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Noncommutative graphs based on finite-infinite system couplings:
Quantum error correction for a qubit coupled to a coherent field
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Quantum error correction plays a key role for quantum information transmission and quantum computing.
In this work, we develop and apply the theory of noncommutative operator graphs to study error correction
in the case of a finite-dimensional quantum system coupled to an infinite-dimensional system. We consider
as an explicit example a qubit coupled via the Jaynes-Cummings (JC) Hamiltonian with a bosonic coherent
field. We extend the theory of noncommutative graphs to this situation and construct, using Gazeau-Klauder
coherent states, the corresponding noncommutative graph. As the result, we find the quantum anticlique, which
is the projector on the error-correcting subspace, and analyze it as a function of the frequencies of the qubit
and the bosonic field. The general treatment is also applied to the analysis of the error-correcting subspace for
certain experimental values of the parameters of the Jaynes-Cummings Hamiltonian. The proposed scheme can
be applied to any system that possess the same decomposition of spectrum of the Hamiltonian into a direct sum
as in JC model, where eigenenergies in the two direct summands form strictly increasing sequences.
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I. INTRODUCTION

Quantum error-correcting codes (or, in other terminology,
quantum anticliques), introduced theoretically in the pioneer-
ing papers [1–3] and implemented experimentally, e.g., in
Ref. [4], play an important role in quantum information theory
[5]. Analog error correction for continuous variables, such
as position and momentum, was considered [6], symmetry
breaking in open quantum systems for photonic cat qubits
[7], etc. In particular, bosonic codes which use encoding of
information in states of bosonic field are of high interest
[8–12].

Error-correction theory studies the possibility of encoding
information in quantum states in a way to allow zero-error
decoding in the presence of a given fixed acceptable set of
errors. Mathematically, each error is described by some com-
pletely positive map acting on the set of states of the quantum
system. In the general setting [13], for any given set of errors
it is possible to define a unique noncommutative operator
graph [14] such that the knowledge of this graph allows us
to define all error-correcting codes for this set of errors. The
correspondence between sets of errors and noncommutative
operator graphs is not one to one, but in the case of a separable
Hilbert space each noncommutative operator graph describes
codes for some set of errors [15–17]. As was established in
the finite-dimensional [15,16] and infinite-dimensional [17]
cases, the noncommutative graph describing errors in infor-
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mation transmission is always generated by some positive
operator-valued measure.

Various models of error correction were analyzed by using
the approach based on the use of noncommutative graphs. It
was applied for quantum error correction for the models of
coupled finite-dimensional systems [18–20] and for coupled
infinite-dimensional systems [21]. In Ref. [21], the noncom-
mutative graph generated by the dynamics of a bipartite
bosonic quantum system in an infinite-dimensional Hilbert
space was defined. The graph consists of orbits driven by
the unitary group which is the solution of the Schrödinger
equation for a two interacting bosonic oscillators. In this
framework possible error-correcting codes are given by co-
herent states in the bosonic Fock space. In all these cases, it
was possible to find quantum anticliques which are projectors
onto error-correcting subspaces.

In this work, we extend the theory of operator graphs
to the case when one system is finite dimensional while
another is infinite dimensional. Currently, several quantum
error-correction [22,23] and entanglement protection [24]
techniques were introduced for systems of such structure.
Explicitly, we consider the situation where the information
is encoded in a joint state of a qubit (a two-level quantum
system) coupled via the Jaynes-Cummings (JC) Hamiltonian
[25] with a bosonic oscillator or bosonic coherent field. The
Jaynes-Cummings Hamiltonian is the key model for the vari-
ous theoretical and experimental works in quantum optics and
for studying the interactions between light and matter, see,
e.g., Refs. [26–39], including in the strong [34], ultrastrong
[27,28,31], and deep strong-coupling regimes [27–29,31–33].

We develop for this model the theory of noncommuta-
tive operator graphs and apply it to find the correspond-
ing quantum anticlique. The construction is based upon
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Gazeau–Klauder coherent states [40]. With this setting, we
explicitly find the error-correcting subspace for any values of
the parameters of the Jaynes-Cummings model.

The structure of the paper is the following: In Sec. II,
we discuss the problem of finding the existence of an error-
correcting procedure for a quantum channel, and also describe
quantum channels corresponding to operator graphs of the
class which includes the noncommutative graphs later con-
structed in Sec. V. In Sec. III, the Jaynes-Cummings model is
discussed. Section IV describes the construction of Gazeau-
Klauder coherent states. In Sec. V, using the Gazeau-Klauder
coherent states for the Jaynes-Cummings model, we con-
struct the noncommutative operator graphs that have quantum
error-correcting codes, and find quantum anticlique and error-
correction subspaces.

II. QUANTUM CHANNELS
AND NONCOMMUTATIVE GRAPHS

Consider encoding information in states of a quantum sys-
tem with Hilbert space H. The (convex) set S(H) of quantum
states is the set of positive unit trace operators in H. Errors
which can occur under information transmission can be de-
scribed by a quantum channel � : S(H) → S(H) which is
a completely positive trace preserving (CPTP) map. As any
CPTP map, it possesses the Kraus operator-sum representa-
tion (Kraus OSR) [41]

�(ρ) =
∑
k∈K

VkρV ∗
k , ρ ∈ S(H). (1)

The Kraus operators {Vk, k ∈ K} are parametrized by some
set K . They should satisfy the property∑

k∈K

V ∗
k Vk = I (2)

to preserve trace of the density matrix. In infinite-dimensional
spaces, K is not necessarily countable and the sum in (1)
and (2) can be replaced by an integral (see, e.g., Ref. [42]).
Nevertheless, for any channel � there exists a countable set K
parametrizing Kraus operators such that (1) holds true. Note
that the Kraus OSR of a quantum channel is nonunique. The
same quantum channel also has a Kraus OSR with opera-
tors Ṽj = ∑

i UjiVi, j = 1, . . . , m (m � |K|), where U +U = I
(unitary matrix).

The linear space V plays an important role in the theory of
optimal coding:

V = span{V ∗
k Vj, k, j ∈ K}. (3)

The linear space V does not depend on the choice of the op-
erators {Vi} used for Kraus OSR of a given quantum channel;
despite the nonuniqueness of the Kraus OSR, it is unique for a
given quantum channel. Notice that in the finite-dimensional
case there is not need to take the closure in (3). For the
infinite-dimensional case, see Refs. [17,21].

The linear space V has the properties of a noncommutative
graph. Such objects were introduced in Ref. [43] as operator
systems and recently redefined as noncommutative graphs in
quantum information theory [14]. A noncommutative graph is
a linear subspace V of bounded operators in a Hilbert space H

possessing the properties
(i) V ∈ V implies that V∗ ∈ V;
(ii) I ∈ V .
The famous Knill–Laflamme condition [3,13] claims that a

zero-error transmission via some channel � is possible if and
only if for some orthogonal projector P for all A ∈ V holds
PAP = α(A)P, where α(A) ∈ C. Here P is the projector on
the subspace generated by error-correction code [3]. The opti-
mal code belongs to the subspace HP = PH. The dimension
of the subspace HP is the maximal amount of quantum in-
formation that could be transmitted via � with zero error. An
orthogonal projection P such that dim(PH) � 2 is a quantum
anticlique for a noncommutative graph V if it satisfies:

dim PVP = 1. (4)

The most natural quantum channel is given by the projec-
tion measurement

�P (ρ) =
∑
k∈K

PkρPk, ρ ∈ S(H), (5)

where P = (Pk ) is the orthogonal resolution of identity∑
k∈K

Pk = I.

For the channel (5), the noncommutative graph (3) is

V = span{Pk, k ∈ K}.
In the finite-dimensional case, it is enough to consider only
discrete sets K , while for the infinite-dimensional case Pk =
E (Bk ) are generated by some projection valued measure on
the real line, where Bk ⊂ R are some Borel sets possessing
the property ∪k∈K Bk = R. In this case, different choices of Bk

produce different projectional measurements and a reachable
set of admissible errors.

Suppose that some unitary group U = {Ut = e−itG, t � 0}
acts in the Hilbert space H . Then the possible set of errors can
be extended to all possible projection measurements

�t (ρ) =
∑
k∈K

Ut PkU
∗
t ρUt PkU

∗
t , t ∈ R. (6)

For the goal of constructing a quantum anticlique allowing to
correct errors of the form (6) for any fixed t , it is natural to
define the noncommutative graph corresponding to all these
errors as follows:

V = span{Ut PkU
∗
t , t ∈ R, k ∈ K}.

Our interpretation of such a graph is that the quantum system
distorts the transmitted information by a set of time-dependent
errors.

Based upon this interpretation, suppose that there is a set
of orthogonal projections {Pα, α ∈ A} parametrized by some
set A, and the operator space is generated by orbits of some
unitary group U as follows:

V = span{Ut PαU ∗
t , t ∈ R, α ∈ A}. (7)

It is known [15,17] that (7) is a noncommutative operator
graph corresponding to some channel if and only if I ∈ V . We
shall construct the explicit example of graph for the Jaynes-
Cummings model. Moreover, we shall show that there exists
an anticlique for this graph.
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FIG. 1. Jaynes-Cummings model of a qubit interacting with
bosonic reservoir.

III. JAYNES-CUMMINGS MODEL

We consider a two-level quantum system (qubit) coupled
to a coherent field. The Hilbert space of the qubit is Hs = C2.
Ground and excited basis states of the qubit are denoted
{|g〉 , |e〉}. The Hilbert space of the coherent field is Hf =
L2(R) = { f : R → C | ∫R | f (x)|2dx < ∞}. Fock states of
the field are denoted as {|k〉 , k ∈ N0}. We use the set of natural
numbers including zero N0 = 0 ∪ N to enumerate the states.
The qubit and the field are assumed to be coupled via the
Jaynes-Cummings Hamiltonian acting in H = Hs ⊗ Hf :

H = ω f a+a− + ωs

2
σz + κ

2
(σ−a+ + σ+a−). (8)

Here ωs, ω f ∈ R+ are the frequencies of the qubit and the
field, respectively, κ � 0 is the coupling constant, σz is the
Pauli matrix, σ+, σ− are the rising and lowering operators of
the qubit and a+, a− are the creation and annihilation oper-
ators of the field. The detuning parameter is � = ω f − ωs.
We use the normalization of the physical units such that
h̄ = 1. Denote the basis in H as |q〉 ⊗ |p〉 = |q, p〉, where the
first number q ∈ N0 denotes the coherent state and the sec-
ond number p ∈ {e, g} denotes the qubit state. The schematic
picture of the Jaynes-Cumming model states interaction is
provided in Fig. 1.

The Schrödinger equation with the Jaynes-Cummings
Hamiltonian has an exact solution. The Hamiltonian has the

following eigenstates:

|0, g〉 ,

|n,+〉 = cos

(
θn

2

)
|n − 1, e〉 + sin

(
θn

2

)
|n, g〉 ,

|n,−〉 = sin

(
θn

2

)
|n − 1, e〉 − cos

(
θn

2

)
|n, g〉 ,

where θn = tan−1(κ
√

n/�) and n ∈ N, for the nonresonant
case � �= 0. For the resonant case � = 0 the eigenstates are

|0, g〉 ,

|n,+〉 = |n − 1, e〉 + |n, g〉 ,

|n,−〉 = |n, g〉 − |n − 1, e〉 .

In both cases the corresponding eigenenergies are

E0,g = ω f + �

2
,

En,± = ω f

(
n − 1

2

)
± 1

2

√
�2 + κ2n, n ∈ N.

Below we follow closely to the method provided in
Ref. [44], where a new class of coherent states was
constructed for the Jaynes-Cummings model with strictly in-
creasing sequences of the eigenenergies En,+ and En,−. Our
goal is to divide the space H into three direct summands,
two of which are generated by eigenstates corresponding to
strictly increasing sequences of eigenenergies and one is finite
dimensional. The sequence

Jk = Ek+1,+, k ∈ N0 (9)

is known to be strictly increasing. On the other hand, the
sequence S0 = E0,g, Sk = Ek,−, k ∈ N may have degenerate
levels Sk1 = Sk2 , k1 �= k2. We want to keep only a strictly
increasing tail of the sequence Sk . Let us show that there exists
M0 ∈ N such that, for all l2 > l1 � M0, one gets Sl2 > Sl1 . It
is equivalent to

Sn+1 − Sn = ω f − 1
2 (

√
�2 + κ2(n + 1) −

√
�2 + κ2n) > 0 ∀ n � M0. (10)

From this one gets that M0 is the minimal integer solution of
the inequality

(
√

�2 + κ2(M0 + 1) +
√

�2 + κ2M0)−1 <
2ω f

κ2
. (11)

Thus, the sequence

Sk = Ek,−, k � M0, (12)

becomes strictly increasing.
Let us fix any number K0 ∈ N, K0 � M0. Then the se-

quence Sk = Ek,−, k � K0 will also be strictly increasing
and we can separate the pieces where we assured to have
strictly increasing eigenenergies. This allows us to represent

the Hilbert space H as the direct sum H = H1 ⊕ H2 ⊕ H3,
where

H1 = span{|n,+〉 , n ∈ N}, (13)

H2 = span{|n,−〉 , n � K0}, (14)

H3 = span{|g, 0〉} ∪ {|n,−〉 , 1 � n < K0}. (15)

The subspace H3 later will be shown to be the error-correcting
subspace for this system. The error dynamics will be shown to
interchange states in H1 and H2, while keeping states in H3

unchanged.
In Sec. 5, following the ideas of Ref. [44] we will define

the Gazeau-Klauder coherent states in H1 and H2.
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IV. GAZEAU-KLAUDER COHERENT STATES

Here we introduce the construction of Gazeau-Klauder
coherent states [40]. Let us consider an infinite-dimensional
Hilbert space H with the basis |k〉 , k ∈ N0 and a self-adjoint
operator G which is diagonal in this basis. In Ref. [40]
Gazeau and Klauder defined the generalized coherent states
corresponding to the operator G as a two-parameter system
of vectors {|x, y〉 , x ∈ R+, y ∈ R} ⊂ H with the following
properties:

(1) Continuity: (x, y) → (x0, y0) ⇒ |x, y〉 → |x0, y0〉;
(2) Resolution of identity:

∫ |x, y〉 〈x, y| dν(x, y) = IH;
(3) Temporal stability: e−itG |x, y〉 = |x, y + ωt〉;
(4) Action identity: 〈x, y| G |x, y〉 = ωx;
for some real constant ω and some measure ν.
Consider the set of eigenvalues hk = 〈k| G |k〉 for the oper-

ator G. In the case h0 = 0 and strictly increasing hk , Gazeau
and Klauder gave the explicit construction for the system
of coherent states. If h0 > 0 and the sequence hk is strictly
increasing, their construction describes the set of vectors that
satisfy the first two properties and the following version of the
time stability condition:

e−itG |x, y〉 〈x, y| eitG = |x, y + ωt〉 〈x, y + ωt | .
The main property of generalized coherent states is that

they form the resolution of identity. It was shown that the
measure ν has the form

dν(x, y) = τ (x)dxdy,

where τ (x) is some probability distribution density on the half
axis.

Below we give an explicit description of this construction.
Consider a sequences of weights

ck > 0, k ∈ N0,

with the convergence condition

lim sup
k→∞

k
√

ck = R > 0. (16)

Suppose that these weights are the moments of probability
distributions with density ρ(x) > 0 on the interval [0, R),

ck =
∫ R

0
ρ(x)xkdx < +∞, k ∈ N0.

We also need the normalization factor and the density defined
by the formulas

N2(x) =
∞∑

k=0

xk

ck
, 0 � x < R,

τ (x) = N2(x)ρ(x). (17)

The radius of convergence in (17) is equal to R by the property
(16). Now the Gazeau–Klauder coherent states are defined as
follows:

|x, y〉 = 1

N (x)

∞∑
k=0

xk/2e−ihk y

√
ck

|k〉 . (18)

We suppose the constant ω is equal to one. Following the
definition in Ref. [40], for f : R → B(H), where B(H) is

the set of bounded linear operators on H, we introduce its
integration as the weak-limit of averages of weak integrals,

I ( f ) =
∫ +∞

−∞
f (y)dμ(y) = lim

R→+∞
1

2R

∫ R

−R
f (y)dy.

Note that if such integral converges for some f with the image
lying in the weakly closed subspace Im( f ) ⊂ W ⊂ B(H ),
then the integral also lies in this subspace, I ( f ) ∈ W . The
resolution of identity property for coherent states results in

∫ R

0

∫ +∞

−∞
|x, y〉 〈x, y| τ (x)dxdμ(y) = IH. (19)

V. GRAPHS GENERATED BY GAZEAU-KLAUDER
COHERENT STATES

Now we are able to define systems of Gazeau–Klauder
coherent states [40] in the Hilbert spaces H1 and H2. Take
two sequences of weights

c( j)
k > 0, d ∈ N0, j = 1, 2

with the same convergence condition

lim sup
k→∞

k

√
c( j)

k = R > 0.

Suppose that the weights have the corresponding probability
densities ρ1(x), ρ2(x) > 0 on the interval [0, R] such that

c( j)
k =

∫ R

0
ρ j (x)xkdx < +∞, k ∈ N0, j = 1, 2.

Then, the normalization factors and the densities for measures
defining resolutions of identity are given by the formulas

N2
j (x) =

∞∑
k=0

xk

c( j)
k

, 0 � x < R,

τ j (x) = N2
j (x)ρ j (x), j = 1, 2.

Consider the Gazeau–Klauder coherent states

|J, x, y〉 = 1

N1(x)

∞∑
k=0

xk/2e−iJk y√
c(1)

k

|k + 1,+〉 ,

|S, x, y〉 = 1

N2(x)

∞∑
k=0

xk/2e−iSk+K0 y√
c(2)

k

|k + K0,−〉 ,

where the strictly increasing sequences of eigenenergies are
given by (9) and (12), respectively.

Since the Gazeau–Klauder coherent states from Sec. IV
form the resolution of identity, we get for the projections PH1 ,
PH2 on the subspaces H1, H2 that∫ R

0

∫ +∞

−∞
|J, x, y〉 〈J, x, y| τ1(x)dxdμ(y) = PH1 , (20)

∫ R

0

∫ +∞

−∞
|S, x, y〉 〈S, x, y| τ2(x)dxdμ(y) = PH2 . (21)

Consider the unitary group U = {Ut = e−itH , t ∈ R},
where the Hamiltonian H is determined by (8). Systems
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|J, x, y〉, |S, x, y〉 satisfy the temporal stability property (IV)
with respect to U ,

Ut |J, x, y〉 〈J, x, y|U ∗
t = |J, x, y + t〉 〈J, x, y + t | , (22)

Ut |S, x, y〉 〈S, x, y|U ∗
t = |S, x, y + t〉 〈S, x, y + t | . (23)

Consider the two families of orthogonal projections

P1
x = |J, x, 0〉 〈J, x, 0| , P2

x = |S, x, 0〉 〈S, x, 0| ,

for x ∈ [0, R]. The projections P1
x , P2

x and P3
x ≡ PH3 are pair-

wise orthogonal for any fixed value of x ∈ [0, R].

Theorem 1. The subspace

V = span
{
Ut P

j
x U ∗

t , t ∈ R, x ∈ [0, R], j ∈ {1, 2, 3}}
is a noncommutative operator graph with the anticlique PH3 .

Proof. Consider the operator

Qx = P1
x + τ2(x)

τ1(x)
P2

x + 1

τ1(x)
PH3 .

It follows from (22) and (23) that

Ut QxU
∗
t =|J, x, t〉 〈J, x, t |+ τ2(x)

τ1(x)
|S, x, t〉 〈S, x, t |+ 1

τ1(x)
PH3.

Then, (20) and (21) result in

∫ R

0

∫ +∞

−∞
τ1(x)

(
|J, x, t〉 〈J, x, t | + 1

τ1(x)
IH2 + τ2(x)

τ1(x)
|S, x, t〉 〈S, x, t |

)
dxdμ(t ) = IH ∈ V . (24)

Since K0 is given by the rule (25) the dimension of H3 is at
least two. From the equalities

PH3 |J, x, t〉 〈J, x, t | PH3 = 0,

PH3 |S, x, t〉 〈J, x, t | PH3 = 0,

we obtain that PH3 is an anticlique. �

VI. THE ERROR-CORRECTING SUBSPACE

As Theorem 1 states, the subspace H3 is the error-
correcting subspace. In some cases the number is M0 = 1, so
in this case for K0 = M0 the error-correcting subspace would
be empty (since its dimension is K0 − 1). However, in our
construction one can take any natural K0 � M0. To satisfy this
condition for our coding procedure, that is the dimension of
error-correcting subspace is greater or equal to two, we should
take any

K0 � K∗
0 = max {3, M0}. (25)

To analyze the minimal dimension of the error-correcting
subspace for various parameters of the Jaynes-Cummings
Hamiltonian, consider the coupling rates γ f = κ/ω f and γs =
κ/ωs. In terms of these quantities, the inequality (11) takes the
following form:√(

γ −1
f − γ −1

s

)2 + M0 + 1 +
√(

γ −1
f − γ −1

s

)2 + M0 >
γ f

2
.

(26)

Now it is evident that the key quantity defining the dimen-
sion for the resonant case (when � = ω f − ωs = 0 and hence
γ f = γs) is the coupling rate γ f . For having M0 equal or larger
than four or greater, we need the γ f to be at least 2(2 + √

3).
For the nonresonant case for fixed γ f , decreasing the value
γs will decrease M0. Figure 2 shows the behavior of the mini-
mal possible dimension Dmin = K∗

0 − 1 of the error-correcting
subspace H3 vs coupling rates γs and γ f . The figure clearly
shows that the behavior is nonsymmetric with respect to γs

and γ f , as is also evident from inequality (26). The resonant
case is the extremal case in the inequality (26), what means
if M0 satisfies it for some γ f , then for the same parameter γ f

the number M0 also solves the inequality in the resonant case.
Figure 3 shows the dependence of Dmin on the coupling rate
γ f for equal frequencies.

The Jaynes-Cummings Hamiltonian is used in various
theoretical and experimental analysis in quantum optics,
cavity QED, see, e.g., Refs. [26–39], including in the
strong [34], ultrastrong [27,28,31], and deep strong-coupling
regimes [27–29,31–33]. We take, for example, from the
weak-coupling regime the parameters used in experiments
performed by the group of Haroche [36]. In the setup of
that experiment, the cavity is designed to have the frequency
equal to the frequency of the atom, i.e., � = 0. The approxi-
mate parameters for the experiment are κ = 2π × 47 kHz and

FIG. 2. Behavior of the minimal dimension of the error-
correcting subspace vs coupling rates of the Jaynes-Cummings
Hamiltonian.
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FIG. 3. Behavior of the minimal dimension of the error-
correcting subspace for the resonant case � = 0 vs the coupling rate
of the field.

ω f = ωs = 2π × 51.1 GHz. For this case the inequality (11)
becomes

√
M0 + 1 +√

M0 >
κ

2ω f
= 47

2 × 51.1 × 106
≈ 0.46 × 10−6.

(27)

The minimal natural solution of this inequality is M0 = 1,
so K0 = 3 and the minimal dimension is Dmin = K0 − 1 = 2.
This minimal two-dimensional error-correcting subspace is
spanned by the two vectors |g, 0〉 and |1,−〉 = |1, g〉 − |0, e〉.
We remark that this is the error-correcting subspace of mini-
mal dimension. One could choose arbitrary large K0 and the
corresponding noncommutative operator graph will have the
error-correcting subspace H3 of dimension K0 − 1.

The Jaynes-Cummings model is derived from Rabi model
via the rotating-wave approximation (RWA). This approxi-
mation is typically valid for γ f < 0.1 and ω f ≈ ωs. In this
case the minimal dimension is Dmin = 2. As can be seen
from Figs. 2 and 3, to have Dmin > 2 one has to consider
values of γ f in the range of the deep strong-coupling regime
[27–29]. This regime, as well as the less intense ultrastrong
regime, is of interest now. In these regimes the Rabi model is
nonintegrable, and investigating these regimes motivates de-
scribing eigenenergy approximations for this model [29,30].

One can show [31] that introducing a special type of frequency
modulations applied to the field and the qubit will give the
dynamics governed by Jaynes-Cummings Hamiltonian with
γ f in the range of deep strong-coupling regime. In circuit-
QED simulations rates of γ f for Rabi model up to 2.1 are
achieved [32,33]. Thus value is lower, while not that much,
than the minimal γ f ≈ 7.5 that is necessary to see the effect in
which minimal dimension of the error-correcting code in the
proposed scheme will be three or greater. Our analysis allows
us to construct nontrivial quantum error-correcting codes for
all possible values γ f , γs.

We remark that our scheme could be applied to any
system that possess the same decomposition into the di-
rect sum, where eigenenergies in the two direct summands
form strictly increasing sequences. Potentially, this property
could be exploited for more complex Hamiltonian beyond
the Jaynes-Cummings model, such as, for example, for the
Jaynes-Cummings-Hubbard Hamiltonian, describing the in-
teraction of several qubit-cavity systems, or perhaps directly
for the Rabi Hamiltonian.

VII. CONCLUSION

In this work, the theory of noncommutative operator
graphs has been developed for error correction in the
case of a finite-dimensional quantum system coupled to an
infinite-dimensional quantum system. We have constructed
the noncommutative operator graph generated by orbits of
the unitary group driven by Hamiltonian (8) of the Jaynes-
Cummings model. We have shown that, for a positive integer
K0 that satisfies (25), using for encoding the eigenstates |g, 0〉
with |n,−〉 for 0 � n < K0 (9) allows us to transmit infor-
mation with zero error via quantum channels with operator
graphs belonging to the constructed graph. Thus the error-
correcting subspace is explicitly computed for all values of
the parameters of the Jaynes-Cummings model. Our scheme
could be applied to any system that possesses the same de-
composition of eigenenergies into the direct sum as for the JC
Hamiltonian, where eigenenergies in the two direct summands
form strictly increasing sequences.
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