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Effect of source statistics on utilizing photon entanglement in quantum key distribution
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A workflow for evaluation of entanglement source quality is proposed. Based on quantum state density matri-
ces obtained from theoretical models and experimental data, we make an estimate of a potential performance
of a quantum entanglement source in quantum key distribution protocols. This workflow is showcased for
continuously pumped spontaneous parametric down-conversion (SPDC) source, where it highlights the trade-off
between entangled pair generation rate and entanglement quality caused by multiphoton nature of the generated
quantum states. We employ this characterization technique to show that secure key rate of down-converted
photon pairs is limited to 0.029 bits per detection window due to intrinsic multiphoton contributions. We also
report that there exists one optimum gain for continuous-wave down-conversion sources. We find a bound for
secure key rate extracted from SPDC sources and make a comparison with perfectly single-pair quantum states,
such as those produced by quantum dots.
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I. INTRODUCTION

A. The aim of this paper

Quantum entanglement enables a multitude of technologi-
cal leaps in computing and communications. We address the
generation of photonic entanglement in a discrete degree of
freedom, such as polarization. Realistic entanglement sources
often possess a trade-off between entanglement quality and
generation rate. Both of these are important in practical appli-
cations. For example, optical nonlinear parametric processes
such as spontaneous parametric down-conversion (SPDC)
can yield high-fidelity polarization entanglement between
two photons [1]. However, with increasing generation rate,
inherent multipair contributions deteriorate the measurable
quantum correlations [2,3]. On the other hand, sources based
on self-assembled quantum dots allow generating polarization
entanglement via two energy-degenerate cascades [4] without
systematic multipair statistics in the produced states.

Comparing the performance of these entanglement sources
is not a clear-cut problem as conventional entanglement mea-
sures cannot be applied. The first reason is that quantum states
generated by different systems can populate Hilbert spaces
of different dimensions. This issue arises for example due to
differences in the statistical properties of the corresponding
sources. The second reason is that entanglement measures
do not reflect entanglement generation rate. That is why we
choose to evaluate the entanglement sources by their potential
in quantum key distribution (QKD) [5,6]. Namely, the secure
key rate is a quantity that benefits both from measurable
strong quantum correlations (a Bell factor) and from high
generation rate.

*hosak@optics.upol.cz

As executing entire QKD protocols for the purpose of
entanglement source characterization is quite complex prac-
tically, we choose to carry out quantum state tomography
instead. The effective density matrices are reconstructed
within the informational degrees of freedom and are affected
by both single-pair entanglement imperfections and multipair
effects. Then, we analyze how well these density matrices
would fare in a QKD protocol [7]. As we are interested in
measuring the potential of a source by itself, we assume that
the rest of the QKD protocol does not suffer from further
technical limitations or loopholes [8–10]. We evaluate the
limit of long-key transmission rate Rkey per detection window
as a function of coincidence rate rC.

B. Quantum key distribution

The field of quantum key distribution exploits quantum
correlations to ensure that two distant parties can share mes-
sages without their contents being compromised by a possible
presence of a malicious party eavesdropping on the commu-
nication channel [5]. Many QKD protocols for transmission
of discretely encoded information rely on random choices
of encoding and decoding bases. Perhaps the best known
is the protocol BB84 [11] whose performance relies on
nonclassicality of the single-photon source employed [12].
The protocol E91 [13] incorporated entanglement into QKD,
employing random switching between projection bases. Fur-
thermore, if the security is guaranteed even in presence of
untrustworthy entanglement source or detection equipment,
the protocols can be called device-independent QKD [14–17].

The major figure of merit in QKD is the minimum average
bit rate at which secure key can be transmitted between distant
parties [6]. Evaluating this rate is generally a task different
from assessing the presence of entanglement. Secure key rate
itself depends on other factors, for example the quantum bit
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error rate (QBER) [7], or the capabilities of the eavesdropper.
Therefore, it can occur that certain sources of entanglement
cannot be used at all for secure QKD through a given channel
whereas others might be viable. To prove the secure key rate
for the sources, the whole protocol would need to be carried
out explicitly. Such data are usually not available, because
they would require extensive experimental effort. So instead,
we make use of quantum tomography data that is commonly
available for quantum entanglement sources. This involves
reducing the generated states to the informational degrees of
freedom by projecting multiphoton contributions into a two-
qubit Hilbert space. The resulting two-qubit density matrices
are then evaluated in terms of QKD performance. This ap-
proach, however, should not be treated as a proof of QKD
performance of states containing multiphoton noise, because
the multiphoton contribution may have different effect on
tomography than in QKD. The secure key rate calculated from
the reconstructed two-qubit matrices shows how multipair
contributions influence the effective purity and entanglement
of intrinsically multiphoton states. The secure key rate also
offers a way of quantifying the trade-off between generation
rate and entanglement quality. It therefore serves to evaluate
entanglement of two-qubit density matrices, given their gener-
ation rate. Because only the source is being characterized, we
consider the rest of the QKD protocol to be ideal, not taking
into account aspects such as finite key size or the detection
loophole.

C. Entanglement sources

In this work, we compare two photon-pair sources
of polarization entanglement—continuous-wave spontaneous
parametric down conversion (SPDC) [18] and self-assembled
quantum dots from the perspective of entanglement-based
QKD. These two physical platforms produce entangled states
of different modal structure.

First, we focus on SPDC. It is a nonlinear optical process
which produces entangled photon pairs in two optical modes.
We assume a continuous-wave pump and the temporal coher-
ence of the photons to be much shorter than the generation rate
and detector resolution. We detect the quantum states in the
coincidence basis, meaning only simultaneous detections in
both modes are recorded. Consequently, the generated signal
can be considered a random Poissonian sequence of photon
pairs that are entangled in polarization. Such randomness
inevitably leads to detecting multiple pairs within one detec-
tion window. This becomes more prominent with increasing
detection window and with a higher gain of the source.

We elected cw pumping in favor of pulsed SPDC, because
the effect of the multipair contributions is much lower at the
same generation rate. Our analysis indicates that if there is
one pump pulse in every detection window, the multipair con-
tributions of both cw and pulsed regimes have the same effect
on secure key rate. However, the pulse repetition frequency
is usually not that high. The detection window width is only
limited by the temporal jitter of the detectors, which can easily
be <10−9 s even for noncryogenic detectors. On the other
hand, the typical repetition frequency of pulsed SPDC pumps
is on the order of ≈108 s−1. This means that cw gets an
order-of-magnitude advantage in secure key rate. This holds

even in the light of the most recent advances in cryogenic
detector resolution (3 ps) [19] and SPDC pump frequency
(43 GHz) [20].

Multiphoton nature is inherent to SPDC and it has been
studied in the context of single-photon sources [21–23],
in quantum information processing [24–26] and quantum
key distribution [27,28] protocols. SPDC for QKD has also
been investigated with respect to noise and its effect on the
detection efficiency required to achieve provable protocol
security [29].

The second physical platform involves quantum dots. They
act as semiconductor embedded quantum emitters and allow
the optical generation of photon pairs via decay of a biexciton.
The energy degeneracy of two biexciton cascades leads to a
superposition of two decay paths and thus to entanglement of
the emitted photon pairs. Excitation and deexcitation of such
cascades is a Rabi cycle that is pumped by a π -pulse [30].
Therefore, a quantum dot produces no more than one entan-
gled photon pair at a time [22] and with near-unity generation
efficiency. This is the key difference between quantum dots
and SPDC. However, it is much more challenging to reach
a good collection efficiency of the photons, which means
that entangled pairs are usually extracted from quantum dot
sources at low effective rates.

We provide a model for SPDC entanglement sources
pumped by a continuous wave (cw) laser. Then, we compare
the model with experimental SPDC data and current state-of-
the-art quantum dot sources. We find that the secure key rate
using cw SPDC is fundamentally bounded, whereas quantum
dot sources are capable of surpassing this bound.

II. SECURE KEY RATE

For our investigation we are assuming an entanglement-
based QKD protocol, the security of which was analyzed
in Refs. [7,14]. Polarization-encoded photonic qubits will be
assumed. The protocol relies on Alice and Bob sharing a
two-qubit entangled state. Alice can choose one of three mea-
surements A0, A1, A2 to perform on her qubit, and Bob can
choose from two measurements B1 and B2 to perform on his
qubit. The measurement results ai, b j are binary: +1 or −1.
Furthermore, they fulfill the following condition:

〈ai〉 = 〈b j〉 = 0 ∀ i, j. (1)

The results of measurements A0 and B1 are used to extract the
raw key, whereas the measurements A1, A2, B1, and B2 are
used to calculate the Clauser-Horne-Shimony-Holt (CHSH)
polynomial S [31]. The protocol is only secure for S that
violates the classical inequality, e.g., 2 < S � 2

√
2. In gen-

eral, the rate r of the secure key in a given QKD protocol
is very difficult to ascertain [32–34] because this asks for a
very specific definition of the security level attained. Instead,
we limit ourselves here to an estimate of the lower bound on
secure key rate per photon pair. This is given by a quantity
called the Devetak-Winter rate rDW [6,7]

r � rDW = I (A0 : B1) − χ (B1 : E), (2)

where I (A0 : B1) is the mutual information between Alice and
Bob, and χ (B1 : E) is the Holevo quantity [35] between Bob
and Eve. For the studied protocol, the mutual information can
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be expressed as

I (A0 : B1) = 1 − h(Q), (3)

while the Holevo quantity is bounded as follows:

χ (B1 : E) � h

(
1 +

√
(S/2)2 − 1

2

)
. (4)

Here h denotes the binary entropy function h(Q) =
−Q log2 Q − (1 − Q) log2 (1 − Q), S is the CHSH polyno-
mial, and Q is the quantum bit error rate (QBER) defined
as the probability of opposite measurement results when the
bases A0 and B1 are used

Q = P(a �= b|A0, B1). (5)

Substituting (3) and (4) into (2) leads to the following bound:

rDW = 1 − h(Q) − h

(
1 +

√
(S/2)2 − 1

2

)
. (6)

This quantity represents the minimum ratio of the bits used
as the secure key relative to the number of entangled pairs
that were detected. To introduce secure key rate, we need to
define the coincidence rate rC as the rate of detected photon
pairs per detection window. For a measurement with data
acquisition subdivided into Nwin windows, where a total of NC

coincidences were registered, the coincidence rate is

rC = NC

Nwin
. (7)

Then, the secure key rate becomes

Rkey = rDWrC, (8)

quantifying the minimum number of secure key bits trans-
ferred per one detection window that serves as the basic unit
of time.

Because rDW is a function of S and Q, let us calculate these
quantities provided that we have the effective quantum state
ρ. The correlation tensor Tρ and the positive symmetric tensor
Uρ [36] are first calculated,

Tρ,i j = Tr[ρ · (σi ⊗ σ j )], i, j = 1, 2, 3, (9)

Uρ = T T
ρ Tρ, (10)

where σi are the Pauli matrices. Consequently the three eigen-
values of Uρ are sorted in a descending order, λ1 � λ2 � λ3.
The best possible values of S [37] and Q are then

Smax = 2
√

λ1 + λ2, (11)

Qmin = 1 − √
λ1

2
(see Appendix C). (12)

Appendix C shows the corresponding optimal configuration
of bases A0,1,2, B1,2 and provides some additional information
including an experimental guide to setting the wave plates.

III. SPONTANEOUS PARAMETRIC DOWN-CONVERSION
ENTANGLEMENT SOURCE

SPDC sources at very low gains produce maximally en-
tangled two-qubit states with a multiphoton-pair component

which is negligible in the context of the QKD protocol. How-
ever, at higher interaction gains, the multipair contribution
emerges and starts to deteriorate the quality of entanglement
[3,38,39]. This leads to diminishing rDW. On the other hand,
increasing gain leads to higher brightness, and the rate rC

increases.
To study the effect of SPDC multiphoton component on po-

tential performance in QKD, we used a continuously pumped
entanglement source with a variable coincidence window. Al-
though the SPDC gain should ideally be controlled by pump
power, in the cw case it can be equivalently controlled by the
coincidence window τ used for data acquisition. We leveraged
this to study a broader range of scenarios with more ease. With
longer coincidence windows, there is a chance of photons
generated as products of independent SPDC processes to con-
tribute to the coincidence count. As the individual processes
are independent and very fast, the amount of pairs collected
by the detectors within the coincidence window of length τ

obeys the Poissonian statistics with a mean pair number n̄
proportional to τ .

The model described in Appendix A enables us to see how
the detection of multiple independent copies of the state ρ0 af-
fects the reconstructed two-qubit density matrix ρ effectively
describing the state. The whole model is parametrized by the
mean photon pair number n̄ per detection window and overall
optical transmittances in Alice’s and Bob’s part of the physical
setup ηA and ηB, respectively. The transmittances consist of
signal collection efficiency, transmission loss, and detection
efficiency. As we are interested in characterizing entangle-
ment sources exclusively, we do not consider additional noise
and loss present in the optical communication channel.

It is possible to choose the state ρ0 from an experimentally
obtained reconstruction of a real quantum entangled state
produced by low-gain SPDC. This approach allows us to
account for realistic experimental imperfections present in the
generated quantum states. To allow for analytical insight, we
consider ρ0 to be one of the Bell states, which we denote ρB.
Then, the maximum-likelihood estimate of ρ is a mixture of
the Bell state and white noise,

ρ̃B = (1 − κ )ρB + κ 1
41 ⊗ 1, (13)

where 1 is a unity matrix. The parameter κ depends on the
physical parameters n̄, ηA, and ηB (see Appendix A).

For a density matrix ρ̃B of the form (13), both S and Q are
related to κ as follows:

S = 2
√

2(1 − κ )2, Q = κ

2
. (14)

From these, rDW can be calculated using (6).
Our model addresses the trade-off between entanglement

quality, reflected by rDW, and entangled pair quantity, which
corresponds to rC. This is shown in Fig. 1(a). At low rC,
rDW maintains a very high value close to one. As rC in-
creases, however, rDW starts to deteriorate quickly, until the
QKD protocol ceases to be secure. The underlying mechanism
behind this gradual degradation of QKD security lies in the
multiphoton component. Multiple pairs inside one window
result chiefly in three-photon and four-photon events. As the
one-qubit reductions of (13) are always maximally mixed, the
extra multiphoton contribution corresponds to white noise.
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(a)

(b)

FIG. 1. (a) The lower bound on secure key rate rDW as a function
of coincidence rate rC for a low-gain cw SPDC entanglement source.
(b) The key rate Rkey as a function of rC. Calculations for various
values of symmetric transmittance ηA = ηB = η are shown as dif-
ferently colored lines. The loss-free case η = 100% is shown as the
rightmost solid blue line, and represents a fundamental limitation of
SPDC entanglement source performance in the QKD protocol. The
quantities rDW, Rkey, and rC are a function of n̄, as given by (6), (8),
(14)–(16); for exact formulas see Appendix A.

The quantities rC and rDW are multiplied to obtain Rkey which
is the main figure of merit. When plotted against rC, as shown
in Fig. 1(b), a linear increase in key rate can be seen at first,
until a peak is reached for a certain rC, after which key rate
drops quickly. In a two-dimensional space of quality (Rkey)
and quantity (rC) axes, the zero-loss case η = 1 bounds the
area that is accessible to continuous SPDC sources.

The model can be analyzed in another way. When we
expand the exact formula for κ (see Appendix A) into a Taylor
series, we can see that in the low-gain regime n̄ 	 1,

κ ≈ n̄

1 + n̄
, (15)

rC ≈ n̄ηAηB. (16)

This means that the quantum state ρ depends very little on
transmittances. Moreover, using these relations, we can see
that Rkey is a factorizable function: Rkey ≈ ηAηBn̄rDW(n̄). This
allows us to optimize the key rate with respect to n̄,

Ropt
key ≈ 0.029ηAηB for n̄opt ≈ 0.0737. (17)

With this particular value of n̄, the corresponding key rate will
always be within 0.2% of the real maximum value for the
given transmittances.

Figure 2 shows that the transmittances are primarily a
scaling factor for Rkey and highlights the optimal points (17).
Figure 2 also shows that around n̄ = 0.16, the key rate starts
dropping sharply. The maximal value of n̄ giving a nonzero
key rate is 0.166 839, in the limit of zero transmittance.

The dependence of the optimal key rate on transmittance is
shown in Fig. 3. For easier depiction, we assume symmetric
transmittances ηA = ηB = η. One can observe the dependence
(17). The exact optimal point n̄ depends on transmittance as
well, albeit not significantly. This result means that setting
the SPDC source at a certain gain is going to guarantee the
optimal trade-off between entanglement and brightness.

FIG. 2. Secure key rate Rkey as a function of mean photon pair
number n̄ for various amounts of symmetric transmittance ηA =
ηB = η. The optimal values of key rate for each transmittance are
shown as dots. The black vertical line represents the n̄ = 0.0737 for
which the Rkey is within 0.2% of the maximum Rkey for the given
transmittance. The inset shows how the key rate starts to diminish as
n̄ approaches the critical value.

IV. EXPERIMENTAL RESULTS

To validate the predictions of our model, we used a cw
pumped noncollinear, type-I SPDC [1] with a BiBO nonlin-
ear crystal. To obtain the maximal Bell factor without the
necessity of measurement optimization we performed a full
quantum state tomography on the source for varied lengths
of coincidence windows, which allowed us to tune the mean
pair number n̄ and thus the rate rC of the effective state ρ.
The density matrices were each reconstructed from a set of
36 tomographic measurements using the method of maximum
likelihood estimation [40,41]. From these density matrices
rDW was calculated. Statistical confidence of each measure-
ment was estimated by 2000 Monte Carlo simulations based
on Poissonian variance of all coincidence counts. The total
number of coincidences NC for coincidence rate calculation

FIG. 3. The optimal achievable key rate Rkey (blue line) and the
corresponding mean photon pair number n̄ (orange dashed line)
for a given two-mode transmittance η2. Symmetric single-mode
transmittance ηA = ηB = η is assumed. The optimal key rate scales
quadratically with η. The corresponding value of the mean photon
pair number parameter n̄ depends on η very weakly, allowing to
choose one fixed value of n̄ independently on η to obtain key rate
very close to the optimal value.
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FIG. 4. The dependence of key rate Rkey on coincidence rate
rC for different implementations of quantum entanglement sources.
The orange points represent density matrices reconstructed from a
continuously pumped SPDC source, whereas the blue dashed line is
the result of a cw SPDC model with ηA = ηB = 0.16. The solid green
line represents an ideal no-loss scenario and marks a fundamental
limitation of SPDC entanglement sources in the QKD protocol. The
green point shows the upper bound on key rate for SPDC entan-
glement sources, with Rmax

key = 0.029. The black square and triangle
marks represent the rC of quantum dot entanglement sources [42]
and [19], respectively. The arrows pointing diagonally show that key
rate of quantum dot entanglement sources increases linearly with rC.
The red dotted line shows the linear dependence for an ideal quantum
dot source with rDW = 1. For such an ideal quantum dot source the
dependence overlaps with that of a SPDC source for lower values of
rC. For high enough rDW and rC, quantum dot entanglement sources
are going to surpass even the best SPDC sources.

(7) was obtained by summing up coincidence counts for four
complementary projections in each of the nine tomographic
sets of projections and then averaged, with Nwin = T/τ avail-
able from known duration of measurement T and length of the
coincidence window τ . This is an accurate calculation of NC

for small multiphoton contributions, which holds for our data
where rC < 10−2. Both sets of rC and rDW allow us to compare
the experimental data against the prediction of our model (see
Fig. 4). For this prediction we choose the quantum state ρ0

to be a density matrix of an entangled state produced by the
source, which was obtained using a 1 ns coincidence window.
This quantum state exhibits S = 2.815(5) and Q = 0.0013(5).
Following the procedure outlined in Appendix A we arrive at
different effective density matrices ρ as the mean pair number
n̄ varies. The η parameter of the model was set to the value
of 0.16 to reflect the two-photon collection efficiency of the
experimental setup. A complete data set for the experimental
points of Fig. 4 is given in Table I in Appendix E.

V. COMPARISON WITH QUANTUM DOT
ENTANGLEMENT SOURCES

Finally, SPDC is compared with recent entanglement
sources based on quantum dots. Due to their discrete energy
structure and strong sub-Poissonian nature of light emitted
individually in the signal and idler mode, there is no multipair
component in the generated entangled state. In addition, the

generation of photon pairs can be achieved with near-unity
efficiency. However, current sources often suffer from imper-
fect collection of photons, which in turn leads to increased
losses and low coincidence rate. This means that improving
collection efficiency is an important goal of quantum dot
entanglement source engineering. The behavior of the key rate
Rkey with respect to rC is shown in Fig. 4.

The rDW of quantum dot entanglement sources is not sub-
ject to a fundamental quality-quantity trade-off, contrary to
SPDC sources. The rDW obtained using quantum dots depends
primarily on achieved degree of entanglement and does not
deteriorate with the increased excitation rate. We illustrate
this behavior in Fig. 4. The most noticeable feature is that the
SPDC sources are systematically bounded whereas quantum
dot ones are not. For a quantum dot source with known degree
of entanglement [42] the key rate will scale linearly with rC.
With increased collection efficiency a quantum dot source
can reach rC that is above the one at which our experimental
SPCD source can viably yield a nonzero Rkey. Ongoing im-
provements in quantum dot entangled photon pair sources can
be seen in their recent realizations [19,42] where collection
efficiency and quality of entanglement have been increased.

VI. CONCLUSION

We predicted the dependence of key rate in entanglement-
based QKD on the generation rate of photon-pair sources
based on continuous-wave SPDC and enabled their compar-
ison with quantum dot sources of entanglement. The SPDC
is systematically limited by multiple photon pairs being
generated during a single detection window. The multipho-
ton contribution corresponds to white noise proportional to
the SPDC gain. Consequently, the secure key rate is fun-
damentally bound by the value Rmax

key = 0.029 bits/window.
The optimal gain for SPDC was shown to be n̄opt = 0.0737
pairs/window.

Quantum dot sources, on the other hand, do not have a fun-
damental limit that is bound to photon statistics. This means
that an increase of the coincidence rate rC should not reduce
the quality of the source, and with it related Devetak-Winter
rate rDW. Therefore, it is reasonable to expect that quantum dot
sources could overcome the SPDC ones in performance. How
superior they can be depends on several factors, some of them
limiting. First, there is the source emission efficiency that is
affected by phonons [43]. These phonon effects can be mini-
mized by embedding the quantum dot in a narrowband cavity.
However, an efficient extraction of photon pairs demands
broadband cavities, limiting the emission efficiency to 90%.
There are various proposed schemes that target an ideal broad-
band cavity that allows for near unity collection of the emitted
photons [44], promising efficiencies of up to 99%. The state
preparation could also have a limit in biexciton binding energy
[45] which could be overcome by adequate preparation of the
excitation pulse. However, efficiency is not the only parameter
determining the key rate Rkey. The currently achievable degree
of entanglement is relatively high. Furthermore, the indistin-
guishability of the excitonic states would be further improved
by embedding the quantum dot in a structure that features a
high Purcell factor [44]. If we consider only dephasing noise
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and a concurrence of 95%, the minimum coincidence rate
per excitation necessary to overcome the SPDC upper bound
would be rC > 0.035; 0.044 in the case of a white noise.
The secure key rate of quantum dot sources therefore has the
potential to overcome SPDC following a number of technical
optimizations.

The proposed quantification of a key rate per window could
be extended to a key rate per time. This would include a
multiplication by the number of detection windows per time,
which is usually limited by the temporal resolution of the
detectors. In the case of quantum dots, the lifetimes of the
photons—typically on the order of ≈100 ps—represent the
limit for the excitation frequency and for the coincidence
rate per time. SPDC, on the other hand, can easily get the
biphoton coherence to picosecond range, which is the current
resolution limit of single-photon detectors [46]. As a result,
SPDC can benefit from narrower coincidence windows and
therefore have an additional advantage in terms of key rate
per time.

The authors have recently become aware of a recent work
which demonstrates the feasibility of experimental employ-
ment of quantum dot entanglement sources for the purposes
of QKD [47].
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APPENDIX A: TOMOGRAPHY IN CONTINUOUS WAVE

The effect of multiphoton contributions will be modeled
in this section. The initial quantum state ρ0 corresponds to
a single photon pair and represents the low-gain limit of the
SPDC process. The state ρ0 is subjected to a set of tomo-
graphic measurements. Each qubit is projected onto a state
|ψi〉, typically one of the polarization states H, V, D, A, R, L.
This would normally lead to a set of 36 two-qubit projections
c0

i j = 〈ψiψ j |ρ0|ψiψ j〉.
Here we also need the reduced one-qubit density matrices

ρA
0 , ρB

0 by tracing over the other mode,

ρ
A/B
0 = TrB/A[ρ0]. (A1)

For all projections {i, j}, we need to calculate probabilities
of each detector clicking (1) or not clicking (0). Because the
transmittances ηA,B may cause photons to be lost, the possible

combinations are

p(11)
i j = ηAηB〈ψiψ j |ρ0|ψiψ j〉, (A2)

p(10)
i j = ηAηB〈ψiψ

⊥
j |ρ0|ψiψ

⊥
j 〉

+ ηA(1 − ηB)〈ψi|ρA
0 |ψi〉, (A3)

p(01)
i j = ηAηB〈ψ⊥

i ψ j |ρ0|ψ⊥
i ψ j〉

+ (1 − ηA)ηB〈ψ j |ρB
0 |ψ j〉, (A4)

p(00)
i j = ηAηB〈ψ⊥

i ψ⊥
j |ρ0|ψ⊥

i ψ⊥
j 〉

+ ηA(1 − ηB)〈ψ⊥
i |ρA

0 |ψ⊥
i 〉

+ (1 − ηA)ηB〈ψ⊥
j |ρB

0 |ψ⊥
j 〉

+ (1 − ηA)(1 − ηB), (A5)

with 〈ψi|ψ⊥
i 〉 = 0. The order of the modes was set to ρ0 ∈

HAlice ⊗ HBob, whereas the other variant can be expressed by
swapping A and B.

In a real tomographic measurement, only coincidences (11)
are registered, but they can be caused by multiple pairs. As-
suming a short coherence time, the number of generated pairs
n follows the Poisson distribution. Then, the probability of a
coincidence is

ci j =
∞∑

n=0

[
1 − (

p(10)
i j + p(00)

i j

)n − (
p(01)

i j + p(00)
i j

)n

+ (
p(00)

i j

)n]nn̄

n!
e−n̄. (A6)

The mean pair number n̄ is a parameter of the model pro-
portional to the coincidence window width τ and the gain
of the SPDC process. The density matrix ρ is then found
as the maximum-likelihood estimation that best explains the
measured set of probabilities {ci j} [40,41].

If the initial state is chosen as one of the Bell states ρ0 =
ρB, the result has the form

ρ = (1 − κ )ρB + κ 1
41 ⊗ 1, κ ∈ [0, 1]. (A7)

The tomography of the state ρ yields model probabilities that
can be analytically calculated,

Ci j = 〈ψiψ j |ρ|ψiψ j〉. (A8)

The log-likelihood function then is (see Appendix B)

logL =
∑
i, j

ci j log (Ci j ). (A9)

The parameter κ is obtained by solving ∂ (logL)/∂κ = 0,

κ = 2
(
e

ηA n̄
2 − 1

)(
e

ηB n̄
2 − 1

)
1 − 2 e

ηA n̄
2 − 2 e

ηB n̄
2 + e

ηAηB n̄
2 + 2 e

(ηA+ηB )n̄
2

. (A10)

From (A7) it is possible to arrive to analytical expressions
for the CHSH polynomial S and QBER Q, which in turn can
be used to calculate rDW:

S = 2
√

2(1 − κ )2, Q = κ

2
, (A11)

rDW = 1 − h(Q) − h

(
1 +

√
(S/2)2 − 1

2

)
. (A12)
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The coincidence rate rC is

rC =
∞∑

n=0

(1 − (1 − ηA)n)[1 − (1 − ηB)n]
nn̄

n!
e−n̄

= 1 − e−ηA n̄ − e−ηBn̄ + e−(ηA+ηB−ηAηB )n̄. (A13)

APPENDIX B: LIKELIHOOD DEFINITION

To recapitulate, the objective of the quantum state tomog-
raphy is to find a suitable density matrix ρ that best explains
the relative frequencies (probabilities) {ci j} that were either
measured or modeled by (A6). Likelihood is a probability of
obtaining the results {ci j} conditional on ρ. We denote the
density matrix ρ that maximizes the probability of obtain-
ing the relative frequencies {ci j} as the maximum-likelihood
estimate.

Let us suppose that we are running N two-qubit
projection measurements in a two-qubit basis {|Ψk〉}4

k=1,
where

∑
k |Ψk〉〈Ψk| = 1 ⊗ 1. Then we obtain the projection

probabilities

Ck = 〈Ψk|ρ|Ψk〉, (B1)

where
∑

k Ck = 1. Such a measurement run would result in nk

projections of each |Ψk〉, (
∑

k nk = N), and the probability of
this result follows the multinomial distribution,

Pr [{nk}] = N!∏
k (nk!)

∏
k

Cnk
k . (B2)

In our model, we consider relative frequencies ck rather
than counts nk , which would be obtained for N → ∞, and we
denote

ck � nk

N
. (B3)

The likelihood of obtaining {ck} when measuring in basis
{|Ψk〉} then follows from (B2),

LΨ = N!∏
k (Nck )!

∏
k

CNck
k . (B4)

The quantum state tomography consists of multiple pro-
jection bases, most commonly nine that correspond to all
possible products of Pauli matrices. So, the overall probability
(likelihood) of obtaining {ci j} is

L =
∏
Ψ

LΨ , (B5)

where indexing over Ψ and k just becomes indexing over i, j
in the paper.

To maximize the likelihood L, it is more convenient to
maximize log(L). These are equivalent, because logarithm is
a monotonically increasing function. This lets us rewrite (B4)
and (B5) as

logL = N
∑

i j

ci j logCi j +
∑
Ψ

log (N!) −
∑

i j

log [(Nci j )!].

(B6)

Now we find the maximum-likelihood estimate ρ (represented
by Ci j) by solving for the parameter κ ,

d logL
dκ

= 0. (B7)

For the maximization, the likelihood does not have to be
normalized (we leave out the factor N), and we can also omit
constant terms that do not depend on Ci j [the second and
third sums in (B6)]. The likelihood is then simplified to the
common form [41]

logL =
∑

i j

ci j logCi j . (B8)

APPENDIX C: EXPERIMENTAL COOKBOOK

Following the approach introduced in Ref. [37], let us for-
mulate the optimal configuration of Alice’s and Bob’s bases
A0, A1, A2, B1, B2 [7] given a reconstructed quantum state
ρ. The bases A1, A2, B1, B2 need to give the maximum
CHSH violation [48] and the bases A0, B1 need to mini-
mize the QBER. The respective derivations are presented in
Appendix D.

We denote the measurement in basis X by the operator
X = |ψ〉〈ψ | − |ψ⊥〉〈ψ⊥|, where the direction of |ψ〉 can be
parametrized using the unit vector x ∈ R3 and the vector
of Pauli matrices σ = {σ1, σ2, σ3}: X = x · σ. The bases will
therefore be given by real unit vectors a0,1,2 for Alice and b1,2

for Bob.
We begin by introducing the real tensor Tρ and the positive

symmetric tensor Uρ [37]:

Tρ,i j = Tr[ρ · (σi ⊗ σ j )], (C1)

Uρ = T T
ρ Tρ. (C2)

Let us find the eigenvalues and unit eigenvectors of Uρ ,

Uρei = λiei, |ei| = 1, i = 1, 2, 3, (C3)

and index them in the descending order λ1 � λ2 � λ3.
The optimal choice of bases depends on which modes are

assigned to Alice and Bob (see Appendix D).
(1) ρ ∈ HAlice ⊗ HBob

a0 = Tρe1

|Tρe1| , (C4)

a1 =
√

λ1

λ1 + λ2

Tρe1

|Tρe1| +
√

λ2

λ1 + λ2

Tρe2

|Tρe2| , (C5)

a2 =
√

λ1

λ1 + λ2

Tρe1

|Tρe1| −
√

λ2

λ1 + λ2

Tρe2

|Tρe2| , (C6)

b1,2 = e1,2. (C7)

(2) ρ ∈ HBob ⊗ HAlice

a0 = e1, (C8)

a1 =
√

λ1

λ1 + λ2
e1 +

√
λ2

λ1 + λ2
e2, (C9)
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FIG. 5. Polarization projection measurement using two wave
plates (half-wave—HWP, and quarter-wave—QWP) and a polarizing
beam splitter (PBS). Let us assign the outcome +1 to a detection
in the horizontal output and −1 to the vertical output. The angles
ϑH, ϑQ are between the respective wave plate axes and the hori-
zontal plane. The HWP and QWP angles exhibit periodicity: ϑH ⇔
ϑH + kπ/2, ϑQ ⇔ ϑQ + lπ ; k, l ∈ Z.

a2 =
√

λ1

λ1 + λ2
e1 −

√
λ2

λ1 + λ2
e2, (C10)

b1,2 = Tρe1,2

|Tρe1,2| . (C11)

The optimal quantities are given by the two largest eigen-
values,

S = 2
√

λ1 + λ2, (C12)

Q = 1 − √
λ1

2
. (C13)

Upon obtaining a basis vector x = {x1, x2, x3}, an exper-
imentalist needs to know how to set up the polarization
measurement. Let us suppose that our basis is chosen in a
horizontal-vertical polarization so that σ1 = σx, σ2 = σy, σ3 =
σz = |H〉〈H| − |V〉〈V|. Also, let us assume the projection setup
shown in Fig. 5.

Then, the wave plate axes rotations with respect to the
horizontal plane can be obtained by

ϑQ = 1

2
arcsin(x2), (C14)

ϑH = 1

4

[
arctan

(x1

x3

)
+ arcsin (x2)

]
. (C15)

There is an important caveat about the quarter-wave plates
of Alice and Bob. While the choice of slow or fast axis is
arbitrary for all wave plates, the QWP axes need to be oriented
consistently in both modes. That is, for ϑQ = 0, both Alice’s
and Bob’s QWPs need to have either both their fast axes
horizontal, or both their slow axes horizontal. Since it is easy
to calibrate the directions of all axes up to π/2 using linear
polarizers, the two QWPs only need to be matched together.
This can be achieved by aligning any of their axes and rotating
both QWPs simultaneously. If their slow and fast axes are
parallel, the overall transformation corresponds to a HWP. If
the axes are perpendicular, the wave plates cancel each other
out and no polarization modulation occurs (Fig. 5).

APPENDIX D: ALICE’S AND BOB’S OPTIMAL CHOICE
OF BASES

Equations (C4) to (C11) are the result of a conjunction of
two conditions—minimizing Q and maximizing S. Here we
present the respective derivations.

1. Optimal Quantum Bit Error Rate

The optimal QBER is obtained by the same principle as
described in Ref. [37]. The definition follows from (5), as-
suming projection measurements in bases Q1, Q2, and can be
written as

Q = Tr
[
ρ
(
�̂

(+)
Q1

⊗ �̂
(−)
Q2

)] + Tr
[
ρ
(
�̂

(−)
Q1

⊗ �̂
(+)
Q2

)]
, (D1)

where �̂
(±)
Q1

and �̂
(±)
Q2

are the projector operators onto the (+)
or (−) states in the respective bases. Using the real-vector
formalism, the bases are given by q1, q2, and the QBER
operator is

Q = 1
2 [1 ⊗ 1 − (q1 · σ) ⊗ (q2 · σ )], (D2)

Q = Tr[Qρ]. (D3)

If we rewrite the QBER as

Q = 1
2

(
1 − qT

1 · Tρ · q2

)
, (D4)

the optimum requires maximizing the second term. The inner
product of q1 and Tρq2 is clearly maximized by choosing the
unit vector q1 to be in the same direction, q1 = Tρq2/|Tρq2|.
If follows that

Q = 1
2

(
1 −

√
qT

2Uρq2

)
. (D5)

By considering q2 in the eigenbasis of Uρ , the maximum of
the product can be easily found to be the largest eigenvalue
of Uρ , that is λ1, and so q2 = e1. If there are multiple max-
imum eigenvalues, such as for the Bell states, the vector q2
may belong to any subspace spanned by the corresponding
eigenvectors. This result corresponds to the Eqs. (C4), (C7),
(C8), and (C11).

2. Optimal Clauser-Horne-Shimony-Holt Violation

The derivation follows the Uρ-matrix approach outlined in
Ref. [37], and was explicitly calculated in Ref. [48]. Let us
follow the procedure in Ref. [37] by adopting the notation of
a and b corresponding to ρ ∈ HAlice ⊗ HBob. Following the
definition of the CHSH polynomial given for the protocol in
Ref. [7], we obtain

S = aT
1 Tρ (b1 + b2) + aT

2 Tρ (b1 − b2). (D6)

We introduce two orthogonal unit vectors

c1 = b1 + b2

2 cos θ
, (D7)

c2 = b1 − b2

2 sin θ
, (D8)

where θ ∈ (0, π/2) is half the angle between b1 and b2. This
is just a different parametrization of b1 and b2, as any pair
of such vectors can be represented by a unique combination
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of c1, c2, and the angle θ ; and vice versa. This allows us to
rewrite the Bell factor as a sum of two scalar products,

S = [a1 · (Tρc1)]2 cos θ + [a2 · (Tρc2)]2 sin θ. (D9)

Trivially, the maximum of each scalar product is reached
for the unit vectors a1,2 that have the same direction as the
right side,

a1,2 = Tρc1,2

|Tρc1,2| . (D10)

This gives us

S = |Tρc1|2 cos θ + |Tρc2|2 sin θ. (D11)

Now we maximize with respect to θ by solving ∂S/∂θ = 0,
yielding

S = 2
√

|Tρc1|2 + |Tρc2|2, (D12)

tan θ = |Tρc2|
|Tρc1| . (D13)

By denoting Uρ = T T
ρ Tρ , we can rewrite the norms and scalar

products as

S = 2
√

cT
1Uρc1 + cT

2Uρc2. (D14)

Uρ is a symmetrical non-negative diagonalizable matrix.
The property of these matrices is that the sum of the products
of two orthogonal unit vectors—such as in (D14)—is constant
for all such vectors within a single plane. This is also related
to invariance of the matrix trace under rotation around a coor-
dinate axis.

The sum in (D14) can be maximized either using Lagrange
multipliers and c1 and c2 taken in the eigenbasis of Uρ , or
using standard differential maximization of a rotated matrix
Uρ in spherical coordinates and vectors c1 and c2 rotating in
the x-y plane.

The result is that maximal CHSH violation is reached for
all orthogonal pairs of c1 and c2 in the plane corresponding to
two greatest eigennumbers of Uρ . If we maintain the notation
of ei being the eigenvectors of Uρ with the corresponding
eigennumbers λ1 � λ2 � λ3, then the solution is given by

c1 = e1 cos ϕ + e2 sin ϕ, (D15)

c2 = e1 sin ϕ − e2 cos ϕ, (D16)

where ϕ is an arbitrary angle [48]. The bases a1, a2 and b1, b2

are then obtained using Eqs. (D7), (D8), (D10), and (D13).
The optimal bases have at least one degree of freedom (ϕ;

more degrees if any two eigennumbers λi are equal). Alice’s
and Bob’s projections belong to two respective planes on the
Bloch sphere that are generally different. b1 and b2 belong to
the plane spanned by c1 and c2 due to the above-mentioned
rotational symmetry of c1 and c2 under the free parameter
ϕ. The Tρ image of this plane contains all vectors a1 and
a2 owing to the property of linear transformations mapping
planes unto planes.

3. Conjunction for ρ ∈ HAlice ⊗ HBob

As we showed above, the optimal QBER requires

a0 = q1 = Tρe1/|Tρe1|, (D17)

b1 = q2 = e1. (D18)

From Eqs. (D7), (D8), (D15), and (D16), we obtain

b1 = cos (ϕ − θ )e1 + sin (ϕ − θ )e2, (D19)

b2 = cos (ϕ + θ )e1 + sin (ϕ + θ )e2. (D20)

Equation (D18) introduces a binding condition ϕ = θ . To find
θ , we take (D13) and remember that

|Tρc1,2| =
√

cT
1,2Uρc1,2. (D21)

When substituting (D15) and (D16), we arrive at

tan θ =
√

λ1 tan θ + λ2

λ1 + λ2 tan θ
. (D22)

Since θ ∈ (0, π/2), the result leads to a quadratic equation
with a single solution

ϕ = θ = π

4
. (D23)

Substituting into (D19) and (D20), we obtain (C7). Equation
(D10) yields

a1,2 = Tρ (e1 ± e2)√
λ1 + λ2

, (D24)

which, after normalizing the vectors, leads to (C5) and (C6),
completing the optimal QKD bases.

4. Conjunction for ρ ∈ HBob ⊗ HAlice

To maintain mode consistency with the derivation of opti-
mal CHSH and with the polynomial (D6), we assign vectors ã
to Bob and b̃ to Alice, with the tilde serving as a reminder to
swap the notation eventually.

The QBER optimization reads

ã1 = q1 = Tρe1/|Tρe1|, (D25)

b̃0 = q2 = e1. (D26)

Here, Bob’s first basis ã1 introduces a binding condition,
which, after looking at (D10), (D15), and (D16), simply gives

c1 = e1, (D27)

c2 = e2, (D28)

ã2 = Tρe2/|Tρe2|. (D29)

Like before, we substitute the vectors c1 and c2 into (D13),
so we can have both angles solved,

ϕ = 0, (D30)

θ = arctan
√

λ2/λ1. (D31)

For θ ∈ (0, π/2), we know that

cos θ = 1√
1 + tan2 θ

, (D32)

sin θ = tan θ√
1 + tan2 θ

. (D33)
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TABLE I. A list of rC, S, Q, rDW, and Rkey values for the respective coincidence window lengths τ used during the experimental study of
the dependence of Rkey on rC.

τ [ns] rC S Q rDW Rkey

1.0 8.66(3) ×10−6 2.815(5) 0.0013(5) 0.94(2) 8.2(2) ×10−6

1.4 1.330(5) ×10−5 2.814(5) 0.0015(6) 0.94(2) 1.25(2) ×10−5

2.1 1.992(7) ×10−5 2.814(5) 0.0013(6) 0.94(2) 1.88(3) ×10−5

3.0 2.96(1) ×10−5 2.814(4) 0.0016(6) 0.94(2) 2.77(5) ×10−5

4.3 4.35(1) ×10−5 2.812(5) 0.0017(6) 0.93(2) 4.04(7) ×10−5

6.2 6.35(2) ×10−5 2.808(5) 0.0022(8) 0.92(2) 5.8(1) ×10−5

8.9 9.23(3) ×10−5 2.807(5) 0.0023(9) 0.91(2) 8.4(2) ×10−5

12.7 1.341(4) ×10−4 2.802(6) 0.003(1) 0.90(2) 1.20(3) ×10−4

18.3 1.946(7) ×10−4 2.790(6) 0.004(1) 0.86(2) 1.68(5) ×10−4

26.4 2.824(9) ×10−4 2.779(7) 0.004(2) 0.83(2) 2.35(7) ×10−4

37.9 4.10(1) ×10−4 2.763(7) 0.007(2) 0.78(2) 3.2(1) ×10−4

54.6 5.97(2) ×10−4 2.743(7) 0.009(2) 0.73(2) 4.4(1) ×10−4

78.5 8.72(3) ×10−4 2.716(8) 0.012(3) 0.66(3) 5.8(2) ×10−4

112.9 1.279(4) ×10−3 2.67(1) 0.020(4) 0.54(4) 6.9(5) ×10−4

162.4 1.888(6) ×10−3 2.60(1) 0.033(4) 0.37(3) 6.9(6) ×10−4

233.6 2.814(8) ×10−3 2.49(1) 0.053(4) 0.15(3) 4.2(8) ×10−4

336.0 4.25(1) ×10−3 2.35(1) 0.080(4) 0 0
483.3 6.53(2) ×10−3 2.18(1) 0.109(4) 0 0
695.2 1.022(3) ×10−2 1.98(1) 0.146(3) 0 0
1000.0 1.641(4) ×10−2 1.73(1) 0.191(3) 0 0

Substituting (D31)–(D33) into (D7) and (D8), we straightfor-
wardly solve for

b̃1,2 =
√

λ1

λ1 + λ2
e1 ±

√
λ2

λ1 + λ2
e2. (D34)

Now, by swapping the notation, ã → b, b̃ → a, we have
derived the results (C8) to (C11).

APPENDIX E: EXPERIMENTAL DATA

In the experiment, we used varying coincidence window
lengths to study the effect of multiphoton components. In
Table I, we list the values of S, Q, rDW and Rkey calculated
from the tomographic reconstructions, for different values of
the coincidence window length τ . Experimentally obtained
values of rC are also included.
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