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Quantum secure learning with classical samples

Wooyeong Song,1,* Youngrong Lim ,2,* Hyukjoon Kwon,3 Gerardo Adesso,4 Marcin Wieśniak,5,6
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Studies addressing the question “Can a learner complete the learning securely?” have recently been spurred
from the standpoints of fundamental theory and potential applications. In the relevant context of this question, we
present a classical-quantum hybrid sampling protocol and define a security condition that allows only legitimate
learners to prepare a finite set of samples that guarantees the success of the learning; the security condition
excludes intruders. We do this by combining our security concept with the bound of the so-called probably
approximately correct (PAC) learning. We show that while the lower bound on the learning samples guarantees
PAC learning, an upper bound can be derived to rule out adversarial learners. Such a secure learning condition is
appealing, because it is defined only by the size of samples required for the successful learning and is independent
of the algorithm employed. Notably, the security stems from the fundamental quantum no-broadcasting principle.
No such condition can thus occur in any classical regime, where learning samples can be copied. Owing to the
hybrid architecture, our scheme also offers a practical advantage for implementation in noisy intermediate-scale
quantum devices.
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I. INTRODUCTION

The hybridization of machine learning and quantum the-
ory has been intensively studied, especially to explore the
possibility of exploiting quantum learning speedups. Very re-
cently, the incorporation of useful quantum-algorithm-kernel
(e.g., quantum linear solvers [1]) into data processing tasks
in machine learning has yielded encouraging results [2–5].
Within a span of a few years, such approaches have become
increasingly important in quantum computation, leading to the
advent of quantum machine learning [6,7].

In parallel, the issue of security has been of considerable
interest to the machine learning community. The term “secure
learning” is usually used to indicate that the learning is al-
lowed only for the legitimate learner, who wants to rule out
adversarial learners. The main objective of these adversaries
is to acquire ability to become equals of the legitimate learner
or to render the learning of the legitimate learner counter-
productive. In this context, one of the open issues is how to
define a secure learning condition for detecting and preventing
these adversaries. While this problem has been widely studied
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in classical learning [8,9], only a few quantum-mechanical
studies have been conducted so far [10–12].

We indicate that the legitimate learning mates can com-
municate a (classically) encrypted dataset after generating
a secret key via a well-established quantum-key-distribution
(QKD) scheme. In that case, it would be impractical for
the adversarial learner(s) to extract critical learning informa-
tion once the QKD is completed. However, the adversarial
learner(s) may want to spoil the learning by disrupting the
communication. Such a purpose can be achieved simply by
disrupting the encrypted data after the key is distributed. This
is actually one of the distinctive aspects of the learning se-
curity [8]. Thus, the learning security can neither be fully
achieved nor defined by the QKD alone.

Having the above in mind, we in this paper construct a
secure learning condition with favorable quantum properties.
To this end, we first design a protocol for secure sampling
that runs between two legitimate learning parties. We cast a
classical-quantum hybrid oracle that allows large-size clas-
sical inputs with a small-scale quantum system [13]. As
the main result, we derive a secure learning condition such
that only the original legitimate learner is guaranteed suc-
cess for learning; we designate the condition as the secure
probably approximately correct (PAC) learning condition.
The beauty of this condition is that the security is derived
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only from the size of learning samples the legitimate learner
requires and it stems from the quantum no-broadcasting prin-
ciple [14,15]. Therefore, such condition cannot be defined in
any classical regime. Our paper also leads to an intriguing
classical-quantum interplay, namely, in which the (large) input
data remain classical while the useful quantum properties are
explored for a small quantum system [16,17]. Such architec-
ture helps avoid the use of a largely superposed sample and
is well suited to noisy intermediate-scale quantum (NISQ)
technologies [18].

II. PROBLEM

Given a (Boolean) function c ∈ C that maps the input
x = x0x1 · · · xn−1 to a binary value c(x) ∈ {0, 1}, learning is
defined as the process of identifying a hypothesis h ∈ H close
to c. The binary number x j ∈ {0, 1} ( j = 0, 1, . . . , n − 1)
can be considered as the “feature” and the size of the hy-
pothesis set |H|, called “model complexity,” is assumed to
be finite. Such a problem covers a wide variety of learning
tasks. In particular, this binary setting of the problem can,
in principle, be extended to a more general situation such as
multiclass tasks [19]. For this reason, the binary classification
framework has generally been used in computational learning
theory [20,21].

In such a problem, the learner, say Alice (A ), should first
sample a set T of input-target pairs, where T = {(x, c(x))}.
To accomplish this sampling, A employs a black box, called
the oracle. The oracle is responsible for accessing critical
information, namely, c(x) for a given x. Here, we assume
that the oracle is owned by A ’s distant partner, say Bob (B).
Such an assumption, namely, of the two learning parties being
located far apart, is commonly invoked in secure learning [8].
The issue is then how A can sample a clean dataset T with
B in a manner that is secure against any malicious attack; in
other words, how can A learn c securely?

III. SECURE SAMPLING PROTOCOL

We introduce a classical-quantum hybrid oracle O(c),
which consists of input and output channels for n-bit clas-
sical data x and for a single qubit, denoted by CA B and
QA B, respectively. This oracle O(c) implements (x, |α〉) →
(x, |c(x) ⊕ α〉) for α ∈ {0, 1} and (r, |α〉) → (r, |α〉) for α ∈
{+,−}, where |c(x)〉 is the oracle answer for a given x. Here,
r is a random input which is casted for the purpose of test-
ing the existence of any malicious intruder who disturbs the
communication. Thus, r is chosen such that (r, y) /∈ T (for
any y ∈ {0, 1}). The construction of such an operation is fairly
common, e.g., in QKD or quantum secure direct communica-
tion schemes [22,23]. Note that it is not permissible to extract
any information by looking into O(c). A useful hybrid oracle
architecture is presented in Appendix A.

We now present the secure sampling protocol, which pro-
ceeds as follows. First, A prepares the state |α〉 as an eigen-
state of σ̂z or σ̂x (i.e., |α〉 ∈ {|0〉, |1〉, |±〉 = 1√

2
(|0〉 ± |1〉)}) at

random. The prepared state |α〉 is transferred to B through
QA B. If |α〉 = |0〉 or |1〉, A sends the input x through CA B

together with |α〉, and if |α〉 = |±〉, A draws a random input
r. Subsequently, (x, |α〉 ∈ {|0〉, |1〉}) or (r, |α〉 ∈ {|+〉, |−〉})

FIG. 1. Schematic of our sampling protocol. Alice (A ) has fa-
cilities for the preparation of inputs, (x, |α〉 ∈ {|0〉, |1〉}) or (r, |α〉 ∈
{|+〉, |−〉}). A can also perform a single-qubit measurement to
identify the returning qubit. Bob (B) owns the oracle. Here, we
consider a classical-quantum hybrid architecture (blue dashed and
solid boxes) with a classical input (x or r) and an ancillary qubit state
(|α〉). The oracle does not reveal its structure. A and B communicate
via classical and quantum channels, denoted by CA B and QA B,
respectively.

are passed through the oracle O(c), and the output states |c(x)〉
or |±〉 of the qubit are returned to A . For |α〉 ∈ {|0〉, |1〉}, A
obtains a sample pair (x, c(x)) by performing σ̂z measurement,
and for |α〉 ∈ {|+〉, |−〉}, A should receive |α〉 = |±〉 from
B. Therefore, by checking the returned state |±〉 with the σ̂x

measurement, A can sense any adversarial learner, often re-
ferred to as Eve (E ), who alters the qubits moving A → B or
B → A (see Fig. 1). Note that (r, y) /∈ T for any y ∈ {0, 1}
obtained by σ̂z measurement, and it cannot be a valid sample.

IV. NO BROADCASTING OF LEARNING SAMPLES

With the protocol described above, we present our first
result.

Theorem 1. In our protocol, for any given c ∈ C, B can-
not distribute the full set of learning samples, namely, T =
{(x, c(x))}, to A and other (external) learners. Therefore, the
condition

T = T (k) (∀k ∈ [1, L]), (1)

where T (k) is the set of samples that the k learner (i.e., A or E )
finally gets for strategy E , cannot be satisfied.

For proving this theorem, we let ρ̂0 = |c(x)〉〈c(x)| and
ρ̂1 = |α〉〈α|, each of which is defined in terms of a state of the
ideal oracle output in a trial for a given input (x or r). Here,
ρ̂0 ∈ {|0〉〈0|, |1〉〈1|} and ρ̂1 ∈ {|+〉〈+|, |−〉〈−|}. Suppose B
adopts a strategy E to distribute the samples in T among
learners (including A ), with L � 2. In general, E can be
represented as a completely positive and trace-preserving map
with an overall unitary ÛE and an arbitrary ancilla state �̂

(see Fig. 2). The distributed states can be written such that

ρ̂
(k)
E,s = TrS\(k)ÛE (ρ̂s ⊗ �̂ ⊗ �̂) Û†

E , (2)

where TrS\(k) denotes the partial trace with respect to all
systems S except the one labeled with the kth learner, and �̂
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FIG. 2. General attack by adversarial learners. Here, we consider
L − 1 adversarial learners who can freely access CA B and QA B.
Each adversarial learner has his or her own (in principle, infinite
size) ancillary system and is assumed to be an expert in quantum
theory. We further assume that the adversarial learners can team up to
process an optimal strategy E for their own or for the group’s benefit.

represents a state of L − 1 qubits, each of which is distributed
to the corresponding learner, except A (here, k = 1 denotes
A ). Then, it is true that B cannot broadcast the states ρ̂s (s =
0, 1) to a (k-indexed) learner. This is confirmed by the princi-
ple that the states ρ̂0 and ρ̂1 are not distinguishable [14,24,25].
Therefore, a sample pair (x, c(x)) cannot be shared for a given
x. Thus, the full set of T cannot be distributed in the complete
form and Theorem 1 holds.

V. SECURE PROBABLY APPROXIMATELY
CORRECT LEARNING

Suppose that A is the only legitimate learner, and the
other L − 1 learners are malicious intruders. Without loss of
generality, we let k ∈ {A ,E } with L = 2, or equivalently, by
assuming that all L − 1 intruders team up together as one E .
In this setting, we can assume that E is a general attack strat-
egy adopted by E . Then, Theorem 1 describes the following
situation: if E disturbs the protocol, the samples prepared by
A (and also E ) must be noisy; specifically, a portion ηA (and
ηE ) of the contaminated samples, for example, (x, c(x) ⊕ 1),
would be included in A ’s (and E ’s) samples. Note that A
and E cannot identify these contaminations. Here, η(k) � 1

2
(k ∈ {A ,E }) and is determined by E ’s strategy E . It can be
written as (for T 
 1)

η(k) = 1 −
∣∣T (k)

S

∣∣
|T (k)| � 1 − min

s
F

(
ρ̂s, ρ̂

(k)
E,s

)
, (3)

where T (k)
S denotes the set of uncontaminated samples in

T (k); thus, T (k)
S ⊆ T (k) and T (k)

S ⊆ T . F (ρ̂, σ̂ ) is the fidelity
between the states ρ̂ and σ̂ [26]. Here, the inequality in
the rightmost side is introduced because E would make
the contaminated samples even in cases where ρ̂s are cor-
rectly cloned [27]. The equality is always saturated for A .
We then assume that our protocol forbids any strategy E that
allows the condition

(ηc > ηA ) ∧ (ηc > ηE ) (4)

with a critical factor ηc. This assumption is true when ηc

is chosen such that ηc = 1 − Fopt where Fopt is the optimal
fidelity achievable by a (1 → 2) ρ̂s cloner [28]. Then, Eq. (4)

can be rewritten by using Eq. (3) as

[
Fopt < F

(
ρ̂s, ρ̂

A
E,s

)] ∧ [
Fopt < F

(
ρ̂s, ρ̂

E
E,s

)]
, (5)

which immediately contradicts the quantum no-cloning prin-
ciple [15]. We note that if Alice could acquire information
about Eve’s attack scenario (if any), it might be possible
to consider a more useful ηc setting. If ηc = 0, Eq. (4) be-
comes equivalent to the condition Eq. (1) and we encounter
Theorem 1.

We now discuss secure learning in the framework of the
so-called PAC learning [21,29]. In a PAC learning, the con-
cept class C is said to be (ε, δ)-PAC learnable [we call the
learner a (ε, δ)-PAC learner] if an ε-approximated correct so-
lution (i.e., hypothesis) h ∈ H can be found with a probability
1 − δ; in other words, C is said to be (ε, δ)-PAC learnable
if P[E (h, c) � ε] � 1 − δ is satisfied for any c ∈ C, where
E (h, c) is an error function that indicates how h and c dif-
fer [21]. Such a theorem of PAC learning indicates that if
a learner is allowed to use a certain size, say Mb(ε, δ), of
contaminated samples with η, he or she is guaranteed to be a
(ε, δ)-PAC learner. In this case, η is defined as the percentage
of contaminated samples in the entire set of samples [refer
to Eq. (3)]. Usually, Mb(ε, δ) is referred to as “sample com-
plexity” [20,30]. Here, Mb(ε, δ) is divided into two categories
depending on whether the samples are ideal (i.e., η = 0) or
noisy (i.e., η ∈ (0, 1

2 ]) (For more details, see Appendix B,
Refs. [21,29], and the informative summary in Chap. 5 of
Ref. [31]). The latter, namely, the noisy PAC learning model,
provides a useful framework and is suitable for our paper
because contaminations, either from E or from imperfection
intrinsic to the channels, can be included in the expression
for η(k).

It is noteworthy that the (full) quantum model of the PAC
learning, namely, quantum PAC learning, was also developed
by using a quantum oracle that allows the (large) super-
position of the inputs x [31]. However, no study has been
conducted on secure learning in a classical or a quantum PAC
learning framework.

We now present our second result.
Theorem 2. For any given c ∈ C, let MA

b (ε, δ) and
ME

b (ε, δ) denote the “optimal” sample complexities of A and
E , respectively [32]. Then, during the running of our protocol,
if A becomes a (ε, δ)-PAC learner by identifying the samples
smaller than ME

b (ε, δ), E cannot become a (ε, δ)-PAC learner
for the same ε and δ.

The proof of this theorem is as follows. First, consider
the case ηA � ηE , which will lead to MA

b (ε, δ) � ME
b (ε, δ).

In this case, it is impossible for A to be a (ε, δ)-PAC
learner with M samples smaller than ME

b (ε, δ). Second, in
the case of ηA < ηE , if A completes the learning with
M samples and becomes a (ε, δ)-PAC learner satisfying
ME

b (ε, δ) > M � MA
b (ε, δ), then E cannot simultaneously

be a (ε, δ)-PAC learner because the protocol will be termi-
nated before E obtains a sufficient number of samples [i.e.,
larger than ME

b (ε, δ)] to be a (ε, δ)-PAC learner. This proves
Theorem 2.

On the basis of the above analysis, we present a definition
for a secure learner.

042409-3



WOOYEONG SONG et al. PHYSICAL REVIEW A 103, 042409 (2021)

Definition 1. For any c ∈ C, suppose A identifies h with M
samples, with

Mc(ε, δ) � M � Mb(ε, δ). (6)

Here, Mb(ε, δ) and Mc(ε, δ) are defined as M (k)
b (ε, δ) when

η(k) → 0 and η(k) → ηc, respectively, where k is either A or
E . Then, we call A a quantum secure (ε, δ)-PAC learner.

In this definition, the lower bound of the sample size [i.e.,
M � Mb(ε, δ)] is necessary for A to be a (ε, δ)-PAC learner.
The upper bound [i.e., Mc(ε, δ) � M] is adopted for security,
and it follows from Theorem 2 and Eq. (4).

For wide applicability of Theorems 1 and 2 and
Definition 1, we apply two additional rules.

(R.1) When the number of trials for (r, |α〉) reaches
Mb(ε, δ) − �, then A tests whether Mc(r)
=α

Mb(ε,δ)−�
is larger than

ηc − 
, where Mc(r)
=α is the number of inconsistent results
[i.e., c(r) 
= α] in A ’s σ̂x measurement. If Mc(r)
=α

Mb(ε,δ)−�
� ηc −


, A suspends the process by confirming that the state
change, namely, |±〉 → |∓〉, occurs by E ; otherwise, A con-
tinues the process. Here, we approximate

ηA � Mc(r)
=α

Mb(ε, δ)
(7)

by assuming Mc(x)→c(x)⊕1 = Mc(r)
=α , where Mc(x)→c(x)⊕1 de-
notes the number of contaminated pairs in A ’s sample set
after a certain number of trials. This assumption is reason-
able because A generates (r, |α〉 ∈ {|+〉, |−〉}) or (x, |α〉 ∈
{|0〉, |1〉}) with probability 1

2 , which cannot be discriminated
by E .

(R.2) If the learning is not completed until the number of
trials for (x, |α〉) reaches Mc(ε, δ), A quits the process. It is
to be noted that the factors � and 
 in R.1 are introduced to
limit the quality of E ’s learning.

We can now analyze the possible situations. First, let us
consider the case (i) ηA � ηE . Then, the following two sub-
cases can be considered:

(i-a) ηA � ηc − 
 � ηE and (i-b) ηA � ηE � ηc − 
.

However, cases i-a and i-b do not actually happen because
R.1 will halt the process when ηA � ηc − 
; hence E is
not allowed to become a (ε, δ)-PAC learner. Second, for the
case (ii) ηA < ηE , we can also consider the following two
subcases:

(ii-a) ηE > ηc − 
 � ηA and (ii-b) ηE > ηA � ηc − 
.

In case ii-a, if A can learn h � c (for any given ε and δ)
with M samples, with M satisfying Eq. (6), A becomes a
secure (ε, δ)-PAC learner according to Definition 1, while E
cannot. However, at least in theory, it is not impossible for
E to obtain the samples with a size identical to A ’s after the
completion of A ’s learning. Nevertheless, E cannot be a (ε,
δ)-PAC learner at the same level as A since ηE cannot be
smaller than ηA + 
. The condition ηA � ηc − 
 in ii-b will
also halt the protocol because of rule R.1. Thus, our results
(i.e., Theorems 1 and 2 and Definition 1) can be practically
applied to the protocol against any E . Further, by using � and

, we can set the minimum gap between the level of A ’s
and E ’s PAC learning in the worst case, and it would prevent
E from becoming a slightly weaker PAC learner than A .

The subcases ηc − 
 � ηA � ηE and ηc − 
 � ηE > ηA

are not expected to occur since they contradict Eq. (4).

VI. MULTICLASS CLASSIFICATION

We also consider the multiclass problem by assuming that
the input x belongs to 2m different classes (m � 2). Here, we
briefly sketch two strategies.

(i) First, the multiclass classification problem is commonly
solved by decomposing it into several binary problems. For
instance, the “one-vs-all (OVA)” reduction is often used [19],
where the problem is decomposed into 2m decisions of hi (i ∈
{0, 1, . . . , 2m − 1}) that separates the learning data of the ith
class from the other ones. Then, datum x is classified with
arg maxi hi(x). Here, the condition for secure PAC learning
in Eq. (6) can be applied to each decision of hi. However, a
long learning time is required because the condition in Eq. (6)
should be satisfied for every 2m decisions.

(ii) In another way, we can consider a single-machine ap-
proach, where the oracle can answer for all 2m labels, that is,
y ∈ {0, 1}m, by allowing m qubits conditioned by the same
x-input channels. In such generalization, our theorems and
the condition in Eq. (6) can also be applied consistently for
the states of an arbitrary number of qubits. However, in this
case, the region that satisfies the secure PAC learning, i.e.,
|Mc(ε, δ) − Mb(ε, δ)|, narrows. In other words, the security
condition becomes more stringent. For detailed analysis, see
Appendix C.

VII. REMARKS

We have presented a concept of secure learning that
safeguards against any malicious manipulation of learning
samples. In contrast to other studies on secure learning, we
constructed an analytic framework based on a computational
model of learning theory, called PAC learning. This allowed
us to establish the link between sample complexity and the
condition for learning security. Our approach is appealing
because the security condition is defined solely by the sample
size; in particular, it is independent of A ’s (or E ’s) learning
algorithms.

Our derivations of Theorems 1 and 2 were based on the
quantum principle of no broadcasting of states, and using
these theorems we introduced the concept of secure PAC
learning. Such a security condition cannot exist in the classical
regime where E can create as many copies of the learning
samples as he or she wishes.

It is noteworthy that our protocol was designed based on a
classical-quantum hybridization, where the input data remain
classical but only a single-qubit system is employed. Such a
hybridization differs considerably from those of other hybrid
models. This architecture renders our protocol suitable for
NISQ implementation, without the requirement of an exces-
sively large superposition of samples and/or without accessing
a novel quantum gadget, called quantum random-access mem-
ory [34,35].

We finally point out that determining a more practical form
of Mc(ε, δ) in Eq. (6) continues to be an open problem, and it
will be considered in a follow-up study. Notably, it is related
to the determination of the optimal sample complexity, which
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has been a long-standing interest in computational learning
theory, especially in the case where the samples are noisy.
We believe that our paper will contribute to expanding the
frontiers for quantum secure machine learning.
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APPENDIX A: USEFUL CLASSICAL-QUANTUM HYBRID
ORACLE ARCHITECTURE

Here, we present an example of a classical-quantum hybrid
oracle, which can be applied to our study of secure learning.
This oracle allows the classical inputs x and a single qubit |α〉.
It performs the mapping

(x, |α〉) → (x, |c(x) ⊕ α〉) for α ∈ {0, 1}, (A1)

and

(r, |α〉) → (r, |α〉) for α ∈ {+,−}, (A2)

where r is a random datum that is to be used for performing a
security check. Note that x remains unaltered during and after
the sampling process.

This hybrid oracle can be implemented by a circuit hav-
ing a specific architecture, such as that shown in Fig. 3.
This circuit contains 2n gates acting on the ancilla qubit: the
single-qubit gate â0 and 2n − 1 gates âk (k = 1, 2, . . . , 2n − 1)

FIG. 3. Schematic of a hybrid oracle. The oracle consists of
two different input and output channels: classical input data x =
x1x2 · · · xn (x j ∈ {0, 1} ∀ j = 1, . . . , n) and a single qubit to pro-
duce the oracle output states. This oracle applies 2n unitary gates
âk ∈ {σ̂z, iσ̂y} (k = 0, 1, . . . , 2n − 1) conditioned on the values of the
classical bits x j in x to the qubit channel. In a purely classical case,
these gates are either identity or logical-not gates.

conditioned on the classical-bit values x1, x2, . . . , xn in x. The
gates âk are given by

âk ∈ {σ̂z, iσ̂y}, for all k = 0, 1, . . . , 2n − 1, (A3)

where σ̂x, σ̂y, and σ̂z are the Pauli operators. This architecture
of the oracle is inspired by the general expression of a Boolean
function [36], which is given by

h�(x) = a0 ⊕ a1x1 ⊕ a2x2 ⊕ a3x1x2

⊕ · · · ⊕ a2n−1x1x2 . . . xn, (A4)

where ak ∈ {0, 1} (k = 0, 1, . . . , 2n − 1) are known as the
Reed-Muller coefficients. Here, each coefficient has a corre-
sponding gate operation âk . More specifically, ak = 0 implies
that âk leaves the bit signal unchanged (identity), while ak = 1
indicates that âk flips the bit signal (logical-NOT) [37]. The
oracle is thus characterized by a fixed set of gates âk for a
given c. Information on the gates âk and how they run is not
provided, and it should be learned. Such an oracle architecture
indeed differs from other hybrid schemes. It has been argued
that such hybridization can offer the advantage of being NISQ
implementable and of achieving speedups [16,17].

APPENDIX B: PROBABLY APPROXIMATELY CORRECT
LEARNING MODEL

In the PAC learning model [29], a learner samples a finite
set of training data {(xi, c(xi ))} (i = 1, 2, . . . , M) by accessing
an oracle. Here, xi is typically assumed to be drawn uniformly.
For any c ∈ C, a learning algorithm is a (ε, δ)-PAC learner (un-
der uniform distribution) if it can obtain an ε-approximated
correct h ∈ H with probability 1 − δ. More specifically, a
learning algorithm is a (ε, δ)-PAC learner if it satisfies the
condition

Prob[E (h, c) � ε] � 1 − δ, (B1)
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where E (h, c) denotes the error, for example, the distance
between h and c. If the obtained h agrees with

M � 1

ε
ln

|H|
δ

(B2)

of samples constructed from the oracle, then Eq. (B1) holds.
Here, |H| denotes the cardinality of H, often-called model
complexity. In the standard context, Eq. (B2) is known as
the “sample complexity” [21,29]. In other words, it yields the
minimum number of training samples required to successfully
learn h ∈ H, satisfying Eq. (B1). Such a sample complexity
derived from previous classical studies can be directly used in
our scenario. In our classical-quantum hybrid query scheme,
the same sample complexity exists since xi and c(xi ) identified
by the measurement performed by Alice are classical. The
beauty of this theorem is that the condition for being a PAC
learner depends only on the number of samples, not on any
specific learning algorithm.

In the case where the oracle outputs are contaminated, the
sample complexity in Eq. (B2) is modified as follows: First,
we draw a sequence of training data,

{(x1, m1), (x2, m2), . . . , (xM , mM )}, (B3)

where mi ∈ {c(xi ), c(xi ) ⊕ 1} denotes the outcome of the mea-
surement performed by Alice. Subsequently, if sampling is
performed with

M � 2ξ

ε2
ln

(
2|H|

δ

)
, (B4)

we can verify that Eq. (B1) holds for the algorithm that obtains
h ∈ H. It has been proven that the additional factor ξ is given
by [30]

ξ = 1

(1 − 2η)2 . (B5)

Such a noisy PAC learning model provides a useful framework
for our study of secure learning. It is noteworthy that in our
scenario, the contamination of the output because of an attack
by Eve and that resulting from imperfections intrinsic to the
oracle can be incorporated together into the factor η.

APPENDIX C: EXTENSION TO MULTICLASS
CLASSIFICATION

Each training datum can be considered to belong to one
of 2m different classes (m � 2), and the goal is to learn a
hypothesis that, given a (new) data point, can correctly decide
the class to which the data point belongs. This problem is
called the multiclass classification problem.

1. One-vs-all reduction

The conventional approach used to solve the multiclass
classification problem is to decompose the problem into sev-
eral binary classification problems. The most simple, but
powerful, method is the so-called OVA reduction [19], where
each binary classifier [e.g., regularized least-squares classifi-
cation, support vector machine] is trained to distinguish the
examples in a single class from those in all remaining classes.
More specifically, in such strategy, the problem is decomposed

FIG. 4. Schematic of OVA reduction for three classes.

to 2m decisions of hi, (i ∈ {0, 1, . . . , 2m − 1}) that separates
the training data of the ith class from those of the other classes
(see Fig. 4), and (new) data are classified using

h(x) = arg max
i

hi(x), (C1)

where hi(x) is a hypothesis identified in each trial and h(x) is
a decision for the classification of the input x. Here, hi(x) is
interpreted as the probability of a given input being included
in the ith class, which is very suitable for our PAC learning
framework. To achieve OVA reduction, we can apply the con-
dition for secure PAC learning [Eq. (7) of our main paper], as
it is, to each trial performed for identifying hi(x). However, in
this case, the learning time is increased as we should prepare
the dataset to train 2m classifiers and the secure PAC learning
condition should be satisfied for every 2m trials.

2. A strategy of single-machine approach

Another useful approach is to solve a single optimization
problem that trains many binary classifiers simultaneously;
this approach is akin to the so-called single machine ap-
proach [19]. To apply this approach, we should consider an
oracle that, given an input x ∈ {0, 1}n, outputs the corre-
sponding label y ∈ {0, 1}m for all 2m classes, for example, by
employing an arbitrary function h : {0, 1}n → {0, 1}m. This is
possible by allowing m qubits conditioned by the same x-input
channels (see Fig. 5). More specifically, in this generalization,
the oracle performs the following mapping:

(x, α0α1 · · · αm−1) → (x, c0(x)c1(x) · · · cm−1(x)) (C2)

for the learning (i.e., for α0α1 · · ·αm−1 ∈ {0, 1}m) and the
mapping

(r, α0α1 · · ·αm−1) → (r, α0α1 · · · αm−1) (C3)

for the security check (i.e., for α0α1 · · ·αm−1 ∈ {+,−}m). The
learner (Alice, here) can identify the oracle’s output by mea-
suring each returning qubit and construct the training samples
for the learning. In this strategy, our theorems and the secure
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FIG. 5. Schematic of the oracle for a N-class output.

PAC learning condition can be applied to the states of an
arbitrary number of qubits. Note that in our analysis, the states
ρ̂s and ρ̂

(k)
E comprise an arbitrary number of qubits. The rules

R.1 and R.2 derived for practical use of our protocol are
applicable to each qubit measurement outcome. However, in
this case, Mb(ε, δ) is expected to increase as a higher model
complexity, |H|, would be imposed for large m. Furthermore,
Mc(ε, δ) decreases since ηc increases for large m; specifically,
we have [38]

ηc = 1 − max F
(
ρ̂0(x)⊗m, ρ̂⊗m

E
) = 1

(2m + 4)
. (C4)

Consequently, the region |Mc(ε, δ) − Mb(ε, δ)| that satisfies
the secure PAC learning narrows as m increases; in other
words, the security condition becomes more stringent. There-
fore, there exists a tradeoff between the two aforementioned
approaches. Note that |Mc(ε, δ) − Mb(ε, δ)| � 0 is always
satisfied along with the no-broadcasting theorem with the con-
dition (ηc � ηA ) ∧ (ηc � ηE ) in Eq. (4) of our main paper.
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