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Quantum operator growth bounds for kicked tops and semiclassical spin chains
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We present a framework for understanding the dynamics of operator size, and bounding the growth of out-
of-time-ordered correlators, in models of large-S spins. Focusing on the dynamics of a single spin, we show
the finiteness of the Lyapunov exponent in the large-S limit; our bounds are tighter than the best known Lieb-
Robinson-type bounds on these systems. We numerically find our upper bound on Lyapunov exponents is within
an order of magnitude of numerically computed values in classical and quantum kicked top models. Generalizing
our results to coupled large-S spins on lattices, we show that the butterfly velocity, which characterizes the
spatial speed of quantum information scrambling, is finite as S → ∞. We emphasize qualitative differences
between operator growth in semiclassical large-spin models and quantum holographic systems including the
Sachdev-Ye-Kitaev model.
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I. INTRODUCTION

Quantum systems with a natural semiclassical limit are
the canonical setting for understanding quantum chaos and
its connections with classical physics [1–6]. Several years
ago, this subject was revived by the study of out-of-time-
ordered correlators (OTOCs) in many-body systems [7–13].
These OTOCs grow exponentially in various large-N quan-
tum systems with nonlocal interactions, mimicking the rapid
deviation of trajectories in a classically chaotic system:

−〈[O1(t ),O2]2〉 ∼ N−1eλt . (1)

Here O1,2 correspond to “small” local operators. This ex-
ponential growth of OTOCs can, in some circumstances, be
deeply related to holographic quantum gravity [14–19]: the
growth of an “operator size distribution” has been conjectured
to probe the emergent holographic dimension of quantum
gravity.

Motivated by this holographic connection, a significant
literature has arisen [20–28], aiming to construct experimen-
tally simulatable models of many-body quantum chaos and
quantum gravity. Some of this theoretical literature focuses
on large-S spin models [29–33], because the 1/S expansion
behaves much like the h̄ expansion [1], and so classically
chaotic Hamiltonian systems should become quantum chaotic
ones. However, it is, as of yet, unclear how operators grow in
such models, and even whether questions of operator growth
are well defined, let alone related to quantum gravity.

In this paper, we present the necessary mathematical
framework to make precise statements about operator growth
and OTOC dynamics in large-S spin models. We provide a
natural definition of operator size and operator growth in such
a model, despite the lack of a genuinely many-body Hilbert
space. We then use recently developed “operator quantum
walk” methods [34–37] to prove that the growth exponent λ
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of the OTOC does not depend on S. In large-S spin chains and
lattices, a straightforward generalization of our framework
proves that (1) the butterfly velocity vB, characterizing the
spatial growth of the OTOC [9,38–40] is also independent of
S and (2) the prefactor of the OTOC is suppressed by 1/S, as
anticipated from (1).

The Lieb-Robinson theorem [41,42] has long been the
canonical method of choice for proving locality and constrain-
ing quantum information dynamics. Using recently developed
methods [43], it is possible to show that both λ and vB are
independent of S. However, we show that for general models,
our framework based on operator size growth leads to tighter
bounds on both λ and vB. In fact, our bounds on λ are within
an order of magnitude of numerically calculated exponents
in semiclassical kicked top models, demonstrating that our
bounds are strong enough to give nontrivial limits on the
classical limit of quantum dynamics.

Our framework also gives a more rigorous perspective
on subtle, but important, differences in OTOC growth and
scrambling between many-body chaotic models with and
without a semiclassical limit. While in a holographic model
the operators which grow rapidly and dominate the OTOC
are exponentially rare (among large operators) [34], typical
operators in semiclassical models can grow rapidly. Our tech-
niques thus help shed light on which experimentally realizable
models genuinely mimic scrambling in quantum holographic
models, and which ones do not.

II. RESULTS

We now introduce the models of interest. Let the
spin operators for a spin-S degree of freedom be S =
(Sx, Sy, Sz ) = (X,Y, Z ), namely, [Sα, Sβ ] = iεαβγ Sγ , S2 =∑

α (Sα )2 = S(S + 1). We first consider a general time-
dependent Hamiltonian

H (t ) =
∑

n

h(n; t )S1−nx−ny−nz X nxY ny Znz , (2)
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where n ≡ (nx, ny, nz ). The terms are normalized by powers
of S to have a well-defined semiclassical limit, while h(n; t ) is
independent of S. We define a canonical infinite temperature
OTOC for an initial operator O:

F (O(t )) = − 1

2S + 1

∑
α

tr[Sα,O(t )]2. (3)

As we will see, by decomposing O(t ) into irreducible tensors
of the rotation group SU(2), we can interpret F (O(t )) as the
average size of O(t ).

In a chaotic model, F can grow exponentially: F (O(t )) ∼
exp[λOTOCt] for times t � ln S. Our first main result is that
this is, in fact, the fastest possible OTOC growth: λOTOC is
bounded by a constant independent of S. A general proof is
given in the Appendix. In the main text, we focus our discus-
sion on a well-studied semiclassical spin model: the kicked
top [1]

H (t ) = κ

2S + 1
Z2 + hX

∑
n∈Z

δ(t − n). (4)

Here we will prove that λOTOC � κ; moreover, by studying
the dynamics numerically, we find λOTOC � 0.44κ , which is
within an order of magnitude of our rigorous constraint.

We then turn to models with spatial structure. As a simple
example, consider a chain of coupled (kicked) tops

H =
L∑

i=1

[
hi(t )Xi + 1

2S + 1

(
κ ′Z2

i + κZiZi+1
)]

, (5)

where L is arbitrarily large and denotes the size of the system.
Our definition of operator size immediately generalizes to this
large-S system, and we prove that λ and vB are finite. In each
of the two cases above, our results are generically stronger
than the best known Lieb-Robinson bounds (when κ ′ 
= 0).

III. OPERATOR GROWTH

Let us now develop the operator growth formalism and why
λOTOC � κ in the kicked top model. The first step is a suitable
definition of operator size, the average of which relates to the
OTOC. Observe that if we start with a single-spin S Hilbert
space, which transforms in the representation S of SU(2), that
the vector space of all operators contains representations

S ⊗ S = 0 ⊕ 1 ⊕ · · · ⊕ 2S. (6)

The “spherical-harmonic tensor operators” {Ym
l : m =

−l, . . . , l; l = 0, . . . , 2S} [44] are irreducible tensors
transforming in representation l:[

Z,Ym
l

] = mYm
l , (7a)[

X ± iY,Ym
l

] =
√

(l ∓ m)(l ± m + 1)Ym±1
l . (7b)

They are, intuitively, the operator generalizations of the
well-known spherical harmonics. The operators Ym

l can be
found by writing rlY m

l (θ, φ) in rectangular coordinates, and
subsequently replacing products such as xy with 1

2 {X,Y }, etc.
More algebraically, we start with

Y±l
l = (∓1)l

2l l!

√
(2l + 1)!

4π
(X ± iY )l , (8)

from which we can use the su(2) algebra (7) to find all Ym
l .

All Ym
l are orthogonal to each other.

The linearity of quantum mechanics implies that operators
themselves live in a “Hilbert space.” We often write an oper-
ator O in the bra-ket-like notation |O) to emphasize this fact.
Defining the operator inner product

(A|B) = 1

2S + 1
tr(A†B), (9)

we find that

(
Ym

l

∣∣Ym
l

) = 1

4π

l∏
k=1

[(
S + 1

2

)2

− 1

4
k2

]
. (10)

We define the normalized basis T lm = Ym
l /‖Ym

l ‖. Each oper-
ator can be expanded in this basis:

O(t ) =
∑
l,m

Olm(t )T lm. (11)

Last, we define the following projection operators:
Ql ′ |T lm) = δll ′ |T lm).

By unitarity,

d

dt

∑
l,m

|Olm|2 = 0. (12)

Hence we can define a probability distribution of “operator
size”: an operator has size l with probability φ2

l :

φ2
l =

l∑
m=−l

|Olm|2
(O|O)

. (13)

Normalizing (O|O) = 1 and using (7), the OTOC (3) is

F (O) =
2S∑

l=0

l (l + 1)φ2
l . (14)

Rather than bound the OTOC directly in the manner of
Lieb-Robinson, we now bound OTOCs by constraining the
“stochastic process” governing the time evolution of the op-
erator size distribution. Because operators evolve in time
according to

d

dt
|O(t )) = L|O(t )) = |i[H,O(t )]), (15)

we can formally write a set of linear equations for the proba-
bility amplitudes φl [34–37]:

dφl

dt
= Kl−1(t )φl−1(t ) − Kl (t )φl+1(t ), (16)

where the coefficients Kl (t ) obey

Kl (t ) � ‖QlLQl+1‖ ≡ Kl , (17)

where ‖ · · · ‖ denotes the conventional operator norm, acting
on the space of superoperators.

To bound Kl , notice that the only size-changing terms arise
from i[Z2, T lm] = im{Z, T lm}. Now observe that

Y0
1 T lm =

l+1∑
l ′=l−1

c(l, l ′)〈10lm|l ′m〉T l ′m, (18)
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where Z = 2
√

π/3Y0
1 , 〈1m′lm|l ′(m + m′)〉 is the Clebsch-

Gordan coefficient, and c(l, l ′) is a constant independent of
m, m′ related to normalization of T lm. An explicit calculation
gives

c(l, l + 1) = 1

2

√
3(l + 1)

π (2l + 3)

√(
S + 1

2

)2

− 1

4
(l + 1)2. (19)

We can similarly evaluate T lmY0
1 , and eventually find

QlLT l−1,m = iκm

√
[l2 − m2][(2S + 1)2 − l2]

(2l − 1)(2l + 1)(2S + 1)2
T lm. (20)

A crucial observation is that Ql+1LT lm and Ql+1LT lm′
are

orthogonal if m 
= m′. Hence Kl can be upper bounded by the
maximal value of the coefficient in (20):

Kl = κ
maxm m

√
(l + 1)2 − m2

√
(2l + 1)(2l + 3)

� κ (l + 1)2

2
√

(2l + 1)(2l + 3)
.

(21)

We then explicitly find that [34]

dF

dt
= 2

2S∑
l=0

l (l + 1)φl
dφl

dt
�

2S∑
l=0

2(l + 1)Kl
(
φ2

l + φ2
l+1

)

� κ

2S∑
l=0

[l (l + 1) + 2]φ2
l = κ (F + 2). (22)

Thus for kicked top models,

λOTOC � κ. (23)

Our bound (23) is not saturated without the “kicks.” If
h = 0 in (4), H ∝ Z2, T 11(t ) only hops on sites {T l1}, and
|Kl (t )| � 1

2 . As a result, F (t ) � O(t2). Although this is ex-
pected because (4) is integrable when h = 0, our formalism
crisply captures how this integrability prevents the operator
from growing rapidly. Kicks, which move us from operators
with m ∼ 1 to m ∼ l , are required to come close to saturating
our bound.

IV. CLASSICAL AND QUANTUM KICKED TOP

We now compare (23) to the actual value of λOTOC in the
semiclassical kicked top. When comparing to the standard
definition of Lyapunov exponent (LE), we must replace 2λL =
λOTOC. When κ is large, one finds that [45]

λL = ln (κ| sin h|) − 1. (24)

At finite κ , we have numerically calculated the classical LE
by the tangent map matrix method [45], evolving for 0 < t <

106. We set h = π
2 to optimize operator growth. The result is

shown in Fig. 1, in comparison to our fully quantum mechan-
ical bound.

We have also, for smaller system sizes, calculated the
quantum OTOCs of a kicked top: by calculating F (O(t )) nu-
merically, we extract the quantum LE by fitting an exponential
growth in time at S = 500, while averaging the exponents
over initial operator O = X,Y, Z . One finds the quantum LE
is indeed larger than the classical one, and at large κ the

FIG. 1. Classical and quantum LE for kicked top at h = π/2.
The main plot: The magenta line is the quantum LE λOTOC. The
red line is classical LE 2λL averaged for 100 initial states, with
the standard deviation as error bar. The cyan scattered points
are for each initial points. The blue dashed line is the analyti-
cal result λL = ln (κ| sin h|) − 1. The black dashed line is λsaddle =
ln ( κ

2 +√κ2/4 − 1). The green dashed line is our bound λbound = κ .
The inset is of the same data for λOTOC and numerical 2λL in the main
plot, with axes modified.

difference goes to a constant ≈0.4, which qualitatively agrees
with that in the kicked rotor [46]. The largest λOTOC/κ is 0.44
at κ ≈ 4.5, while the largest 2λL/κ is 0.35 at κ ≈ 3.7, as
shown in the inset. These are smaller than our bound, but are
well within an order of magnitude. At large κ the LEs ∝ ln κ

are parametrically smaller than our bound, which is consistent
with the fact that λOTOC is always smaller than the exponent
ln F (O(1)) − ln F (O) in the first period; see Fig. 2. The oper-
ator growth during that first time period is induced solely from
the Z2 term in H , where F (O(t )) − F (O) ∼ c1(κt )2 + c2κt
with constant c1, c2. This leads to λOTOC � 2 ln κ at large κ ,
although this behavior is not captured by (23), which allows
for arbitrarily strong kicking.

When κ � 2, following Refs. [47,48], we can also argue
for a lower bound

λOTOC � λsaddle = ln

(
κ

2
+
√

κ2

4
− 1

)
. (25)

Here λsaddle refers to the growth rate of OTOCs arising from an
unstable point in the semiclassical “phase space” as follows.
We start from the classical limit of (4), which leads to the
dynamical map [45] for h = π/2:

Jz
t+1 = Jy

t ,

Jx
t+1 = Jx

t cos
(
κJz

t+1

)+ Jz
t sin

(
κJz

t+1

)
,

Jy
t+1 = Jx

t sin
(
κJz

t+1

)− Jz
t cos

(
κJz

t+1

)
, (26)

where J = (Jx, Jy, Jz ) is a classical vector with norm 1. One
can verify that J = (±1, 0, 0) are two fixed points. Linearize
the map near (1,0,0), for example (the other fixed point has
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FIG. 2. Dynamics of the OTOC in the quantum kicked top at h = π/2. The three line types correspond to three initial operators O =
X,Y, Z . The three colors or shades correspond to S = 100, 500, 1000, as shown in the legend. A clear exponential behavior is observed in this
plot of ln F ; note, however, that the late-time LE (given by the slope at larger t) is always smaller than ln F (1) − ln F (0), the increase in the
(log) OTOC after the first time step.

the same result):

Jz
t+1 = Jy

t ,

Jy
t+1 = κJz

t+1 − Jz
t . (27)

Using the ansatz Jz,y
t ∼ δJ0

z,y × eωt , we solve for ω and find
the “quasinormal modes”

eω± = κ ± √
κ2 − 4

2
. (28)

Thus we conclude there is an unstable saddle point when
κ > 2, and following Ref. [48], we predict λsaddle = ω+ in
Eq. (25). Note that there are other nontrivial saddle points
in the classical kicked top [3], which might give a better
bound. Hence, this saddle point physics is as important as
semiclassical chaos when saturating our bound, since λsaddle

is comparable to λL in the region around κ ≈ 4, where our
bound is tightest.

V. SEMICLASSICAL SPIN CHAINS

Next, let us discuss operator growth in the interacting semi-
classical spin chain Eq. (5), where operators are characterized
by their size l on each site. Define Pil as the projector onto
operators which have size l on site i. (Note that for i 
= i′, Pil

and Pi′l ′ do not project onto disjoint sets.) Consider an initial
operator O which has support only on vertex i0 = 1 ∈ V and
obeys (O|O) = 1. Using similar methods to our earlier dis-
cussion, we prove a bound on how fast O(t ) can grow:∑

i�D

∑
l

l (O(t )|Pil |O(t )) � F0b−De
t
2 [cκ ′+κ (b+ 1

b )], (29)

with constant F0, c, for any b > 1. Here we achieve c = 1.09,
but speculate that c (along with the prefactor of the κ term)
may be further optimized by more sophisticated techniques
within this quantum walk formalism.

The proof starts from defining F := (O|F |O), where

F :=
∑

il

bilPil . (30)

Note that one can use lν in this definition instead of l , and the
following still hold after generalization. However, we focus
on ν = 1 because it turns out to give an optimal bound for
butterfly velocity. The goal of the proof is to bound dF

dt by
some coefficient times F itself:

dF

dt
= (O|[F ,L]|O) =

∑
i

(
O
∣∣∣∣∣
[

bi
∑

l

lPil ,Lii

]∣∣∣∣∣O
)

+
∑

i

(
O
∣∣∣∣∣
[

bi
∑

l

lPil + bj
∑

l

lP jl ,Li j

]∣∣∣∣∣O
)

=
∑

i

biGii +
∑

i

(biGi j + bjGji ), (31)

where

Gii := −2
∑

l

l (O|Lii|Oil )

= −2
∑

l

l (Oil+1 + Oil−1|Lii|Oil )

= 2
∑
l>0

(Oil+1|Lii|Oil ), (32)

where |Oil ) := Pil |O). Gi j is defined similarly: Let Oil, jl ′ =
PilP jl ′O. Since (Oil |Li j |Oil ) = 0, only the Pil±1 terms in,
e.g., [ZiZ j, T lm

i T l ′m′
j ] = (ZiT lm

i )m′T l ′m′
j + mT lm

i (T l ′m′
j Z j ) con-

tribute to the sum:

Gi j : = −2
∑

l

l (O|Li j |Oil ) = 2
∑

l

(Oil+1|Li j |Oil )

= 2
∑

l

∑
l ′>0

(Oil+1, jl ′ |Li j |Oil, jl ′ ). (33)

We first bound Gii using Eq. (21):

Gii � 2
∑
l>0

‖Oil+1‖‖Pil+1Lii|Oil )‖

� κ ′

2

∑
l>0

g(l )(l + 1)ϕilϕil+1,
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� κ ′

4

∑
l>0

(l + 1)2

[
1

l + 1/2
ϕ2

il+1 + 1

l + 3/2
ϕ2

il

]

� c
κ ′

2

∑
l

lϕ2
il , (34)

where ϕil ≡ ‖Oil‖, and g(l ) ≡ (l+1)√
(l+1/2)(l+3/2)

for short. Note

that here the prefactor c = 55
42 , but it can be tightened to 1.09

using a similar ξl trick below, and keeping the first equation in
Eq. (21), instead of the untight bound therein.

To bound Gi j , we have

‖Pil+1Li j |Oil, jl ′ )‖

� 1

2

κ

2S + 1

∥∥∥∥∥Pil+1

∑
mm′

Omm′
{
Zi, T lm

i

}
m′T l ′m′

j

∥∥∥∥∥
� 1

2

κ

2S + 1
ϕil, jl ′2

√
(l + 1)2 − 02

(2l + 1)(2l + 3)

(
S + 1

2

)
l ′

� 1

4
κg(l )l ′ϕil, jl ′ , (35)

where we used expansion Oil, jl ′ =∑mm′ Omm′T lm
i T l ′m′

j where
operator Omm′ is proportional to the identity on sites i and j,
and amm′ := √

(Omm′ |Omm′ ). Since Omm′T lm
i T l ′m′

j are orthog-
onal for different pairs of (lm, l ′m′), the norm is maximized
simply by amm′ ∝ δm0δm′l ′ , as shown in the third line above.
Then

Gi j � 2
∑
l,l ′

‖Oil+1, jl ′ ‖‖Pil+1Li j |Oil, jl ′ )‖

� κ

2

∑
l,l ′

l ′g(l )ϕil+1, jl ′ϕil, jl ′

� κ

4

∑
l,l ′

l ′[(ξl )
−1ϕ2

il+1, jl ′ + ξl g
2(l )ϕ2

il, jl ′
]

= κ

4

∑
l,l ′

ϕ2
il, jl ′ l

′[(ξl−1)−1 + ξl g
2(l )]

� κ

2

∑
l,l ′

ϕ2
il, jl ′ l

′ = κ

2

∑
l ′

ϕ2
jl ′ l

′. (36)

In the third inequality we used 2g(l )ϕil+1, jl ′ϕil, jl ′ �
(ξl )−1ϕ2

il+1, jl ′ + ξl g2(l )ϕ2
il, jl ′ , and the last inequality

holds as long as the positive sequence {ξl}∞l=0 sat-
isfies (ξl−1)−1 + ξl g2(l ) � 2 with (ξ−1)−1 = 0. This
is true by setting ξ0 = 2/g2(0) = 3/2 and iterating
ξl = [2 − (ξl−1)−1]/g2(l ), which is solved by ξl = 2l+3

2l+2 .
One can treat Gji similarly. Combining these into Eq. (31),

dF

dt
� c

κ ′

2

∑
il

bilϕ2
il + κ

2

∑
i

bi

(∑
l ′

ϕ2
jl ′ l

′ + b
∑

l

ϕ2
il l

)

= 1

2

[
cκ ′ + κ

(
b + 1

b

)]
F. (37)

Exponentiating this and using Markov’s inequality finishes the
proof of Eq. (29).

Since OTOC is upper bounded by the l.h.s. of Eq. (29) up
to powers of S, we get a bound on the butterfly velocity:

vB � inf
b>1

cκ ′ + κ
(
b + 1

b

)
2 ln b

, (38)

which is independent on S. Our proofs can easily be general-
ized to higher dimensional lattices (or even arbitrary graphs),
as well as higher order interactions.

One might naively think that it is not possible to send sig-
nals or entanglement with a velocity too much faster than the
butterfly velocity that characterizes chaos. However, for small
system sizes, this is not the case. Following Refs. [35,49],
consider the two-site Hamiltonian H = S−1(S + Z1)Z2, and
consider preparing an initial quantum state |ψ (0)〉 = 1

2 (|S〉 +
| − S〉) ⊗ (|S〉 + | − S〉). Evolving for time τ = π/4S, we
find the entangled state |ψ (τ )〉 = |S〉(|S〉 + | − S〉)/2 − i| −
S〉(|S〉 − | − S〉)/2. Clearly, these two bits share one bit of
entanglement. For dynamics restricted to the | ± S〉 states,
this is the best possible transmission rate of entanglement
[50]. Hence, the generation of entanglement can proceed
along much faster lines than the growth of operators, at least
at early times. This is another appearance of a “hierarchy”
of speed limits on different kinds of quantum information
dynamics [35].

VI. LIEB-ROBINSON-TYPE METHOD

An alternative approach to bounding OTOCs in large-S
models was presented in Ref. [43]. There the authors proved
bounds on ‖[Sα

i (t ), Sβ
j ]‖, where ‖A‖ denotes the maximal

singular value of A. To do this, and to get around the large op-
erator norms of ‖Sα‖ = S, the authors considered the large-S
Hilbert space to consist of the Dicke manifold of 2S inter-
acting qubits with a permutation-symmetric Hamiltonian, by
writing 2Sα

i =∑2S
p=1 σα

ip. One can use a Lieb-Robinson bound
for this enlarged system to bound the original problem, since
we have ‖[Sα

i (t ), Sβ
j ]‖ � 1

4

∑
pq ‖[σα

ip(t ), σ β
jq]‖.

It is instructive to study the Lieb-Robinson bound for the
spin chain; by simply turning off intersite interactions, we also
recover bounds for the kicked top as a simple case. For the
spin-1/2 system, we use Corollary 7 of Ref. [51]:∥∥[σα

ip(t ), σ β
jq

]∥∥ � 2
√

3[exp(2|t |h)]ip, jq, (39)

where the p indices run from p = 1, . . . , 2S and denote the
auxiliary spin- 1

2 degrees of freedom that we have added, and
the matrix h is given by

hip,iq =
∥∥∥∥ κ ′

2S + 1

2

4
σipσiq

∥∥∥∥(1 − δpq) � κ ′

4S
(1 − δpq). (40)

Similarly

hip,(i+1)q =
∥∥∥∥ κ

2S + 1

1

4
σipσi+1,q

∥∥∥∥ � κ

8S
. (41)

From the permutation symmetry of the p index, we know that

(e2th)ip,iq = u′
ii(t )δpq + uii(t )(1 − δpq),

(e2th)ip, jq = ui j (t ), ( j 
= i), (42)
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where

u̇′
ii = 2(2S − 1)

κ ′

4S
uii + 2(2S)

κ

8S
(ui,i−1 + ui,i+1)

� κ ′uii + κ

2
(ui,i−1 + ui,i+1),

u̇ii �
κ ′

2S
u′

ii + κ ′uii + κ

2
(ui,i−1 + ui,i+1),

u̇i j � κ ′ui j + κ

2
(ui−1, j + ui+1, j ). (43)

At zeroth order in 1/S, we can set u′
ii ≡ 0, so that matrix

u = e2th where 2hi j = κ ′δi j + κ
2 (δi, j+1 + δi, j−1). When there

is only one site i, we get λOTOC � 4hii = 2κ ′ for the kicked
top. Assuming periodic boundary condition of the chain and
L → ∞,

ui,i+x (t ) ∝ eκ ′t Jx(−iκt ) = eκ ′x/vJx(−iκx/v), (44)

where we parametrize t = x/v. Uniform asymptotic expan-
sion of the Bessel function at large x shows that the critical
v = vLR is given by

κ ′/κ = v′ ln(v′ +
√

1 + v′2) −
√

1 + v′2, (45)

where v′ = vLR/κ . This is equivalent to (38) with c = 2.
When studying either the kicked top or the spin chain,

the additional factor of 2 noted above arises because Lieb-
Robinson bounds are for commutators, ‖[Sα (t ), Sβ ]‖ � Seκt ,
while the OTOC involves a squared commutator, which grows
twice as fast. The quantum walk methods are more effec-
tive at accounting for the destructive interference between
growing operators and thus improve upon the best known
Lieb-Robinson-type bounds by a factor of 2.

VII. TOWARDS HOLOGRAPHIC MODELS

One of the motivations for this work was also to understand
the similarities and differences between operator growth in
holographic models like the Sachdev-Ye-Kitaev (SYK) model
and large-S coupled spin dynamics. A “hybrid” model is

H = κ

S
ZiZi + 1

S
√

N
Ji jS

α
i Sα

j , (46)

with Ji j standard Gaussian random variables. See
Refs. [29,30] for qualitatively similar models. We have
used Einstein summation convention on indices. A rigorous
OTOC bound for such a model would be quite involved [34]
as the disorder average is highly nontrivial. We postulate that
a rigorous bound on λOTOC will reveal two contributions to
the LE: one from on-site growth (Zi → X 2

i ) and one from
intersite growth (Zi → XiXj). More practically, we expect
that the intersite dynamics is rather similar to operator growth
in the SYK model [15,34], while the on-site dynamics could
disrupt the constructive interference patterns which lead to
exponential operator growth in SYK. Unlike in the large-S
Hilbert space, typical operators of size s in SYK grow at
a rate

√
s rather than s. We are not sure whether or not

this qualitative difference in operator growth is of much
practical consequence, e.g., for experimentalists aiming to
study quantum gravity via many-body chaos in the laboratory.

VIII. OUTLOOK

We have proven reasonably sharp bounds on quantum
OTOCs and operator growth in semiclassical spin chains and
kicked top models. Our results improve upon Lieb-Robinson
bounds and provide a useful mathematical framework for the
study of quantum information dynamics and quantum chaos
in a semiclassical limit. We hope that similar methods will
also be useful in constraining quantum dynamics with bosonic
degrees of freedom, another hard problem with large (infinite)
dimensional Hilbert spaces where very few results are known
[52,53]. Our methods may also lead to sharp answers to
the question of which experimentally realizable microscopic
models can faithfully mimic the dynamics of holographic
quantum gravity.

The semiclassical spin models we have studied here can
also be interpreted in terms of many-body quantum me-
chanical models with S spin- 1

2 degrees of freedom, with
SU(2)-symmmetric Hamiltonian. When restricted to the
Dicke manifold (total angular momentum S(S + 1)), our
bounds describe the resulting dynamics. Remarkably, OTOC
growth speeds up quite substantially in the Dicke manifold,
relative to in typical states in Hilbert space, where with
the normalization (2), λOTOC = 0 can be proved [36]. This
is a notable counterexample to the generic expectation that
quantum dynamics should slow down in constrained sub-
spaces [54,55]. We hope that our methods can be used to
help understand the robustness of certain spin squeezed states
to generic perturbations [56], which has recently been ob-
served numerically and has broad applications to quantum
metrology.
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APPENDIX: OPERATOR GROWTH BOUNDS BEYOND
THE KICKED TOP

Consider the Hamiltonian (2). In this Appendix, we focus
on models where if h(nx, ny, nz ) 
= 0, then nx + ny + nz � n0.
Then, if |h(n, t )| � h(n), we will prove below that

λOTOC � 2(n0 − 1)
∑

n

h(n)

√∑
α

nα − 1
∑

α

√
nα (nα + 1)!

(�nα/3�!)3
.

(A1)
Since [H, T lm] contains components of size l ′ = l − n0 +

1, . . . , l + n0 − 1, the corresponding quantum walk equation
is

dφl

dt
=
∑
l ′<l

Kll ′ (t )φl ′ (t ) −
∑
l ′<l

Kl ′l (t )φl ′ (t ), (A2)

where |Kl ′l | � Kl ′l = ‖Ql ′LQl‖. We group neighboring n0 −
1 sizes as a block labeled by L. Namely, block L corresponds
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to a set RL of size, where

RL :=
{{1} L = 1
{l ∈ Z : 2 + (n0 − 1)(L − 2) � l � min{1 + (n0 − 1)(L − 1), 2S}} 2 � L � Lm := ⌈ 2S−1

n0−1

⌉+ 1 . (A3)

Define

QL :=
∑
l∈RL

Ql (A4)

and

φL(t ) := ‖QL|O(t ))‖. (A5)

Similar to (16),

dφL

dt
= KL−1(t )φL−1(t ) − KL(t )φL+1(t ), (A6)

where

|KL| � KL := ‖QL+1LQL‖ = max

⎛
⎝max

l∈RL

∑
l ′∈RL+1

Kl ′l , max
l ′∈RL+1

∑
l∈RL

Kl ′l

⎞
⎠. (A7)

Define F̃ :=∑L L(L + 1)φ2
L so that F � (n0 − 1)2F̃ . If we can show that KL � η(L + 1) with η independent of L, S, then

dF̃

dt
= 2

∑
L

L(L + 1)φL
dφL

dt
�
∑

L

2(L + 1)KL
(
φ2

L + φ2
L+1

)
� 4η

∑
L

[
L(L + 1) + 1

2

]
φ2

L = 4ηF̃ + 2η, (A8)

which leads to λOTOC � 4η.
Now we find a bound for η. We write the Hamiltonian as H =∑n Hn. Correspondingly, L =∑n Ln and KL =∑n KL,n.

For a given n, [X nxY ny Znz ,O] = X nxY ny [Znz ,O] + X nx [Y ny ,O]Znz + [X nx ,O]Y ny Znz . For the first term, because the maximal
absolute eigenvalue of X and Y is S, we have∥∥X nxY ny [Znz ,Ol ]

∥∥ � Snx+ny
∥∥[Znz ,Ol ]

∥∥ � Snx+ny max
m

∥∥[Znz , T lm]
∥∥, (A9)

where Ol is an arbitrary operator of size l , and we used the fact that [Znz , T lm] are orthogonal for different m. Assume m > 0
and let n = nz for a moment for simplicity. Let

Cm(l, l ′) = 2
√

π/3c(l, l ′)〈10lm|l ′m〉 =

⎧⎪⎪⎨
⎪⎪⎩

√
(l+1)2−m2

(2l+1)(2l+3)

√(
S + 1

2

)2 − 1
4 (l + 1)2 l ′ = l + 1

m/2 l ′ = l√
l2−m2

(2l−1)(2l+1)

√(
S + 1

2

)2 − 1
4 l2 l ′ = l − 1

, (A10)

which makes ZT lm =∑l ′ Cm(l, l ′)T l ′m and T lmZ =∑l ′ (−)l ′−l+1Cm(l, l ′)T l ′m. Furthermore, Cm(l, l ± 1) � (2S + 1)/
√

15 ex-
cept Cm(1, 0), which does not enter in the following results. Then

[Zn, T lm] =
[

Zn−1
l+1∑

l ′′=l−1

Cm(l, l ′′)T l ′′m −
l+1∑

l ′′=l−1

(−1)l ′′−l+1Cm(l, l ′′)T l ′′mZn−1

]
= · · · = 2

′∑
p

[
n∏

j=1

Cm(p j )

]
T l ′m. (A11)

Here array p denotes a path in size space from l to l ′. For example, p = (l + 1, l + 1, l, l + 1) is a path l → l + 1 → l +
1 → l → l + 1 with l ′ = l + 1 and n = 4. Let n± be the number of terms in which l → l ± 1, and n′ the number of steps
in which l → l . In (A11) we also denote Cm(p j ) = Cm(p j−1, p j ) where p0 ≡ l , and

∑′
p only contains path p with an odd

n′. Suppose a path has n+ steps of forward hopping (i.e., increasing l by 1) and n− steps of backward hopping. They satisfy
n = n+ + n− + n′, l ′ − l = n+ − n−. The number of paths with a given n′ will be � n!

n+!n−!n′! , where the inequality is due to
presence of boundaries 1 � l � 2S. For one such path,

n∏
j=1

Cm(p j ) �
(m

2

)n′(2S + 1√
15

)n−n′

, (A12)
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and therefore

‖Ql ′[Z
n, T lm]‖ � 2

n∑
n′=1,3,5,...

n!

n+!n−!n′!

( √
15m

2[2S + 1]

)n′(
2S + 1√

15

)n

� 2
n + 1

2

n!

(�n/3�!)3

( √
15S

2S + 1

)n−1 √
15m

2(2S + 1)

(
2S + 1√

15

)n

� l

2
Sn−1 (n + 1)!

(�n/3�!)3
. (A13)

Putting back nz = n, ‖QL|[Znz , T lm])‖ is then bounded by adding a
√

nz factor, since there are nz choices of l ′. Note that the
norm here represents the Frobenius norm, which is why we require only a square root here: the operators with different l ′ are
necessarily orthogonal. Gathering all the prefactors,

‖LnQl‖ � h(n)
l

2

∑
α

√
nα (nα + 1)!

([nα/3]!)3
. (A14)

Finally, using that each Ql projects onto a disjoint subspace, together with the Frobenius norm,

KL,n �
√∑

α

nα − 1 max

(
max
l∈RL

‖QL+1LnQl‖, max
l∈RL+1

‖QLLnQl‖
)

� h(n)

√∑
α

nα − 1
(n0 − 1)(L + 1)

2

∑
α

√
nα (nα + 1)!

([nα/3]!)3
, (A15)

which leads to (A1).
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