )(l, y)
)]

,

= ((
DFT⊗nm

p

)† ⊗ I⊗ρ
p

)( n∏
i=1

X ′
βi

(i, y)

)(
DFT⊗nm

p ⊗ I⊗ρ
p

)( n∏
l=1

X ′
P (γl )(l, y)

)
, (A16)

where the last step is obtained from Eq. (A14). �

4. Equivalent syndrome computation operator for stabilizer generators Sis

Let {Sy = ⊗n
i=1 X(pm )(βyi )Z(pm )(γyi )}ρy=1 be the set of ρ stabilizer generators of the stabilizer code over qudits. Using Lemma

6, we next prove Eq. (28) in Lemma 7 by considering the ρ stabilizer generators S1, . . . , Sρ .
Lemma 7. Let Sy = ⊗n

i=1 X(pm )(βyi )Z(pm )(γyi ), where y ∈ {1, . . . , ρ}. The syndrome computation operator S ′ has the follow-
ing equivalent form:

S ′ =
ρ∏

y=1

Sy =
ρ∏

y=1

[((
DFT⊗nm

p

)† ⊗ I⊗ρ
p

)( n∏
i=1

X ′
βyi

(i, y)

)(
DFT⊗nm

p ⊗ I⊗ρ
p

)( n∏
l=1

X ′
P (γyl )(l, y)

)]
.

Proof. From Lemma 6, we compute the product of all Sy operators, where y ∈ {1, . . . , ρ}, as follows:

ρ∏
y=1

Sy =
ρ∏

y=1

(
I⊗n

pm ⊗ (DFT†
p)⊗ρ

)⎛⎝∑
j∈Fp

S j
y ⊗ P(p)

(y,ρ)( j, j)

⎞
⎠(I⊗n

pm ⊗ DFT⊗ρ
p

)
,

= (
I⊗n

pm ⊗ (DFT†
p)⊗ρ

)⎡⎣ ρ∏
y=1

⎛
⎝∑

j∈Fp

S j
y ⊗ P(p)

(y,ρ)( j, j)

⎞
⎠
⎤
⎦(I⊗n

pm ⊗ DFT⊗ρ
p

)
[from Eq. (A14)]

= (
I⊗n

pm ⊗ (DFT†
p)⊗ρ

)⎡⎣ ∑
j1,..., jρ∈Fp

ρ∏
y=1

(
S

jy
y ⊗ P(p)

(y,ρ)( jy, jy)
)⎤⎦(I⊗n

pm ⊗ DFT⊗ρ
p

)
[from Eq. (20)]

= (
I⊗n

pm ⊗ (DFT†
p)⊗ρ

)⎡⎣ ∑
j1,..., jρ∈Fp

S j1
1 . . . S jρ

ρ ⊗ | j1 . . . jρ〉〈 j1 . . . jρ |
⎤
⎦(I⊗n

pm ⊗ DFT⊗ρ
p

) = S ′. (A17)

Let Sy = ⊗n
i=1 X(pm )(βyi )Z(pm )(γyi ). Using Lemma 6 and Eq. (A17), we obtain

S ′ =
ρ∏

y=1

Sy =
ρ∏

y=1

[((
DFT⊗nm

p

)† ⊗ I⊗ρ
p

)( n∏
i=1

X ′
βyi

(i, y)

)(
DFT⊗nm

p ⊗ I⊗ρ
p

)( n∏
l=1

X ′
P (γyl )(l, y)

)]
. �

Through Lemma 7, we proved Eq. (28) and the proposed syndrome computation operator performs only few DFTp and
DFT−1

p operations on the codeword subqudits and performs rest of the operations on the syndrome subqudits considering the
codeword subqudits as the control subqudits.

APPENDIX B: PROOF OF EQUIVALENT SYNDROME COMPUTATION OPERATOR FOR CSS CODES

Let C1[n, k1, d1] and C2[n, k2, d2] be two classical codes over Fpm with parity check matrices H1 and H2 that satisfy the
dual-containing criteria C⊥

1 ⊂ C2. Let ρi = n − ki, for i = {1, 2}. The check matrix of the CSS code obtained from C1 and C2 is
given by [17]

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H1

αH1
...

αm−1H1

0

0

H2

αH2
...

αm−1H2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (B1)
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Rearranging the rows of the check matrix, we obtain

HS =
[

H1 ⊗ a 0
0 H2 ⊗ a

]
, (B2)

where a = [1 α . . . αm−1].
Let the H1 = [βi j] and H2 = [γi j], then, from (B2), for y ∈ {1, . . . , ρ} and ρ = m(ρ1 + ρ2), the stabilizer generator Sy is

Sy =
{⊗n

i=1 X(pm )(αg(y)βl1(y)i ) 1 � y � mρ1⊗n
i=1 Z(pm )(αg(y)γl2(y)i ) mρ1 � y � ρ

, (B3)

where g(y) = y mod m, l1(y) = (�(y − 1)/m� + 1), l2(y) = �(y − 1 − mρ1)/m� + 1. Using the stabilizers Sys and the trace-
based symplectic product in Eq. (6), the syndrome computation operator can be obtained from Eq. (31), the syndrome can
be obtained.

Let σ = ρ1 + ρ2. Alternatively, we use a series of controlled qudit operations of form B(βy, y) = ∏n
i=1

∑
j∈Fpm P(pm )

(i,n) ( j, j) ⊗
X(pm )

(y,ρ)( jβyi ) and DFTpm gates to compute the syndrome as provided in Eq. (32).
We show that we can obtain the syndrome state with respect to one row of the matrix H1 using the block of form B(βy, y)

along with DFTpm gates. The proof for obtaining the ρ qudit syndrome based on all stabilizers can be obtained similarly using
the concepts in Appendix A. The syndrome based on the row [βy1 . . . βyn] of H1 is computed as follows:

((
DFT⊗n

pm

)† ⊗ I⊗σ
p

)
B(βy, y)

(
DFT⊗n

pm ⊗ I⊗σ
p

) = ((
DFT⊗n

pm

)† ⊗ I⊗σ
p

) n∏
i=1

B′
βyi

(i, y)
(
DFT⊗n

pm ⊗ I⊗σ
p

)

=
n∏

i=1

((
DFT⊗n

pm

)† ⊗ I⊗σ
p

)
B′

βyi
(i, y)

(
DFT⊗n

pm ⊗ I⊗σ
p

)

=
n∏

i=1

∑
ζ∈Fpm

(
(DFTpm )†P(pm )(ζ , ζ )DFTpm

)
(i,n) ⊗ X(p)

(y,σ )(ζβyi ),

=
n∏

i=1

∑
ζ∈Fpm

⎛
⎝ 1

pm

∑
r∈Fpm

ω−Trpm/p(rζ )X(pm )(r)

⎞
⎠

(i,n)

⊗ X(pm )
(y,σ )(ζβyi ),

[from Eq. (23)]

=
n∏

i=1

1

pm

∑
r∈Fpm

X(pm )
(i,n) (r) ⊗

∑
ζ∈Fpm

(
ω−Trpm/p(ζ r)X(pm )

(y,σ )(ζβyi )
)
, (B4)

We change the variable in the summation from βyi to ξ = ζβyi. Due to the closure property of Fpm , the summation over all ζ in
Fpm changes to the summation over all ξ in Fpm . From Eq. (B4), we obtain

((
DFT⊗n

pm

)† ⊗ I⊗σ
p

)
B(βy, y)

(
DFT⊗n

pm ⊗ I⊗σ
p

) =
n∏

i=1

∑
r∈Fpm

X(pm )
(i,n) (r) ⊗

⎛
⎝ 1

pm

∑
ξ∈Fpm

ω−Tr(pm/p) (ξβ−1
yi r)X(pm )

(y,σ )(ξ )

⎞
⎠,

=
n∏

i=1

∑
r∈Fpm

X(pm )
(i,n) (r) ⊗ (

DFT†
pm

∣∣β−1
yi r

〉〈
β−1

yi r
∣∣DFTpm

)
(y,σ ), [from Eq. (23)]

=
n∏

i=1

∑
κ∈Fpm

X(pm )
(i,n) (βyiκ ) ⊗ (

DFT†
pm |κ〉〈κ|DFTpm

)
(y,σ ), where κ = β−1

yi r

=
n∏

i=1

(
I⊗n

pm ⊗ (
DFT†

pm

)⊗σ )⎛⎝ ∑
κ∈Fpm

X(pm )
(i,n) (κβyi) ⊗ P(pm )

(y,σ )(κ, κ )

⎞
⎠(I⊗n

pm ⊗ DFT⊗σ
pm

)
,

=
n∏

i=1

(
I⊗n

pm ⊗ (DFT†
pm )⊗σ

)
Bβyi (i, y)

(
I⊗n

pm ⊗ DFT⊗σ
pm

)
, (B5)

which is similar to the syndrome computation operator in Lemma 1. The proof that the operator
∏n

i=1(I⊗n
pm ⊗

(DFT†
pm )

⊗σ
)Bβyi (i, y)(I⊗n

pm ⊗ DFT⊗σ
pm ) is the syndrome computation operator for qudit stabilizer code based on Fpm -linear code has
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also been provided in Ref. [20]. Thus, from Eq. (B5), ((DFT⊗n
pm )† ⊗ I⊗σ

p )B(βy, y)(DFT⊗n
pm ⊗ I⊗σ

p ) is the syndrome computation
operator to compute the syndrome state based on one row of H1. Similarly, the syndrome computation operator based on all the
rows of H1 and H2 can be obtained using S ′ in Eq. (32).
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