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The deterministic quantum computation with one qubit (DQC1) model is a restricted model of quantum
computing able to calculate efficiently the normalized trace of a unitary matrix. In this work, we analyze the
quantum correlations called entanglement, Bell’s nonlocality, quantum discord, and coherence generated by the
DQC1 circuit considering only two qubits (auxiliary and control). For the standard DQC1 model, only quantum
discord and coherence appear. By introducing a filter in the circuit we purify the auxiliary qubit, taking it out
from the totally mixed state and consequently promoting other quantum correlations between the qubits, such as
entanglement and Bell’s nonlocality. Through the optimization of the purification process, we conclude that even
a small purification is enough to generate entanglement and Bell’s nonlocality. We obtain, that by applying the
purification process repeatedly an average of 12 times, the auxiliary qubit becomes 99% pure. In this situation,
almost maximally entangled states are achieved, which almost maximally violate Bell’s inequality. This result
suggests that with a simple modification, the DQC1 model can be promoted to a universal model of quantum
computing.
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I. INTRODUCTION

As quantum correlations are exclusive to the quantum
realm, we may expect that the advantages in processing, stor-
ing, and transmitting information are somehow connected to
them. In the case of processing information, to have a speedup
in relation to classical algorithms, quantum computing with
pure states requires entanglement [1,2]. However, this require-
ment is not clear for quantum computation with mixed states.
For instance, the deterministic quantum computation with one
qubit (DQC1) [3] is a restricted model of quantum computing
using a simple setup of a single pure qubit and n others in
the totally mixed one. This simple scheme can evaluate the
normalized trace of an arbitrary unitary matrix measuring just
the first qubit. In Ref. [4], Datta et al. showed that this model
requires little or null entanglement to perform the task of trace
evaluation, suggesting a different quantum resource to explain
the resulting computational gain [5], e.g., quantum discord
[6]. Such an implication carries some ubiquity in physical
models since the set of zero-discord states has zero measure
and is nowhere dense, as shown in Ref. [7], which means
that general quantum correlations beyond entanglement can
be seen as a possible relevant resource for nonclassical char-
acteristics. Notwithstanding, in Ref. [8] Dakić et al. presented
a class of unitary matrices with null quantum discord without
losing the quantum advantage. Continuing this investigation,
the coherence of the control qubit was pointed out as the
resource responsible for the speedup, given that it can be
converted into other correlations [9,10].

The goal of this work is to promote quantum correlations in
the DQC1 model. Because in the standard DQC1 model only

quantum discord and coherence are present for two qubits,
we use postselection to purify the auxiliary qubit such that
entanglement and Bell’s nonlocality are created.

This article is divided as follows: In Sec. II, we introduce
the DQC1 circuit and the quantum correlation measures. The
postselection process and the analysis of the results are given
in Sec. III. Finally, our conclusions are described in Sec. IV.

II. QUANTUM CORRELATIONS IN THE STANDARD
DQC1 MODEL

Introduced by Knill and Laflamme [3], the deterministic
quantum computation with one qubit (DQC1) is a computing
model that evaluates the normalized trace of any unitary oper-
ator using a measurement in a single qubit. The DQC1 circuit
(see Fig. 1) consists of a control qubit in the state

ρ0(α) = (I + ασZ )

2
,

where σZ is the Pauli matrix Z , a certain degree of coherence
controlled by α (0 � α � 1) and n auxiliary qubits initially in
the totally mixed state,

ρn = I⊗n

2n
,

where I is the identity operator.
In addition to the Hadamard gates,

H = 1√
2

[
1 1
1 −1

]
,
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FIG. 1. DQC1 circuit used to evaluate the normalized trace of
a unitary matrix Un. The control qubit starts in a semipure state,
ρ0(α) = (I+ασZ )

2 , with 0 � α � 1, while the n auxiliary qubits are in

the maximum mixture state, ρn = I⊗n

2n .

applied on the first qubit, the computation is performed by a
controlled unitary between the first and auxiliary qubits. The
result is obtained by measuring the expected values of the
operators associated with the control qubit, whose precision is
independent of the dimension of the unitary transformation Un

and depends only on the number of runs of the quantum circuit
[4]. In contrast, the simplest classical algorithm to calculate
the trace of a matrix depends on its dimension, which one can
increase exponentially according to the number of qubits in
the system [11].

With this advantage in mind, the idea is to map certain
problems into the DQC1 model. Despite not being a universal
model of quantum computing, some quantum solutions ob-
tained through this model present advantages in comparison
to their classical counterparts, such as spectral density esti-
mation [3], testing integrability [12], Shor factorization [13],
evaluation of average fidelity decay [14], estimate of Jones
polynomials [15], and quantum metrology [16,17]. Inspired
by these results, some experimental implementations of this
model have been made in optical [18,19], nuclear magnetic
resonance [20,21], superconducting materials [22], and cold
atoms [23].

A. Quantum correlations in the DQC1 model

We start by writing the output state of the DQC1 circuit for
two qubits in the Fano representation [24],

ρ = 1

4

[
IA ⊗ IB + IA ⊗ (�r · �σ B) + (�s · �σ A) ⊗ IB

+
∑

i, j=x,y,z

ci jσ
A
i ⊗ σ B

j

]
, (1)

where the polarization vectors are �r = tr[ρ(IA ⊗ �σ B)] and �s =
tr[ρ(�σ A ⊗ IB)], the elements of the correlation matrix C are
ci j = tr[ρ( �σi

A ⊗ �σ j
B)], the indices A and B refer to the first

and second subsystems, and i, j = x, y, z refer to the indices
of a vector of Pauli matrices, namely {σx, σy, σz}.

It is simple to define the quantum correlations used
throughout this work (Bell’s nonlocality, entanglement, quan-
tum discord, and coherence) using this representation.

Bell’s nonlocality. Bell’s inequality can be evaluated by the
quantity [25]

B(ρ) = 2
√

m1 + m2, (2)

where m1 and m2 are the two largest eigenvalues of the matrix
M = CCT , where T means the transposition operation. If
B(ρ) � 2, Bell’s inequality is not violated, otherwise nonlocal
effects might appear. The values of B(ρ) are comprised in the

interval [0, 2
√

2], with the maximum violation being achieved
by the entangled pure states, such as the Bell entangled states.

Entanglement. To quantify bipartite entanglement, we used
Negativity [26] defined as

N (ρ) = ‖ρTA‖1 − 1

2
, (3)

where TA is the partial transposition of the subsystem A, and
‖·‖1 is the trace norm. The negativity indicates how far the
partial trace of the density matrix is from positive, and con-
sequently, how entangled the subsystems are. For a two-qubit
system, N (ρ) ∈ [0, 1/2].

Quantum discord. The geometric discord of an arbitrary
two-qubit state is [8]

D(ρ) = 1
4

(‖�s‖2
2 + ‖C‖2

2 − λmax
)
, (4)

where the norms on the right-hand side of the equation above
have been calculated using the Euclidean (for vector �s) and
Hilbert-Schmidt (for matrix C) norms. λmax represents the
largest eigenvalue of the matrix

� = �s · �sT + CCT .

The values of quantum discord are restricted to the interval
D(ρ) ∈ [0, 1/2].

Coherence. The trace norm coherence is measured using
[27,28]

C(ρ) = ‖ρ − ρdiag‖1, (5)

where ρdiag denotes the state obtained from ρ using just the
diagonal elements. Basically, this measure sums the absolute
values of all off-diagonal terms of ρ so that C(ρ) ∈ [0, 3] for
a two-qubit system.

To explore the quantum correlations presented in the output
states of the DQC1 circuit for two qubits (see Fig. 1), we
chose 106 random initial qubit states according to the Hilbert-
Schmidt measure [29] and also 106 unitary matrices (U1) from
the Haar measure [30,31]. The quantum correlations gener-
ated between the two qubits at the end of the circuit are shown
in Fig. 2, where each dot is obtained for a given final density
matrix.

As is already known, there is no entanglement between
the control and the auxiliary qubits in the standard DQC1
model [4], and a straightforward consequence of this is no
violation of Bell’s inequality, as shown in Figs. 2(a) and
2(b). Superposition (quantified by coherence) is vital for the
appearance of others correlations, as shown in Figs. 2(a) and
2(c). We also have Fig. 2(c) showing states with nonvanishing
quantum discord D(ρ) and coherence, confirming that they
are intimately related. Note the maximum values achieved by
coherence and quantum discord, Cmax(ρ) = 1 and Dmax(ρ) =
0.1244, respectively. They are far from reaching the maximum
values accessible for general two-qubit states, i.e., 3 and 0.5,
respectively.

III. POSTSELECTION IN THE DQC1 MODEL

Inspired by Ref. [13], we analyzed the effect of postselec-
tion on promoting quantum correlations in the DQC1 model
for two qubits.
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FIG. 2. Each dot represents the value of the quantum correlation
calculated for the output state of the DQC1 circuit. The 106 states
were obtained choosing initial states and unitary transformations
at random. The red-dashed vertical line represents the maximum
value of B(ρ ) in which there is no Bell’s nonlocality. The quantum
correlation measured by entanglement does not appear here because
it is null for the standard DQC1 circuit (see Fig. 1).

To promote other correlations in this computing model, we
introduced a specific postselection process F on the control
qubit at the end of the DQC1 circuit (see Fig. 3), which one
enacts through a local filter, described by [32]

F (Ua, η) = Ua

[
1 0
0 η

]
U †

a , (6)

with η ∈ [0, 1], and Ua is a unitary matrix. η represents the
probability of success of this filter considering the complete
measurement {F (Ua, η), I − F (Ua, η)}. For the particular
case η = 1, the filter reduces to the identity operator, doing
nothing on the control qubit, while for η < 1, it diminishes
the contribution coming from one component of the state in
the direction determined by the unitary transformation Ua. In
the limit case η = 0, just one component of the state survives.

As is well known, if the auxiliary qubit starts in a state
different from the maximum mixture, then, for an appropriate
unitary U1, entanglement and violation of Bell’s inequality
emerge in this system [33]. Thus, in order to purify the aux-
iliary qubit, we postselect certain values of η and investigate
the role played by this filter parameter on the quantum corre-
lations between the qubits.

FIG. 3. DQC1 model for two qubits with postselection through a
specific filter F that operates on the control qubit. The initial state of
the auxiliary qubit is ρn=1 = I

2 , while the initial state of the control
qubit ρ0 and the unitary U1 are randomly chosen. At the end of the
circuit, we trace out the control qubit from the two-qubit state ρ∗

f ,
obtaining a more purified state of the auxiliary qubit. The purification
process can be repeated by inserting the final state of the auxiliary
qubit in the circuit again as many times as desired.
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FIG. 4. Empirical probability distribution of the fidelity between
104 randomly chosen ρ f and ρ ′

f after the DQC1 with postselection
[see Eq. (8)] for fixed values of η ∈ {0, 1/2, 1}.

A. Benchmarking the DQC1 with postselection

To proceed with this investigation, we used a DQC1 with
postselection; see Fig. 3. The state before filtering is

ρb f = (H ⊗ I )U (H ⊗ I )ρ0(H ⊗ I )U †(H ⊗ I ), (7)

and the final state is

ρ f (Ua, η) = F (Ua, η)ρb f F (Ua, η)†

tr[F (Ua, η)ρb f F (Ua, η)†]
(8)

for some choice of η ∈ [0, 1] and unitary matrix Ua.
Following [34], we first analyze the fidelity,

F (ρ1, ρ2) = [√√
ρ1ρ2

√
ρ1

]2
,

between 104 pairs of output states ρ f and ρ ′
f choosing an

initial pure state ρ0 for the control qubit drawn from the
Hilbert-Schmidt measure, a controlled unitary gate U1, and
a unitary Ua drawn from Haar measure and fixed values of
η ∈ {0, 1/2, 1}.

The probability distributions of F (ρ f , ρ
′
f ) in Fig. 4 show

the average fidelity between ρ f and ρ ′
f diminishing as η → 0.

We can see it as numerical evidence that the DQC1 with
postselection distributes the states more distantly (according
to the Bures metric [35]), and also with more accessible states
in the two-qubit Hilbert space, which will be clear when we
present the promotion of quantum correlations later in this
article.

To understand this result qualitatively, let us remember that
the motivation of the DQC1 model relies on nuclear magnetic
resonance (NMR) systems, whose two-qubit density matrices
have the form

ρNMR = 1 − ε

4
I4×4 + ε|ψ〉〈ψ |, (9)

with 0 � ε � 1, and I4×4 and |ψ〉 are the identity operator and
a pure state in the two-qubit Hilbert space. If we calculate the
fidelity for states of the form ρNMR, it is easy to verify that
for small values of ε, states with fidelities closer to 1 are more
frequent, which is similar to the standard DQC1 model.
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FIG. 5. Purity as a function of the probability of success η for the
DQC1 model with two qubits and postselection. Each dot represents
the average maximum value of the achieved purity for the auxiliary
qubit with a specific η.

B. Purity and quantum correlations in the DQC1 model

As mentioned before, the purity P(ρ) = trρ2 of the aux-
iliary qubit also determines the possibility of promoting
quantum correlations in the DQC1 model. The purity varies
from P(ρ) = 1/2 for a totally mixed qubit state to P(ρ) = 1
for a pure qubit state. In Fig. 5 we run the same protocol
above and take the average maximum value of the purity for
a specific value of η. We observe that the average maximum
value of the purity is approximately P(ρ) � 0.62 for η = 0.5,
and as η approaches 1 the purity converges to its minimum
value, as expected, since for η = 1 the filter has no effect on
the auxiliary qubit.

Figure 6 shows the behavior of each normalized quantum
correlation as a function of the purity of the auxiliary qubit.
The normalization of a given quantum correlation X is defined
as XN ≡ X/Xmax, where Xmax is the maximum value achieved
by the quantum correlation X . All correlations increase as the
purity increases. We highlight that even without a significant
purification of the auxiliary qubit, we already achieve non-
null entanglement and Bell’s nonlocality [BN (ρ) > 1/

√
2 �

0.707]. These results are in agreement with the discussion
made in the previous section in which coherence (blue disks)
and quantum discord (yellow diamonds) exist independently
of the purification process, once they are created by local
operations (and classical communications for discord). On
the other hand, the existence of entanglement (red squares)

FIG. 6. Normalized quantum correlations as a function of purity
P(ρ ). Each dot represents the average maximum value of the quan-
tum correlations for a given purity.

FIG. 7. Density of states, defined as the ratio between the number
of states after the postselection process with a correlation value
greater than the maximum value of the correlation achieved by the
states in the standard DQC1 model (without postselection), vs the
probability of success η of the purification protocol. The total number
of states analyzed for each correlation is 104.

and Bell’s nonlocality (pink stars) depends strongly on the
purity of the auxiliary qubit. Entanglement starts from zero
for totally mixed states [P(ρ) = 1/2] and increases, but it
does not achieve maximum entanglement. A similar behavior
is found for the violation of Bell’s inequality, although its
minimum value is greater than 1/

√
2.

To estimate the number of states that have been promoted
after the postselection process, i.e., the number of states whose
quantum correlations increased after the filtering procedure,
we analyze the density of states. The density of states is
defined as the ratio between the number of states after the
postselection process with a correlation value greater than the
maximum value of the correlation achieved by the states in
the standard DQC1 model (without postselection). The max-
imum values of quantum discord, quantum coherence, and
B(ρ) attained by the standard DQC1 circuit (see Fig. 2) are
0.1244, 0.9992, and 1.9974, respectively. Figure 7 presents
the density of states for quantum discord (green disks), quan-
tum coherence (orange diamonds), and B(ρ) (black stars) for
the different values of η considering a total of 104 states.
As there is no entanglement between the control and the
auxiliary qubit in the standard DQC1 model, the density of
states defined above does not apply for this correlation. We
observe that the higher η is, the lower is the density of states
that overcome the value of these correlations for the DQC1
model without postselection. This reinforces the strong con-
nection between the mixedness of the auxiliary qubits and the
quantum correlations in the model. As in the standard DQC1
model, the maximum value achieved by B(ρ) is approxi-
mately 2; all states used to build Fig. 7 (black stars) violate
Bell’s inequality. These plots give us information about the
number of states that are accessible after the postselection
process, and which ones constitute a resource for quantum
computation.
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FIG. 8. Quantum discord D(ρ ) vs B(ρ ). Each surface with a
different color shows the mean value of 104 random unitary matrices
U1 and control qubit initial states used to compute the quantum
correlations for each purification step of the auxiliary qubit. Due to
the similar behavior of the quantum correlations for the intermediate
steps of the purification process, only 5 out of a total of 12 steps have
been plotted.

C. Purification optimization

Now we want to find optimal strategies for filtering, with-
out fixing the parameter η, to reach a purity of P(ρ) = 0.99
for the auxiliary system.

For this optimization, we chose the following procedure:
(i) The initial pure state ρ0 for the control qubit and the

controlled unitary gate U1 are drawn from Hilbert-Schmidt
and Haar measures, respectively.

(ii) The parameters of the filter F , which include η and the
unitary Ua, are chosen such that

arg min
η,Ua

{P(trc[ρ f (Ua, η)])},

where trc[ρ f (Ua, η)] is the state of the auxiliary system after
the postselection, tracing the control system out.

(iii) If P(trc[ρ f (Ua, η)]) ≈ 0.99 we stop.
(iv) Otherwise, the purified state of the auxiliary qubit is

chosen in the DQC1 circuit instead of the identity, and we
optimize again for the same choice of initial pure state ρ0 for
the control qubit and the controlled unitary gate U1.

We noticed that on average 12 steps were necessary to
achieve the desired value of purity. The relation between
the quantum correlations with the steps of purification are
shown in Figs. 8–13. Each surface with a different color
shows the mean value of 104 random unitary matrices U1

and initial states of the control qubit used to compute the
quantum correlations for each purification step of the aux-
iliary qubit. To keep the figures legible, we have plotted
only 5 steps out of a total of 12, i.e., the 1st, 2nd, 3rd,
4th, and 12th ones. The teal surfaces represent the mean
value of quantum correlations after the first step of purifi-
cation, while the olive surfaces represent the mean value
after the last step of purification, in which the auxiliary qubit
achieves P(ρ) = 0.99.
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FIG. 9. Negativity N (ρ ) vs B(ρ ). Each surface with a different
color shows the mean value of 104 random unitary matrices U1 and
control qubit initial states used to compute the quantum correlations
for each purification step of the auxiliary qubit. Due to the similar
behavior of the quantum correlations for the intermediate steps of
the purification process, only 5 out of a total of 12 steps have been
plotted.

Figures 8–10 show that according to the increase of the
purity of the auxiliary qubit, the number of states that vi-
olate Bell’s inequality also increases, almost achieving its
maximum violation. From step three onward, the quantum
correlations behave totally differently. In Fig. 10, we clearly
see that Bell’s inequality is violated already in the second step
of purification, and from the fourth step onward almost all of
the states are nonlocal. Also, Figs. 8 and 9 agree for highly
purified auxiliary states once quantum discord and entangle-
ment quantify the same kind of correlation [8]. In Fig. 10, we
observe that in all steps of purification of the auxiliary qubit,
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FIG. 10. Quantum coherence C(ρ ) vs B(ρ ). Each surface with a
different color shows the mean value of 104 random unitary matrices
U1 and control qubit initial states used to compute the quantum
correlations for each purification step of the auxiliary qubit. Due to
the similar behavior of the quantum correlations for the intermediate
steps of the purification process, only 5 out of a total of 12 steps have
been plotted.
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FIG. 11. Quantum discord D(ρ ) vs quantum coherence C(ρ ).
Each surface with a different color shows the mean value of 104

random unitary matrices U1 and control qubit initial states used to
compute the quantum correlations for each purification step of the
auxiliary qubit. Due to the similar behavior of the quantum correla-
tions for the intermediate steps of the purification process, only 5 out
of a total of 12 steps have been plotted.

the states have non-null coherence, achieving a maximum
value of approximately 1.5. Such a value is also achieved
by states that violate almost maximally Bell’s inequality, i.e.,
they are of the form |00〉+|11〉√

2
, which gives us a coherence

value of
√

2 � 1.41. Figures 11 and 12 show that for the
last step of purification, almost all of the states have C(ρ) >

1, which demonstrates the efficiency of the purification
protocol.

The general behavior of quantum correlations presented in
Fig. 13 agrees with the result presented in Refs. [36,37], which
states that when using 2-norm, quantum discord is lower
bounded by the square of the negativity for two qubit states.

0 0.1 0.2 0.3 0.4 0.5

 N( )

0

0.5

1

1.5

 C
(

)

step 1

step 2

step 3

step 4

step 12

FIG. 12. Quantum coherence C(ρ ) vs negativity N (ρ ). Each sur-
face with a different color shows the mean value of 104 random
unitary matrices U1 and control qubit initial states used to compute
the quantum correlations for each purification step of the auxiliary
qubit. Due to the similar behavior of the quantum correlations for the
intermediate steps of the purification process, only 5 out of a total of
12 steps have been plotted.
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FIG. 13. Quantum discord D(ρ ) vs negativity N (ρ ). Each sur-
face with a different color shows the mean value of 104 random
unitary matrices U1 and control qubit initial states used to compute
the quantum correlations for each purification step of the auxiliary
qubit. Due to the similar behavior of the quantum correlations for the
intermediate steps of the purification process, only 5 out of a total of
12 steps have been plotted.

As mentioned above, for entangled states that are almost pure,
both measures become quite similar.

IV. CONCLUSIONS

In this work, we showed how to promote quantum corre-
lations, such as coherence, quantum discord, entanglement,
and Bell’s nonlocality, that are present in the output state of
the DQC1 model for two qubits. As is already known, in the
standard DQC1 model for two qubits there is only quantum
discord and coherence. By applying a filtering process com-
bined with optimization protocols, entanglement and Bell’s
nonlocality arise in this system, even for a small purification
of the auxiliary qubit. When we reintroduced the purified
auxiliary qubit into the circuit again, we observed that the
number of purification steps that are needed to achieve a max-
imum purity of 0.99 is on average 12. For this level of purity,
the qubits become practically maximally entangled, and they
also violate Bell’s inequality almost maximally. Our results
suggest that it is possible to promote this restricted model of
quantum computing to a universal one by using postselection
with a specific filter, although formal proof is lacking. A rather
natural extension of our analysis is to consider the effect of
decoherence and/or dissipation in the scheme presented. This
will be done in a future work.
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