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Since its key rate can overcome the PLOB bound, sending-or-not-sending twin-field quantum key distribution
(SNS-TF QKD) schemes attract more and more attention in the past three years. However, the inflection
of statistical fluctuations on key rate was not considered quite comprehensively, which blocks the practical
application of SNS-TF QKD. We take into account all the statistical fluctuations on probabilities, propose the
finite-key analysis for SNS-TF QKD without any assumption on the type of attacks, and obtain the lower bound
of key rates by applying an optimizing model. Then the finite-key rates are simulated under the reasonable values
of some observed parameters, which shows that the key rates overcome the PLOB bound when the transmission
distance is far from 350 km, if the number of pulses is fixed as N = 1014. Compared with other SNS-TF QKD
schemes, we provide concise and tight finite-key bounds since the statistical fluctuations of all parameters are
considered against general attacks.
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I. INTRODUCTION

Quantum key distribution (QKD) is the most practical pro-
tocol in quantum cryptography and is extensively applied for
two-party secure communication. After Bennett and Brassard
[1] proposed the first QKD protocol in 1984, unconditional
security in theory attracted more and more attention [2–6].
However, there are many loopholes due to imperfect devices
[7,8] in practice, and lots of attacks [9,10] on sources and
detectors are found. On the highly lossy channel and non-
single-photon source, photon-number-splitting (PNS) attacks
[9,11] have been launched. Later, on some commercial QKD
systems, quantum hackers exploited time-shift attacks [10],
the phase remapping attack [12], the blinding attack [13], and
wavelength-dependent attacks [14].

To resist the attacks and avoid information leakage, many
researchers explored different solutions. Device-independent
QKD (DI QKD) [15] moves out all the backdoors, and does
not set any assumptions on settings. Its security [15–17] is
based on entanglement between two communication parties,
and the key rate depends on the violation of the Clauser-
Horne-Shimony-Holt inequality. Unfortunately, the secure
key rate of DI QKD is with the order of 10−10 bps, and the
transmitted distance is around 5 km [18]. Thus, more effective
QKD protocols should be discussed.

The decoy-state method [19,20] is mostly proposed to re-
sist the PNS attack [9,11], and widely applied in experiments.
The securities of decoy state QKD protocols are analyzed
[21], especially with the finite-length pulses [22–24] under
collective attack. At the same time, to eliminate all the loop-
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holes on detectors, measurement-device-independent QKD
(MDI QKD) [25] has been proposed, which removes all the
assumptions on detectors. Based on the decoy-state method,
MDI QKD [25,26] can resist PNS attack on non-single-photon
sources and all attacks on detectors. Its secure transmission
distance can reach 404 km in experiment [27], the key rate of
which is with the linear order of channel transmittance η. The
key rate is higher than that achievable with DI-QKD, but it is
still bounded from above by the bound [28], i.e., the repeater-
less bound on the private capacity of a quantum channel.
Recently Lucamarini et al. [29] designed a twin-field QKD
(TF QKD), and claim that the key rate overcomes the PLOB
bound and reaches O(

√
η). Later, Wang et al. [30] pointed out

that there is one loophole in the information postprocessing
stage, and modified it to what is known as sending-or-not-
sending TF QKD (SNS-TF QKD) [31]. Some other secure TF
QKDs [32–34] are proposed and demonstrated in experiments
[35,36]. For all TF QKD protocols, the influence of finite data
size on the key rates has to be studied due to the statistical
fluctuations. Up to now, the influence of statistical fluctuation
on the key rates has not been taken into full consideration
[33], where the deviations in source and the probabilities
of k-photon pulses are neglected. Thus, the full statistical
fluctuation analysis on SNS-TF QKD is necessary and crucial
in the practical applications of SNS-TF QKD. We present a
SNS-TF QKD against general attacks with the consideration
of statistical fluctuations on all the possible parameters, and
study the finite data size analysis based on universally com-
posable security definition. And then an optimization model
is applied to solve the lower bound of key rates, where the
lower bound is the objective function and related parameters
are subject to the constraints about observed click rates of
detectors. With the same setting of experimental parameters in
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Ref. [33], the numerical simulation shows key rates overcome
the PLOB bound when the transmission distance is far from
350 km, if the number of pulses is fixed as N = 1014.

The paper is organized as follows. In Sec. II, we briefly
introduce the SNS-TF QKD. The composable security def-
inition and the corresponding security analysis are given in
Sec. III. The simulation is shown in Sec. IV, and in Sec. V the
conclusion is summarized.

II. SNS-TF QKD SCHEME

The procedure of the SNS-TF QKD scheme is as follows.

A. Preparation stage

Alice (Bob) randomly chooses the X window and Z win-
dow with probabilities px and pz = 1 − px, respectively. In
an X window, Alice (Bob) randomly sends out a phase-
randomized coherent state from three intensities u0 = 0, u1,
and u2 with probabilities px0, px1, and px2 = 1 − px0 − px1,
respectively. In a Z window, Alice (Bob) randomly decides to
send a phase-randomized coherent state |√uzeiθA〉 (|√uzeiθB〉)
with probabilities pz1 and records a bit 1 (0), or to send
nothing (a vacuum state |0〉) with probability pz0 = 1 − pz1

and records a bit 0 (1). The X windows are decoy windows,
and the Z windows are signal windows.

B. Measurement stage

All the pulses are transmitted through the quantum chan-
nel, and sent to Charlie. Charlie is assumed to perform
interferometric measurement on the received pulses and an-
nounces the measurement result to Alice and Bob. If one and
only one detector clicks in the measurement process, Charlie
also announces whether the left detector or right detector
clicks.

C. Sifting stage

According to the clicks, the effective events of Z windows
and X windows are defined. It is an effective event of Z
windows if one and only one detector clicks. It is an effective
event of X windows if one and only one detector clicks, when
one party sends the vacuum state, or when Alice and Bob send
the coherent states with the same intensity ui (i = 0, 1, 2) and
their phases satisfy the following criterion, that is

1 − | cos(θA − θB − ψAB)| � |λ|, (1)

where θA and θB are the phases of coherent states prepared
by Alice and Bob, respectively, and ψAB can take an arbitrary
value that can be different from time to time as Alice and
Bob like, so as to obtain a satisfactory key rate for protocol.
The states of the effective events of X windows can be re-
garded as a probabilistic mixture of different photon-number
states, with the two-mode single-photon ingredient |ψ1〉〈ψ1|,
and |ψ1〉 = 1√

2
(ei(θB+γB )|01〉 + ei(θA+γA )|10〉), where γA and γB

are the global phases of Alice and Bob, respectively, which
are chosen as arbitrary values and published by the strong
reference pulses. We only need the value γA − γB, and denote
the difference as ψAB here. The value of λ in Eq. (1) depends
on the size of the phase slice � that Alice and Bob choose,

and in terms of � the condition in Eq. (1) is equivalent to

|θA − θB − ψAB| � �

2
∨ |θA − θB − ψAB − π | � �

2
. (2)

Note that in X windows, when one party sends the vacuum
state, the event is also an effective event of X windows. The
total number of pulses is N , and the number of instances
where Alice and Bob send pulses of intensities ui and u j ,
respectively, in X windows is Ni j . Considering Charlie’s an-
nouncements, the set of effective events is X0i with number
n0i or Xii with number nii. The set of effective events in Z
windows is denoted as Z.

D. Parameter estimation stage

For the events in Z, Alice records bit 0 if she sends a
vacuum state and bit 1 if she sends a weak coherent state.
At the same time, Bob records different bits. He records bit
1 if he sends a vacuum state and bit 0 if he sends a weak
coherent state. Then Alice and Bob choose a random subset
of size n of Z and store the respective bits, as Zi and Z ′

i . The
rest of the bits form set Zs. Next, they compute the average
error epe = 1

n

∑
i Zi ⊕ Z ′

i where the sum takes over the random
subset of size n. If epe > Q, the protocol aborts. The threshold
value Q is discussed by Alice and Bob before the protocol
starts.

E. Error correction and verification stage

Alice and Bob operate an information reconciliation
scheme to correct the rest of Bob’s bits Z ′

S in Zs, and Bob
obtains an estimate ẐS of ZS from Z ′

S . To achieve the goal,
Alice would send Bob at most leakEC bits to correct Z ′

S . Later,
Alice and Bob would operate error verification on ZS and ẐS .
By a random universal hash function, Alice computes a hash
of ZS of length �log(1/εcor)	, and sends the hash function and
hash values to Bob. Bob computes the hash of ẐS by using the
same hash function. Note that if ZS and ẐS are not the same,
the probability that the two hash values are equal is less than
εcor. If the two hash values are equal, the protocol continues,
otherwise the protocol aborts.

F. Privacy amplification stage

For the sequences ZS and ẐS of length ns, Alice and Bob
estimate the number of bits of ns1 caused by the single-photon
state |01〉 or |10〉 that Alice decides not to send and Bob
decides to send or Alice decides to send and Bob decides not
to send. The phase error rate e(1)

pz of the single-photon state
is estimated, according to the events in X11 and X22 as the
decoy state. According to the calculation results, they apply a
privacy amplification scheme based on two-universal hashing
to exact two shorter strings KA and KB of length l from ZS and
ẐS , respectively. KA and KB are the secure key strings held by
Alice and Bob.

III. SECURITY ANALYSIS OF THE SNS-TF QKD SCHEME

In this section, we will discuss the finite-key security of
the SNS-TF QKD scheme. Since the number of pulses sent by
each party is finite in practice, the statistical fluctuations due
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to the finite pulses must not be neglected. Due to statistical
fluctuations, the key rate parameters are described by fre-
quencies, instead of probabilities. And the deviation between
actual proportion and probability distribution can be deduced
by the laws of large number in information theory.

For a phase randomized weak coherent source with inten-
sity uγ , the number of photons in a pulse is a discrete random
variable, denoted as x, the probability distribution of which is
Pr{x = k} = pk|uγ

= e−uγ uk
γ /k! (k ∈ Z ) and

∑∞
k=0 pk|uγ

= 1.
A sequence x1, x2, . . . , xNγ

is drawn to be independent iden-
tically distributed according to the distribution Pr{x = k} =
pk|uγ

. Since the number of pulses sent from a source is finite,
the actual proportion of k-photon pulses can be assumed to be
p′

k|uγ
, instead of pk|uγ

. According to the laws of large number
shown in Theorem 11.2.1 and Lemma 11.6.1 of Ref. [37], the
statistical fluctuation is given in the following lemma [26],
tighter than that deduced by Sano et al. [38].

Lemma 1. The actual frequency p′
k|uγ

has the upper
bound pk|uγ

= min{pk|uγ
+ ξ (Nγ , nγ ), 1} and lower bound

pk|uγ
= max{pk|uγ

− ξ (Nγ , nγ ), 0} except with the probabil-

ity εPE, where pk|uγ
is the expected value of p′

k|uγ
, Nγ

is the number of samples, nγ is the number of val-
ues of random variable x in samples, and ξ (Nγ , nγ ) :=√

[ln(1/εPE) + nγ ∗ ln(Nγ + 1)]/(2Nγ ).
This lemma shows the absolute fluctuation and has no

assumption on the underlying distribution. That is suitable
for estimating the fluctuation of parameters in this paper. In
the following sections, we will give the finite-key analysis of
SNS-TF QKD by applying the notations of the upper bound
and the lower bound of the estimated parameter λ′ as λ and λ,
respectively.

A. Composable security

In this section, we will give the composable security
definition and show the SNS-TF QKD scheme satisfies the
composable security.

A QKD protocol outputs a key KA on Alice’s side and an
estimate of that key KB on Bob’s side. This key is usually an
l-bit string, where l depends on the noise level of the channel,
as well as the security and correctness requirements on the
protocol. The protocol may also abort, in which case we set
KA = KB = ⊥. The secrecy criterion is based on the univer-
sally composable security definition. A secure QKD protocol
has to, roughly speaking, satisfy two criteria called “correct-
ness” and “secrecy.” A QKD protocol is called “correct,” if
for any strategy of the adversary, KA = KB. It is called εcor-
correct, if Pr[KA �= KB] � εcor. To define the secrecy of a key,
we consider the quantum state ρSE that describes the correla-
tion between Alice’s classical key KA and the eavesdropper E
(for any given attack strategy). A key is called ε�-secret [39]
from E if it is ε� close to a uniformly distributed key that is
uncorrelated with the eavesdropper, that is, if

1
2‖ρSE − ωK ⊗ ρE‖1 � ε�, (3)

where ωK denotes the fully mixed state on KA and ρE is
the marginal state on Eve’s system [40]. A QKD protocol is
called “secret,” if, for any attack strategy, ε� = 0 whenever
the protocol outputs a key. It is called εsec-secret, if it outputs

a ε�-secure key with (1 − pabort )ε� � εsec, where pabort is the
probability that the protocol aborts.

A QKD protocol is called “secure” if it is correct and
secret. It is called ε-secure, if it is εcor-correct and εsec-secret
with εcor + εsec � ε. Following the definition, our protocol is
proven that it is both εcor-correct and εsec-secret.

Theorem 1. The protocol is εcor-correct.
Proof. In the error verification stage, by randomly choos-

ing a hash function F , suppose its length is �log(1/εcor)	.
Then the probability that KA is different from KB is

Pr[KA �= KB] = Pr[KA �= KB, F (ZS ) = F (ẐS )]

� Pr[ZS �= ẐS, F (ZS ) = F (ẐS )]

� Pr[F (ZS ) = F (ẐS )|ZS �= ẐS]

� 2−�log (1/εcor )	 � εcor. (4)

Note that one defines KA = KB = ⊥ if the protocol aborts.
Thus, if F (ZS ) �= F (ẐS ), KA = KB = ⊥. �

Theorem 2. The protocol is εsec-secret.
Proof. Let E ′ be Eve’s information on ZS after error verifi-

cation. Based on the lemmas in Ref. [40], a ε�-secret key KA

of length l can be extracted from ZS , where

ε� = max
ε′

1
2

√
2l−H ε′

min (ZS |E ′ ) + 2ε′. (5)

The conditional smooth min-entropy H ε′
min(ZS|E ′) quantifies

the amount of uncertainty that the eavesdropper Eve, holding
system E ′, has on ZS . Suppose pabort is the probability that
the protocol aborts. According to the composable security
definition, if the protocol outputs a ε�-secret key of length
l satisfying Eq. (5), the protocol is εsec-secret with (1 −
pabort )ε� � εsec. Note that the secrecy definition has been
updated in Ref. [40]. This implies that the quantum leftover
hash lemma, as stated in Refs. [41,42], should be corrected to
Eq. (5). �

Based on Theorems 1 and 2, since ε = εcor + εsec, we know
the protocol is ε-secure, if ε′-smooth min-entropy H ε′

min(ZS|E ′)
satisfies Eq. (5). The first term of the sum in Eq. (5) is the
failure probability of privacy amplification, denoted as εPA.
Hence, the length of the final key satisfies

l � H ε′
min(ZS|E ′) + 2 log(2εPA), (6)

for εPA + 2ε′ � ε�.

B. Evaluating Hε′
min(ZS|E ′ )

From Eq. (6), the length of the final key depends on
H ε′

min(ZS|E ′). To bound H ε′
min(ZS|E ′), we will use the structure

of system E ′ and chain-rule inequalities for smooth entropies.
First, let E be Eve’s information on Alice’s system before

error correction and error verification, and let C be informa-
tion leaked during error correction and error verification, thus
Eve’s information after error correction and error verification
is E ′ = EC. Actually the information published during error
correction is denoted as leakEC bits and that leaked during
error verification is �log (1/εcor)	 bits. Using the chain-rule
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inequality, we obtain

H ε′
min(ZS|E ′) � H ε′

min(ZS|E ) − |C|

� H ε′
min(ZS|E ) − leakEC −

⌈
log

1

εcor

⌉

� H ε′
min(ZS|E ) − leakEC − log

2

εcor
. (7)

Second, ZS is the system Alice holds after the parameter
estimation stage, which can de decomposed into Z0, Z1, and
Zmulti corresponding to the bits generated by vacuum, single-
photon, and multiphoton events. Note that Eve knows the
decomposition, so the system E includes the decomposition.
Based on the generalized chain rule [42], we get

H ε′
min(ZS|E )

� H ε̂
min(Z1|Z0ZmultiE ) + H ε′′

min(Z0Zmulti|E ) − 2 log

√
2

ε̄
,

� H ε̂
min(Z1|Z0ZmultiE ) − 2 log

√
2

ε̄
, (8)

where ε′ = 2ε̂ + ε′′ + ε̄. Mostly, suppose ε′′ = 0. In the sec-
ond inequality, we use H ε′′

min(Z0Zmulti|E ) � 0, since Eve knows
all information from multiphoton events by the photon-
number splitting attack, and vacuum contributions contain no
information about the chosen bit values and generate no key.

To bound H ε̂
min(Z1|Z0ZmultiE ), we introduce two bases,

the X basis and Z basis. Denote the X basis as
{(|01〉 + eiθ |10〉)/2, (|01〉 − eiθ |10〉)/2}, and the Z basis as
{|01〉, |10〉}. The raw keys are denoted as ZS and ẐS in the
original protocol. We consider a gedanken experiment [41] in
which Alice and Bob prepare and measure the single-photon
events Z1 in the X basis, though they choose the bases ac-
cording to the probabilities px and pz as usual. Since the X
basis and Z basis are mutually unbiased, the security follows
the fact that, the better Bob is able to estimate Alice’s single-
photon events if she prepared in the X basis, the worse Eve is
able to guess Alice’s single-photon events, if she prepared in
the Z basis. That is, in terms of smooth entropies,

H ε̂
min(Z1|Z0ZmultiE ) + H ε̂

max(Xs1|X ′
s1) � ns1, (9)

where ns1 is the length of Z1, and Xs1 and X ′
s1 are the strings of

Alice and Bob in the gedanken experiment, respectively.
Let e(1)

pz be the corresponding phase error rate in Z1, and let

e(1)
bx be the bit error rate of single-photon pulses in effective

events of X windows. Then we estimate H ε̂
max(Xs1|X ′

s1) by e(1)
pz

as H ε̂
max(Xs1|X ′

s1) � ns1h(e(1)
pz ), when the failure probability is

less than ε̂. Furthermore, e(1)
pz can be evaluated by the bit error

rate of single-photon pulses in X windows, e(1)
bx , as

e(1)
pz � e(1)

bx + δ, (10)

with failure probability smaller than εph, and

δ2 : = ln 2
(
n(1)

11 + n(1)
22 + ns1

)
e(1)

bx

(
1 − e(1)

bx

)
ns1

(
n(1)

11 + n(1)
22

)
× log2

(
n(1)

11 + n(1)
22 + ns1

8π ns1
(
n(1)

11 + n(1)
22

) (
e(1)

bx

)2 (
1− e(1)

bx

)2
(εph)2

)
,

(11)

where n(1)
ii is the number of single-photon effective events in

set X. The calculation of the deviation δ follows the conclu-
sion [43] shown in Appendix A, where we correct some minor
errors. Based on Bayes’s theorem, we find that

Pr
{
e(1)

pz > e(1)
bx + δ|“pass”

}
� 1

ppass
Pr

{
e(1)

pz > e(1)
bx + δ

}
� εph/ppass, (12)

where ppass = Pr{epe � Q} = 1 − pabort. Thus, H ε̂
max(Xs1|X ′

s1)
is bounded above by ns1h(e(1)

bx + δ) with failure probability
ε̂ > εph/ppass, and e(1)

bx is evaluated in the next subsection.
Furthermore, the leaked information during the error cor-

rection in Eq. (7) is evaluated by leakEC = fEC ns h(Q), where
fEC is the efficiency of the error correction code. Q is the
threshold value which decides whether the protocol aborts or
not. We introduce the robustness εrob which is the probability
that the protocol aborts even though the eavesdropper is in-
active. The value of εrob is bounded by the probability that
the measured error rate epe exceeds Q. From the statistical
fluctuation, we estimate εrob as

Pr{epe > Q + δQ} < εrob, (13)

where

δ2
Q : = ln 2 (n + ns) epe (1 − epe)

n ns

× log2

(
n + ns

8π n ns e2
pe (1 − epe)2(εrob)2

)
. (14)

Hence, the SNS-TF QKD protocol outputs a key string of
length

l � ns1
[
1 − h

(
e(1)

bx + δ
)] − 2 log

√
2

ε̄
− leakEC

− log
2

εcor
+ 2 log(2εPA), (15)

with εcor correctness and εsec secrecy.

C. Evaluating ns1 and e(1)
bx

The effective events in the Z basis are one-clicking events
in the Z windows, the number of which is denoted as nz, while
ns1 is the number of effective events caused by single-photon
states in the Z windows after the parameter estimation stage.
In order to evaluate ns1, we consider the events in X windows.
Let Xi j be the set of effective events with number ni j , when
Alice and Bob send pulses from intensities ui and u j , respec-
tively. The set X0i(Xi0) of n0i(ni0) includes events that one
party sends a pulse with vacuum intensity and the other sends
with intensity ui, if one and only one detector clicks and their
phases satisfy the criterion in Eq. (2). Denote nk as the total
number of k-pulse clicking events in sets X0i and Xi0 and the
effective events of the Z basis. Thus, the number satisfies

n01 = n10 =
∞∑

k=0

p′
u1|knk = p′2

x p′
x0 p′

x1

∞∑
k=0

p′
k|u1

q′
k

nk,

n02 = n20 =
∞∑

k=0

p′
u2|knk = p′2

x p′
x0 p′

x2

∞∑
k=0

p′
k|u2

q′
k

nk,

n00 = p′
u0|0n0 = p′2

x p′2
x0

q′
0

n0, nz =
∞∑

k=0

p′
uz |knk, (16)
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where p′
ui|k (i = 0, 1, 2) is the actually conditional frequency

of originating intensity ui given that a k-photon pulse is sent.
For convenience, we let n0i = ni0 here. Note that they are
unequal in practice, but the key rates will not be affected since
all the related values are in terms of n0i + ni0.

Bayes’s rule is used in the first three equations, since

p′
u0|0 = p′2

x p′2
x0

q′
0

,

p′
ui|k = p′2

x p′
x0 p′

xi

q′
k

p′
k|ui

, i = 1, 2, k = 0, 1, 2, . . . ,

p′
uz |k = 2 p′2

z p′
z0 p′

z1

q′
k

p′
k|uz

+ p′2
z p′2

z1

q′
k

p′
k|uzuz

, k = 1, 2, . . . ,

p′
uz |0 = 2 p′2

z p′
z0 p′

z1

q′
0

p′
0|uz

+ p′2
z p′2

z1

q′
0

p′
0|uzuz

+ p′2
z p′2

z0

q′
0

, (17)

where q′
k is the actual frequency that k-photon pulses are sent

in effective sets X0i(Xi0) and Z:

q′
0 = p′2

x p′2
x0 + 2 p′2

x p′
x0

(
p′

x1 p′
0|u1

+ p′
x2 p′

0|u2

)
+ 2 p′2

z p′
z0 p′

z1 p′
0|uz

+ p′2
z p′2

z1 p′
0|uzuz

+ p′2
z p′2

z0,

q′
k = 2 p′2

x p′
x0

(
p′

x1 p′
k|u1

+ p′
x2 p′

k|u2

)
+ 2 p′2

z p′
z0 p′

z1 p′
k|uz

+ p′2
z p′2

z1 p′
k|uzuz

, k � 1.

The key is extracted from the effective events caused by
single-photon states in Z windows after privacy amplification,
since a powerful eavesdropper will obtain all information on
other effective events in Z windows. The lower bound of the
key rate can be reached when the lower bounds of p′

uz |1 and
ns1 are obtained. To estimate the bounds of pui|k , we should
find the number of values of random variable x in Lemma 1,
which depends on the source’s intensity. If a pulse is sent from
a vacuum source, the number of photons must be zero, and the
number of random variables value is 1. If a pulse is sent from
other sources, like u1, u2, or uz, we set the number of random
variable values as 10, since the probability of a pulse with
more than ten photons is negligible. Thus, all the clicks are
divided into 31 classes, according to the intensity of the pulses
and the number of photons. For convenience, the statistical
fluctuation of each pui|k is the same, so p′

ui|k is bounded below
by pui|k = max{pui|k − ξ (n00 + 2n01 + 2n02 + nz, 31), 0} and
bounded above by pui|k = min{pui|k + ξ (n00 + 2n01 + 2n02 +
nz, 31), 1}. The main task is to find the lower bound of the
number ns1 of the effective events caused by single-photon
states in Z windows and the upper bound of its phase error
rate e(1)

bx . Note that bounding ns1 is equivalent to bounding the
quantity n1 since

ns1 = ns

nz
p′

uz |1 n1, (18)

where the first fraction ns/nz is the residual ratio of set Z after
parameter estimation. To solve the lower bound of n1, we set
up a mathematical model with the minimum n1 as objective

function:

min n1

s.t. n01 = n10 =
∞∑

k=0

p′
u1|k nk,

n02 = n20 =
∞∑

k=0

p′
u2|knk,

n00 = p′
u0|0n0 = p′2

x p′2
x0

q′
0

n0,

p′
uz |k + p′

u1|k + p′
u2|k = 1, k � 1,

p′
uz |0 +

2∑
i=0

p′
ui|0 = 1,

pui|0 � p′
ui|0 � pui|0, i = 0, 1, 2, z,

pui|k � p′
ui|k � pui|k, k � 1, i = 1, 2, z. (19)

In the convex programming, n0i(ni0) are experimental data,
and p′

ui|k is varied in the continuable interval [pui|k, pui|k].
Solve the convex programming, and obtain the lower bound
of n1 as

n1 �

n1 =
pu1|2 n02 − pu2|2 n01 − ( pu1|2 pu2|0 − pu2|2 pu1|0)n0

pu1|2 pu2|1 − pu2|2 pu1|1
,

(20)

under the conditions u1 � u2, n10 = n01, n20 = n02,
pu1|2 pu2|1 − pu2|2 pu1|1 > 0, and pu1|2 pu2|0 − pu2|2 pu1|0 > 0,
where n0 = min{n00/pu0|0, 1}, pui|k = max{pui|k − ξ (n00 +
2n01 + 2n02 + nz, 31), 0}, and pui|k = min{pui|k + ξ (n00 +
2n01 + 2n02 + nz, 31), 1}. Hence, the lower bound of ns1 is
bounded below by

ns1 = ns

nz
puz |1 n1. (21)

Now solve the bit error rate e(1)
bx of single-photon pulses in

effective events of the X basis. We express the number of error
bits in set Xii as

m00 = p′
u0u0|0 m0 = p′2

x0 p′
0|u0u0

ν ′
0

m0 = p′2
x0

ν ′
0

m0,

m11 =
∞∑

k=0

p′
u1u1|kmk = p′2

x1

∞∑
k=0

p′
k|u1u1

ν ′
k

mk, (22)

m22 =
∞∑

k=0

p′
u2u2|kmk = p′2

x2

∞∑
k=0

p′
k|u2u2

ν ′
k

mk,

where p′
uiui|k (i = 1, 2) is the actually conditional frequency

of both originating intensities ui given that a bit error of k-
photon pulses is obtained, and mk is the number of bit errors
of k-photon pulses in both sets Xii. We use Bayes’s rule to
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express p′
uiui|k in the second equations as

p′
uiui|0 = p′2

xi p′
0|uiui

ν ′
0

, i = 0, 1, 2,

p′
uiui|k = p′2

xi p′
k|uiui

ν ′
k

,

i = 1, 2, k = 1, 2, . . . , (23)

where p′
k|uiui

is the actual frequency that a k-photon pulse is
sent from the source with intensity 2 ui, the expected value of
p′

k|uiui
is pk|uiui = e−2ui (2 ui )k/ k! (p0|u0u0 = 1), and

ν ′
0 = p′2

x0 + p′2
x1 p′

0|u1u1
+ p′2

x2 p′
0|u2u2

,

ν ′
k = p′2

x1 p′
k|u1u1

+ p′2
x2 p′

k|u2u2
(k > 0). (24)

Hence, the number of bit errors of single-photon pulses in
Xii is

m1 � m1 = min

{
m11 − pu1u1|0 m0

pu1u1|1
,

m22 − pu2u2|0 m0

pu2u2|1

}
,

(25)

where puiui|k = max{puiui|k − ξ (m00 + m11 + m22, 7), 0}(i =
0, 1, 2; k = 0, 1), and m0 = m00 /pu0u0|0. Furthermore, the up-

per bound of e(1)
bx is given by

e(1)
bx = m′

1

n(1)′
11 + n(1)′

22

� e(1)
bx = m1

n(1)
11 + n(1)

22

, (26)

since n(1)
11 + n(1)

22 = n1 ν1/ q1, where ν1 = max{ν1 − ξ (m00 +
m11 + m22, 3), 0} and q1 = min{q1 + ξ (n00 + 2n01 + 2n02 +
nz, 10), 1}.

IV. SIMULATION OF FINITE-LENGTH KEY RATES
AND DISCUSSION

The length of the final key is

l = ns1
[
1 − h

(
e(1)

bx + δ
)] − leakEC

+ 2 log(2εPA) − log
2

εcor
− 2 log

√
2

ε̄
, (27)

where ns1 and e(1)
bx are given in Eqs. (21) and (26), respec-

tively. Denote the efficiency of the error correction code as
fEC, thus the leaked information during the error correc-
tion stage is leakEC = fEC ns h(Q). If all the stages passed,
the protocol is εcor-correct and εsec-secret, where εsec � (1 −
pabort )(εPA + 2ε̄ + 4 nPE εPE) + 4 εph, and nPE εPE is total fail-
ure probability for the estimation of ns1 by using Lemma 1 nPE

times. According to the composable security definition, it is
ε-secure, where ε = εcor + εsec. We assume εPA = ε̄ = εPE =
εcor = εrob = pabort = κ . To estimate e(1)

bx , we should calculate
statistical fluctuations of parameters seven times, so the failure
probability εph is set to 7κ . Similarly, statistical fluctuations
of ten times should be estimated to find ns1, then we let
nPE = 10. Thus the security coefficient of the SNS-TF QKD
is ε = κ (72 − 43κ ). The finite-key rate of SNS-TF QKD is
R = (1 − κ )l/N , where N is the total number of pulses sent
from sources.

To visualize the finite-key rate, we simulate the perfor-
mance of our SNS-TF QKD scheme under the reasonable
values of parameters [25,26]: the loss coefficient of the
quantum channel is α = 0.2 dB/km, the detection efficiency
is η = 80.0%, the dark count rate is pdark = 1.0 × 10−10,
the efficiency of error correction is fEC = 1.1, and the
misalignment-error probability is ed = 0.15. Without loss of
generality, suppose the distance between Alice and Charlie
and that between Bob and Charlie are the same, then the
transmittance of the channel is ηtot = η × 10−L/100, where
L is the distance between Alice and Bob. Furthermore, the
experimental data are shown as follows:

nz = nzs + nze, nzs = 4N p2
z pz0 pz1[(1 − pdark) e−ηtotuz/2 − (1 − pdark)2 e−ηtotuz ],

nze = 2N p2
z p2

z1 [(1 − pdark) e−ηtot uz − (1 − pdark)2 e−2 ηtot uz ] + 2N p2
z p2

z0 pdark (1 − pdark),

nR
�+i = nL

�−i = �

2 π
N p2

x p2
xi[TXi ed + (1 − ed ) SXi − (1 − pdark)2 e−2 ηtot ui ], i = 1, 2,

mii = nR
�+i + nL

�−i, i = 1, 2, TXi = (1 − pdark)
1

�

∫ �
2

− �
2

e−4ηtotui sin2(δ/2), i = 1, 2,

SXi = (1 − pdark)
1

�

∫ �
2

− �
2

e−2ηtotui (1−sin δ), i = 1, 2. (28)

With all the actual values, we set the failure probability
of statistical fluctuation as κ = 10−10, and optimize other
parameters to maximize the ultimate lower bounds of key
rates as functions of transmission distance L. The left figure
in Fig. 1 shows the ultimate key rate as a function of the
distance between Alice and Bob under three different numbers

of pulses N = 1012, 1014, and 1015. The key rate drops with
the transmission distance increasing, and the number of pulses
plays an important role in the key’s generation. With the
number increasing, the key rates also increase, especially for
remote position. Furthermore, the finite SNS-TF QKD could
generate the secure key over 600 km. If the number of pulses
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FIG. 1. The lower bounds of key rates for our finite SNS TF-
QKD scheme under different numbers of pulses N . Parameters: α =
0.2 dB/km, η = 80.0%, pdark = 1.0 × 10−10, κ = 10−10, and ed =
0.15. Other parameters are optimized to maximize the key rates.

is smaller than 1010, the protocol could not generate the secure
key. When the number of pulses is larger than N = 1014, the
key rates overcome the PLOB bound far from 350 km.

Compared with Ref. [33], our statistical bounds are slightly
tighter. The main reason is that the deviation of probability
for a k-photon pulse is introduced in our security analysis. On
the other hand, the robustness of a SNS-TF QKD scheme is
considered. Hence, the successful probability of the scheme
is brought in to evaluate the tighter final key rates. The right
figure in Fig. 1 depicts the corresponding optimal intensity
of uz for different numbers of pulses. From the results, we
know the intensity uz is a monotone decreasing function of
transmission distance when the number N is fixed.

Now we analyze the corresponding optimal values of some
parameters as functions of the distance. The inflection of
ε on final key rates is shown in Fig. 2. When the num-
ber of pulses is fixed as N = 1014, the key rates and the
corresponding intensities of uz are simulated under three dif-
ferent values of failure probabilities of statistical fluctuation
κ = 10−10, 10−8, and 10−6. From the figure, we find that the
value of failure probability does not much affect the key rates.
Correspondingly, the nonzero intensities of the Z windows
are also not affected by the failure probability related to the
statistical fluctuations, and decrease over long distances. Fur-
thermore, we discuss the change of probability chosen with a
nonzero intensity in a Z window. The value of the probability
pz1, much smaller than pz0, is decreasing with the transmis-
sion distance increasing. The reason is that many effective
events are needed to estimate the error rate and the yield of
single-photon pulses for the high lossy channel. When secure
distance is the same, the optimal value of pz1 increases with
N increasing in order to maximize key rate.

V. CONCLUSION

In summary, we analyze the finite-key security for SNS-
TF QKD without any assumption on the type of attacks.

FIG. 2. The lower bounds of key rates and corresponding values
of uz under different values of failure probabilities of statistical
fluctuation κ , when the number of pulses is fixed as N = 1014.

The lower bound of key rates is simulated with reasonable
values of the observed parameters. The numerical simulation
shows that the key rates would overcome the PLOB bound,
when the transmission distance is far from 350 km, if the
number of pulses is fixed as N = 1014. Compared with other
SNS-TF QKD schemes [31,33], our method is with statistical
fluctuations on all possible parameters, and the secure key
bounds are valid against general attacks, so our scheme is
practical and realizable. Though our strategy gives a tight
bound with all statistical fluctuations, the finite-key rates are
a little lower, and it is hard to overcome the PLOB bound in
a short period of time even with a high-speed QKD system.
Thus, other SNS-TF QKD protocols with statistical fluctu-
ations must be designed in the future. Furthermore, in our
protocol, Alice and Bob are supposed to have identical dis-
tances to the untrusted Charlie, while in practical quantum
networks the quantum channels are asymmetric. The phases
of pulses after being transmitted in asymmetric-loss channels
must be changed. Although one can add additional fibers to
each channel to compensate for channel differences, it is not
practical to add fibers and maintain symmetry between each
pair of users all the time in a scalable network with large
numbers of dynamically added or deleted users. Thus, the
asymmetric SNS-TF QKD’s security must be discussed in the
future.
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APPENDIX A: THE CALCULATION OF DEVIATION δ BETWEEN e(1)
pz AND e(1)

bx

Suppose the failure probability that e(1)
pz is bounded above by e(1)

bx + δ is less than εph. Then we have

Pr
{
e(1)

pz > e(1)
bx + δ

}
� εph. (A1)

To calculate δ, we rewrite the number of effective events and that of corresponding errors in X windows as

nii =
∞∑

k=0

e−2ui (2ui )k

k!
n(k)

ii , mii =
∞∑

k=0

e−2ui (2ui )k

k!
m(k)

ii , (A2)

where n(k)
ii and m(k)

ii are the number of effective events and that of error caused by the k-photon pulses in set Xii. If Bob measures
all the single-photon pulses in set Xii and those of Z windows by the X basis, the number of errors is m1 = e(1)

bx (n(1)
11 + n(1)

22 ) +
e(1)

pz ns1 = m(1)
11 + m(1)

22 + e(1)
pz ns1. The first term can be counted accurately after the error verification. Assume Eve chooses a

distribution of m1, Pr{m1}, before Bob’s detection. In order to link the probability, Pr{e(1)
pz > e(1)

bx + δ}, to the quantities, n(1)
11 , n(1)

22 ,

ns1, and m(1)
11 + m(1)

22 , we use the security definition of a QKD protocol to show the probability that Eve designs a probability
distribution Pr{m1} and Bob obtains m(1)

11 + m(1)
22 bits of errors in the effective X windows. That is,

Pr
{
e(1)

pz > e(1)
bx + δ, e(1)

bx

} = Pr
{
e(1)

pz ns1 > e(1)
bx ns1 + δ ns1, m(1)

11 + m(1)
22

}
= Pr

{
m1 − e(1)

bx

(
n(1)

11 + n(1)
22

)
> e(1)

bx ns1 + δ ns1, m(1)
11 + m(1)

22

}
= Pr

{
m1 > m(1)

11 + m(1)
22 + (

e(1)
bx + δ

)
ns1, m(1)

11 + m(1)
22

}

�
m(1)

11 +m(1)
22 +ns1∑

m1=m(1)
11 +m(1)

22 +(e(1)
bx +δ)ns1

Pr
{
m(1)

11 + m(1)
22

∣∣m1
}
Pr{m1}. (A3)

Though Eve chooses the distribution Pr{m1}, Bob chooses to measure with the X basis randomly, thus

Pr
{
m(1)

11 + m(1)
22

∣∣m1
}

=

(
n(1)

11 + n(1)
22

m(1)
11 + m(1)

22

)(
ns1

m1 − m(1)
11 − m(1)

22

)
(

n(1)
11 + n(1)

22 + ns1

m1

)

=
(
n(1)

11 + n(1)
22

)
! · ns1! · m1! · (

n(1)
11 + n(1)

22 + ns1 − m1
)
!(

m(1)
11 + m(1)

22

)
!
(
n(1)

11 + n(1)
22 − m(1)

11 − m(1)
22

)
!
(
m1 − m(1)

11 − m(1)
22

)
!
(
ns1 − m1 + m(1)

11 + m(1)
22

)
!
(
n(1)

11 + n(1)
22 + ns1

)
!

=

(
m1

m(1)
11 + m(1)

22

)(
n(1)

11 + n(1)
22 + ns1 − m1

n(1)
11 + n(1)

22 − m(1)
11 − m(1)

22

)
(

n(1)
11 + n(1)

22 + ns1

n(1)
11 + n(1)

22

) . (A4)

When m1 > (m(1)
11 + m(1)

22 )(n(1)
11 + n(1)

22 + ns1)/(n(1)
11 + n(1)

22 ), it is easy to prove that Pr{m(1)
11 + m(1)

22 |m1} is a strictly decreasing
function on m1, so Eq. (A3) is bounded by

Pr
{
e(1)

pz > e(1)
bx + δ, e(1)

bx

}
�

m(1)
11 +m(1)

22 +ns1∑
m1=m(1)

11 +m(1)
22 +(e(1)

bx +δ)ns1

Pr
{
m(1)

11 + m(1)
22 |m1

}
Pr

{
m1

}

�
m(1)

11 +m(1)
22 +ns1∑

m1=m(1)
11 +m(1)

22 +(e(1)
bx +δ)ns1

Pr
{
m(1)

11 + m(1)
22 |m1 = m(1)

11 + m(1)
22 + (

e(1)
bx + δ

)
ns1

}
Pr

{
m1

}

� Pr
{
m(1)

11 + m(1)
22 |m1 = m(1)

11 + m(1)
22 + (

e(1)
bx + δ

)
ns1

}
=

(
n(1)

11 + n(1)
22

)
! · ns1! · m1! · (

n(1)
11 + n(1)

22 + ns1 − m1
)
!(

m(1)
11 + m(1)

22

)
!
(
n(1)

11 + n(1)
22 − m(1)

11 − m(1)
22

)
!
(
e(1)

pz ns1
)
!
(
ns1 − e(1)

pz ns1
)
!
(
n(1)

11 + n(1)
22 + ns1

)
!
. (A5)
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We will bound the function by the Stirling formula n! = √
2πn( n

e )
n
eλn , where 1

12n+1 < λn < 1
12n . Then Eq. (A5) is deduced as

Pr
{
e(1)

pz > e(1)
bx + δ, e(1)

bx

}

� 1√
2π

2−(n(1)
11 +n(1)

22 +ns1 )ξ (δ)

√
ns1m1

(
n(1)

11 + n(1)
22

)(
n(1)

11 + n(1)
22 + ns1 − m1)√(

m(1)
11 + m(1)

22

)(
n(1)

11 + n(1)
22 − m(1)

11 − m(1)
22

)(
e(1)

pz ns1
)(

ns1 − e(1)
pz ns1

)(
n(1)

11 + n(1)
22 + ns1

)
= 1√

2π
2−(n(1)

11 +n(1)
22 +ns1 )ξ (δ)

√
m1

n(1)
11 + n(1)

22 + ns1

√
1 − m1

n(1)
11 + n(1)

22 + ns1

1√
m(1)

11 +m(1)
22

n(1)
11 +n(1)

22

× 1√
1 − m(1)

11 +m(1)
22

n(1)
11 +n(1)

22

· 1√
e(1)

pz
(
1 − e(1)

pz
)
√

n(1)
11 + n(1)

22 + ns1√
ns1

(
n(1)

11 + n(1)
22

)

� 1

2
√

2π

√
n(1)

11 + n(1)
22 + ns1√

ns1
(
n(1)

11 + n(1)
22

) 1

e(1)
bx

(
1 − e(1)

bx

) 2−(n(1)
11 +n(1)

22 +ns1 )ξ (δ), (A6)

where

ξ (δ) = H

(
m1

n(1)
11 + n(1)

22 + ns1

)
− n(1)

11 + n(1)
22

n(1)
11 + n(1)

22 + ns1

H
(
e(1)

bx

) − ns1

n(1)
11 + n(1)

22 + ns1

H
(
e(1)

bx + δ
)

= H

(
e(1)

bx + δ
ns1

n(1)
11 + n(1)

22 + ns1

)
− n(1)

11 + n(1)
22

n(1)
11 + n(1)

22 + ns1

H
(
e(1)

bx

) − ns1

n(1)
11 + n(1)

22 + ns1

H
(
e(1)

bx + δ
)
. (A7)

The last inequality in Eq. (A6) is obtained since function f (x) = 1/
√

x(1 − x) is decreasing on (0, 1/2) and 0 � e(1)
bx < e(1)

pz �
1/2, where we correct the minor errors in Ref. [43]. Due to the concavity of entropy function H (x), ξ (δ) is positive. If n(1)

11 + n(1)
22

and ns1 are large enough, and δ is small enough to e(1)
bx , ξ (δ) is expanded by Taylor expansion as

ξ (δ) = H
(
e(1)

bx

) + ns1 H ′(e(1)
bx

)
n(1)

11 + n(1)
22 + ns1

δ +
(

ns1

n(1)
11 + n(1)

22 + ns1

)2 H ′′(e(1)
bx

)
2

δ2 − n(1)
11 + n(1)

22

n(1)
11 + n(1)

22 + ns1

H
(
e(1)

bx

)

− ns1

n(1)
11 + n(1)

22 + ns1

[
H

(
e(1)

bx

) + H ′(e(1)
bx

)
δ + H ′′(e(1)

bx

)
2

δ2

]
+ O (δ3)

= − ns1
(
n(1)

11 + n(1)
22

)
(
n(1)

11 + n(1)
22 + ns1

)2

H ′′(e(1)
bx

)
2

δ2 + O (δ3). (A8)

Since

H (x) = −x log2(x) − (1 − x) log2(1 − x), H ′(x) = − log2(x) + log2(1 − x), H ′′(x) = − 1

ln 2

(
1

x
+ 1

1 − x

)
, (A9)

we have

ξ (δ) = ns1
(
n(1)

11 + n(1)
22

)
(
n(1)

11 + n(1)
22 + ns1

)2

δ2

2 ln 2

(
1

e(1)
bx

+ 1

1 − e(1)
bx

)
+ O (δ3), = ns1

(
n(1)

11 + n(1)
22

)
2 ln 2 e(1)

bx

(
1 − e(1)

bx

)(
n(1)

11 + n(1)
22 + ns1

)2 δ2 + O (δ3).

(A10)

Hence, if n(1)
11 + n(1)

22 and ns1 are large enough and δ is sufficiently small, e(1)
pz is smaller than e(1)

bx + δ with failure probability
smaller than

εph : = 1

2
√

2π

√
n(1)

11 + n(1)
22 + ns1√

ns1
(
n(1)

11 + n(1)
22

) 1

e(1)
bx

(
1 − e(1)

bx

)2
− ns1 (n(1)

11 +n(1)
22 )

2 ln 2 e(1)
bx (1−e(1)

bx )(n(1)
11 +n(1)

22 +ns1 )
δ2

. (A11)
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Furthermore, if the failure probability is fixed as εph, e(1)
pz is bounded above by e(1)

bx + δ, where

δ2 : = ln 2
(
n(1)

11 + n(1)
22 + ns1

)
e(1)

bx

(
1 − e(1)

bx

)
ns1

(
n(1)

11 + n(1)
22

) log2

(
n(1)

11 + n(1)
22 + ns1

8π ns1
(
n(1)

11 + n(1)
22

) (
e(1)

bx

)2 (
1 − e(1)

bx

)2
(εph)2

)
. (A12)

APPENDIX B: THE LOWER BOUND OF n1

To solve the convex programming in Eq. (19), we consider a linear combination which eliminates the role of two-photon
pulses and gives a strict bound of n1:

pu1|2(n02 + n20) − pu2|2 (n01 + n10) � p′
u1|2(n02 + n20) − p′

u2|2 (n01 + n10)

= 2
∞∑

k �=2

(
p′

u1|2 p′
u2|k − p′

u2|2 p′
u1|k

)
nk

� 2
(

pu1|2 p′
u2|0 − pu2|2 p′

u1|0
)
n0 + 2

(
pu1|2 p′

u2|1 − pu2|2 p′
u1|1

)
n1

+ 2
∞∑

k=3

(
pu1|2 p′

u2|k − pu2|2 p′
u1|k

)
nk

� 2
(

pu1|2 pu2|0 − pu2|2 pu1|0
)
n0

+ 2
(

pu1|2 pu2|1 − pu2|2 pu1|1
)
n1, (B1)

where u1 � u2, and pu1|2 p′
u2|k − pu2|2 p′

u1|k < 0 for all k � 3. Then the lower bound of n1 is obtained as

n1 � n1 =
pu1|2 n02 − pu2|2 n01 − ( pu1|2 pu2|0 − pu2|2 pu1|0 )n0

pu1|2 pu2|1 − pu2|2 pu1|1
, (B2)

under the conditions n10 = n01, n20 = n02, pu1|2 pu2|1 − pu2|2 pu1|1 > 0, and pu1|2 pu2|0 − pu2|2 pu1|0 > 0, where n0 =
min{n00/pu0|0, 1}, pui|k = max{pui|k − ξ (n00 + 2n01 + 2n02 + nz, 31), 0}, and pui|k = min{pui|k + ξ (n00 + 2n01 + 2n02 +
nz, 31), 1}. Hence, the lower bound of the number of clicking single-photon pulses ns1 in effective events of Z windows
is

ns1 = ns

nz
puz |1 n1. (B3)

[1] C. H. Bennett and G. Brassard, Quantum cryptography: Public
key distribution and coin tossing, in Proceedings of the IEEE
International Conference on Computers, Systems, and Signal
Processing (IEEE, New York, 1985), pp. 175–179.

[2] A. K. Ekert, Quantum Cryptography Based on Bell’s Theorem,
Phys. Rev. Lett. 67, 661 (1991).

[3] C. H. Bennett, G. Brassard, and N. D. Mermin, Quantum Cryp-
tography Without Bell’s Theorem, Phys. Rev. Lett. 68, 557
(1992).

[4] H.-K. Lo and H. F. Chau, Unconditional security of quantum
key distribution over arbitrarily long distances, Science 283,
2050 (1999).

[5] D. Mayers, Quantum key distribution and string oblivious
transfer in noisy channels, In Proceedings of the 16th Annual In-
ternational Cryptology Conference on Advances in Cryptology,
CRYPTO ’96 (Springer-Verlag, Berlin, 1996), pp. 343–357.

[6] P. W. Shor and J. Preskill, Simple Proof of Security of the bb84
Quantum Key Distribution Protocol, Phys. Rev. Lett. 85, 441
(2000).

[7] D. Gottesman, H.-K. Lo, N. Lutkenhaus, and J. Preskill, Se-
curity of quantum key distribution with imperfect devices,
Quantum Inf. Comput. 4, 325 (2004).

[8] H. Inamori, N. Lütkenhaus, and D. Mayers, Unconditional se-
curity of practical quantum key distribution, Eur. Phys. J. D 41,
599 (2007).

[9] B. Huttner, N. Imoto, N. Gisin, and T. Mor, Quantum cryptog-
raphy with coherent states, Phys. Rev. A 51, 1863 (1995).

[10] B. Qi, C.-H. F. Fung, H.-K. Lo, and X. Ma, Time-shift attack in
practical quantum cryptosystems, Quantum Inf. Comput. 7, 73
(2007).

[11] G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, Limita-
tions on Practical Quantum Cryptography, Phys. Rev. Lett. 85,
1330 (2000).

[12] C.-H. F. Fung, B. Qi, K. Tamaki, and H.-K. Lo, Phase-
remapping attack in practical quantum-key-distribution sys-
tems, Phys. Rev. A 75, 032314 (2007).

[13] L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar,
and V. Makarov, Hacking commercial quantum cryptography

042408-10

https://doi.org/10.1103/PhysRevLett.67.661
https://doi.org/10.1103/PhysRevLett.68.557
https://doi.org/10.1126/science.283.5410.2050
https://doi.org/10.1103/PhysRevLett.85.441
https://doi.org/10.1140/epjd/e2007-00010-4
https://doi.org/10.1103/PhysRevA.51.1863
https://doi.org/10.1103/PhysRevLett.85.1330
https://doi.org/10.1103/PhysRevA.75.032314


CONCISE SECURITY BOUNDS FOR … PHYSICAL REVIEW A 103, 042408 (2021)

systems by tailored bright illumination, Nat. Photonics 4, 686
(2010).

[14] H.-W. Li, S. Wang, J.-Z. Huang, W. Chen, Z.-Q. Yin, F.-Y.
Li, Z. Zhou, D. Liu, Y. Zhang, G.-C. Guo, W.-S. Bao, and
Z.-F. Han, Attacking practical quantum key distribution system
with wavelength dependent beam splitter and multi-wavelength
sources, Phys. Rev. A 84, 062308 (2011).

[15] A. Acin, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V.
Scarani, Device-Independent Security of Quantum Cryptogra-
phy Against Collective Attacks, Phys. Rev. Lett. 98, 230501
(2007).

[16] N. Gisin, S. Pironio, and N. Sangouard, Proposal for Imple-
menting Device-Independent Quantum Key Distribution Based
on a Heralded Qubit Amplifier, Phys. Rev. Lett. 105, 070501
(2010).

[17] M. Curty and T. Moroder, Heralded-qubit amplifiers for practi-
cal device-independent quantum key distribution, Phys. Rev. A
84, 010304(R) (2011).

[18] I. Gerhardt, Q. Liu, A. Lamas-Linares, J. Skaar, V. Scarani, V.
Makarov, and C. Kurtsiefer, Experimentally Faking the Viola-
tion of Bell’s Inequalities, Phys. Rev. Lett. 107, 170404 (2011).

[19] X.-B. Wang, Beating the Photon-Number-Splitting Attack in
Practical Quantum Cryptography, Phys. Rev. Lett. 94, 230503
(2005).

[20] H.-K. Lo, X. Ma, and K. Chen, Decoy State Quantum Key
Distribution, Phys. Rev. Lett. 94, 230504 (2005).

[21] R. Y. Q. Cai and V. Scarani, Finite-key analysis for practical
implementations of quantum key distribution, New J. Phys. 11,
045024 (2009).

[22] J. Hasegawa, M. Hayashi, T. Hiroshima, and A. Tomita,
Security analysis of decoy state quantum key distribution in-
corporating finite statistics, arXiv:0707.3541 (2007).

[23] M. Hayashi, Upper bounds of eavesdropper’s performances in
finite-length code with the decoy method, Phys. Rev. A 76,
012329 (2007).

[24] T.-T. Song, J. Zhang, S.-J. Qin, F. Gao, and Q.-Y. Wen, Finite-
key analysis for quantum key distribution with decoy states,
Quantum Inf. Comput. 11, 374 (2011).

[25] H.-K. Lo, M. Curty, and B. Qi, Measurement-Device-
Independent Quantum Key Distribution, Phys. Rev. Lett. 108,
130503 (2012).

[26] T.-T. Song, Q.-Y. Wen, F.-Z. Guo, and X.-Q. Tan, Finite-key
analysis for measurement-device-independent quantum key dis-
tribution, Phys. Rev. A 86, 022332 (2012).

[27] H.-L. Yin, T.-Y. Chen, Z.-W. Yu, H. Liu, L.-X. You, Y.-H.
Zhou, S.-J. Chen, Y. Mao, M.-Q. Huang, W.-J. Zhang, H. Chen,
M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang,
X.-B. Wang, and J.-W. Pan, Measurement-Device-Independent
Quantum Key Distribution Over a 404 Km Optical Fiber, Phys.
Rev. Lett. 117, 190501 (2016).

[28] S. Pirandola, R. Laurenza, C. Ottaviani, and L. Banchi, Fun-
damental limits of repeaterless quantum communications, Nat.
Commun. 8, 15043 (2017).

[29] M. Lucamarini, Z. L. Yuan, J. F. Dynes, and A. J. Shields,
Overcoming the rate–distance limit of quantum key distribu-
tion without quantum repeaters, Nature (London) 557, 400
(2018).

[30] X.-B. Wang, X.-L. Hu, and Z.-W. Yu, Effective eavesdrop-
ping to twin field quantum key distribution, arXiv:1805.02272
(2018).

[31] X.-B. Wang, Z.-W. Yu, and X.-L. Hu, Twin-field quantum key
distribution with large misalignment error, Phys. Rev. A 98,
062323 (2018).

[32] X. Ma, P. Zeng, and H. Zhou, Phase-Matching Quantum Key
Distribution, Phys. Rev. X 8, 031043 (2018).

[33] C. Jiang, Z.-W. Yu, X.-L. Hu, and X.-B. Wang, Unconditional
security of sending or not sending twin-field quantum key distri-
bution with finite pulses, Phys. Rev. Applied 12, 024061 (2019).

[34] C. Cui, Z.-Q. Yin, R. Wang, W. Chen, S. Wang, G.-C. Guo, and
Z.-F. Han, Twin-field quantum key distribution without phase
postselection, Phys. Rev. Applied 11, 034053 (2019).

[35] M. Minder, M. Pittaluga, G. L. Roberts, M. Lucamarini, J. F.
Dynes, Z. L. Yuan, and A. J. Shields, Experimental quantum
key distribution beyond the repeaterless secret key capacity,
Nat. Photonics 13, 334 (2019).

[36] Y. Liu, Z.-W. Yu, W. Zhang, J.-Y. Guan, J.-P. Chen, C. Zhang,
X.-L. Hu, H. Li, C. Jiang, J. Lin, T.-Y. Chen, L. You, Z. Wang,
X.-B. Wang, Q. Zhang, and J.-W. Pan, Experimental Twin-Field
Quantum Key Distribution Through Sending or Not Sending,
Phys. Rev. Lett. 123, 100505 (2019).

[37] T. M. Cover and J. A. Thomas, Elements of Information The-
ory, 2nd ed., Wiley Series in Telecommunications and Signal
Processing (Wiley, New York, 2006).

[38] Y. Sano, R. Matsumoto, and T. Uyematsu, Secure key rate of
the BB84 protocol using finite sample bits, J. Phys. A: Math.
Theor. 43, 495302 (2010).

[39] C. Portmann and R. Renner, Cryptographic security of quantum
key distribution, arXiv:1409.3525 (2014).

[40] M. Tomamichel, C. C. W. Lim, N. Gisin, and R. Renner,
Tight finite-key analysis for quantum cryptography,
arXiv:1103.4130v2 (2012).

[41] M. Tomamichel, C. C. W. Lim, N. Gisin, and R. Renner, Tight
finite-key analysis for quantum cryptography, Nat. Commun. 3,
634 (2012).

[42] C. C. W. Lim, M. Curty, N. Walenta, F. Xu, and H. Zbinden,
Concise security bounds for practical decoy-state quantum key
distribution, Phys. Rev. A 89, 022307 (2014).

[43] C.-H. F. Fung, X. Ma, and H. F. Chau, Practical issues in
quantum-key-distribution postprocessing, Phys. Rev. A 81,
012318 (2010).

042408-11

https://doi.org/10.1038/nphoton.2010.214
https://doi.org/10.1103/PhysRevA.84.062308
https://doi.org/10.1103/PhysRevLett.98.230501
https://doi.org/10.1103/PhysRevLett.105.070501
https://doi.org/10.1103/PhysRevA.84.010304
https://doi.org/10.1103/PhysRevLett.107.170404
https://doi.org/10.1103/PhysRevLett.94.230503
https://doi.org/10.1103/PhysRevLett.94.230504
https://doi.org/10.1088/1367-2630/11/4/045024
http://arxiv.org/abs/arXiv:0707.3541
https://doi.org/10.1103/PhysRevA.76.012329
https://doi.org/10.1103/PhysRevLett.108.130503
https://doi.org/10.1103/PhysRevA.86.022332
https://doi.org/10.1103/PhysRevLett.117.190501
https://doi.org/10.1038/ncomms15043
https://doi.org/10.1038/s41586-018-0066-6
http://arxiv.org/abs/arXiv:1805.02272
https://doi.org/10.1103/PhysRevA.98.062323
https://doi.org/10.1103/PhysRevX.8.031043
https://doi.org/10.1103/PhysRevApplied.12.024061
https://doi.org/10.1103/PhysRevApplied.11.034053
https://doi.org/10.1038/s41566-019-0377-7
https://doi.org/10.1103/PhysRevLett.123.100505
https://doi.org/10.1088/1751-8113/43/49/495302
http://arxiv.org/abs/arXiv:1409.3525
http://arxiv.org/abs/arXiv:1103.4130v2
https://doi.org/10.1038/ncomms1631
https://doi.org/10.1103/PhysRevA.89.022307
https://doi.org/10.1103/PhysRevA.81.012318

