
PHYSICAL REVIEW A 103, 042419 (2021)

Efficient phase-factor evaluation in quantum signal processing

Yulong Dong ,1,2 Xiang Meng ,3 K. Birgitta Whaley ,1,2 and Lin Lin 3,4

1Berkeley Center for Quantum Information and Computation, Berkeley, California 94720, USA
2Department of Chemistry, University of California, Berkeley, California 94720, USA

3Department of Mathematics, University of California, Berkeley, California 94720, USA
4Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

(Received 13 July 2020; revised 2 December 2020; accepted 19 January 2021; published 22 April 2021)

Quantum signal processing (QSP) is a powerful quantum algorithm to exactly implement matrix polynomials
on quantum computers. Asymptotic analysis of quantum algorithms based on QSP has shown that asymptotically
optimal results can in principle be obtained for a range of tasks, such as Hamiltonian simulation and the quantum
linear system problem. A further benefit of QSP is that it uses a minimal number of ancilla qubits, which
facilitates its implementation on near-to-intermediate term quantum architectures. However, there is so far no
classically stable algorithm allowing computation of the phase factors that are needed to build QSP circuits.
Existing methods require the use of variable precision arithmetic and can only be applied to polynomials
of a relatively low degree. We present here an optimization-based method that can accurately compute the
phase factors using standard double precision arithmetic operations. We demonstrate the performance of this
approach with applications to Hamiltonian simulation, eigenvalue filtering, and quantum linear system problems.
Our numerical results show that the optimization algorithm can find phase factors to accurately approximate
polynomials of a degree larger than 10 000 with errors below 10−12.

DOI: 10.1103/PhysRevA.103.042419

I. INTRODUCTION

Recent progress in quantum algorithms has enabled con-
struction of efficient quantum circuit representations for
a large class of nonunitary matrices, which significantly
expands the potential range of applications of quantum com-
puters beyond the original goal of efficient simulation of
unitary dynamics envisaged by Benioff [1] and Feynman [2].
The basic tool for representation of nonunitary matrices and
hence of nonunitary quantum operators is called block en-
coding [3]. It describes the process in which one embeds
a nonunitary matrix A into the upper-left block of a larger
unitary matrix UA, and then expresses the quantum circuit in
terms of UA.

Computation of matrix functions, i.e., evaluation of F (A),
where F (x) is a smooth (real-valued or complex-valued)
function, is a central task in numerical linear algebra [4]. Nu-
merous computational tasks can be performed by generating
approximations to matrix functions. These include application
of a broad range of operators to quantum states: e.g., e−itA

for the Hamiltonian simulation problem, e−βA for the thermal
state preparation problem, A−1 for the matrix inverse [also
called the quantum linear system problem, QLSP], and the
spectral projector of A for the principal component analysis,
to name a few.

Several routes to construct a quantum circuit for F (A) have
been developed. These include methods using phase estima-
tion (e.g., the Harrow-Hassidim-Lloyd algorithm [5] for the
matrix inverse), the method of linear combination of unitaries
(LCU) [6,7], and the method of quantum signal processing

(QSP) [3,8,9]. Among these methods, QSP stands out as, so
far, the most general approach capable of representing a broad
class of matrix functions via the eigenvalue or singular value
transformations of A, while using a minimal number of ancilla
qubits. The basic idea of QSP is to approximate the desired
function F (x) by a polynomial function f (x), and then find
a circuit to encode f (A) exactly (assuming an exact block
encoding UA). Treating the block encoding UA as an oracle, the
application of QSP has given rise to asymptotically optimal
Hamiltonian simulation algorithms [10,11]. Applications have
also been made for solving QLSP [3,12], and to eigenvalue
filtering [13]. In particular, the eigenvalue filtering approach
of Ref. [13] does not directly approximate A−1 but approxi-
mates a spectral projection operator, also leading to a quantum
algorithm for solving QLSP with near-optimal complexity
without the need of involving complex procedures such as
variable time amplitude amplification [14].

Despite these fast-growing successes, practical application
of QSP on quantum computers, whether these are near- or
long-term machines, still faces a significant challenge. A QSP
circuit is defined using a series of adjustable phase factors.
Once these phase factors are known, the QSP circuit can be di-
rectly implemented using UA together with a set of multiqubit
control gates and single-qubit phase rotation gates. However,
the inverse problem, i.e., finding the phase factors associated
with a given polynomial function f (x), is extremely difficult,
to the extent that in practice very few applications of QSP have
been made to date. The original work of Low and Chuang
[8] demonstrated the existence of the phase factors but was
not constructive. Initial efforts to find constructive procedures

2469-9926/2021/103(4)/042419(22) 042419-1 ©2021 American Physical Society

https://orcid.org/0000-0003-0577-2475
https://orcid.org/0000-0003-1420-4373
https://orcid.org/0000-0002-7164-4757
https://orcid.org/0000-0001-6860-9566
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.103.042419&domain=pdf&date_stamp=2021-04-22
https://doi.org/10.1103/PhysRevA.103.042419

DONG, MENG, WHALEY, AND LIN PHYSICAL REVIEW A 103, 042419 (2021)

were not encouraging. Thus it was reported in Ref. [10] that it
was prohibitive to obtain a QSP circuit of a length that is larger
than 30 for the Jacobi-Anger expansion [8] of the Hamiltonian
simulation problem, and concluded “the difficulty of comput-
ing the angles needed to perform the QSP algorithm prevents
us from taking full advantage of the algorithm in practice,
so it would be useful to develop a more efficient classical
procedure for specifying these angles.”

The first constructive procedure to find phase factors was
given in Ref. [3], with a procedure which requires a recursive
solution of roots of high-degree polynomials to high precision,
counting multiplicities of the roots. Therefore, this procedure
is not stable for representing high-degree polynomials using
QSP. Significant improvement has recently been made by
Haah [12], who proposed a numerical algorithm to compute
phase factors up to order ∼1000, provided that all arithmetic
operations can be computed with sufficiently high precision.
Specifically, the number of classical bits needed for this scales
as O[d log10(d/ε)], where d is the degree of the polynomial
f and ε is the target accuracy. Therefore, the algorithm is still
not classically numerically stable (a numerically stable algo-
rithm should use no more than O[poly log10(d/ε)] classical
bits) [15]. Haah’s algorithm was implemented in Ref. [12]
using MATHEMATICA and employed the variable precision
arithmetic capability of this. The running time is observed to
be O(d3).

In this paper, we demonstrate that the phase factors can be
accurately determined with standard double-precision arith-
metic operations, even when the degree of the polynomial
f (x) is very high (�10 000) and when a very high precision
(L∞ error of function approximation � 10−12) is required.
We achieve this with a standard optimization approach that
only minimizes a loss function, rather than recursively de-
termining the phase terms. This minimization involves the
multiplication of matrices in SU(2) and is thus numerically
stable. We iteratively refine the phase factors to minimize the
loss functions. However, since the optimization of the phase
factors is a very nonlinear procedure, the initial guess must
be carefully chosen. Indeed, if we randomly select the initial
guess, the accuracy of the resulting phase factors is usually
very low. We also find that under proper conditions, the QSP
phase factors exhibit an inversion symmetry structure with
respect to the center. This should be respected in the initial
guess and preserved throughout the optimization procedure.
We combine these two features to provide a simple yet highly
effective choice of the initial guess.

We demonstrate here the performance of our optimization-
based approach to determine the phases for QSP algorithms
with examples for Hamiltonian simulation, eigenstate filter-
ing, and matrix inversion. We show that our algorithm can
significantly outperform existing approaches using variable
precision arithmetic operations [3,12]. Numerical observation
indicates that the computational cost of our method scales
only quadratically as O(d2), while the number of classical bits
used remains constant (using the standard double precision,
i.e., 64 bits, arithmetic operations) as d increases.

We note that the previous algorithms for finding the phase
factors require an analytic expansion of the smooth function
F (x) into polynomials. For instance, the Jacobi-Anger expan-
sion is used for Hamiltonian simulation [8,12]. When F (x) is

defined only on a subinterval of [−1, 1], as for, e.g., matrix
inversion, where F (x) = 1/x is not well defined at x = 0,
one must first find an approximate smooth function and then
perform expansion with respect to this approximate smooth
function. Both steps introduce additional approximations and
lead to inefficiencies in implementation. As an alternative, we
propose here to use the Remez exchange algorithm [16] to
directly find the minimax approximation to F (x) on [−1, 1]
or a given subinterval. Our numerical evidence shows that
this not only streamlines the process of finding QSP factors,
but that the use of the Remez algorithm can also lead to
polynomials of significantly lower degrees.

Besides the inversion symmetry, we also find that the phase
factors used for approximating smooth functions can decay
rapidly away from the center. We find that the decay of the
phase factors is directly linked to the decay of the coefficients
in the Chebyshev expansion of the target function. This en-
ables us to design a phase-padding procedure, which identifies
an initial guess of the QSP phase factors for a high-degree
polynomial, given the corresponding phase factors for a rela-
tively low-degree polynomial.

Throughout this paper, we shall use the following notation:
N = 2n, M = 2m, and [N] = { 0, 1, . . . , N − 1 }, with n the
number of logical qubits (also called system qubits), and m
the number of qubits added to construct the unitary UA. We
shall refer to the latter as the ancilla qubits for block encoding,
which is to be distinguished with additional ancilla qubits
needed for QSP. Td and Rd are Chebyshev polynomials of
degree d of the first and second kinds, respectively. For a
matrix A, the transpose, Hermitian conjugate, and complex
conjugate are denoted by A�, A†, A∗, respectively.

II. REVIEW OF QUANTUM SIGNAL PROCESSING

A. Block encoding and qubitization

Block encoding is a general technique to encode a nonuni-
tary matrix on a quantum computer. Let A ∈ CN×N be an
n-qubit Hermitian matrix. If we can find an (m + n)-qubit
unitary matrix U ∈ CMN×MN such that

UA =
(

A ·
· ·

)
(1)

holds, i.e., A is the upper-left matrix block of UA, then we may
get access to A via the unitary matrix UA. In particular,

A = (〈0m| ⊗ In)UA(|0m〉 ⊗ In). (2)

In general, the representation (2) may not exist, e.g., when the
operator norm ‖A‖2 is larger than 1. So the definition of block
encoding should be relaxed as follows [3,8]: if we can find
α, ε ∈ R+, a state |G〉 ∈ CM , and an (m + n)-qubit matrix UA

such that

‖A − α(〈G| ⊗ In)UA(|G〉 ⊗ In)‖ � ε, (3)

then UA is called an (α, m, ε)-block encoding of A. Here |G〉
is referred to as the signal state (for block encoding). Then
Eq. 2 gives a (1, m, 0)-block encoding of A with |G〉 = |0m〉.
If UA is Hermitian, it is called a Hermitian block encoding. In
particular, all the eigenvalues of a Hermitian block-encoding
UA are ±1. For simplicity of presentation, in the following

042419-2

EFFICIENT PHASE-FACTOR EVALUATION IN QUANTUM … PHYSICAL REVIEW A 103, 042419 (2021)

we present the explicit construction of block encoding and
qubitization for Hermitian UA. We shall then briefly discuss
the generalization to non-Hermitian UA and refer the reader to
Appendix C for full details of this.

As an example, assume that A is written as the linear
combination of Pauli operators [6,7] with real coefficients, as

A =
∑

l∈[M]

clUl , cl � 0. (4)

Here Ul is a multiqubit Pauli operator, which is unitary and
Hermitian. We assume the availability of two oracles. The first
one is the (m + n)-qubit select oracle:

USEL =
∑

l∈[M]

|l〉 〈l| ⊗ Ul . (5)

USEL implements the selection of the unitary Ul conditioned
on the state of the m-qubit signal register. The second is the
m-qubit prepare oracle that generates a specific superposition
of the m-qubit signal states (note that |l = 0〉 ≡ |0m〉),

UPREP |0m〉 = 1√‖c‖1

∑
l∈[M]

√
cl |l〉, (6)

where the 1-norm is ‖c‖1 = ∑
l∈[M] |cl |. Then defining

UA = (U †
PREP ⊗ In)USEL(UPREP ⊗ In), (7)

we may verify that UA is a (‖c‖1, m, 0)-Hermitian block en-
coding of A.

We also define

U� = 2 |0m〉 〈0m| ⊗ In − Im ⊗ In. (8)

Both U� and UA are unitary and Hermitian. Then Jordan’s
lemma [17] states that the entire Hilbert space H = CMN can
be decomposed into orthogonal subspaces H j invariant under
U� and UA, where each H j has dimension 1 or 2. Restricted to
each irreducible two-dimensional subspace H j , with a prop-
erly chosen basis denoted by B j , the matrix representations of
U� and UA are

[U�]B j =
(

1 0
0 −1

)
, [UA]B j =

⎛⎝ λ j −
√

1 − λ2
j

−
√

1 − λ2
j −λ j

⎞⎠.

(9)
Here λ ∈ [−1, 1], and a potential phase factor in the off-
diagonal elements of [UA]B j can be absorbed into the choice of
the basis. It is worth noting that we can always choose [U�]B j

to be a σz matrix. Given the eigendecomposition α−1A =∑
j∈[N] λ j |ψ j〉 〈ψ j |, there are exactly N such two-dimensional

subspaces H j of the full Hilbert space H. Each subspace is
associated with a vector |0m〉 |ψ j〉 in the (m + n)-qubit space
and Eq. 9 gives

(〈0m| ⊗ In)UA |0m〉 |ψ j〉 = λ j |ψ j〉 = α−1A |ψ j〉 . (10)

Each subspace H j is also the invariant subspace of the op-
erator 	 := U�UA, which is referred to as the iterate [18].
Furthermore, when restricted to H j , the iterate 	 is a rota-
tion matrix with eigenvalues e±i arccos(λ j). Then the combined
space ⊕ j∈[N]H j forms a 2N-dimensional subspace of H. This
introduces an additional ancillary qubit, so the total number
of qubits is now n + m + 1. Each eigenvalue λ j is associated

with two branches and hence with an SU(2) matrix via the
mapping λ j = cos θ j �→ e±iθ j . This technique is called qubiti-
zation [18].

Although the decomposition in Eq. 9 formally involves the
eigenvalue λ j of A and the proper basis B j , it is important
that we do not necessarily need the eigendecomposition of A
explicitly. In fact, the key advantage of qubitization is that one
can perform the eigenvalue transformations for all eigenvalues
simultaneously by means of the QSP approach.

B. Quantum signal processing

Given the above constructions of block encoding and
qubitization, QSP then considers the following parameterized
circuit consisting of d iterates and d + 1 rotations that are
interleaved in alternating sequence:

U�̃ =
[

d−1∏
i=0

(eiφ̃iU�U�UA)

]
eiφ̃dU�. (11)

Here φ̃i ∈ R, and �̃ = (φ̃0, . . . , φ̃d) is the vector of phase
factors that will specify the polynomial f (x) approximating
the desired function F (x). The use of the notation φ̃ here is
due to the fact that there are multiple sets of phase factors,
which can be deduced from each other. In this section, we use
different notations such as φ̃, φ, ϕ to distinguish these phase
factors, and record their relation explicitly.

We now summarize the construction of these phase factors
for a nonunitary but Hermitian operator A, according to the
approach of Ref. [3]. For any φ̃ ∈ R and n-qubit state |ψ〉, we
have

eiφ̃U� |0m〉 |ψ〉 = eiφ̃ |0m〉 |ψ〉.
For any m-qubit state |⊥m〉 satisfying 〈0m| ⊥m〉 = 0, we have

eiφ̃U� |⊥m〉 |ψ〉 = e−iφ̃ |⊥m〉 |ψ〉.
Therefore,

U� = −iei π
2 U�.

We may then absorb U� into the rotation matrix as

U�̃ = (−i)d

[
d−1∏
i=0

(eiϕiU�UA)

]
eiϕdU�. (12)

Here we have redefined the phase factors as ϕi = φ̃i + π
2 for

i = 0, . . . , d − 1, and ϕd = φ̃d . The global phase factor (−i)d

can be optionally discarded and we shall do so below.
Then we may readily check that the matrix eiϕU� has a

(1,1,0)-block encoding as illustrated in Fig. 1. Here the control
gate represents an (m + 1)-qubit Toffoli gate (with the usual
convention that open circles represent the target qubit being
flipped when the control bits are zero).

Using the circuit in Fig. 1, we may then implement the
(n + m)-qubit unitary operator U�̃ of Eq. 12 using only one
additional ancilla qubit and the circuit in Fig. 2 [3].

Reference [3] investigated the general question as to which
class of functions can be block encoded by U�̃ for some
choice of phase factors. First, each H j is an invariant subspace
of U�̃. So the upper-left element of U�̃ acting on H j is a
function of the eigenvalue λ j . Thus we see that qubitization

042419-3

DONG, MENG, WHALEY, AND LIN PHYSICAL REVIEW A 103, 042419 (2021)

FIG. 1. Quantum circuit for block-encoding eiϕU� . The three dis-
tinct groups of lines represent 1,m, n qubits, respectively.

reduces the problem of representing a matrix function on an
n-qubit system to a representation problem in SU(2), which
can be carried out on classical computers. We now state main
theorem of QSP from Ref. [3] below in Theorem 1.

Theorem 1. (Quantum Signal Processing in SU(2) [[3],
Theorem 3]) For any P, Q ∈ C[x] and a positive integer d
such that (1) deg(P) � d, deg(Q) � d − 1, (2) P has parity
(d mod 2) and Q has parity (d − 1 mod 2), (3) |P(x)|2 +
(1 − x2)|Q(x)|2 = 1,∀x ∈ [−1, 1]. Then, there exists a set of
phase factors � := (φ0, · · · , φd) ∈ [−π, π)d+1 such that

U�(x) = eiφ0σz

d∏
j=1

[W (x)eiφ jσz]

=
(

P(x) iQ(x)
√

1 − x2

iQ∗(x)
√

1 − x2 P∗(x)

)
, (13)

where

W (x) = ei arccos(x)σx =
(

x i
√

1 − x2

i
√

1 − x2 x

)
.

The proof of Theorem 1 is constructive and, as shown
explicitly in Ref. [3], it yields an algorithm to compute the
phase factor vector � once the polynomials P, Q ∈ C[x]
are given. The algorithm of Ref. [3] is summarized in
Appendix G (Algorithm 5, with modifications to enhance
the numerical stability). We note that these phase factors
are unique, modulo certain trivial equivalence relations (Ap-
pendix A).

To connect Theorem 1 with the representation of U�̃ in
Eq. 11, we consider the matrix representation of U�̃ restricted
to H j , let x = λ j , and use the following identity:

ei arccos(x)σx = e−i π
4 σz

(
x −√

1 − x2

√
1 − x2 x

)
ei π

4 σz . (14)

Hence to connect Eq. 13 with Eq. 11, we have
φ̃0 = φ0 − π

4 , φ̃d = φd + π
4 , and φ̃i = φi for 1 � i �

d − 1. Therefore, the relation between the phase
factors {φi}d

i=0 in Theorem 1 [Eq. 13] and the phase
factors {ϕi}d

i=0 appearing in U�̃ of Eq. 11 and in the
implementation of the QSP circuit in Fig. 2, is given
by

ϕi =

⎧⎪⎨⎪⎩
φ0 + π

4 , i = 0

φi + π
2 , 1 � i � d − 1

φn + π
4 , i = d.

(15)

C. Representing general matrix polynomials

Now given a degree d polynomial P(x) ∈ C[x] satisfying
the requirement of Theorem 1, for any (α, m, 0) Hermitian-
block encoding of A, the circuit in Fig. 2 yields a (1, m +
1, 0)-block encoding of P(A/α). With some abuse of notation,
we shall denote both this block encoding of the polynomial
function of A and the associated QSP circuit by U�. The QSP
circuit uses d queries of UA and O((m + 1)d) other primitive
quantum gates.

We should remark that the condition (3) in Theorem 1
imposes very strong constraints on P, Q that are nontrivial to
satisfy. Therefore, we consider the following cases separately
on how to construct QSP circuits in practice.

Case 1. In many applications, we are interested in com-
puting f (A/α), where f (x) is a real polynomial. It is stated
in Ref. [[3], Theorem 5] that for f ∈ R[x] satisfying (1),
(2), and | f (x)| � 1,∀x ∈ [−1, 1], there exists P ∈ C[x], Q ∈
R[x] such that Re[P(x)] = f (x). The choice of P, Q may not
be unique. This only gives the block encoding of P(A/α). To
obtain the block encoding of f (A/α), we can use the LCU
technique to separate the real and imaginary parts of P(x) as
follows. Note that

f (x) = 1
2 (P(x) + P∗(x)). (16)

If the upper-left entry of U�(x) is P(x) as in Eq. 13, then

U ∗
�(x) = e−iφ0σz

d∏
j=1

[W ∗(x)e−iφ jσz]

=
(

P∗(x) −iQ∗(x)
√

1 − x2

−iQ(x)
√

1 − x2 P(x)

)
.

Here U ∗
�(x) is the complex conjugation of U�(x) and hence

its upper-left entry of is P∗(x). From

W ∗(x) = ei π
2 σzW (x)e−i π

2 σz ,

we find that U ∗
�(x) = U−�(x), where the negative phase fac-

tors are defined by

−� :=
(
−φ0 + π

2
,−φ1, · · · ,−φd−1,−φd − π

2

)
, (17)

which simply negates each phase factor except for φ0 and φd .
To find a block encoding of 1

2 (U� + U−�), we can introduce
one additional ancilla qubit to the signal register. The prepare
oracle UPREP is simply the Hadamard gate H . Figure 3 gives
the circuit for the (1, m + 2, 0)-block encoding of f (A/α).
This technique is also called the addition of block encodings
[3]. Note that according to Eq. 15, the negative phase factors
−� should be implemented using the circuit in Fig. 2 with

ϕi =

⎧⎪⎨⎪⎩
−φ0 + 3π

4 , i = 0

−φi + π
2 , 1 � i � d − 1

−φd − π
4 , i = d.

(18)

Case 2. The real polynomial f (x) in case 1 is assumed
to have definite parity. For a general real polynomial without
parity constraints, we may use the decomposition

f (x) = feven(x) + fodd(x), (19)

042419-4

EFFICIENT PHASE-FACTOR EVALUATION IN QUANTUM … PHYSICAL REVIEW A 103, 042419 (2021)

FIG. 2. Quantum circuit for quantum signal processing of a general matrix polynomial with a Hermitian block-encoding UA.

where feven(x) = 1
2 (f (x) + f (−x)), fodd(x) = 1

2 (f (x) −
f (−x)). If | f (x)| � 1 on [−1, 1], then | feven(x)|, | fodd(x)| � 1
on [−1, 1], and feven(x), fodd(x) can each be constructed
using the circuit in Fig. 3. Introducing another ancilla qubit
and using the same form of the LCU circuit in Fig. 3
(the U�,U−� circuits should be replaced by the QSP
circuits for even and odd parts, respectively), we find a
(2, m + 3, 0)-block encoding of f (A/α). Equivalently, we
have a (1, m + 3, 0)-block encoding of 1

2 f (A/α).
Case 3. The most general case is that f (x) ∈ C[x] is a com-

plex polynomial. Let f (x) = g(x) + ih(x), where g, h ∈ R[x]
are the real and imaginary parts of f (x), respectively. We
remark that even when h = 0 [i.e., f (x) is a real polynomial],
the associated polynomial P(x) might have a nonvanishing
imaginary component. Therefore, in general, we cannot ex-
pect to find phase factors that simultaneously encode g(x) +
ih(x), even if f (x) has definite parity. Hence we need to use
LCU once again to find the block encoding of f through the
linear combination of block encodings of g and ih, respec-
tively. Assuming |g(x)|, |h(x)| � 1 on [−1, 1], following case
2, we have a (2, m + 3, 0)-block encoding of g(A/α) denoted
by Ug. Similarly, a circuit of the form in Fig. 4 gives the
(2, m + 3, 0)-block encoding of ih(A/α) denoted by Uih.

We can use the LCU circuit of the form in Fig. 3, with the
U�,U−� circuits now replaced by Ug and Uih, respectively, to
ensure that the prepare oracle is still the Hadamard gate. This
gives a (4, m + 4, 0)-block encoding of f (A/α).

We now make some general remarks on the block encoding
of matrix polynomials. First, while LCU is a general tech-
nique for implementing addition of block encodings, when
block encoding a real polynomial as in case 1 above, one
can actually save an ancilla qubit by taking advantage of the
special structure of QSP circuits (see Appendix B). A similar
implementation exists for an imaginary polynomial, using a Z
gate as in Fig. 4. This reduces the number of additional ancilla
qubits by 1 for all cases discussed above and the number of
ancilla qubits then matches the results in Ref. [3]. Second,
although the concept of qubitization and QSP were introduced
here for Hermitian block encodings to make use of Jordan’s

FIG. 3. Quantum circuit for block encoding of f (A/α) using
LCU to separate real and imaginary parts of f (x). The three horizon-
tal lines represent 1,m + 1, n qubits, respectively. The circuits U�,
U−�, are shown, after proper transformation of the phase factors, in
Fig. 2.

lemma, all the constructions shown above can be generalized
to non-Hermitian block encodings. One possible procedure
to achieve this is described in Appendix C, which requires
only use of one additional ancilla qubit. We note here that
an alternative procedure is to use the quantum singular value
transformation, which removes the need of this ancilla qubit
and leads to a slightly simpler circuit, as well as allowing
treatment of the case when A is not a Hermitian matrix [3].
For simplicity, all further discussion in this paper assumes that
an (α, m, 0)-block encoding UA is available. When the block
encoding itself is not error-free, i.e., UA is an (α, m, ε)-block
encoding of A, the cumulative error in the QSP circuit can also
be analyzed. We refer readers to Refs. [3] for more details.

D. Direct methods for finding phase factors

According to Sec. II C, case 1 is the most important step,
since cases 2 and 3 can simply be obtained from applying case
1 repeatedly and using the LCU technique. In fact, the proof of
Theorem 5 in Ref. [3] also provides a constructive method for
finding the phase factors, as follows. Given a properly normal-
ized real polynomial with definite parity f (x), one may first
reconstruct complementing polynomials B(x),C(x) ∈ R[x] to
form P = f + iB, Q = C, satisfying the requirement in The-
orem 1. This can be done by solving all the roots (including
multiplicities) of the polynomial 1 − f (x)2 ([3], Lemma 6).
Then one can use a reduction method to find the phase factors.
This procedure will be referred to as the GSLW method. This
procedure is exact if all floating point arithmetic operations
can be performed with infinite precision, but is numerically
unstable with standard double precision arithmetic operations.
One disadvantage of the GSLW method is that it is based on
the Taylor expansion of high order polynomials, which can be
numerically highly unstable when the degree of polynomials
becomes large.

To improve the numerical stability of the GSLW method,
another algorithm was proposed in Ref. [12], which we will
refer to as the Haah method. In the Haah method, the poly-
nomials defined on [−1, 1] are mapped to the unit circle via
the transformation x �→ e±i arccos(x) and then extended to the
complex plane. Such treatment is equivalent to a Chebyshev

FIG. 4. Quantum circuit for block encoding of ih(A/α) using
linear combination of unitaries. The three lines represent 1,m + 1, n
qubits, respectively. The circuit U�, U−�, after proper transformation
of the phase factors, is given in Fig. 2.

042419-5

DONG, MENG, WHALEY, AND LIN PHYSICAL REVIEW A 103, 042419 (2021)

polynomial expansion, which improves the numerical stabil-
ity over the GSLW method, which uses the standard basis
{1, x, x2, . . .}. Then, a similar reduction procedure is used to
deduce the phase factors. However, one still needs to find
the roots of a polynomial of high degree, and the number of
classical bits required for this is O(d log10 d), where d is the
degree of the polynomial.

In both the GSLW method and the Haah method, the phase
factors are obtained from a single shot calculation. Therefore,
we refer to them as the direct methods for finding phase
factors. This is in contrast to the optimization-based method
to be introduced below, which finds the phase factors via an
iterative procedure.

The performance of the GSLW method has also been
improved by a recent work [19]. The improved method of
Ref. [19] is still based on direct factorization of polynomi-
als. However, it is found that the numerical stability can be
empirically improved using a method called capitalization,
which adds a small perturbation to the leading order term of
the target polynomial. Together with another technique called
halving, the method of Ref. [19] can find a sequence with
more than 3000 phase factors with double precision arith-
metic operations. This result indicates that the sensitivity of
the phase factors with respect to perturbation of the target
polynomials is still not well understood. Our optimization-
based algorithm below presents a very different approach to
determining the phase factors, which can achieve machine
precision directly without perturbing the target polynomials
and which is thus not limited by stability of such procedures.
We show that with the optimization approach up to 10 000
phase factors can be determined with errors less than 10−12.

III. OPTIMIZATION-BASED METHOD FOR FINDING
PHASE FACTORS

Both the GSLW and the Haah methods are limited by the
usage of root-finding and matrix reduction procedure, which
result in the numerical instability when the degree of polyno-
mials becomes large. Here we consider an alternative strategy
to find the phase factors by direct minimization with respect
to a certain distance function:

L(�) := dist{Re[〈0|U�(x)|0〉], f (x)}. (20)

In practice, the distance function will be characterized by
the mean-squared loss over discrete sample points. When
L(�∗) is zero, we obtain the desired phase factors through
the minimizer �∗. This strategy bypasses the difficulty of
constructing the complementing polynomials that rely on the
high-precision root-finding procedure. Because the computa-
tion of the gradient and the Hessian matrix of the objective
function only involve the matrix multiplications in SU(2),
which is a numerically stable procedure, the optimization
scheme is expected to significantly improve the robustness of
the algorithm. This will be verified by our numerical tests. It
also ensures an efficient optimization.

In the following discussion, we use P, Q as the polynomials
involved in the QSP unitary matrix in Eq. 13. Let Cd+1 ⊂
[−π, π)d+1 be the irreducible set of phase factors with d + 1
entries. The pair of polynomials P(x), Q(x) ∈ C[x] satisfying

conditions in Theorem 1 determines a unique set of phase
factors � ∈ Cd+1 (see Appendix A).

We again only consider a properly normalized real poly-
nomial with definite parity f (x) as in case 1 of Sec. II C.
Because the form of Q(x) is not of interest, we may restrict
Q(x) ∈ R[x].

A. Symmetry property of the phase factors

Given a set of QSP factors �, let the inverse phase factors
be defined as

�− = (φd , φd−1, · · · , φ0). (21)

The inverse phase factors should not be confused with the
negative phase factors −� in Eq. 17.

Theorem 2 states that when we choose Q(x) to be a real
polynomial, the phase factors are symmetric under inversion.

Theorem 2 (Inversion Symmetry). (1) If � = �−, then
Q ∈ R[x]. (2) If Q ∈ R[x], then we may choose � ∈ Cd+1

such that � = �−.
Proof. (1) Obviously,

U�− (x) = eiφd σz

d∏
j=1

[W (x)eiφd− jσz] = U�(x)�

=
(

P(x) iQ∗(x)
√

1 − x2

iQ(x)
√

1 − x2 P∗(x)

)
. (22)

Then, the statement that � is invariant under inversion implies
that Q(x) = Q∗(x) ∈ R[x].

(2) If Q ∈ R[x], then U�(x) = U�(x)� = U�− (x). Ex-
pand P, Q in terms of Chebyshev polynomials, i.e., P(x) =∑

j p jTj (x),
√

1 − x2Q(x) = ∑
j q j

√
1 − x2Rj−1(x). After a

change of variable x = cos θ , P, Q are transformed to Fourier
series in terms of cos(jθ) and sin(jθ), respectively. The
continuation θ �→ 2π − θ extends the QSP unitary consist-
ing of P, Q to a U(1) → SU(2) function, after identifying
θ with eiθ ∈ U (1). Moreover, the parity constraint implies
that this function only has nonzero coefficients j = −d,−d +
2, · · · , d − 2, d with respect to ei jθ . Appendix A shows that
the set of phase factors is unique up to the equivalence relation
for the irreducible set Cd+1. So, � = �− up to equivalence
relations. In particular, we may choose the phase factors such
that � = �−.

As an example, let P(x) = Td (x), Q(x) = Rd−1(x), the
corresponding QSP phase factors are � = (0, 0, · · · , 0︸ ︷︷ ︸

d+1

). For

P(x) = iTd (x), Q(x) = Rd−1(x), the phase factors are � =
(π

4 , 0, · · · , 0︸ ︷︷ ︸
d−1

, π
4). In both cases, the polynomial Q is real.

Thus, it is evident that the phase factors satisfy the inversion
symmetry in Theorem 2.

The symmetry property allows us to reduce the number of
degrees of freedom by a factor of 2, and also motivates the
symmetric construction of phase factors in the optimization
procedure later. The appearance of two π/4 factors in the
example above can be justified by Theorem 3, which shows
that the action of these phase factors interchanges the real and
imaginary parts of the polynomial P up to a sign.

042419-6

EFFICIENT PHASE-FACTOR EVALUATION IN QUANTUM … PHYSICAL REVIEW A 103, 042419 (2021)

Lemma 3. Given a set of QSP phase factors �, the follow-
ing relations hold pointwise for x ∈ [−1, 1]:

Re[〈0|U�(x)|0〉] = −Im
[〈0|e−i π

4 σzU�(x)e−i π
4 σz |0〉],

Im[〈0|U�(x)|0〉] = Re
[〈0|e−i π

4 σzU�(x)e−i π
4 σz |0〉].

Proof. Factorize the QSP unitary as U� = a0I + a1σz +
a2σx + a3σy. The algebra of Pauli matrices implies that
e−i π

4 σzU�e−i π
4 σz = a0e−i π

2 σz + a1e−i π
2 σzσz + a2σx + a3σy =

−ia0I − ia1σz + a2σx + a3σy. Then the conclusion follows.

B. Choice of objective function

If the target smooth function f (x) is not a polynomial, we
first approximate f (x) using a polynomial, and then feed the
polynomial into the QSP solver. We would stress that this pre-
processing step of polynomial approximation is necessary for
the success of the optimization method. If we directly feed a
nonpolynomial function f (x) into the objective function, then
generally the equation L(�) = 0 does not have a solution. Nu-
merical evidence indicates that the landscape of the objective
function is very complex and the optimization procedure can
easily get stuck in one of the many local minima. On the other
hand, for any polynomial satisfying conditions in Theorem 1,
there always exists a set of QSP factors �∗ so L(�∗) = 0. Our
numerical results indicate that starting from a proper initial
guess, the optimization procedure can be very robust.

Since Q(x) is not involved in the distance function, we
may require Q(x) ∈ R[x] and impose the inversion symme-
try constraint (Theorem 2) on the phase factors. Under this
constraint, the phase factors � = (φ0, . . . , φd) have � d+1

2 �
degrees of freedom for optimization. As a result, it is rea-
sonable to choose the approximation as a polynomial f of
degree d with parity (d mod 2), which has the same num-
ber of adjustable coefficients. Theorem 1 and Theorem 2
together guarantee the existence of symmetric phase factors �

such that Re[〈0|U�(·)|0〉] = f . In this case, the optimization
over � toward the minimum value of the distance function
can be viewed as a polynomial interpolation taking the QSP
parametrization. These features suggest that the mean-squared
loss in terms of d̃ := � d+1

2 � sample points on (0, 1] provides
an accurate enough characterization of distance function.
Therefore, we can write objective function for optimization
as

L(�̂) = 1

d̃

d̃∑
j=1

|Re[〈0|U�(x j)|0〉] − f (x j)|2, (23)

where for �̂ = (φ0, . . . , φd̃−1) ∈ [−π, π)d̃ ,

� =
{

(φ0, · · · , φd̃−1, φd̃−1, · · · , φ0) d is odd

(φ0, · · · , φd̃−2, φd̃−1, φd̃−2, · · · , φ0) d is even.

(24)
We choose x j = cos ((2 j−1)π

4d̃
), j = 1, . . . , d̃ as the positive

roots of the Chebyshev polynomial T2d̃ (x). Theorem 4 shows
that using the Chebyshev nodes, the accuracy of the polyno-
mial approximation can be directly measured in terms of the
objective function (the proof is given in Appendix D).

Theorem 4. Suppose we have the following expansions:

f (x) =
d∑

j=0

α jTj (x), f�(x) =
d∑

j=0

β jTj (x),

where f�(x) = Re[〈0|U�(x)|0〉]. If the discrete samples are
chosen to be positive roots of T2� d+1

2 �(x) and L(�̂) � ε, then
we have

max
j=1,...,d

|α j − β j | � 2
√

ε.

Note that the optimal phase factors are not necessarily
unique. This is because the real part of P does not uniquely
determine P, Q, even when assuming Q is real. Nonetheless,
we only need to find one set of phase factors �∗ to accurately
encode f (x).

Our optimization problem can be viewed as variational
quantum circuit (more specifically, similar to the quantum
approximate optimization algorithm [20]), in which one set of
quantum gates (those associated with σx) are fixed. Due to the
complex energy landscape, a good initial guess is necessary
for the performance of the optimizer.

C. Generating approximation polynomials

To generate a polynomial to approximate f to a given
degree, we consider in this paper two efficient approaches: the
Fourier-Chebyshev expansion method and the Remez method.

For a real smooth function F on the interval [−1, 1],
we find its polynomial approximation in terms of Cheby-
shev polynomial of the first kind, i.e., F (x) ≈ f (x) =∑d

j=0 c jTj (x). The Fourier approach uses the fast Fourier
transformation to efficiently evaluate the coefficients via a
quadrature

c j ≈ (2 − δ j0)

2K
(−1) j

2K−1∑
l=0

F (− cos θl)e
i jθl , (25)

where θl = π l/K, 0 � l � 2K − 1, and K is the number of
quadrature points.

We may alternatively consider optimization with respect
to the L∞ norm. In fact, we may even restrict the interval
of approximation to be a subset [a, b] ∈ [−1, 1]. In this case,
an approximation polynomial can be obtained by solving the
optimal approximation problem in terms of the L∞ norm:

f = argmin
f ∈R[x],deg(f)�d

max
x∈[a,b]

|F (x) − f (x)|. (26)

The Remez algorithm [16,21] allows an efficient solution of
Eq. 26. This is an iterative method consisting of two steps.
In the first step, we find the coefficients of f from d + 2
points sampled from the interval by solving a set of linear
equations. The second step involves adjusting d + 2 samples
from coefficients solved in the first step. We can also use the
Remez algorithm to solve for f using parity constraint. Full
details are given in Appendix E.

D. Choice of initial point

The objective function in the optimization model of Eq. 23
is highly nonconvex, rendering the global minimum hard to

042419-7

DONG, MENG, WHALEY, AND LIN PHYSICAL REVIEW A 103, 042419 (2021)

find. Numerical tests given in Sec. IV D illustrate that the
solver can easily get stuck in a local minimum if we initi-
ate it randomly, confirming the complexity of the landscape.
Another possible choice of the initial phase factors is � =
(0, 0, . . . , 0, 0). Then the components of the QSP matrix are
Chebyshev polynomials P(x) = Td (x) and Q(x) = Rd−1(x).
However, straightforward computation shows that in this case
we have ∇L(�̂) = 0, i.e., �̂ is a stationary point, and obvi-
ously L(�̂) �= 0.

Our main observation is that if we slightly modify the
initial point as

� =
(π

4
, 0 . . . , 0,

π

4

)
∈ Rd+1 (27)

or, correspondingly, the symmetrized version

�̂0 =
(π

4
, 0 . . . , 0

)
∈ Rd̃ , (28)

then a gradient-based algorithm can reach a global minimum
in all cases shown in Sec. IV. According to the discussion in
Sec. III A, this corresponds to the initial guess with P(x) =
iTd (x) and Q(x) = Rd−1(x). The intuitive reason for choosing
such an initial point is that we are interested in the real part
of P(x). The choice in Eq. 27 ensures that Re[P(x)] = 0,
which is unbiased with respect to the function to be ap-
proximated. On the other hand, the seemingly natural choice
� = (0, 0, . . . , 0, 0) gives P(x) = Td (x), which is a heavily
biased initial guess of the real component. The theoretical
study of the landscape around such an initial guess justifying
the effectiveness of such a choice of the initial guess will be
the focus of future work.

E. Algorithm

We use a quasi-Newton method to perform numerical op-
timization of the phase factors. Compared to the Newton-type
method, we find that a quasi-Newton method such as the
L-BFGS method ([22], Chap. 5) leads to fast convergence
without any need to evaluate the Hessian matrix, for which
the computational cost would scale as O(d3). Appendix E
describes the L-BFGS algorithm, which is applied to the
symmetry-reduced phase factors according to Eq. 23. Us-
ing the initial phase factors in Eq. 28, the Hessian matrix
Hess L(�̂0) is a constant matrix regardless of approximation
polynomial f . More specifically, we have

Hess L(�̂0) =
{

2I d is odd

diag(2, . . . , 2, 1) d is even.
(29)

The inverse of this Hessian matrix will be fed into the L-BFGS
algorithm. In Algorithm 1 below, we describe how to compute
optimal phase factors corresponding to a given polynomial.
The complete procedure to approximate a generic complex-
valued function as polynomial components is presented in
Algorithm 2.

IV. NUMERICAL RESULTS

We present a number of tests to examine the effectiveness
of the optimization-based method compared to the previous
direct methods. We implement the direct algorithms designed
in Refs. [3] and [12] (denoted here as the GSLW and Haah

Algorithm 1. Function: �̂ = QSPBFGS(�̂0, f , ε).

Input: An initial vector �̂0, a real polynomial f of degree d and
error tolerance ε.

Choose d̃ = � d+1
2 � points x j = cos((2 j−1)π

4d̃
) as the positive roots of

Chebyshev polynomial T2d̃ .
Construct objective function L(�̂) using Eq. 23.
Choose the initial approximation of inverse Hessian B0 using

Eq. 29.
Set t = 0
while L(�̂) > ε do

Obtain �̂t+1 by updating �̂t via L-BFGS algorithm.
Set t = t + 1.

end while
Return: �̂t

methods, respectively). All numerical tests are performed on
an Intel Core 4 Quad CPU at 2.30 GHz with 8 GB of RAM.
Our method is implemented in MATLAB R2018b, while the
GSLW and the Haah method are written in JULIA 1.2 for its
better support for high-precision arithmetic. Our implemen-
tation (optimization, GSLW, Haah) can be downloaded from
the Github repository [23]. We utilize the BIGFLOAT type to
achieve variable precision arithmetic and internal routines in
JULIA for the root-finding procedures. In Appendix G, we
present the details of algorithms used for comparison and state
some modifications to enhance the numerical stability. The
stopping criterion is

max
j=1,...,d̃

|Re[〈0|U�(x j)|0〉] − f (x j)| < ε (30)

for both the GSLW method and our optimization method. The
Haah method is terminated when the resulting factors are ε

close to the target polynomial of degree d for values on the
dth roots of unity. We set ε to be 10−12. We highlight the
critical feature that all of the arithmetic in our optimization
algorithm is performed using only double-precision floating-
point numbers. This is a remarkable advantage in terms of
computation cost and numerical stability compared to direct
algorithms, which have to make use of variable precision
arithmetic operations. In fact, our numerical results indicate
that even with variable precision arithmetic operations, both

Algorithm 2. Finding phase factors for the polynomial approxi-
mation of a smooth function f over interval [a, b].

Input: A complex-valued function F ∈ C∞[a, b], a non-negative
integer d and error tolerance ε.

Find polynomial f ∈ C[x] of degree at most n which
approximates f over the interval [a, b]. One can obtain such a
polynomial via the Fourier-Chebyshev expansion approach or
the Remez algorithm [16,21].

Scale f by a constant factor α.
Denote f j, j = 1, 2, 3, 4 as real/imaginary and even/odd part of

f /α.
Set �̂0 = (π

4 , 0, . . . , 0) ∈ Rd̃ .
Solve �̂ j = QSPBFGS(�̂0, f j, ε) for each component.
Return: �̂ j, j = 1, 2, 3, 4 and factor α.

042419-8

EFFICIENT PHASE-FACTOR EVALUATION IN QUANTUM … PHYSICAL REVIEW A 103, 042419 (2021)

the GSLW and the Haah method still struggle to find the phase
factors accurately when the degree of polynomial becomes
large (�500).

A. Hamiltonian simulation

A Hermitian matrix H with bounded norm ‖H‖2 � 1 has
the spectral decomposition H = ∑

j λ j | j〉〈 j|. The Hamilto-
nian simulation with duration τ through H is then given by
f (H) = e−iτH = ∑

j e−iτλ j | j〉〈 j|. Implementation of Hamil-
tonian simulation is thus determined by the phase factors
that approximate the smooth complex-valued function f (x) =
e−iτx. Since this is smooth on the interval [−1, 1], its polyno-
mial approximation can be generated from the Jacobi-Anger
expansion [6]:

e−iτx = J0(τ) + 2
∑

k even

(−1)k/2Jk (τ)Tk (x)

+ 2i
∑
k odd

(−1)(k−1)/2Jk (τ)Tk (x). (31)

Here Jk’s are the Bessel functions of the first kind. The L∞
error to truncate the series up to order d is bounded by

2
∞∑

k=d+1

|Jk (τ)| � 2
∞∑

k=d+1

(
e|τ |

2

)k

k−k

� e−d
∞∑

k=d+1

1

k!

(
e|τ |

2

)k

< ee|τ |/2−d . (32)

Thus, the truncated series up to d ≈ e|τ |/2 + log10(1/ε0)
leads to an approximation whose truncation error is bounded
by ε0. In our simulation, we simply choose d = 1.4|τ | +
log10(1/ε0), where ε0 = 10−14, to make the truncation error
negligible compared to the error caused by other factors. We
denote such an approximation for Hamiltonian simulation
with duration τ by fτ .

We compare our method with the GSLW and Haah meth-
ods on the polynomial given by Eq. 31. For each τ , we divide
fτ into real and imaginary parts, and perform algorithms
separately according to case 3 in Sec. II C. Then we sum
up the CPU time and the error together of each part as final
results. We divide the coefficients of fτ by a constant factor
of 2 to ensure | fτ | � 1 for x ∈ [−1, 1]. The CPU time and the
number of bits utilized to perform arithmetic are displayed in
Fig. 5(a) and Fig. 5(b), respectively, together with polynomial
fits to the data for large τ values in Fig. 5(a) (the points
for small τ values are in the preasymptotic regime and are
excluded in the fits).

We display results for τ up to 500 since the direct methods
become very inefficient for larger values of τ . In particular,
the GSLW method fails to yield phase factors with required
accuracy ε = 10−12 when the degree d of fτ is larger than
369. We contribute the failure to the instability of JULIA’s
internal root-finding procedure. We observe that the CPU time
of our proposed method scales as τ 2, while it scales as τ 3

for the Haah method. Moreover, for both the GSLW and the
Haah method, the number of bits required is linear in τ , while
our optimization method is seen to be numerically stable in
all calculations with use of only standard double precision

(a)

(b)

FIG. 5. Resource costs in determining QSP phase factors for the
Hamiltonian simulation problem. Red dots, blue triangles, and green
squares correspond to the results by using Haah, GSLW, and our
optimization method, respectively. (a) CPU time(s) spent by each
algorithm as a function of duration τ , together with polynomial fits
in the large τ region. The degree of polynomial is d = 1.4|τ | +
log10(1/ε0), with ε0 = 10−14. The slope of the red (gray) and the
blue (dark gray) lines is 3, representing CPU time = const × τ 3. The
slope of the green (light gray) line is 2, representing CPU time =
const × τ 2. (b) Number of bits used to store floating-point numbers
and perform arithmetic. We show results for the GSLW method only
up to τ = 240 since it fails to generate accurate phase factors for
larger τ .

arithmetic operations, i.e., the number of bits is independent
of τ .

To further demonstrate the capability of our method, we
test our algorithm with τ up to 5000. When τ = 5000, the
polynomial degree d is 7033. The computational cost for eval-
uating the real and imaginary parts of fτ is given in Fig. 6. We
also display in Table I the L∞ error (i.e., the maximum error)
between the polynomial given by QSP phase factors and e−iτx

to verify the robustness of our method and the effectiveness of

042419-9

DONG, MENG, WHALEY, AND LIN PHYSICAL REVIEW A 103, 042419 (2021)

TABLE I. L∞ error of the optimization algorithm for determining QSP phase factors for Hamiltonian simulation as a function of τ . The
degree of truncated polynomial is d = 1.4|τ | + log10(1/ε0) with ε0 = 10−14.

τ 100 150 200 300 500 800

Real 6.1 × 10−13 7.9 × 10−13 1.1 × 10−12 2.4 × 10−13 4.7 × 10−13 3.6 × 10−13

Imaginary 1.1 × 10−12 2.3 × 10−13 3.3 × 10−13 3.2 × 10−13 2.8 × 10−13 5.9 × 10−13

τ 1000 1500 2000 3000 4000 5000
Real 5.6 × 10−13 5.5 × 10−13 5.5 × 10−13 7.2 × 10−13 1.2 × 10−12 9.4 × 10−13

Imaginary 4.2 × 10−13 5.9 × 10−13 9.0 × 10−13 7.3 × 10−13 9.0 × 10−13 1.5 × 10−12

our choice of the stopping criterion. The CPU time still scales
asymptotically as τ 2, in agreement with our expectations since
the per-iteration cost of the optimization procedure is O(d2).

B. Eigenstate filtering function

To prepare an eigenstate corresponding to a known eigen-
value, we consider the following 2k-degree polynomial:

fk (x,�) = Tk
(− 1 + 2 x2−�2

1−�2

)
Tk
(− 1 + 2 −�2

1−�2

) . (33)

Suppose H is a Hermitian matrix with an eigenvalue λ that is
separated from other eigenvalues by a gap � > 0. Let H̃ =
(H − λI)/(α + |λ|) and �̃ = �

2α
. It was proven in Ref. [13]

that

‖ fk (H̃ , �̃) − P̂λ‖2 � 2e−√
2k�̃, (34)

where P̂λ is the projection operator onto the eigenspace cor-
responding to λ. Furthermore, fk , which is referred to as the
eigenstate filtering function, is the optimal polynomial for fil-
tering out the unwanted information from all other eigenstates.

For this demonstration, we assume λ = 0 and α = 1. We
choose � = 0.1, 0.05, 0.01, 0.005 and test our algorithm with
different target filter values k. Equation (34) indicates that
k� controls the accuracy of the approximation. For each �,
we choose k such that k� = 3, 5, 10, 15, 20, 25, respectively.

FIG. 6. CPU time(s) required using the optimization algorithm
for determining QSP phase factors for Hamiltonian simulation,
shown as a function of τ . Blue dots (green triangles) correspond to
the real (imaginary) part of fτ of degree d = 1.4|τ | + log10(1/ε0)
with ε0 = 10−14. The slope of the red line is 2, representing
CPU time = const × τ 2.

The largest polynomial in this example is d = 10 000. The
coefficients of polynomials are divided by

√
2 to avoid in-

stabilities during optimization (see Sec. [IV E] for reasons to
scale the function). The results are summarized in Fig. 7 and
Table II. From the figure, we observe that the optimization
method performs stably in all cases, with CPU time scaling as
k2. These results are compared with the corresponding results
for the direct methods of GSLW and Haah in Fig. 8, for �

ranging from 0.005 to 0.1. This comparison is made only for
k� = 3, since we observe that direct methods struggle to treat
larger values of k�. It is evident that the optimization algo-
rithm also shows superior performance to the direct methods
in this example.

In particular, the Haah method fails to solve the QSP phase
factors with required accuracy ε = 10−12 when � is less than
0.01. The weaker performance of the Haah method compared
to (our modified) GSLW method observed in Fig. 8 can be
attributed to the following reasons. We note that JULIA’s in-
ternal root-finding routine has difficulty finding all the roots
of a polynomial when its degree is high, even when variable
precision arithmetic operations are used. The performance of
the GSLW and Haah methods can thus depend on the data set,
since they apply the root-finding procedure to different poly-
nomials. We observe that sometimes the GSLW method can
reach a polynomial of higher degree than the Haah method,

FIG. 7. CPU time(s) using the optimization algorithm for deter-
mining the set of phase factors for the eigenstate filter, shown as a
function of k�. The degree of each polynomial is 2k. The slope of
each line is 2, reflecting the quadratic cost CPU time = const × k2.

042419-10

EFFICIENT PHASE-FACTOR EVALUATION IN QUANTUM … PHYSICAL REVIEW A 103, 042419 (2021)

TABLE II. L∞ error of the optimization algorithm for determining the QSP phases for the eigenstate filter defined in Eq. 33.

�\k� 3 5 10 15 20 25

0.1 3.4 × 10−14 5.2 × 10−13 1.1 × 10−13 1.1 × 10−12 8.9 × 10−14 8.5 × 10−13

0.05 3.2 × 10−14 4.9 × 10−13 1.1 × 10−13 1.1 × 10−12 1.0 × 10−13 8.4 × 10−13

0.01 4.7 × 10−14 4.9 × 10−13 1.7 × 10−13 1.1 × 10−12 2.2 × 10−13 8.1 × 10−13

0.005 2.1 × 10−13 5.6 × 10−13 2.1 × 10−13 1.2 × 10−12 4.7 × 10−13 8.8 × 10−13

and sometimes it is the other way around. We remark that the
degree of polynomial fed into the Haah method is twice as
large as that fed into the GSLW method, since the variable x
is replaced by (z + 1/z)/2 in the Haah method. This increases
the difficulty for the Haah method to solve phase factors
successfully. By contrast, our modified implementation of the
GSLW method (Appendix G) expands the polynomial in the
Chebyshev basis, which significantly increases its stability,
making its performance comparable to Haah’s.

C. Matrix inversion

Consider the quantum linear problem A|x〉 = |b〉, where
A is a Hermitian matrix whose condition number is κ . Then
the eigenvalues of A are distributed within the interval Dκ :=
[−1,−1/κ] ∪ [1/κ, 1]. The solution |x〉 can be constructed
via matrix inversion, using QSP to generate the action of
A−1. For this, we need a polynomial approximation of 1/x
on the interval Dκ . We consider two options here. The first
is to generate a polynomial approximation of 1/x on Dκ by
extending the function to the interval [−1, 1] via an approxi-
mate function, as outlined in Sec. III B above. The second is
to apply the Remez algorithm [16,21] directly to the interval
Dκ . The first approach was pursued in Ref. [7], where the

FIG. 8. CPU time(s) of the optimization algorithm (green
squares) compared with direct (GSLW and Haah) algorithms (blue
triangles and red dots, respectively) for determining QSP phases for
the eigenstate filter, shown as a function of 1/�. The degree of each
polynomial is 2k = 6/�. The slopes of the red (gray) and blue (dark
gray) lines are 3, corresponding to a cubic cost in τ . The slope of the
green (light gray) line is 2, corresponding to a quadratic cost in τ .

following odd extension was proposed:

g(x) := 1 − (1 − x2)b

x
. (35)

Then, the truncated sum of Chebyshev polynomials

f (x) = 4
d∑

j=0

(−1) j

∑b
i= j+1

(2b
b+i

)
22b

T2 j+1(x) (36)

is ε0-close to 1/x on Dκ by choosing b = �κ2 log10(κ
ε0

)� and

d = �
√

b log10(4b
ε0

)�. In the test made here, ε0 is set to be

10−14.
In the second approach using the Remez algorithm, our

goal for the matrix inversion problem is to directly con-
struct an odd polynomial that approximates f (x) = 1/x on
Dκ . More generally, we note that if A is positive definite and
Dκ = [1/κ, 1], then we may approximate f by extending it to
a function that is either even or odd. Since this paper focuses
on the problem of finding the phase factors for approximating
a smooth function, in general, we will consider both the even
and odd extensions below. For the current instance f (x) =
1/x, we gradually increase the degree d until the value of f (x)
obtained by the Remez algorithm approximates 1/x over Dκ

with L∞ error below ε0. Figure 9 compares the polynomial

FIG. 9. Comparison of the form of polynomials given by the
Fourier-Chebyshev method, Eq. 36, with those generated by the
Remez method, for odd and even parities. The degree of the truncated
polynomial here is 611 and degrees of the even (odd) approximation
polynomials generated by the Remez method are 76 (111). The
approximation polynomials are divided by 80 for this plot.

042419-11

DONG, MENG, WHALEY, AND LIN PHYSICAL REVIEW A 103, 042419 (2021)

FIG. 10. Comparison of CPU time(s) of optimization algorithm
for approximating 1/x over Dκ via QSP as a function of κ for the two
different methods of finding the optimal polynomial. The red (gray)
line represents the result of approximating the polynomial with the
Fourier method, Eq. 36, the blue (dark gray) and the green (light
gray) lines represent the CPU time of results of approximating the
polynomial using the Remez method with odd and even parities,
respectively. All lines have slope 2, corresponding to quadratic cost
in κ .

given by the Fourier-Chebyshev method, Eq. 36, with that
generated by the Remez method, for κ = 20 and ε0 = 10−3.

In this example, we choose κ = 10, 20, . . . , 50. We test our
algorithm with ε0 = 10−14 on polynomials given by Eq. 36
and generated by the Remez algorithm with odd and even
parities, respectively. The CPU time associated with each
polynomial approximation is presented in Fig. 10. We also
compare the optimization method with the GSLW and the
Haah methods on the polynomials with lower degrees. We
choose ε0 = 10−6 and generate polynomials by the Remez
algorithm with odd and even parities. The results of the com-
parison are demonstrated in Fig. 11, while the degrees of the
polynomials given by each method are shown in Table III.
Similar to the case of eigenstate filtering polynomials, we find
that the GSLW and Haah methods cannot reach the target
accuracy when the degree of the polynomial becomes large.
Hence we reduce the accuracy to decrease the polynomial
degrees here.

Table III indicates that use of the Remez method can
significantly reduce the degree of polynomials needed to

TABLE III. Degrees of approximation polynomials with accu-
racy ε0 given by an odd smearing function in Eq. 36 and the Remez
method with odd and even parities, respectively.

κ 10 20 30 40 50

Truncation of g(x) (ε0 = 10−14) 759 1559 2375 3201 4035
Odd Remez (ε0 = 10−14) 303 607 911 1215 1519
Even Remez (ε0 = 10−14) 280 560 840 1020 1400
Odd Remez (ε0 = 10−6) 125 249 373 499 623
Even Remez (ε0 = 10−6) 104 206 310 412 516

FIG. 11. CPU times for approximating 1/x over Dκ via QSP
as a function of κ for the optimization method, compared with the
corresponding times for the GSLW and Haah methods. Lines labeled
even (odd) represent the results of approximating polynomials given
by the Remez method with even (odd) parity. The slopes of the two
lowest lines are 2, corresponding to quadratic cost in κ , while the
slopes of all other lines are 3, corresponding to cubic cost in κ . The
line corresponding to the result by using Haah method to solve odd
polynomials is not shown in the figure because only two data points
are generated due to the numerical instability.

approximate 1/x, with a reduction of to a factor of 2 ∼ 3.
We find that the even polynomial approximation is slightly
less expensive than the odd expansion. This is due to the fact
that an even extension has a smaller gradient near the origin
compared with that of the odd extension, as shown in Fig. 9.
Our proposed optimization method performs well on these
examples, yielding phase factors robustly, with computational
cost scaling quadratically with respect to κ . The largest poly-
nomial degree is d = 4035.

D. Impact of the initial point

To demonstrate the complexity of the optimization land-
scape, we report the final value of the objective function
starting from randomly generated points for the Hamiltonian
simulation problem. For τ ∈ {100, 200, 300, 400, 500}, we
choose the target polynomial

f (x) = J0(τ)/2 +
d∑

k even

(−1)k/2Jk (τ)Tk (x) (37)

as an approximation to cos(τx)/2. The initial points are
uniformly distributed in [−π, π)d+1. We run the L-BFGS
algorithm until it converges or the number of iteration reaches
200. Fig. 12 summarizes the performance of the algorithm
under random initialization. We see that most of the cal-
culations get stuck in local minima with a relatively large
objective value, confirming the complexity of the landscape.
Furthermore, the difficulty of finding a good solution in-
creases with the degree of the polynomial. By comparison,
if we start from � = (π

4 , 0, . . . , 0, π
4), the algorithm will con-

verge within dozens of iterations to the global minimum with
the objective function very close to 0.

042419-12

EFFICIENT PHASE-FACTOR EVALUATION IN QUANTUM … PHYSICAL REVIEW A 103, 042419 (2021)

FIG. 12. Loss of optimization method initiated with randomly
generated points. The target polynomial is defined as the trun-
cated polynomial of Jacobi-Anger expansion of degree d = 1.4|τ | +
log10(1/ε0) with ε0 = 10−14. Random-k represents that we start from
k different initial points and select best result.

E. Sensitivity analysis

We further analyze the robustness of the method by report-
ing the condition number of the Hessian matrix Hess L(�̂∗) at
the optimal point. The condition number of the Hessian matrix
is an indicator reflecting the sensitivity of the optimizer with
respect to small perturbations of the target function.

We compute here the Hessian condition number for the
three optimization problems presented above in Secs. IV A–
IV C. Interestingly, we observe that the condition number is
mostly affected by L∞ norm of the target polynomial, rather
than by its degree or by its parameters. Thus, each problem
can be exemplified by one polynomial with a given degree and
parameters. To investigate how the norm affects the Hessian
condition number, we scale the L∞ norm of the given polyno-
mial to 1 − η. Figure 13 shows the scaled Hessian condition
numbers as a function of η. As η → 0+, we find that the
condition number increases as η−γ with γ > 1 in all three
cases. This indicates that when ‖ f ‖∞ is close to 1, the opti-
mizer can be very sensitive to perturbations in f . When ‖ f ‖∞
is below 1, the enhanced stability implies that these phase
factors can be used as an initial guess for a slightly perturbed
target polynomial, which will be discussed in detail in Sec. V.
Furthermore, scaling the target polynomial f to ensure that
‖ f ‖∞ � 1 − η for some given threshold η is also preferable.
Such scaling of the target polynomial was also suggested in
the root-finding procedures of the direct algorithms to ensure
numerical stability [12].

V. DECAY OF PHASE FACTORS FROM THE CENTER
AND PHASE FACTOR PADDING

In addition to the symmetry structure discussed in
Sec. III A, for smooth target functions, we observe that the
QSP phase factors decay rapidly away from the center. To
illustrate the decay and also the symmetry, we plot several
examples in Fig. 14. After subtracting the π/4 factor on both

FIG. 13. Condition number of the Hessian matrix at the optimum
of the objective function L(�̃) defined in Eq. 23, shown for three
different target polynomials studied in this paper. (a) Real (imag-
inary) part of truncated Jacobi-Anger expansion in Eq. 31, where
τ = 200 and d = 312 (represented by red dots and yellow downward
triangles, respectively). (b) Eigenstate filter defined in Eq. 33 with
k = 300, � = 0.05 (represented by blue triangles). (c) Even polyno-
mial approximation of 1/x on Dκ=20 generated by the Remez method
(represented by green squares). Polynomials are scaled by a constant
factor such that ‖ f ‖∞ = 1 − η, where η is the x axis. The slope is
1.4 for the yellow (top) line and 1.15 for all others.

ends of the phase factors, we observe that the decay of the
phase factors closely follows the decay of the Chebyshev
coefficients (defined only on the positive axis in Fig. 14).

Theorem 5 states that for phase factors with relatively
small magnitudes, the optimal phase factors can be expressed
approximately analytically in terms of the coefficients of
the Chebyshev polynomial expansion. The proof is given in
Appendix H.

Theorem 5. Let � ∈ Cd ′ be a set of symmetric QSP
phase factors. Define φ̃ j := φ j − π

4 (δ j,0 + δ j,d ′−1) and �̃ :=
(φ̃0, · · · , φ̃d ′−1). Define a polynomial

g�(x) := −
(

d ′−1∏
j=0

cos φ̃ j

)

×
{∑d

j=0 2 tan(φ̃ j)T2d+1−2 j (x), d ′ = 2d + 2
tan(φ̃d) + ∑d−1

j=0 2 tan(φ̃ j)T2d−2 j (x), d ′ = 2d + 1.

(38)

Then, for sufficiently small ‖�̃‖1, there exists a constant
C > 0 such that the desired QSP component f�(x) :=
Re[〈0|U�(x)|0〉] satisfies

‖ f�(x) − g�(x)‖∞ � C‖�̃‖3
1. (39)

According to Theorem 5, one can directly deduce approx-
imate values of the phase factors from the coefficients of the
Chebyshev expansion. For example, when d ′ is even, φ̃ j ≈
− arctan(c2d+1−2 j/2) ≈ −c2d+1−2 j/2 holds up to O(‖�̃‖3

1).
For smooth functions, the Chebyshev coefficients decay at
least superalgebraically (i.e., faster than any polynomial

042419-13

DONG, MENG, WHALEY, AND LIN PHYSICAL REVIEW A 103, 042419 (2021)

FIG. 14. Magnitude of coefficients of the polynomial f in the
Chebyshev basis (light gray) and the corresponding phase factors
(after subtracting π/4 on both ends, dark gray), for the three different
problems studied in this paper. We shift the x axis to more clearly
illustrate the symmetry property of the phase factors. Coefficients
that are zero due to parity are omitted. (a) Real part of truncation of
the Jacobi-Anger expansion in Eq. 31, with τ = 200 and d = 312.
(b) Eigenstate filter defined in Eq. 33, with k = 300, � = 0.05.
(c) Even polynomial approximation of 1/x on Dκ=20 as generated
by the Remez method.

decay) [24]. So, the phase factors also decay superalge-
braically away from the center. The uniformly small phase
factors can be realized by rescaling the function f to f /β,
with β being a large number. We remark that our numerical
results in Fig. 14 do not rely on such a scaling factor. A more
precise characterization of the decay of the phase factors will
be a focus of future work.

One possible usage of the decay property of the phase
factors is as follows, which we refer to as a phase-padding
procedure. Suppose we have solved the QSP phase factors cor-
responding to a polynomial approximation f1 of a relatively
low degree to a real-valued function f with definite parity.
To improve the accuracy of the approximation, another small
term f2 of higher polynomial degree is needed to be added to
approximate f together with f1. Therefore, a natural question
is whether we can reuse the phase factors associated with f1

to generate that of f1 + f2 ≈ f .
To solve this problem, one needs to increase the dimension

of �, since the degree of the polynomial has been increased
and hence also the number of phase factors. Due to the sym-
metry structure, we may consider the following symmetrically
padded phase factors and further show that the symmetrical
padding operation preserves the desired part of the QSP.

Definition 6 (l-padded phase factors). Let � = (φ0, · · · ,

φd) ∈ Cd+1 be symmetric QSP phase factors. Then, the corre-

TABLE IV. CPU times for optimizations initiated with and with-
out phase padding (see text). The target polynomial here is the
truncated polynomial of Jacobi-Anger expansion of degree d .

d 510 520 530 540 550

With padding 19.9 19.7 16.9 16.4 12.2
Without padding 21.8 21.2 22.5 22.6 23.5

d 560 570 580 590 600

With padding 9.37 4.69 3.18 3.17 3.19
Without padding 24.2 26.1 28.5 28.3 27.7

sponding l-padded phase factors in Cd+2l+1 are given by �l :=
(π

4 , 0, · · · , 0︸ ︷︷ ︸
l−1

, φ0 − π
4 , φ1, · · · , φd−1, φd − π

4 , 0, · · · , 0︸ ︷︷ ︸
l−1

, π
4).

Theorem 7. Given a set of symmetric phase factors � and
a nonnegative integer l , its l-padded phase factors preserve the
real part of the upper-left component of the QSP unitary ma-
trix, i.e., Re[〈0|U�(x)|0〉] = Re[〈0|U�l (x)|0〉],∀x ∈ [−1, 1].

Proof. Using Theorem 3, it is equivalent to prove the
equality

Im[〈0|U�(x)|0〉] = Im[〈0|W (x)lU�(x)W (x)l |0〉]

for symmetric phase factors �. Insert the resolution of
identity,

r.h.s. = Im[Tl (x)2P(x) − 2(1 − x2)Rl−1(x)Tl (x)Q(x)

− (1 − x2)Rl−1(x)2P∗(x)]

= (
T 2

l (x) + (1 − x2)R2
l−1(x)

)
Im[P(x)]

= Im[P(x)] = l.h.s.

Here we have used Q ∈ R[x] according to Theorem 2. �
To demonstrate the usage of this phase-padding procedure,

we consider the approximation of cos(τx)/2, namely, the real
part of Eq. 31 scaled by a constant factor of 2. First, an integer
d0 is chosen such that the truncated series up to d0 is a rough
approximation of cos(τx)/2. Meanwhile, the corresponding
phase factors are solved by optimization. Then we gradually
increase the size of the problem by an even number l , i.e.,
adding l/2 more terms of higher order polynomials. To reuse
the phase factors, the initial guess in step k is lifted from the
phase factors solved in the previous step, i.e., the polyno-
mial approximation of degree d0 + (k − 1)l . The procedure
is repeated until the degree meets a maximal criterion d1,
which generates an accurate polynomial approximation of
cos(τx)/2.

The parameters in numerical implementations are set to be
τ = 500, d0 = 500, l = 10, d1 = 600. The L∞ error before
the optimization (i.e., only using phase factor padding) and
after the optimization in each step is shown in Fig. 15, while
Table IV compares the computational cost between optimiza-
tions initiated with and without padding. We observe that the
polynomial given by the lifted phase factors is already close to
the target polynomial. This means that the lifted phase factors
provide a good initial guess close to the global minimum.

042419-14

EFFICIENT PHASE-FACTOR EVALUATION IN QUANTUM … PHYSICAL REVIEW A 103, 042419 (2021)

FIG. 15. L∞ error between the polynomial obtained from the
lifted phase factors, and the target polynomial, as a function of the
degree d of the latter. Blue triangles represent the error before op-
timization, and green squares represent the error after optimization.
The target polynomial here is the truncated polynomial of Jacobi-
Anger expansion of degree d .

VI. DISCUSSION

We have demonstrated that, using an optimization-based
approach, we can efficiently and accurately evaluate the phase
factors needed to build QSP circuits for generation of unitary
representations of nonunitary operations. Taken together with
the QSP formalism of Refs. [3,8], this approach now provides
efficient and accurate constructive procedures to implement
QSP and thereby removes a crucial bottleneck for the ap-
plication of QSP in quantum algorithms. We expect that our
method will be useful for a wide range of matrix functions of
interest to quantum algorithms, including the broad classes of
Hamiltonian simulation, generation of thermal states, and lin-
ear algebra problems. The optimization approach was found to
be superior to previous direct methods that rely on a reduction
procedure in which numerical errors are accumulated and
amplified. Instead of employing a reduction procedure, our
approach is based on optimization of a distance function that
quantifies the difference between the target polynomial and
the QSP representation of this, with the QSP phases as vari-
able parameters. We identified two key features for success of
the optimization based method: First, the choice of the initial
guess and, second, preservation of the symmetry structure of
the phase factors. We found that a simple choice of the initial
guess can be surprisingly effective, despite the complexity
of the global landscape of the objective function. This indi-
cates that a better understanding of the local energy landscape
connecting the initial guess to the optimal phase factors is
needed. Our study also reveals the connection between two
seemingly unrelated objects in the QSP construction, namely,
the decay of phase factors from the center, and the decay of the
Chebyshev coefficients of the target function. More precise
characterization of this connection will be a useful future
research direction, together with further work to understand
the energy landscape of the objective function.

ACKNOWLEDGMENTS

This work was partially supported by a Google Quantum
Research Award (Y.D.,L.L.,K.B.W.) by the US Department
of Energy, Office of Science, Office of Advanced Scientific
Computing Research, Quantum algorithm Teams Program un-
der Grant No. DE-AC02-05CH11231 (L.L. and K.B.W.), and
by Department of Energy under Grant No. DE-SC0017867
(L.L.). X.M. thanks the Office of International Relations,
Peking University, Beijing, China for partial funding of an
exchange studentship at the University of California, Berke-
ley. We thank Robert Kosut, Nathan Wiebe, and Yu Tong for
discussion.

Y.D. and X.M. contributed equally to this paper.

APPENDIX A: UNIQUENESS OF PHASE FACTORS

We refer to the representation in Eq. 13 as it appeared in
Ref. [[3], Theorem 3] as GSLW’s representation. There is
another equivalent form proposed in Ref. [12], which we call
Haah’s representation. Under Haah’s representation, the QSP
unitary is

U�̂(x) = eiσz φ̂0

d∏
j=1

[eiσz φ̂ j/2W (x)e−iσz φ̂ j/2]

= eiσz (φ̂0+φ̂1/2)

(
d−1∏
j=1

W (x)eiσz (φ̂ j+1−φ̂ j)/2

)
W (x)e−iσz φ̂d /2,

(A1)

where φ̂d+1 := 0. Compared to Eq. 13, the transformation be-
tween two representations is evident, i.e., T : [−π, π)d+1 →
Cd+1, �̂ �→ � such that φ0 = φ̂0 + φ̂1

2 , φ j = φ̂ j+1−φ̂ j

2 , ∀ j =
1, · · · , d − 1, and φd = −φ̂d/2. The irreducible set Cd+1 is
defined as the image of this linear transformation. The unique-
ness of Haah’s phase factors in [−π, π)d+1 was proved in
Ref. [[12], Theorem 2], which considers a formally more
general class of polynomial functions U(1) → SU(2). The
bijection T implies the uniqueness of GSLW’s phase fac-
tors in Cd+1. It is evident that the 2π periodicity of Haah
phase factors lead to a pair of ±π shifts in the corresponding
GSLW phase factors. Then, if we define the equivalence rela-
tion � ∼ � when φk = ψk,∀k �= i, j and φi = ψi + π, φ j =
ψ j − π , the irreducible set is the quotient space Cd+1 ≡
[−π, π)d+1/ ∼.

APPENDIX B: REDUCING ONE ANCILLA QUBIT FOR
REPRESENTATION OF REAL POLYNOMIALS

We explain here why the additional ancilla qubit needed
for representing real polynomials in Sec. II C, case 1 as a
result of the linear combination of two QSP circuits, is in fact
not needed and can be avoided. Specifically, this ancilla qubit
can be combined with the first ancilla qubit in Fig. 2. To see
why this is the case, note that the phase factors for U−� in
Eq. 18 can be obtained by taking the phase factors for U� in
Eq. 15 and perform the mapping ϕi �→ −ϕi + π (1 − δid), i =
0, . . . , d . In other words, we negate ϕi and add π to all but
the dth entry. Negating the phase can be implemented by
feeding |1〉 instead of |0〉 to the signal state, and adding π

042419-15

DONG, MENG, WHALEY, AND LIN PHYSICAL REVIEW A 103, 042419 (2021)

FIG. 16. Quantum circuit for quantum signal processing of real matrix polynomials with a Hermitian block-encoding UA.

to the phase can be implemented via a σz gate associated with
φ0, . . . , φd−1.

We may verify that by slightly modifying Fig. 2, the circuit
in the box with the dashed line in Fig. 16 in fact implements

|0〉 〈0| ⊗ U� + |1〉 〈1| ⊗ U−�,

which is the select oracle, Eq. 6. Therefore, using the
Hadamard gate as the prepare oracle [Eq. 5] as before, the
circuit Fig. 16 provides a (1, m + 1, 0)-block encoding of
f (A/α), which saves one ancilla qubit.

APPENDIX C: QUANTUM SIGNAL PROCESSING WITH A
NON-HERMITIAN BLOCK-ENCODING MATRIX

Let A be an n-qubit Hermitian matrix, but its (α, m, 0)-
block encoding UA is not Hermitian. We can still perform
QSP by introducing an additional ancilla qubit. To this end,
we first generate an (α, m + 1, 0)-block encoding of A that
is Hermitian. Define an (m + n + 1)-qubit controlled block
encoding as

V ′
A := |0〉〈0| ⊗ UA + |1〉〈1| ⊗ U †

A , (C1)

which uses both UA and U †
A . We also introduce the swap

operation S := σx ⊗ Im. Then

U ′
A := (S ⊗ In)V ′

A = |1〉〈0| ⊗ UA + |0〉〈1| ⊗ U †
A (C2)

is Hermitian. Define an (m + 1)-qubit signal state for block-
encoding

|G〉 := |+〉 |0m〉 = 1√
2

(|0〉 + |1〉)|0m〉, (C3)

then

(〈G| ⊗ In)U ′
A(|G〉 ⊗ In) =(〈G| ⊗ In)V ′

A(|G〉 ⊗ In)

= 1
2 (〈0m| ⊗ In)UA(|0m〉 ⊗ In)

+ 1
2 (〈0m| ⊗ In)U †

A (|0m〉 ⊗ In)

= 1
2 A + 1

2 A† = A.

In the last equality, we used that A is a Hermitian matrix. This
proves that U ′

A is indeed an (α, m + 1, 0)-block encoding of
A. Define

U ′
� = (2|G〉〈G| − Im+1) ⊗ In, (C4)

we may use Jordan’s lemma to simultaneously block diago-
nalize U ′

�,U ′
A. In particular, the matrix representation in Eq. 9

still holds, which provides the qubitization of A.
Then QSP representation in Eqs. 11 and 12 can be directly

obtained by substituting U� → U ′
�,UA → U ′

A. The circuit is
given in Fig. 17. In the second line, the Hadamard gate con-
verts the |+〉 state in the signal state into |0〉 and back to

apply the (m + 2)-qubit Toffoli gate. The swap operation can
be implemented via a single σx gate. The last Hadamard gate
in the second line is not present to measure in the |±〉 basis
set according to the signal state |G〉.

APPENDIX D: PROOF OF THEOREM 4

We first review some basic facts of the Chebyshev poly-
nomial. The Chebyshev polynomials are two sequences
of polynomials which can be defined by trigonometric
functions. For each d ∈ N and x ∈ [−1, 1], the Cheby-
shev polynomial of the first kind is defined as Td (x) =
cos[d arccos(x)] and that of the second kind is Rd (x) =
sin[(d + 1) arccos(x)]/ sin[arccos(x)]. Both Td and Rd are
polynomials of degree d . We will focus on the properties
of Chebyshev polynomials of the first kind in the fol-
lowing context and call Td ’s Chebyshev polynomials for
simplicity. Define the weighted inner product as (f , g)w :=∫ 1
−1 f (x)g(x) dx√

1−x2 on the space L2
w([−1, 1]). Then Chebyshev

polynomials are orthogonal polynomials on [−1, 1] with re-
spect to the inner product (·, ·)w, and form a complete basis
on the space L2

w([−1, 1]).
Lemma 8. Any function g ∈ L2

w([−1, 1]) can be uniquely
expressed as a series of Chebyshev polynomials:

g(x) =
∑
j∈N

c jTj (x), where c j = 2 − δ j0

π
(g, Tj)w.

By substituting x → cos θ , the series in terms of Cheby-
shev polynomial becomes the Fourier series of periodic
function g(cos θ). The roots of Chebyshev polynomials are
called Chebyshev nodes, e.g., {cos (2 j−1

2d π) : j = 1, · · · , d}
are Chebyshev nodes of Td . Chebyshev polynomials satisfy
the discrete orthogonality

d∑
j=1

Tm(x j)Tn(x j) = d
1 + δm,0

2
δm,n, (D1)

where d > �(m + n)/2� is an integer and x j’s are Chebyshev
nodes of Td .

Proof. (Theorem 4) Let d̃ = � d+1
2 �, then 2d̃ > d . Apply-

ing the Cauchy–Schwarz inequality, we have

d̃∑
j=1

| f (x j) − f�(x j)| �

√√√√√d̃
d̃∑

j=1

| f (x j) − f�(x j)|2

=
√

d̃2L(φ) � d̃
√

ε, (D2)

042419-16

EFFICIENT PHASE-FACTOR EVALUATION IN QUANTUM … PHYSICAL REVIEW A 103, 042419 (2021)

FIG. 17. Quantum circuit for quantum signal processing with a non-Hermitian block-encoding matrix. The circuit in the box enclosed by
the dashed line should be repeated d times, each time with a different phase factor. The last Hadamard gate in the second line is removed if
measurements are to be made in the |±〉 basis set.

where x j = cos ((2 j−1)π
4d̃

), j = 1, . . . , d̃ are positive roots of
Chebyshev polynomial T2d̃ (x). For a fixed integer t � d ,

d̃∑
j=1

(f (x j) − f�(x j))Tt (x j)

=
d̃∑

j=1

d∑
m=0

(αm − βm)Tm(x j)Tt (x j)

=
d∑

m=0

(αm − βm)
d̃∑

j=1

Tm(x j)Tt (x j)

=
d∑

m=0

(αm − βm)ηmt , (D3)

where by discrete orthogonality in Eq. (D1) and symmetry,
ηmt = d̃ 1+δm,0

2 δm,t . Thus we have

|αm − βm| � 2

d̃

d̃∑
j=1

|(f (x j) − f�(x j))Tm(x j)| � 2
√

ε (D4)

for any m = 0, . . . , d .

APPENDIX E: REMEZ METHOD

We would like to solve for the best approximation polyno-
mial in terms of the L∞ norm

f ∗ = argmin
f ∈R[x],deg(f)�d

max
x∈[a,b]

|F (x) − f (x)|. (E1)

In addition, the approximation problem encountered in this
paper requires that the approximation polynomial has a defi-
nite parity. Hence, we need to focus on the best approximation
problem over the linear combination of a general basis of
functions {g1(x), . . . , gN (x)} other than {1, x, . . . , xd}. In this
paper, we choose N = � d+1

2 �, where d is the degree of
the approximation polynomial we would like to generate.
A series of functions {g1(x), . . . , gN (x)} is said to satisfy
the Haar condition on a set X , if each gj (x) is continu-
ous and for every N points x1, . . . , xN ∈ X , the N vectors
v j := (g1(x j), . . . , gN (x j)), 1 � j � N are linearly indepen-
dent [25]. As an example, the Haar condition holds if we
choose g j (x) = T2 j−1(x) [or T2 j−2(x)] and X ⊂ (0, 1]. Solu-
tion of the best approximation problem over such a basis will
yield the best odd (even) approximation polynomial. Imposing

the Haar condition simplifies the solution of the generalized
approximation problem.

The optimal approximate polynomial f ∗ over the linear
combination of functions {g1(x), . . . , gN (x)} can be found via
the Remez exchange method summarized in Algorithm 3,
which computes a series of approximation polynomials on
discrete sets. The polynomials ft generated by the Remez
algorithm converge uniformly to the optimal polynomial f ∗
with linear convergence rate. For a large range of functions
F , the convergence rate can be improved to be quadratic. We
refer the reader to Ref. ([21], Chapter 3) for more details
related to the Remez method.

Algorithm 3. Remez method for solving the best approximation
polynomial.

Input: An interval [a, b] ⊂ R, target function F , a basis
{g1, . . . , gN } satisfying the Haar condition, N + 1 initial points
a � x0 � · · · � xN � b.

Set t = 0.
while stopping criterion is not satisfied do
Set t = t + 1.
Solve the linear equation for a1, . . . , aN and �

N∑
j=1

ajg j (xk) − F (xk) = (−1)k�, k = 0, . . . , N.

Denote ft (x) = ∑N
j=1 ajg j (x) and residual r(x) = F (x) − ft (x).

r(x) has a root z j ∈ (x j−1, x j) for j = 1, . . . , N . Set z0 = a and
zN+1 = b.

Let σ j = sgn(r(x j)). Find y j = argmaxy∈[z j ,z j+1] σ j r(y) for each
j = 0, . . . , N .

if ‖r(x)‖∞ > max j |r(y j)| then
Choose

y = argmax
y∈[a,b]

|r(y)|.

Replace a yk ∈ {y0, . . . , yN } by y in such a way that the values of
r(y) on the resulting ordered set still satisfies

r(y j)r(y j+1) < 0, j = 0, . . . , N − 1.

end if
Replace {x0, . . . , xN } by {y0, . . . , yN }.

end while
Output: an approximation to the best approximation polynomial

ft (x)

042419-17

DONG, MENG, WHALEY, AND LIN PHYSICAL REVIEW A 103, 042419 (2021)

Algorithm 4. Function: φ = L-BFGS(φ0, L, m, B0).

Input: Initial point φ0, objective function L(φ), a nonnegative
integer m and initial approximation of inverse Hessian B0.
Set t = 0
while stopping criteria does not meet do

Compute gt = ∇L(φt), set q = gt

for i = t − 1, . . . , t − m do
Set αi = ρis�

i q
q = q − αiyi

end for
r = B0q
for i = t − m, . . . , t − 1 do

β = ρiy�
i r

r = r + si(αi − β)
end for
Set search direction dt = −r.
Find a step size γt using backtracking line search.
Set

φt+1 = φt + γt dt , sk = φt+1 − φt ,

yt = gt+1 − gt , ρt = 1
s�t yt

.

Set t = t + 1.
end while
Return: φt

APPENDIX F: L-BFGS ALGORITHM

In numerical optimization, the Broyden–Fletcher–
Goldfarb–Shanno (BFGS) algorithm is a quasi-Newton
method for solving unconstrained optimization problems
([22], Chap. 5). The BFGS method stores a dense n × n
matrix to approximate the inverse of Hessian matrix. It
updates this approximation by performing a rank two
update using gradient information along its trajectory.
Limited-memory BFGS (L-BFGS) approximates the BFGS
method by using a limited amount of computer memory ([22],
Chap. 5). In particular, it represents the inverse of Hessian
matrix implicitly by only a few vectors. For completeness,
we summarize the procedure for the L-BFGS method in
Algorithm 4.

APPENDIX G: IMPLEMENTATION DETAILS OF THE
DIRECT METHODS FOR FINDING PHASE FACTORS

For completeness, we provide here our implementation
of the direct methods for computing phase factors, i.e., the
GSLW method and the Haah method. The codes are written
in JULIA v1.2.0. Although an advanced root-finding algorithm
with guaranteed performance [26] is suggested in the Haah
method [12], this is a theoretical result and hard to implement.
We utilize instead the function ROOTS in the POLYNOMIAL-
ROOTS package in JULIA to find the roots of polynomials. For
both the GSLW and Haah methods, we perform calculations
with variable precision arithmetic using the BIGFLOAT data
type. The numbers of bits R used in our numerical tests are
empirical parameters whose values are chosen to minimize

CPU time while maintaining accuracy. We first take R to be
a large number and then gradually decrease it until the algo-
rithm fails to yield phase factors with sufficient accuracy. The
algorithm is considered a failure on an example if it cannot
generate accurate enough phase factors, i.e., within the spec-
ified tolerance, despite the arithmetic being performed under
increasingly high precision. Specifically, we choose R = 3d
for the GSLW method and R = 4d for the Haah method in
the Hamiltonian simulation, R = 2d for both methods for the
eigenstate filtering function, and R = 50κ for both methods in
the matrix inversion problem. Here d is the degree of the poly-
nomial. Note that the polynomials encountered in the matrix
inversion subsection approximate 1/x on Dκ = [1/κ, 1]. Our
implementation of the GSLW algorithm proposed in Ref. [3]
is summarized in Algorithm 5. To avoid stability issues caused
by inaccurate roots, a root s is regarded as a real (pure imag-
inary) number if the magnitude of its imaginary (real) part
is smaller than machine precision (ε = 10−16 in our imple-
mentation). Similarly, s is rounded to 1 if |1 − s| < ε. We
evaluate the coefficients of B(x) and C(x) with respect to the
Chebyshev basis by discrete fast Fourier transform to enhance
numerical stability. The reduction procedure in the loop is
also performed based on the Chebyshev basis. We observe
that compared to the original implementation of the GSLW
method in Ref. [3], the use of the Chebyshev basis signifi-
cantly improves the numerical stability of the algorithm. Since
in the examples in this paper we primarily consider situations
where only P is required, we employ a zero polynomial as the
input for the second polynomial Q̃.

The Haah method proposed in Ref. [12] is summarized in
Algorithm 6. Here a Laurent polynomial of degree d repre-
sents polynomials having the form P(z) = ∑d

j=−d p jz j, p j ∈
C , |pd | + |p−d | �= 0. A complex-valued function P is said to
be real-on circle if P(z) ∈ R, ∀|z| = 1.

Suppose two real polynomials P̃(x) and Q̃(x) satisfy the
requirements of Algorithm 5; they can be converted to desired
input of Algorithm 6 through the formula

A(z) = P̃

(
z + z−1

2

)
, B(z) = z − z−1

2i
Q̃

(
z + z−1

2

)
.

(G1)
If A(z) and B(z) are generated by this formula, we may only
compute d + 1 terms E0, E1(t), . . . , Ed (t) from coefficients
C2d

2k , k = −d,−d + 2, . . . , d such that

A(z) + iB(z) ≈ 〈+| E0E1(z) · · · Ed (z) |+〉 , ∀z ∈U (1). (G2)

Reference [12] proved that in this case matrix Pj computed in
the algorithm are of the form

Pj = eiσz φ̂ j/2 |+〉 〈+| e−iσz φ̂ j/2, j = 1, . . . , 2d, (G3)

and there exists φ̂0 such that E0 = eiσz φ̂0 . The transformation
formula between �̂ = (φ̂0, . . . , φ̂d) and QSP phase factors �

are given in Appendix A. In practice, we take B(z) = 0 since
we are not interested in the second polynomial Q̃. As the ra-
tional approximation procedure in step 1 is designed to bound
the error theoretically and hard to implement, in practice we
round the coefficients of (1 − ε/3)A(z) and (1 − ε/3)B(z)
with small magnitude to zero instead of taking rational ap-
proximation.

042419-18

EFFICIENT PHASE-FACTOR EVALUATION IN QUANTUM … PHYSICAL REVIEW A 103, 042419 (2021)

Algorithm 5. GSLW method.

Input: A nonnegative integer d , real polynomials P̃ and Q̃ satisfying condition (1) – (2) of Theorem 1 and
P̃2(x) + (1 − x2)Q̃2(x) � 1, ∀x ∈ [−1, 1]. A nonnegative integer R indicates the number of bits on which high-precision arithmetic
is performed.
Step 1: Find the complementary polynomials.
Solve all roots of 1 − P2(x) − (1 − x2)Q2(x). Denote S as the multiset that contains roots of 1 − P2(x) − (1 − x2)Q2(x) with their
algebraic multiplicity. Find the following subsets of S:

S0 = {s ∈ S|s = 0}, S(0,1) = {s ∈ S|s ∈ (0, 1)},
S[1,∞) = {s ∈ S|s ∈ [1,∞)}, SI = {s ∈ S|Re(s) = 0, Im(s) > 0},
SC = {s ∈ S|Re(s) > 0, Im(s) > 0}.

Define

Z (x) = Kx|S0 |/2
∏

s∈S(0,1)

√
x2 − s2

∏
s∈S[1,∞)

(
√

s2 − 1x + is
√

1 − x2)∏
s∈SI

(
√

|s|2 + 1x + i|s|√1 − x2)
∏

(a+bi)∈SC

(cx2 − (a2 + b2) + i
√

c2 − 1x
√

1 − x2),

where K is the absolute value of the coefficient of the highest order of polynomial 1 − P2(x) − (1 − x2)Q2(x),
c = a2 + b2 +

√
2(a2 + 1)b2 + (a2 − 1)2 + b4.

Z (x) can be written in the form Z (x) = B(x) + i
√

1 − x2C(x) for B, C ∈ R[x]. B and C are required complementing polynomials if B
has same parity as P̃ while C has opposite parity, otherwise we replace Z (x) by Z (x)(x + i

√
1 − x2).

Calculate coefficients of B and C and define P(x) := P̃(x) + iB(x), Q(x) := Q̃(x) + iC(x). Then
|P(x)|2 + (1 − x2)|Q(x)|2 = 1, ∀x ∈ [−1, 1].
Step 2: Matrix reduction
Set t = d .
while deg(P) > 0 do
Denote coefficients of highest order of P and Q as pt and qt−1, respectively. We have |pt | = |qt−1|. Choose φt ∈ R such that
e2iφt = pt/qt−1.
Replace P and Q by

Pnew(x) = e−Iφt
(
xP(x) + pt

qt−1
(1 − x2)Q(x)

)
and

Qnew(x) = e−iφt
(pt

qt−1
xQ(x) − P(x)

)
.

Set t = t − 1.
end while
Choose φ0 ∈ R such that eiφ0 = P(1). Set φ j = π

2 for j = 1, 3, . . . , t − 1, φ j′ = − π

2 for j ′ = 2, 4, . . . , t .
Output: QSP phase factors � = (φ0, . . . , φd) satisfying

U�(x) = eiφ0σz

d∏
j=1

[
W (x)eiφ jσz

] =
(

P̃(x) + iB(x)(iQ̃(x) − C(x))
√

1 − x2

(iQ̃(x) + C(x))
√

1 − x2P̃(x) − iB(x)

)

APPENDIX H: PROOF OF THEOREM 5

First consider d ′ = 2d + 2. According to Theorem 3, it is equivalent to prove

∥∥∥∥∥Im[〈0|U�̃(x)|0〉] +
2d+1∏
j=0

cos(φ̃ j) ·
d∑

j=0

(−2 tan(φ̃ j))T2d+1−2 j (x)

∥∥∥∥∥
∞

� 1

6
‖�̃‖3

1 + O
(‖�̃‖5

1

)
(H1)

For simplicity, we drop the tilde in phase factors. Divide the QSP phase factors into two groups symmetrically, �l =
(φ0, · · · , φd), �r = �−

l . Then, U�(x) can be expressed in terms of the product of two QSP matrices:

U�(x) = U�l (x)W (x)U�r (x) = eiφ0σz

d∏
j=1

[W (x)eiφ jσz]W (x)
d−1∏
j=0

[eiφd− jσzW (x)]eiφ0σz . (H2)

042419-19

DONG, MENG, WHALEY, AND LIN PHYSICAL REVIEW A 103, 042419 (2021)

Algorithm 6. Haah method.

Input: A real parameter ε ∈ (0, 0.1), a nonnegative integer R indicates the number of bits on which high-precision arithmetic is
performed and a complex-valued Laurent polynomial A(eiθ) + iB(eiθ) = ∑d

k=−d ζkeikθ such that
(1) A and B are real-on-circle polynomials,
(2) |A(eiθ)|2 + |B(eiθ)|2 � 1, ∀θ ∈ R,
(3)A(eiθ) and B(eiθ) have definite parity as a function of θ .
Step 1: Denote d = deg(A). Taking rational approximations of each coefficient of (1 − ε/3)A(z) and (1 − ε/3)B(z) up to error ε

30d .
Coefficients with magnitude smaller than ε

30d should be rounded to zero. Parity properties of A and B should be kept during rounding
procedure. Denote resulting rational real-on-circle polynomials as a(z) and b(z), respectively. Coefficients of a and b should be store
as rational numbers. Denote n = deg(a) and n′ = deg(1 − a(z)2 − b(z)2).
Step 2: Find all roots of 1 − a(z)2 − b(z)2. Denote S as the multiset that contains roots of 1 − a(z)2 − b(z)2 with their algebraic
multiplicity.

Step 3: Define e(z) = z−� n′
2 � ∏

s ∈ S
|s| < 1

(z − s) and constant α = 1−a(z)2−b(z)2

e(z)e(1/z) . Define complementary polynomials c(z) and d (z) as

c(z) = √
α

e(z) − e(1/z)

2i
, d (z) = √

α
e(z) + e(1/z)

2
.

Evaluate c(z) and d (z) on D = 2�log2(2n+1)� points

{e2π ik/D|k = 0, . . . , D − 1}
by computing e(z) and e(1/z) via factorized form rather than direct expansion.
Step 4: Compute 2-by-2 complex matrices C2n

2k , −n � k � n such that

n∑
k=−n

C2n
2k zk = a(z)I + b(z)iσx + c(z)iσy + d (z)iσz

via discrete fast Fourier transform.
Step 5:
for m = 2n, 2n − 1, . . . , 1 do
Compute

Pm =
(
Cm

m

)†
Cm

m

Tr
((

Cm
m

)†
Cm

m

) , Qm =
(
Cm

−m

)†
Cm

−m

Tr
((

Cm−m

)†
Cm−m

) .

Define Em(z) = zPm + z−1(I − Pm). Compute coefficients

Cm−1
k = Cm

k−1Qm + Cm
k+1Pm, k = −m + 1, −m + 3, . . . , m − 3, m − 1.

end for
Define E0 = C0

0 .
Output: E0, E1(z), . . . , E2n(z) satisfying

|A(z2) + iB(z2) − 〈+| E0E1(z) · · · E2n(z) |+〉 | � ε, ∀z ∈ U (1).

Each QSP unitary can be equivalently written as

U�l (x) =
[

d∏
j=0

cos(φ j)

]
(1 + it0σz)

d∏
j=1

[W (x)(1 + it jσz)], (H3)

where t j := tan(φ j) ∼ O(φ j). Then, the contributions up to O(‖�‖4
1) come from selecting up to three σz’s in the expansion,

U�l (x)∏d
j=0 cos(φ j)

= W (x)d +
d∑

j=0

it jσzW (x)d−2 j −
∑
j1< j2

t j1t j2W (x)d−2(j2− j1)

−
∑

j1< j2< j3

it j1t j2t j3σzW (x)d−2(j1+ j3− j2) + O
(‖�‖4

1

)
.

(H4)

Here we have used the following relation repeatedly:

W (x)σz = σzW (x)−1.

042419-20

EFFICIENT PHASE-FACTOR EVALUATION IN QUANTUM … PHYSICAL REVIEW A 103, 042419 (2021)

After taking imaginary part of the upper-left component in Eq. (H2), it is evident that only odd orders in φ j’s have
nonvanishing contributions according to Eq. (H4). Furthermore, using that U�r = U �

�l
, we have

Im[〈0|U�(x)|0〉]∏2d+1
j=0 cos(φ j)

=
d∑

j=0

2t jT2d+1−2 j (x) −
d∑

j=0

∑
j1< j2

2t jt j1t j2 T2d+1−2(j+ j2− j1)(x)

−
∑

j1< j2< j3

2t j1t j2t j3 T2d+1−2(j1+ j3− j2)(x) + O
(‖�‖5

1

)
. (H5)

Let s j := sin(φ j). It implies the expected bound:∥∥∥∥∥Im[〈0|U�(x)|0〉] −
2d+1∏
j=0

cos (φ j) ·
d∑

j=0

2 tan (φ j)T2d+1−2 j (x)

∥∥∥∥∥
∞

� 2

(
1

2
+ 1

6

) d∑
j1, j2, j3=0

|s j1 s j2 s j3 | + O
(‖�‖5

1

)
� 4

3
(‖�‖1/2)3 + O

(‖�‖5
1

) = 1

6
‖�‖3

1 + O
(‖�‖5

1

)
. (H6)

This proves Eq. 39 for even d ′.
Then prove the case d ′ = 2d + 1. The QSP unitary is again divided symmetrically and we drop the tilde in phase factors for

simplicity. Define �l = (φ0, · · · , φd−1), �r = �−
l

U�(x) = U�l (x)W (x)eiφd σzW (x)U�r (x) = cos(φd)U�l (x)W (x)2U�r (x)︸ ︷︷ ︸
©1

+ i sin(φd)U�l (x)W (x)σzW (x)U�r (x)︸ ︷︷ ︸
©2

(H7)

Similar to the expansion in Eq. (H4), we conclude the following bounds:∥∥∥∥∥Im[〈0| ©1|0〉] −
2d∏
j=0

cos(φ j) ·
d−1∑
j=0

2t jT2d−2 j (x)

∥∥∥∥∥
∞

� 2

(
1

2
+ 1

6

)(d−1∑
j=0

|s j |
)3

+ O
(‖�‖5

1

)
� 1

6
‖�‖3

1 + O
(‖�‖5

1

)
,

∥∥∥∥∥Im[〈0| ©2|0〉] −
2d∏
j=0

cos(φ j) · tan(φd)

∥∥∥∥∥
∞

� sd

4
‖�‖2

1 + sd

48
‖�‖4

1 + O
(‖�‖6

1

)
� 1

4
‖�‖3

1 + O
(‖�‖5

1

)
. (H8)

Using the triangle inequality, we prove Eq. 39 when d ′ is odd.

[1] P. Benioff, The computer as a physical system: A micro-
scopic quantum mechanical hamiltonian model of computers
as represented by turing machines, J. Stat. Phys. 22, 563
(1980).

[2] R. P. Feynman, Simulating physics with computers, Int. J.
Theor. Phys. 21, 467 (1982).

[3] A. Gilyén, Y. Su, G. H. Low, and N. Wiebe, Quantum singular
value transformation and beyond: exponential improvements
for quantum matrix arithmetics, arXiv:1806.00643. An abbre-
viated version of this paper was published in Proceedings of the
51st Annual ACM SIGACT Symposium on Theory of Computing
(Association for Computing Machinery, New York, 2019), pp.
193–204.

[4] N. Higham, Functions of Matrices: Theory and Computation
(Society for Industrial and Applied Mathematics, Philadelphia,
2008), Vol. 104.

[5] A. W. Harrow, A. Hassidim, and S. Lloyd, Quantum Algorithm
for Linear Systems of Equations, Phys. Rev. Lett. 103, 150502
(2009).

[6] D. W. Berry, A. M. Childs, and R. Kothari, Hamiltonian
simulation with nearly optimal dependence on all param-
eters, in Proceedings of the 56th IEEE Symposium on
Foundations of Computer Science (IEEE, New York, 2015),
pp. 792–809,.

[7] A. M. Childs, R. Kothari, and R. D. Somma, Quantum al-
gorithm for systems of linear equations with exponentially
improved dependence on precision, SIAM J. Comput. 46, 1920
(2017).

[8] G. H. Low and I. L. Chuang, Optimal Hamiltonian simulation
by Quantum Signal Processing, Phys. Rev. Lett. 118, 010501
(2017).

[9] G. H. Low, T. J. Yoder, and I. L. Chuang, Methodology of
Resonant Equiangular Composite Quantum Gates, Phys. Rev.
X 6, 041067 (2016).

[10] A. M. Childs, D. Maslov, Y. Nam, N. J. Ross, and Y. Su, Toward
the first quantum simulation with quantum speedup, Proc. Nat.
Acad. Sci. 115, 9456 (2018).

[11] J. Haah, M. Hastings, R. Kothari, and G. H. Low, Quantum
algorithm for simulating real time evolution of lattice Hamilto-
nians, in 2018 IEEE 59th Annual Symposium on Foundations of
Computer Science (FOCS) (Society for Industrial and Applied
Mathematics, Philadelphia, 2018).

[12] J. Haah, Product decomposition of periodic functions in quan-
tum signal processing, Quantum 3, 190 (2019).

[13] L. Lin and Y. Tong, Solving quantum linear system problem
with near-optimal complexity, Quantum 4, 361 (2020).

[14] A. Ambainis, Variable time amplitude amplification and quan-
tum algorithms for linear algebra problems, In (Schloss

042419-21

https://doi.org/10.1007/BF01011339
https://doi.org/10.1007/BF02650179
http://arxiv.org/abs/arXiv:1806.00643
https://doi.org/10.1103/PhysRevLett.103.150502
https://doi.org/10.1137/16M1087072
https://doi.org/10.1103/PhysRevLett.118.010501
https://doi.org/10.1073/pnas.1801723115
https://doi.org/10.22331/q-2019-10-07-190
https://doi.org/10.22331/q-2020-11-11-361

DONG, MENG, WHALEY, AND LIN PHYSICAL REVIEW A 103, 042419 (2021)

Dagstuhl - Leibniz-Zentrum für Informatik, Wadern, Germany,
2012), Vol. 14, pp. 636–647.

[15] N. J. Higham, Accuracy and Stability of Numerical Algorithms
(Society for Industrial and Applied Mathematics, Philadelphia,
2002), Vol. 80.

[16] E. Remez, Sur le calcul effectif des polynomes
d’approximation de tchebichef, CR Acad. Sci. Paris 199, 337
(1934).

[17] C. Jordan, Essai sur la géométrie à n dimensions, Bull. Soc.
Math. France 3, 103 (1875).

[18] G. H. Low and I. L. Chuang, Hamiltonian simulation by qubiti-
zation, Quantum 3, 163 (2019).

[19] R. Chao, D. Ding, A. Gilyen, C. Huang, and M. Szegedy,
Finding angles for quantum signal processing with machine
precision, arXiv:2003.02831.

[20] E. Farhi, J. Goldstone, and S. Gutmann, A quantum approxi-
mate optimization algorithm, arXiv:1411.4028.

[21] E. W. Cheney, Introduction to Approximation Theory (McGraw-
Hill Book Company, New York, 1966).

[22] W. Sun and Y.-X. Yuan, Optimization Theory and Methods:
Nonlinear Programming (Springer Publishing, New York,
2006), Vol. 1.

[23] https://github.com/qsppack/QSPPACK.
[24] J. P. Boyd, Chebyshev and Fourier Spectral Methods (Dover

Publications, New York, 2001).
[25] A. Haar, Die minkowskische geometrie und die annäherung an

stetige funktionen, Math. Ann. 78, 294 (1917).
[26] V. Y. Pan, Optimal and nearly optimal algorithms for ap-

proximating polynomial zeros, Comput. Math. Appl. 31, 97
(1996).

042419-22

https://doi.org/10.22331/q-2019-07-12-163
http://arxiv.org/abs/arXiv:2003.02831
http://arxiv.org/abs/arXiv:1411.4028
https://github.com/qsppack/QSPPACK
https://doi.org/10.1007/BF01457106
https://doi.org/10.1016/0898-1221(96)00080-6

