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Continuous quantum error correction for evolution under time-dependent Hamiltonians
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We develop a protocol for continuous operation of a quantum error correcting code for protection of coherent
evolution due to an encoded Hamiltonian against environmental errors, using the three-qubit bit-flip code
and bit-flip errors as a canonical example. To detect errors in real time, we filter the output signals from
continuous measurement of the error syndrome operators and use a double thresholding protocol for error
diagnosis, while correction of errors is done as in the conventional operation. We optimize our continuous
operation protocol for evolution under quantum memory and under quantum annealing, by maximizing the
fidelity between the target and actual logical states at a specified final time. In the case of quantum memory,
we show that our continuous operation protocol yields a logical error rate that is slightly larger than the one
obtained from using the optimal Wonham filter for error diagnosis while being simpler to implement. For
quantum annealing, we show that our continuous quantum error correction protocol can significantly reduce
the final logical state infidelity when the continuous measurements are sufficiently strong relative to the strength
of the time-dependent Hamiltonian. We also show that this continuous quantum error correction protocol can
reduce the time-to-solution relative to the value obtained from a classical parallelization scheme. These results
suggest that a continuous implementation is suitable for quantum error correction in the presence of encoded
time-dependent Hamiltonians, opening the possibility of many applications in quantum simulation and quantum
annealing.
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I. INTRODUCTION

Quantum error correction (QEC) is an essential component
of quantum information processing. The need to either avoid
or correct errors on quantum states due to imperfect quantum
operations or decohering interactions with the environment
places stringent requirements on realization of the promise
of quantum computation and quantum simulations. Various
tools have been developed to mitigate the effect of such er-
rors, including encoding into decoherence-free subspaces or
subsystems [1,2], addition of penalty Hamiltonians [3–6], dy-
namical decoupling methods [7–9], and other applications of
pulse sequences [10], as well as the use of quantum error cor-
recting codes that delocalize the errors over multiple physical
qubits, combined with error recovery operations [11–14]. The
latter provides a powerful approach to systematically correct
errors that can also be made fault tolerant [15].

The canonical operation mode for quantum error correction
codes [16–19] employ projective measurements and discrete
recovery operations to provide reduction of errors that are
treated as discrete events occurring at a specified rate. The
formalism of QEC has been developed to provide firm guar-
antees of protection in terms of reduced scaling of the logical
error rate for an encoded state. However, in practice, few

*These authors contributed equally to this work.

measurements can be described as projective and are instead
better described as finite-strength weak measurements that are
characterized by a gradual collapse of the measured system
wave function [20–32]. A continuous quantum error correc-
tion code, i.e., a CQEC code, is based on the continuous
quantum measurement of the error syndrome operators of
the conventional QEC code. Previous theoretical work on
such continuous quantum error correction has been devoted
primarily to analysis of the continuous operation performance
of stabilizer [33–45] and subsystem [46,47] QEC codes for
quantum memory, where the Hamiltonian of the encoding
physical qubits is disregarded in the analysis. In contrast, in
this work we focus on protecting the coherent evolution of
an encoded qubit system evolving under a time-dependent
Hamiltonian, against environmental decoherence. This prob-
lem is particularly important for the development of quantum
error correction for a broad range of quantum information
applications employing continuously varying Hamiltonians.
These include quantum annealing, adiabatic quantum com-
putation [48], and quantum simulation [49]. Several schemes
have been proposed to protect such Hamiltonian-based quan-
tum computation approaches, including error suppression by
adding a energy penalty term [4–6] and local cooling by
strongly coupling qubits to a reservoir prepared at a lower
temperature compared to that of the qubit environment [50].
None of these methods have considered actively correcting the
errors, which is the approach we investigate in this paper.
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A major challenge for application of either discrete or
continuous QEC to protect coherent evolution of an encoded
qubit system is that perfect identification and correction of
errors (in the example studied here, these will be bit-flip
errors) does not imply absence of logical errors [51]. We
can understand this difficulty by thinking of the action of
errors on the Hamiltonian instead of on the quantum state—a
perspective somewhat similar to the Heisenberg picture. In
this picture, an error causes the Hamiltonian to effectively
change from H (t ) to EH (t )E , where E is the operator as-
sociated to the error that occurred and is assumed to be a
single-qubit Pauli operator. Subsequent coherent evolution is
due to the new Hamiltonian EH (t )E , until the moment when
the error that occurred is detected and corrected. During this
period of error diagnosis and correction, logical errors will
accrue if the original Hamiltonian does not commute with the
error operators, i.e., if H (t ) �= EH (t )E . Since Hamiltonians
that commute with all error operators are difficult to imple-
ment [51], this problem has constituted a major stumbling
block for the development of quantum error correction for
quantum annealing and for analog quantum simulation in
general. This is precisely the situation that we address in this
work.

We consider here the continuous operation of a quantum
code that is designed to protect the coherent evolution of
the encoded qubit system. As a specific example, we take
the three-qubit bit-flip code [19], which is a stabilizer code
[18] with two commuting stabilizer operators that constitute
the measurement operators. Although theoretically simple,
this code has the advantage of avoiding high-weight Pauli
operators in the stabilizers and in the encoded Hamiltonian.
Using the three-qubit code, we can scale up to multiple logical
qubits by encoding these in a modular approach to explore the
potential for larger scale continuous quantum error correction.
Section II describes the continuous operation of this code. In
Sec. III, we propose and analyze an error detection protocol
based on time averaging (filtering) of the bare readout sig-
nals from simultaneous continuous monitoring of the error
syndrome operators, together with a double error thresholding
scheme that is applied to the filtered readout signals in order to
explicitly diagnose errors. Unlike previous schemes [34,37],
partial errors are not acted on—the error diagnosis is acted on
only when occurrence of a complete, i.e., discrete, error has
been diagnosed with high probability. Filtering is necessary in
the protocol to reduce (but not eliminate) the amount of noise
in the filtered readout signals, while double error thresholding
is essential to reduce the probability of misidentification of
single bit-flip errors that affect several readout signals at the
same time [47].

In Sec. IV, we develop an effective open quantum system
model to describe the Hamiltonian-driven evolution of the en-
coded qubit system in the presence of both bit-flip errors and
CQEC. In Sec. V, we use this model to optimize the perfor-
mance of the proposed continuous QEC protocol for operation
under quantum annealing. In this case, the performance of our
protocol depends on the relative strength of three parameters,
namely, the error rate γ , the Hamiltonian strength parameter
�0, and the strength �m of the continuous measurements. We
find that our CQEC protocol yields a significant reduction of
the final logical state infidelity when the measurements are

sufficiently strong relative to the Hamiltonian. We show that
further improvements are possible by using modified error
correction operators. To demonstrate the capability of our
proposed CQEC approach, we present detailed results for one
logical qubit and then show that the strategy can be readily
generalized to quantum simulation with many encoded qubits.
We show explicitly that a high level of protection can be
obtained for quantum annealing of two logical qubits. In addi-
tion, we analyze the performance of the proposed continuous
QEC protocol for quantum memory operation, in the absence
of a Hamiltonian. We minimize the logical error rate and find
that its optimal value is slightly larger than the logical error
rate obtained from using the linear variant [44] of the optimal
Wonham filter [41,42] for error diagnosis. The advantage of
our continuous QEC protocol is that it can be simpler to
implement. We also show that the resulting optimized double
thresholding error diagnosis scheme is very effectively com-
bined with discrete recovery operations to obtain the reduced
scaling of the logical error rate that is necessary for a valid
quantum error correcting code. Finally, in Sec. VI, we provide
a summary and discussion, with additional analysis of the
time-to-solution metric for estimating the cost of applying
CQEC to quantum annealing problems. We conclude with
a prognosis for future applications and useful directions for
further work.

II. CONTINUOUS OPERATION OF THE THREE-QUBIT
BIT-FLIP CODE

In contrast to the discrete operation of the three-qubit bit
flip code [19], in the continuous operation, the error syndrome
operators (stabilizer generators),

S1 = Z12 = Z1Z2 and S2 = Z23 = Z2Z3, (1)

are continuously measured at the same time. In Eq. (1), Z1 rep-
resents the Pauli z operator that acts on the first physical qubit;
that is, Z1 |q1 q2 q3〉 = (−1)q1 |q1 q2 q3〉, where the set of states
|q1 q2 q3〉 with q1, q2, q3 = {0, 1} defines the computational
basis. Similar definitions hold for the Pauli z operators Z2 and
Z3. The corresponding normalized readout signals are given
by (k = 1, 2)

Ik (t ) = Tr[Sk ρ(t )] + √
τk ξk (t ), (2)

where ρ(t ) is the 8 × 8 density matrix of the three physical
qubits and τk is the so-called “measurement time” to distin-
guish between the ±1 eigenvalues of the stabilizer generator
Sk with a signal-to-noise ratio (SNR) of 1 [52]. Note that
the detector readout signals Ik (t ) are given by the sum of
the “signal part” Tr[Sk ρ(t )] and the noise part ξk (t ), which
has a vanishing mean. In the Markovian approximation, the
noises ξk (t ) are assumed Gaussian and white with a two-time
correlation function,

〈ξk (t )ξk′ (t ′)〉 = δkk′δ(t − t ′), (3)

where 〈·〉 denotes average over an ensemble of noise realiza-
tions.

The evolution of the three-qubit quantum state ρ(t ) in the
absence of environmental decoherence is described by (in Itô
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interpretation [22])

ρ̇(t ) = −i[H (t ), ρ]

+
∑

k=1,2

[
�k

2
(SkρSk − ρ)+ ξk√

τk

(
Skρ + ρSk

2
− ρ Tr[Skρ]

)]
.

(4)

The first line of Eq. (4) describes the coherent evolution of the
three physical qubits due to a time-dependent Hamiltonian. In
this work, we shall focus on the quantum annealing Hamilto-
nian (h̄ = 1)

H (t ) = −�0[a(t )XL + b(t )ZL], (5)

where the frequency parameter �0 sets the energy scale of
the above Hamiltonian, and the coefficients a(t ) and b(t )
are functions of time with magnitudes smaller than 1. The
operators XL and ZL denote the logical X and Z operators,

XL = X1X2X3 and ZL = Z1 + Z2 + Z3

3
, (6)

where Xq represents the Pauli x operator that acts on the
qth physical qubit. Note that the system Hamiltonian (5)
and the stabilizer generators (1) exhibit a block-diagonal ma-
trix representation in the computational basis. The second
line of Eq. (4) describes the measurement-induced quantum
backaction on the three-qubit quantum state that is due to
simultaneous continuous measurement of the stabilizer gener-
ators Z12 and Z23. Each measurement channel is characterized
by the measurement time parameter τk and the measurement-
induced ensemble dephasing rate �k , which are related via
the quantum efficiency ηk as follows: τk = 1/(2�kηk ) [52].
For ideal detectors, the quantum efficiency is unity, while for
nonideal detectors the quantum efficiency is less than one.
For simplicity of notation, we shall assume below that both
detectors have identical parameters:

�k = �m, τk = τm, and ηk = η (k = 1, 2). (7)

(This assumption can be readily removed and the analysis
continued with different parameters for each detector.)

Encoding with the three-qubit bit-flip code effectively di-
vides the full eight-dimensional Hilbert space of the three
physical qubits into four two-dimensional subspaces, where
the stabilizer generators Z12 and Z23 have definite ±1 values.
As usual, the two-dimensional subspace where both stabilizer
generators have values +1 is referred to as the code space,
denoted as Q0, while the two-dimensional subspaces where
(Z12, Z23) have values (−1,+1), (−1,−1), and (+1,−1) are
referred to as the error subspaces, denoted as Q1, Q2, and Q3,
respectively. The code space is spanned by the zero and one
logical states, which are expressed in the computational basis
as

|0L〉 = |0 0 0〉 and |1L〉 = |1 1 1〉, (8)

respectively. In the absence of errors, the (target) logical wave
function

|ψL(t )〉 = αL(t )|0L〉 + βL(t )|1L〉 (9)

evolves according to the following Schrödinger equation for
the probability amplitudes of the zero (αL) and one (βL) logi-

cal states:

[
α̇L(t )

β̇L(t )

]
= −ihL(t )

[
αL(t )

βL(t )

]
. (10)

In the above equation, hL(t ) represents the Hamiltonian of the
logical qubit and is given by the 2 × 2 diagonal submatrix of
H (t ) that corresponds to the code space,

hL(t ) = −�0[a(t )σx + b(t )σz], (11)

where σx and σz denote the conventional Pauli x and z matri-
ces, and the coefficients a(t ) and b(t ) are the coefficients given
in Eq. (5). (In this work, we shall use the notation |ψL(t )〉 to
denote the column matrix [αL(t ) βL(t )]T.) We emphasize that
evolution of the target logical wave function (9) is not affected
by measurement, because the system Hamiltonian (5) and the
stabilizer generators (1) commute with each other; i.e., there is
no quantum Zeno effect (unlike the noncommuting situation,
e.g., Ref. [53]). The error subspace Q1 is spanned by the
computational states |1 0 0〉 = X1 |0L〉 and |0 1 1〉 = X1 |1L〉;
the error subspace Q2 is spanned by the computational states
|0 1 0〉 = X2 |0L〉 and |1 0 1〉 = X2 |1L〉; and the error subspace
Q3 is spanned by the computational states |0 0 1〉 = X3 |0L〉
and |1 1 0〉 = X3 |1L〉. In addition, the 2 × 2 diagonal subma-
trices of H (t ) that correspond to these error subspaces are all
identical and equal to

hspurious(t ) = −�0

[
a(t )σx + 1

3
b(t )σz

]
. (12)

Note the factor of 1/3 in the above equation. This de-
rives from the action of the system Hamiltonian H (t ),
Eq. (5), on a state with support in one of the error
subspaces. For instance, for the system state, |ψ (t )〉 =
α X1 |0L〉 + β X1 |1L〉, which is in the error subspace Q1,
we obtain H (t )|ψ (t )〉 = −�0a(t )[α X1 |1L〉 + β X1 |0L〉] −
(1/3)[α X1 |0L〉 − β X1 |1L〉]�0b(t ). In contrast, this factor of
1/3 does not appear when the system Hamiltonian H (t ) acts
on (code space) logical states, Eq. (9). We can therefore say
that when the system state is in the error subspaces, coherent
evolution in those subspaces is due to the spurious Hamilto-
nian (12), instead of the intended logical Hamiltonian (11).

In the presence of bit-flip errors, the (mixed) three-qubit
state ρ(t ) evolves according to the evolution equation that
results from adding to the right-hand side of Eq. (4) the
following decoherence terms:

ρ̇decoh(t ) =
∑

q=1,2,3

γq(Xq ρ Xq − ρ), (13)

where γq denotes the bit-flip error rate of the qth physi-
cal qubit. Thus, in the presence of bit-flip errors, the full
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three-qubit state evolves as

ρ̇(t ) = −i[H (t ), ρ] +
∑

k=1,2

[
�k

2
(SkρSk − ρ)

+ ξk√
τk

(
Skρ + ρSk

2
− ρ Tr[Skρ]

)]

+
∑

q=1,2,3

γq (XqρXq − ρ). (14)

Our analysis of logical errors presented below is based
on the jump/no-jump method [19] for bit-flip errors. In this
method, gradual decoherence due to the terms (13) is de-
scribed as the average effect of bit-flip errors X1, X2, or X3 that
occur at random times, as follows. At the infinitesimal time
interval (t, t + δt ), a bit-flip error Xq occurs with probability
δtγq. If this error occurs, the system state “jumps” from ρ(t )
to ρ(t + δt ) = Xq ρ(t ) Xq; otherwise, the system state contin-
uously evolves according to Eq. (4), without environmental
decoherence. On averaging over many instances of the bit-flip
errors, the jump/no-jump approach reduces to the open quan-
tum system model (14), where errors continuously change the
mixed system state ρ(t ).

The encoded logical state is obtained from the mixed three-
qubit state ρ(t ) as follows:

�L(t ) =
〈

1

pcode-space(t )

[
ρ000,000(t ) ρ000,111(t )
ρ111,000(t ) ρ111,111(t )

]〉
, (15)

where pcode-space(t ) = ρ000,000(t ) + ρ111,111(t ) is the probabil-
ity of the system being in the code space.

Our goal is to maximize the fidelity between the target
logical wave function (9) and the true (mixed) logical state
(15), at some final time, where the evolution includes the
decoherence effect of bit-flip errors as well as the effect of
the spurious coherent evolution in the error subspaces due to
an added Hamiltonian. To counteract the latter two effects, we
introduce the double threshold CQEC protocol described in
the following section.

III. THE DOUBLE THRESHOLD CQEC PROTOCOL

In the three-qubit bit-flip code, the conventional error cor-
rection operations are (we will modify these operations to
improve the continuous operation performance in Sec. V C):

Cop = X1, X2, or X3. (16)

These operations are applied on the physical qubits when
the error syndrome (defined as the values of the stabilizer
generators Z12 and Z23, in this order) is equal to (−1,+1),
(−1,−1), or (+1,−1), respectively. To apply these error
correction operations in the continuous operation, we have to
estimate the error syndrome from the noisy readout signals
Ik (t ) given in Eq. (2). To do this, we filter the latter to obtain
smoother signals Ik (t ) that obey the following filter equation,

İk (t ) = −Ik (t )

τ
+ Ik (t )

τ
, (17)

where τ plays the role of an averaging time parameter. The
initial condition for Eq. (17) is discussed below. In practice,

FIG. 1. Example of filtered readout signals I1(t ) and I2(t ) when
a bit-flip error X2 occurs. This error is detected by the CQEC protocol
(see main text) at the moment when both filtered readout signals
have exited the “syndrome uncertainty region” below the lower error
threshold �1. The filtered readout signals Ik (t ) are discontinuous
since the CQEC protocol reset them to the value +1 at the moment
when the occurred error is diagnosed.

the filtered readout signals Ik (t ) can be obtained, e.g., by pass-
ing the bare readout signals Ik (t ) through a resistor-capacitor
circuit (RC low-pass filter [54]). Note that the SNRs of the
filtered readout signals can be increased by choosing a larger
value of τ . For instance, in the absence of bit-flip errors, the
filtered readout signals read as

Ik (t ) =
∫ t

0
dt ′ e− t−t ′

τ

τ
Ik (t ′) (18)

in the stationary regime (t � τ ) and their SNRs are equal to
2τ/τm. The averaging time parameter τ , however, should not
be chosen as arbitrarily large; there is an optimal value that is
obtained below.

To diagnose the error syndrome, we use a double thresh-
olding scheme that is applied to the filtered readout signals
I1(t ) and I2(t ). We introduce two error threshold parame-
ters �1 and �2 (�1 < �2) that define the interval [�1,�2],
which is referred to as the “syndrome uncertainty region;”
see Fig. 1. If at least one of the filtered readout signals lies
within this interval, we say that we are not certain about the
value of the error syndrome and do nothing. More precisely,
the double thresholding scheme works as follows. If I1(t ) and
I2(t ) are both larger than �2, the diagnosed error syndrome
is (+1,+1) and no error correction operation is applied, since
the system quantum state is most likely in the code space. If
I1(t ) < �1 and I2(t ) > �2, the diagnosed error syndrome is
(−1,+1) and the error correction operation to be applied is
Cop = X1, since the system quantum state is most likely in
the error subspace Q1. If I1(t ) and I2(t ) are both smaller
than �1, the diagnosed error syndrome is (−1,−1) and the
error correction operation to be applied is Cop = X2, since the
system quantum state is most likely in the error subspace Q2.
If I1(t ) > �2 and I2(t ) < �1, the diagnosed error syndrome
is (+1,−1) and the error correction operation to be applied is
Cop = X3, since the system quantum state is most likely in the
error subspace Q3.

The error correction operations Cop must now be applied
immediately after an error is detected. Note that this con-
trasts with the situation in operation of a quantum memory,
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where correction of errors can be delayed to the end of the
continuous operation of the code [41,42,44,47]. In the present
analysis, we shall assume that the error correction operations
are applied instantaneously on the physical qubits, changing
the three-qubit state from ρ(t ) to Copρ(t )Cop when the error
correction operation Cop is applied. This assumption is dis-
cussed in more detail in Sec. VI.

Finally, the filtered readout signals Ik (t ) are reset to the
initial condition +1 at the moment when an error is diagnosed
(see Fig. 1). Their subsequent values are dictated by the filter
equation (17) until the next error is diagnosed, and so on.

Figure 1 depicts an example showing how the filtered read-
out signals I1(t ) and I2(t ) are affected by the occurrence of a
bit-flip error X2 at the moment terr = 162�−1

m . Before this error
occurs, the system state is in the code space, so the filtered
readout signals fluctuate around 1. After the occurrence of
the error X2, the “signal part” of the filtered readout signals
becomes (for t � terr)

〈I1(t )〉 = 〈I2(t )〉 = −1 + 2 e−(t−terr )/τ . (19)

Equation (19) is the solution of Eq. (17) with Ik (t ) replaced
by −1, which is the “signal part” of the bare readout signal
Eq. (2) after the error X2 occurs. Even though both filtered
readout signals have the same signal part, we see in Fig. 1 that
these signals follow different paths due to noise. This indicates
that if we had used a single error threshold to detect er-
rors, the error X2 would have been most likely misdiagnosed,
because the filtered readout signals do not cross the given
error threshold at the same time; see Fig. 1. In contrast, our
double thresholding scheme performs well unless relatively
large fluctuations occur in the filtered readout signals. For
instance, in the example considered above, the error X2 would
be diagnosed as X1 if a relatively large positive fluctuation (of
magnitude of the order of �2 − �1) had made the filtered
readout signal I2(t ) be above the upper error threshold �2

at the moment when the other filtered readout signal I1(t )
is below the lower error threshold �1. We will show be-
low that the probability to misdiagnose errors in our double
thresholding scheme can be made exponentially small by both
increasing the length of the “syndrome uncertainty region”
and increasing the averaging time parameter τ ; see Fig. 3.
Generally speaking, detecting errors that affect several error
syndrome signals Ik (t ) at the same time are the most difficult
to detect under continuous monitoring (e.g., error X2 in the
three-qubit bit-flip code), and the performance of the latter
critically depends on suppressing misdiagnosis of such errors
[47].

IV. EFFECTIVE OPEN-SYSTEM MODEL FOR THE
LOGICAL QUBIT

A. Quantum master equation for the logical qubit

In this subsection, we develop an approximate evolution
equation for the mixed logical state �L(t ) that describes
the combined action of both bit-flip errors and the above
CQEC protocol, and the action of an applied time-dependent
Hamiltonian. We are particularly interested in the limit of
sufficiently small bit-flip error rates γq, where single bit flip
errors are the most probable, followed by two bit-flip errors,
and so on. In this regime, there are three different scenarios

that can give rise to logical errors during the time evolution—a
single misdiagnosed bit-flip error, spurious coherent evolution
in an error subspace prior to a correctly diagnosed bit-flip
error, and two bit-flip errors that are misdiagnosed as one. We
analyze each of these in turn below.

For the following analysis, it is convenient to introduce a
time step �t such that

tdet � �t, �t � γ −1
q , �t � h̄

|HL(t )| , and �t � top,

(20)

where tdet denotes the characteristic time to detect a bit-flip er-
ror by our CQEC protocol, and top is the operation time of the
continuous implementation. Because of the second inequality
of Eq. (20), we assume below that at most two bit-flip errors
occur within each time step �t . We shall eventually send �t to
zero, to obtain an effective evolution equation for the encoded
density matrix �L(t ).

We consider first the scenario where a single bit-flip error
that occurs in the time interval (t, t + �t ) is misdiagnosed
by the CQEC protocol. In this case, a wrong error correction
operation is applied to one of the physical qubits: This in-
correct operation transfers the system state to another error
subspace, instead of back to the code space. For instance,
if the actual error is X2 but the diagnosed error syndrome is
(−1,+1) instead of (−1,−1), the error correction operation
that will be applied is Cop = X1 instead of Cop = X2. This will
incorrectly transfer the system state from error subspace Q2

to error subspace Q3, resulting in a logical X error, since
X1X2 = X3 XL and XL is the logical X operator. The system
state will be returned to the code space by the next iteration of
the CQEC protocol if this iteration successfully diagnoses the
new error syndrome. We shall assume that the probability to
misdiagnose a bit-flip error is small enough that a series of two
consecutive misdiagnoses is unlikely, and the next iteration
does indeed return the system state to the code space. After
completion of the next (successful) iteration of the CQEC
protocol, the system state at the moment t + �t is equal to
XL ρ(t ) XL, which implies that the 2 × 2 logical density matrix
at that moment is

�scn-1
L (t + �t ) = σx �L(t ) σx. (21)

The probability of this scenario is given by

pscn-1 = �t
(
γ1 p(X1 )

misdiag + γ2 p(X2 )
misdiag + γ3 p(X3 )

misdiag

)
, (22)

where p
(Xq )
misdiag denotes the probability to misdiagnose the bit-

flip error Xq. We show in Appendix B that this probability
depends exponentially on the parameters of the CQEC pro-
tocol, as is illustrated in Fig. 3. This scenario results in a
contribution ��

(1)
L to the actual logical state �L(t + �t ) at the

moment t + �t [Eq. (37)], with

��
(1)
L = pscn-1�

scn-1
L (t + �t ). (23)

Note that in the argument leading to Eq. (21), we have disre-
garded the coherent evolution of the system state in the error
subspaces because this leads to correction terms of the order
of (tdet �0)2 � (�t�0)2. These can be neglected since we
shall take the limit �t → 0 below and thus only need to keep
terms up to first order in �t in Eq. (23).
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The second scenario corresponds to the case of a single bit-
flip error that is correctly diagnosed by the CQEC protocol.
The probability for this scenario is

p(q)
scn-2 = �tγq

(
1 − p

(Xq )
misdiag

)
. (24)

In contrast to the first scenario, logical errors are now due
only to spurious coherent evolution in the corresponding error
subspace during the time that it takes to diagnose and correct
the occurred error. Let us assume that the bit-flip error Xq

occurs at the instant t ′ ∈ [t, t + �t]. We shall denote the time
to detect such an error as t (q)

det , where the upper index q indi-
cates that in general the error detection time may depend on
the bit-flip error type, Xq = X1, X2, or X3. The system density
matrix at the moment t + �t is

ρscn-2(t + �t ) = γq

N

∫ t+�t−t (q)
det

t
Vq(t ′) ρ(t )V†

q (t ′) dt ′, (25)

where N = (�t − t (q)
det )γq is a normalization factor such that

Tr[ρscn-2(t + �t )] = 1. The integral in Eq. (25) evaluates the
average over the error instant t ′,

Vq(t ′) = U
(
t ′ + t (q)

det , t + �t
)

Xq U
(
t ′, t ′ + t (q)

det

)
Xq U (t, t ′),

(26)

and U (t1, t2) with t1 � t2 denotes the unitary evolution op-
erator associated to the system Hamiltonian (5). If we read
the right-hand side of Eq. (26) from right to left, the first Xq

operator accounts for the error that occurred and the second
Xq operator accounts for the application of the error correction
operation, which is Cop = Xq since the occurred error is cor-
rectly diagnosed. We now seek to approximate ρscn-2(t + �t )
to first order in �t . Because the integral in Eq. (25) is over a
time interval of duration approximately equal to �t , we may
write ρscn-2(t + �t ) ≈ Vq(t ) ρ(t )V†

q (t ), where the integrand
of Eq. (25) has been evaluated at t ′ = t . In addition, the oper-
ator Vq(t ) may be replaced by its zeroth-order approximation
in �t :

Vq(t ) ≈ eiH (t )t (q)
det Cop e−iH (t )t (q)

det Xq

= eiH (t )t (q)
det Xq e−iH (t )t (q)

det Xq

= eiH (t )t (q)
det e−iXqH (t )Xqt (q)

det . (27)

Note that the 8 × 8 matrices XqH (t )Xq and H (t ) exhibit a sim-
ilar block-diagonal matrix representation in the computational
basis, since both commute with the stabilizer generators. This
block-diagonal structure consists of 2 × 2 diagonal submatri-
ces for each subspace Q�. In particular, the 2 × 2 diagonal
submatrices of XqH (t )Xq and H (t ) corresponding to the code
space are given by the spurious Hamiltonian hspurious(t ) and
the logical Hamiltonian hL(t ) defined in Eqs. (11) and (12),
respectively. This implies that the 2 × 2 diagonal submatrix of
Vq(t ) that corresponds to the code space can be approximated
as

Vq(t ) = exp
[
it (q)

det hL(t )
]

exp
[−it (q)

det hspurious(t )
]
. (28)

Up to first order in �t , the logical state at the moment t + �t
is then given by

[�scn-2
L ]q(t + �t ) = Vq(t ) �L(t )V †

q (t ). (29)

Equation (28) provides an effective parametrization of the
effective action of the logical error operation Vq(t ) due to
spurious coherent evolution in an error subspace during de-
tection of a single bit-flip error, in terms of the error detection
time t (q)

det . We can estimate this time from the “signal part” of
the filtered readout signals Ik (t ), i.e., disregarding the noise.
In this noiseless approximation, the error detection time is
the same for all bit-flip errors (i.e., t (q)

det = tdet), so we may
consider a particular case. Let us consider the bit-flip error
X2. If we apply the CQEC protocol to the “signal part” of
the filtered readout signals, the error X2 will be diagnosed
when 〈Ik (terr + tdet )〉 = �1 for k = 1, 2. From this condition
and Eq. (19), we obtain the error detection time

t (q)
det = tdet = τ ln

(
2

1 + �1

)
, q = 1, 2, 3. (30)

More generally, the presence of noise in the filtered readout
signals will make the error detection times random. For sim-
plicity, and to obtain analytic estimates, we shall assume in
this work that they are deterministic and given by Eq. (30).

The contribution of this scenario to the logical state �L(t +
�t ) at the moment t + �t is [see Eq. (37)]

��
(2)
L =

∑
q=1,2,3

p(q)
scn-2

[
�scn-2

L

]
q(t + �t ). (31)

The third scenario is the case of two errors that occur
sufficiently closely in time that they are not individually diag-
nosed by the CQEC protocol; instead, the protocol diagnoses
a different (false) error. Now it is clear that if two consecutive
errors occur sufficiently far apart in time, both errors will be
correctly diagnosed. On the other hand, if these errors occur
sufficiently close in time, the CQEC protocol can fail, since
our protocol determines the error syndrome from the filtered
readout signals Ik (t ), which are slow and take some time
(proportional to the averaging time parameter τ ) to exit the
“syndrome uncertainty region,” as evident in Fig. 1. Let us
denote �tqq′ as the time window in which two consecutive
errors, first Xq and then Xq′ , are misdiagnosed as the false error
Xq′′ (q �= q′ �= q′′). Neglecting spurious coherent evolution in
the error subspaces, application of the wrong error correction
operation Cop = Xq′′ effectively induces a logical X operation
on the system state ρ(t ) since CopXq′Xq = Xq′′Xq′Xq = XL, and
then the logical density matrix changes from �L(t ) to

�scn-3
L (t + �t ) = σx �L(t ) σx (32)

at the moment t + �t [see also Eq. (21)]. The probability for
this scenario is given by

pscn-3 = 2(γ1γ2�t12 + γ2γ3�t23 + γ1γ3�t13)�t, (33)

where the time windows �t12, �t23, and �t13 can be easily
evaluated in the noiseless approximation, by an analogous
procedure to that above for t (q)

det and using Fig. 2. This yields

�t12 = �t23 = τ ln

[
2

1 + �1

]
and �t13 = τ ln

[
1 + �2

1 + �1

]
.

(34)

The factor of 2 in Eq. (33) is due to the fact that the time
window �tqq′ is the same as �tq′q, which is the corresponding
time window for the case where the error Xq′ occurs before the
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FIG. 2. Time windows �tqq′ for two consecutive bit-flip errors
Xq (first) and Xq′ (second) to be diagnosed as a single (false) error
Xq′′ , in the noiseless approximation. This is scenario 3 of the main
text. The first error (Xq) occurs at the moment t = 0. The solid lines
depict the “signal part” of the filtered readout signals I1(t ) (blue
lines) and I2(t ) (red lines). In panels (a) and (b), the window times
�t12 and �t23 are both equal to the time that the blue solid line [i.e.,
〈I1(t )〉, given in Eq. (19) of the main text] takes to cross the lower
error threshold �1. In panel (c), the window time �t13 is given by
the time that the blue solid line spends inside the “syndrome un-
certainty region.” Explicit formulas for the windows times �tqq′ are
given in Eq. (34) of the main text. If the second error occurs within
the time window t = �tqq′ , the depicted two-error combinations are
diagnosed in the noiseless approximation as Xq′′ = X3 [panel (a)], X1

[panel (b)], and X2 [panel (c)].

error Xq. The contribution of this scenario to the logical state
�L(t + �t ) at the moment t + �t is [see Eq. (37)]

��
(3)
L = pscn-3 �scn-3

L (t + �t ). (35)

Finally, if none of the above three scenarios occur, the
logical state at the moment t + �t is given by the time evolved
state under the logical Hamiltonian hL(t ) of Eq. (11) and is
equal to

�scn-0
L (t + �t ) = �L(t ) − i[hL(t ), �L(t )]�t, (36)

where we have disregarded terms of order (�t )2.
The logical state at the moment t + �t that takes into

account all of the above four scenarios is then given by

�L(t + �t )

=
(

1 − pscn-1 −
∑

q=1,2,3

p(q)
scn-2 − pscn-3

)
�scn-0

L (t + �t )

+ pscn-1 �scn-1
L (t + �t ) +

∑
q=1,2,3

{
p(q)

scn-2

[
�scn-2

L

]
q(t + �t )

}
+ pscn-3 �scn-3

L (t + �t ). (37)

Inserting Eqs. (21)–(22), (24), (29), (32)–(33), and (36) into
Eq. (37) and then taking the limit �t → 0, we obtain the
following effective evolution equation for the logical state
�L(t ):

�̇L = − i[hL(t ), �L] + �L [σx �L σx − �L]

+
∑

q=1,2,3

γq
(
1 − p

(Xq )
misdiag

)
[Vq �L V †

q − �L]. (38)

Here

�L = γ1 p(X1 )
misdiag + γ2 p(X2 )

misdiag + γ3 p(X3 )
misdiag

+ 2 (γ1γ2�t12 + γ2γ3�t23 + γ1γ3�t13) (39)

is now the logical X error rate for quantum memory operations
[44,46]. The initial condition for Eq. (38) reads as

�L(0) = |ψL(0)〉〈ψL(0)| =
[ |α2

L(0)| αL(0)β∗
L(0)

α∗
L(0)βL(0) |β2

L(0)|
]
.

(40)
Equation (38) is the main result of this subsection. To the

best of our knowledge, the last term at the right-hand side of
Eq. (38) has not been previously discussed in the context of
QEC for quantum simulation or quantum annealing. This term
quantifies the logical errors due to spurious coherent evolution
in the error subspaces.

We now estimate the probabilities p
(Xq )
misdiag that the CQEC

protocol misdiagnoses the bit-flip errors Xq. Note that the
bit-flip errors X1 and X3 are equivalent in the three-qubit bit
flip code. Thus, we expect that p(X1 )

misdiag = p(X3 )
misdiag, which is

numerically verified in Fig. 3. Figure 3 also shows that for the
range of values of interest of the measurement averaging time
parameter τ � 2τm (see Fig. 7), the probability to misdiag-
nose the X1 or X3 errors is much smaller than the probability
to misdiagnose the X2 error. Thus, we may not only assume
that p(X1 )

misdiag = p(X3 )
misdiag, but we can also neglect these terms in

Eqs. (38) and (39); i.e., we can set

p(X1 )
misdiag = p(X3 )

misdiag = 0. (41)
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FIG. 3. Probability p
(Xq )
misdiag that the CQEC protocol misdiagnoses

the bit-flip error Xq as function of the measurement averaging time
parameter τ . The error thresholds are fixed at �1 = −0.54 and �2 =
0.8. Symbols indicate numerical results and the solid line depicts the
analytical formula (42) of the main text with c = 1.607. The dashed
lines are guides to the eye.

In addition, the probability p(X2 )
misdiag to misdiagnose the error

X2 can be approximated as

p(X2 )
misdiag = c

e−(�2−�1 )2τ/2τm

(�2 − �1)
√

τ/τm
, (42)

where the coefficient c = 1.607 is obtained from the fit shown
in Fig. 3. The exponential dependence of the probability
p(X2 )

misdiag on the parameters of the CQEC protocol is derived
in Appendix B.

Using these estimates for p
(Xq )
misdiag, the logical X error rate

formula Eq. (39) can be rewritten in terms of all relevant
parameters as

�L = 1.607 γ2
e−(�2−�1 )2τ/2τm

(�2 − �1)
√

τ/τm
+ 2(γ1γ2 + γ2γ3)τ

× ln

[
2

1 + �1

]
+ 2γ1γ3τ ln

[
1 + �2

1 + �1

]
. (43)

Note that �L implicitly depends on the efficiency of the mea-
surement, η, via the explicit dependence on measurement time
τm = 1/(2�mη). In a given experimental setup, the parameters
τ,�1,�2 would constitute a minimal set of tunable parame-
ters.

Figure 4 shows the nonmonotonic dependence of �L on
the time-averaging parameter τ , for fixed values of the error
threshold parameters �1 = −0.54 and �2 = 0.8, and equal
bit-flip error rates γq = γ = 1.25 × 10−3�m. Note that in the
limit of relatively small τ , the logical X error rate increases
exponentially because the SNR of the filtered readout signals
decreases, leading to more frequent false diagnoses of X2

errors. In this limit, the first term of Eq. (43) is dominant.
In the opposite limit of relatively large τ , the logical X error
rate increases linearly in τ , due to misdiagnosis of two errors
that occur sufficiently close in time. We see that measurement
inefficiency η � 1 affects the logical error rate only for small
averaging times τ and has no effect at large τ . This reflects
the fact that while the misdiagnosis of single-qubit errors that
dominates �L at small τ depends on measurement efficiency

FIG. 4. Logical error rate �L as function of the measurement
averaging time parameter τ . The curves depict formula Eq. (43)
of the main text, evaluated for bit-flip error rates γq = γ = 1.25 ×
10−3�m (q = 1, 2, 3), error threshold parameters �1 = −0.54 and
�2 = 0.8, and quantum efficiencies η = 0.5 (dashed curve) and η =
1 (solid curve). �m denotes measurement strength from continuous
measurement.

via τm (measurement time parameter), the misdiagnosis of two
errors occurring close in time was evaluated in the noiseless
approximation and does not depend on η.

The numerical calculations presented at the end of this
subsection show that the effective open-system model for the
logical qubit [Eq. (38)] together with the estimates Eqs. (28),
(41)–(42), and (43) for Vq(t ) [logical error operation param-
eterized in terms of error-detection times t (q)

det , see Eq. (30)],

p
(Xq )
misdiag (probability to misdiagnose bit-flip error Xq), and �L

(logical X error rate), provides a good description for the true
evolution of the logical state �L(t ) that is encoded into the full
system state ρ(t ), which evolves according to Eq. (14).

B. Final logical state fidelity

The figure of merit that we aim to maximize under evolu-
tion due to a time-dependent Hamiltonian is the final fidelity
F between the target, Eq. (9), and the true, Eq. (15) logical
states, defined as

F = 〈ψL(top)|�L(top)|ψL(top)〉. (44)

Note that the target state ψL(top) is exactly equal to the ground
state of the problem Hamiltonian only in the adiabatic limit as
top → ∞.

Using the effective evolution equation (38) for the logical
state �L(t ), we can derive the following analytical expression
for the final logical state infidelity:

1 − F = �L

∫ top

0

(
1 − |〈ψL(t )|σx|ψL(t )〉|2)dt

+
∑

q=1,2,3

γq
(
1 − p(q)

mis

) ∫ top

0

(
1 − |〈ψL(t )|Vq|ψL(t )〉|2)dt,

(45)

which is expressed in terms of the coherent evolution of
the target logical state |ψL(t )〉. The first term on the right-
hand side of Eq. (45) is the usual term in quantum memory,
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i.e., �Ltop, generalized here to the case of a finite and
time-dependent logical Hamiltonian (11). Note that the time
integral accounts for the accumulated loss of fidelity due to
logical X errors on the time-evolving logical state. The second
term is due to the spurious coherent evolution in the error
subspaces. Note that this term is positive, i.e., contributes a
finite infidelity, because the operator Vq, given in Eq. (28), is
unitary. Equation (45) is the main result of this subsection.

To obtain this result in Eq. (45), we have applied the
jump/no-jump method in Eq. (38) to estimate �L(top) as fol-
lows:

�L(top) = [1 − �Ltop − γ̃tottop]|ψL(top)〉〈ψL(top)|

+ �L

∫ top

0
dt ′ UL(t ′, top) σx |ψL(t ′)〉〈ψL(t ′)| σx U †

L (t ′, top)

+
∑

q

γ̃q

∫ top

0
dt ′ UL(t ′, top)Vq |ψL(t ′)〉〈ψL(t ′)|V †

q U †
L (t ′, top),

(46)

where γ̃q = γq(1 − p(q)
mis), γ̃tot = γ̃1 + γ̃2 + γ̃3, and UL(t1, t2)

is the unitary evolution operator associated to the error-free
Schrödinger evolution equation (10). When the jump/no-
jump approach is applied to Eq. (38), we see that logical
errors come in two forms. First, the usual logical X errors that
change the logical wave function from |ψL(t )〉 to σx|ψL(t )〉
[second term in Eq. (46)]. These occur at the logical X er-
ror rate �L given in Eq. (43). Second, logical errors that
are characterized by the logical error operation Vq given in
Eq. (28) [third term in Eq. (46)]. This new type of logical
errors is specifically due to spurious coherent evolution in the
error subspaces. Such errors change the logical wave func-
tion from |ψL(t )〉 to Vq|ψL(t )〉 and occur at the rate γ̃q. In
addition, we also have the coherent no-jump evolution that
is described by the unitary evolution operator UL(t1, t2) [first
term in Eq. (46)]. Note that in Eq. (46) we have disregarded
cases where there are more than one logical error occurrences
during the continuous operation duration top. This approxima-
tion is valid in the limit of small bit-flip error rates γq that we
assume here.

V. OPTIMIZATION AND BENCHMARKING

A. Optimization of the CQEC protocol

In this subsection, we derive the optimal parameters (�opt
1 ,

�
opt
2 , and τ opt) of the CQEC protocol that maximize the final

logical state fidelity (44). The optimization will be specific
to a particular choice of Hamiltonian evolution, i.e., to the
choice of hL(t ), since the temporal dependence of |ψL(t )〉
is determined by this. We shall consider here both quantum
memory, hL(t ) = 0, and quantum annealing with the specific
choice of a linear schedule. In the latter case, the logical
Hamiltonian hL(t ) is given by Eq. (11) with the coefficients
a(t ) and b(t ) equal to

a(t ) = 1 − t

top
and b(t ) = t

top
. (47)

Following convention, we shall refer to the Hamiltonian com-
ponent multiplied by b(t ) as the problem Hamiltonian, i.e., the

final Hamiltonian at t = top. In the context of quantum anneal-
ing, we shall assume that the adiabatic limit holds, top�0 � 1,
so that we may approximate the target logical wave function
as the instantaneous ground state, which reads as

|ψL(t )〉 = cos

(
θ (t )

2

)
|0L〉 + sin

(
θ (t )

2

)
|1L〉, (48)

where θ (t ) = arctan (a(t )/b(t )).
Inserting Eq. (48) into Eq. (45), we obtain for the final

logical state infidelity

1 − F = �Ltop

2
+

∑
q=1,2,3

3π − 8

54

(
1 − p(q)

mis

)[
�0t (q)

det

]2
γqtop,

(49)

which is the cost function that we use in the optimization
procedure. We emphasize that the result (49) applies to the
special case of quantum annealing with a linear schedule, and
note also that we have included terms up to second order in
�0t (q)

det . The linear dependence of the infidelity Eq. (49) on the
operation time top is valid for small infidelities, less than 0.1
for the parameters used in this work. More generally, the final
infidelity 1 − F for arbitrary annealing schedule parameters
a(t ) and b(t ) can also be easily obtained, as long as these co-
efficients also satisfy the adiabatic condition |ȧ(t )|, |ḃ(t )| �
�0. This can be accomplished by writing the first integrand
of Eq. (45) as 1 − |〈ψL(t )|σx|ψL(t )〉|2 = cos2 (θ (t )) and the
second integrand as 1 − |〈ψL(t )|Vq|ψL(t )〉|2 = sin2 (θ (t ) −
θ̃ (t )) sin2 (�̃(t )t (q)

det ), where θ̃ (t ) = arctan (3a(t )/b(t )) and
�̃(t ) = �0

√
a2(t ) + b2(t )/9 is half the instantaneous energy

gap of the spurious Hamiltonian (12). To obtain a final nu-
merical value for the infidelity, the integrals of Eq. (45) would
have to be evaluated numerically for evolution under a specific
annealing Hamiltonian.

Since when �0 = 0 the system operates as a quantum
memory, we first present results for the logical error rate
before presenting results for quantum annealing (�0 �= 0). For
simplicity, we discuss here the case of equal bit-flip error
rates,

γ1 = γ2 = γ3 = γ . (50)

In quantum memory operation, the final logical state in-
fidelity 1 − F is given by the first term of Eq. (45) since the
second term exactly vanishes. Assuming that the initial logical
state is |ψL(0)〉 = |0L〉 or |1L〉, we find that 1 − F reduces
to �Ltop, because the target logical evolution is trivial in the
quantum memory case (|ψL(t )〉 is constant). In addition, we
may assume that the operation duration top is fixed. Then
minimization of the final infidelity in quantum memory is
equivalent to optimization of the logical X error rate �L in
Eq. (43).

Figure 5 depicts the optimized value of the logical X error
rate �

opt
L for quantum memory. We find that this logical error

rate scales approximately quadratically with the error rate γ :

�
opt
L ≈ 27.3208

(
γ�−1

m

)1.897
�m (η = 0.5),

≈ 15.7580
(
γ�−1

m

)1.904
�m (η = 1). (51)
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FIG. 5. Optimized logical X error rate �
opt
L for quantum memory

operation as a function of bit-flip error rate γ . Solid red and blue
lines depict �opt

L , obtained using our double threshold CQEC protocol
[Eq. (43)], and the dashed red and blue lines depict the logical
X error rate, �Wonham

L = 3γ 2τm ln(2/γ τm ), for the linear variant of
the optimal Wonham filter [44]. �m and τm = (2�mη)−1 denote the
measurement strength and “measurement time” from continuous
measurement, respectively. Red and blue lines depict results for
quantum efficiencies η = 0.5 and 1, respectively. The dotted line
depicts the quadratic scaling �L ∼ γ 2.

The numerical factors and exponents in the above equation
are obtained from fitting for γ ∈ [10−6 �m, 10−4 �m]. The
approximate quadratic scaling of �

opt
L with γ indicates that

the double threshold CQEC protocol is both effective and
accurate in diagnosing single bit-flip errors. Figure 5 also
shows the logical X error rate for the linear variant of the
optimal Wonham filter, �Wonham

L = 3γ 2τm ln(2/γ τm ), that was
obtained in Ref. [44]. We point out that our optimized logical
error rate �

opt
L is very close to that of the linear variant of the

optimal Wonham filter.
In addition, we find that the discrete and continuous opera-

tions can exhibit similar performance if the cycle time �tcycle

from the discrete operation is related to the strength �m of the
continuous measurements as follows:

�tcycle ≈ 9.1069γ −1
(
γ�−1

m

)0.897
(η = 0.5),

≈ 5.2527γ −1
(
γ�−1

m

)0.904
(η = 1). (52)

The above results are obtained from the relation �
opt
L = �disc

L ,
where �disc

L = 3γ 2�tcycle is the logical X error rate for the
discrete operation.

We now discuss the results of optimizing the double thresh-
old error detection parameters in the specific case of quantum
annealing. To quantify the effectiveness of the CQEC protocol
in correcting logical errors, we introduce here the ratio of the
infidelity for an unencoded calculation, to the infidelity for an
encoded calculation using the optimized double thresholding
parameters. This ratio, R(γ ,�0), is defined for a given error
rate and annealing Hamiltonian, which we shall denote here
only by its strength �0. Specifically,

R(γ ,�0) = 1 − Funenc

1 − Fopt
, (53)

FIG. 6. Reduction factor R(γ , �0) of the final logical state in-
fidelity due to continuous QEC, Eq. (53), for operation time top =
500�m, shown as a function of the bit-flip error rate γ for a range
of strengths �0 of the annealing Hamiltonian. Lines present ana-
lytic estimates, symbols depict numerical results averaged over an
ensemble of 60 000–80 000 realizations of the conditional quantum
master equation Eq. (14) together with our CQEC protocol. Black
lines depict results for the quantum memory (QM) limit, �0 → 0;
see Eq. (11) of the main text. The other lines depict the results for
quantum annealing (QA) for �0 = �m/90 (green lines), �m/30 (blue
lines), 0.1�m (purple lines), and 0.3�m (red lines). The plateau values
Rplateau are evident on the left-hand side of the plot. Solid and dashed
lines depict the results for quantum efficiencies η = 1 and 0.5, re-
spectively. �m denotes the strength of the continuous measurement.

where Fopt is the value of the final logical state fidelity
Eq. (49), optimized with respect to τ,�1,�2 (see below), and

Funenc = 〈ψL(top)|ρunenc(top)|ψL(top)〉 (54)

is the fidelity between the final target logical state |ψL(top)〉
and the final state ρunenc(top) of an unencoded qubit subject
to bit-flip errors with rate γ and coherent evolution due to a
Hamiltonian hL(t ). We refer to R(γ ,�0) as the “reduction fac-
tor” of the final logical state infidelity, since by construction
it shows by how much the infidelity is reduced by encoding
together with optimization of the error detection.

It is easy to see, using the jump/no-jump method, that the
unencoded final infidelity 1 − Funenc can be estimated by the
first term of Eq. (45) with �L replaced by γ . For the quantum
annealing problem with a linear schedule, we obtain

1 − Funenc = γ top

2
, (55)

which is linear in the operation time top for sufficiently small
physical error rate γ .

Figure 6 shows the dependence of the reduction factor
(53) on the physical qubit error rate γ . We see that R(γ ,�0)
increases as γ decreases, saturating at the value Rplateau in the
limit of small bit-flip error rate γ . This plateau value increases
with decreasing �0 as follows:

Rplateau ≈ 0.7174[
�0�−1

m ln
(
1.694 �0�−1

m

)]2 (η = 0.5)

≈ 2.512[
�0�−1

m ln
(
1.289 �0�−1

m

)]2 (η = 1). (56)
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FIG. 7. Optimal measurement averaging time parameter τopt as
a function of bit-flip error rate γ . Black solid and dashed lines
depict the results for quantum memory (QM), where the frequency
parameter �0 vanishes; see Eq. (11) of the main text. The other lines
depict the results for quantum annealing (QA) with �0 = �m/90
(green lines), �m/30 (blue lines), 0.1�m (purple lines), and 0.3�m

(red lines). Solid and dashed lines depict the results for quantum
efficiencies η = 1 and 0.5, respectively. �m denotes the strength of
the continuous measurement.

The numerical factors and exponents of Eq. (56) are obtained
from fitting for �0 = �m/2430, �m/810, �m/270, �m/90,
�m/30, and �m/10. Note that in the quantum annealing op-
eration considered here, the operation duration top and the
frequency parameter �0 have to satisfy the adiabatic condi-
tion, �0top � 1, which allowed us to use the instantaneous
ground state (48) as the target logical state. Assuming that
this condition is satisfied, the reduction factor (53) of the final
logical state infidelity due to CQEC is independent of top.

Finally, we summarize the optimized parameters
τopt,�

opt
1 ,�

opt
2 employed in Fig. 6. Figure 7 depicts the

results for the optimal measurement averaging time τopt that
minimizes the logical X error rate �L in the case of quantum
memory (black lines) and the final logical state infidelity
(49) in the case of quantum annealing for �0 = �m/90
(green lines), �m/30 (blue lines), 0.1�m (purple lines), and
0.3�m (red lines). We see that the optimal averaging time
parameter τopt generally increases when the measurement
quantum efficiency η decreases, due to the additional noise
at the output of the readout signals; see Eq. (2) [52]. In the
particular case of quantum memory (�0 = 0), we obtain

τ
QM
opt ≈ − 1.027 �−1

m ln
(
9.6955 γ�−1

m

)
(η = 0.5),

≈ − 0.5192 �−1
m ln

(
5.2891 γ�−1

m

)
(η = 1). (57)

The above results are obtained from fitting τ
QM
opt for the range

of error rates indicated in Fig. 7. In the case of quantum
annealing, for a fixed and finite �0, the optimal measurement
averaging time τopt tends to increase as the error rate γ is
decreased until it reaches a plateau level τ

plateau
opt that depends

on �0 as follows:

τ
plateau
opt ≈ − 1.759�−1

m ln
(
1.3880 �0�

−1
m

)
(η = 0.5),

≈ − 0.9079�−1
m ln

(
1.2408 �0�

−1
m

)
(η = 1). (58)

The relations (58) are obtained from fitting for �0 = �m/810,
�m/270, �m/90, �m/30, and �m/10.

The optimal values for the error threshold parameters (�opt
1

and �
opt
2 ) are found to exhibit only a weak dependence on

γ and �0 parameters. For practical purposes, these are given
here for both the quantum memory and quantum annealing
cases by

�
opt
1 ≈ −0.54 and �

opt
2 = 0.8. (59)

We point out that in our optimization procedure we have
imposed two constraints: −1 � �1 � 0 and 0 � �2 � 0.8.
The reason for the constraint on �2 is that our analytical
estimates for the logical error rate �L, see Eq. (43), and the
error detection time tdet, see Eq. (30), are not accurate when
�1 approaches 1. The optimization finds that the optimal
position of the upper error threshold should be as close to 1
as it is allowed. If we instead use the constraint 0 � �2 � 1
(with the same previous constraint on �1), the optimization
finds that �

opt
1 ≈ −0.4 and �

opt
2 = 1.0. This indicates that

the optimal position of the lower error threshold is robustly
located around −0.5.

B. Overall performance of the double threshold CQEC protocol

To quantify the effectiveness of the double threshold
CQEC protocol in correcting logical errors during the entire
continuous operation, we introduce the time-dependent reduc-
tion factor Rt of the logical state infidelity. This is defined
analogously to Eq. (53),

Rt = 1 − Funenc.(t )

1 − Ft
, (60)

where Funenc.(t ) is now the time-dependent unencoded fi-
delity, defined as in Eq. (54) with the operation time top

replaced by t ∈ [0, top], and Ft is the time-dependent logical
state fidelity

Ft = 〈ψL(t )|�L(t )|ψL(t )〉. (61)

Figure 8 shows the time dependence of the logical state
infidelity, 1 − Ft = 1 − 〈ψL(t )|�L(t )|ψL(t )〉, obtained using
two approaches: “full numerics” and “effective model.” In
the first approach, the logical state �L(t ) is obtained by pro-
jecting out the code space components from the full system
density matrix ρ(t ), where the latter evolves according to
the evolution equation (14), together with the action of the
instantaneous error correction operations Cop [Eq. (16)] that
are applied to the physical qubits whenever an error is diag-
nosed by the double threshold CQEC protocol. The ensemble
average of Eq. (15) is generated over an ensemble of 20 000
realizations, using the techniques described in Appendix A.
The results of this approach are depicted in Fig. 8 by the
solid lines, for Hamiltonian strength parameters �0 = 0.1�m,
0.2�m, and 0.3�m. The second approach is that of our effec-
tive model derived in the previous section. Here the logical
state infidelity is obtained from the numerical solution of the
effective open-system model given by Eq. (38). The results of
this approach are depicted in Fig. 8 by the dotted lines. The
good agreement between the solid and dotted lines in Fig. 8
demonstrates that the effective open-system model accurately
describes the evolution of the logical qubit during the entire

042406-11



J. ATALAYA et al. PHYSICAL REVIEW A 103, 042406 (2021)

FIG. 8. Accuracy of the effective evolution equation (38) for the
logical state infidelity during quantum annealing. The frequency pa-
rameter �0 determines the strength of the logical Hamiltonian (11),
where the coefficients a(t ) and b(t ) correspond to quantum annealing
with linear schedule; see Eq. (47). Solid lines: full numerical calcula-
tions averaged over an ensemble of 20 000 realizations. Dotted lines:
effective model of Eq. (38). Dashed line: unencoded qubit infidelity
[see Eq. (54)] for �0 = 0.1�m. Parameters: �1 = −0.54, �2 = 0.8,
τ = 2.5�−1

m , η = 1, top = 500�−1
m , and γ = 1.25 × 10−3�m.

continuous operation. This validates our analysis above for
the optimized performance of the double threshold CQEC
protocol. The inset of Fig. 8 shows the reduction factor Rt

for the logical state infidelity during the entire duration of
the continuous operation for �0 = 0.1�m. Here also, good
agreement is found between the full numerics and the ef-
fective model approaches. Although in this specific example
the reduction factors of the logical state infidelity are modest
(varying from 5 to 15), larger reduction factors can be readily
achieved with stronger continuous measurements. This can be
seen explicitly in Fig. 6, where the increase in R is evident for
�m larger than 10�0.

We now discuss how to generalize the effective open-
system model for one logical qubit, Eq. (38), to the general
case of multiple logical qubits. In this general case, we again
have logical errors that come in two forms: logical X errors
and logical errors that are characterized by a logical error
operation V (l )

q , where q now labels the three physical qubits
that encode the lth logical qubit. The logical error opera-
tions V (l )

q are again given by Eq. (28), where hL(t ) (logical
Hamiltonian) and hspurious(t ) (spurious Hamiltonian) are now
specified respectively by the code space diagonal submatrices
of the system Hamiltonian H (t ) and XqH (t )Xq. Logical X
errors acting on the lth logical qubit occur at a rate �

(l )
L that is

also given by Eq. (43). Note that the set of parameters of the
double threshold CQEC protocol (τ , �1, and �2) can differ
for different logical qubits, so �

(l )
L may not be the same for

all logical qubits. The logical errors that are characterized by
V (l )

q occur at the rate γ̃q = γq(1 − p
(Xq )
misdiag) [Eq. (38)]. This

is approximately equal to the bit-flip error rate γq of the qth

qubit, since the probability p
(Xq )
misdiag to misdiagnose the error Xq

is typically much smaller than one (see Fig. 3). As an example,
we consider two logical qubits encoded by the physical qubits
q = 1, 2, 3 (logical qubit with label l = 1) and q = 4, 5, 6
(logical qubit with label l = 2). Consider the two-qubit logical

FIG. 9. Logical state infidelity for two logical qubits. Parameters:
γ = 1.25 × 10−3�m (error rate of all qubits), �0 = 0.1�m [Hamilto-
nian strength, see Eq. (62)], �1 = −0.54 and �2 = 0.8, τ = 2.1�−1

m ,
η = 1, and �m, which denotes the strength of continuous measure-
ment. Blue dotted line: effective model of Eq. (63). Red solid line:
full numerical calculations averaged over an ensemble of 5 000
realizations (see text).

Hamiltonian

h̃L(t ) = − �0
[
a(t )

(
σ (1)

x + σ (2)
x

)
+ b(t )

(
σ (1)

z + σ (2)
z + σ (1)

z σ (2)
z

)]
, (62)

where σ (l )
x and σ (l )

z are the Pauli x and z operators corre-
sponding to the lth logical qubit (l = 1, 2), and the quantum
annealing coefficients a(t ) and b(t ) are given in this example
by Eq. (47). We will assume that the initial condition for
the target logical state evolution is |ψL(0)〉 = (|0L〉 + |1L〉) ⊗
(|0L〉 + |1L〉)/2. For this example of two logical qubits, the
effective open-system model reads as

�̇L = −i[h̃L(t ), �L] +
∑
l=1,2

�
(l )
L

[
σ (l )

x �L σ (l )
x − �L

]

+
∑

q=1,2,3

γq
[
V (1)

q �LV (1)
q

† − �L
]

+
∑

q=4,5,6

γq
[
V (2)

q �LV (2)
q

† − �L
]
, (63)

where V (1)
q (for q = 1, 2, 3) is obtained from Eq. (28) with

hL(t ) replaced by h̃L(t ) and hspurious(t ) now given by Eq. (62)
with σ (1)

z replaced by σ (1)
z /3. Similarly, V (2)

q (for q = 4, 5, 6) is
obtained from Eq. (28) with hL(t ) also replaced by h̃L(t ) and
hspurious(t ) given by Eq. (62) with σ (2)

z replaced by σ (2)
z /3. Fig-

ure 9 shows that the logical state infidelity obtained from the
effective open-system model for two logical qubits [Eq. (63),
dotted blue line] agrees very well with the corresponding
infidelity obtained from the full numerical calculations (solid
red line). This indicates that the effective model can be used
to accurately estimate and optimize the performance of our
CQEC protocol in order to protect the coherent evolution of
several logical qubits. Most importantly, both effective model
and full numerical calculations show that the CQEC protocol
provides a significant reduction in the final state infidelity by
a factor of ≈ 14 relative to the value obtained without error
correction. For the two-logical qubit Hamiltonian considered
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here, Eq. (62), this reduction is similar to that obtained for
the corresponding single logical qubit in Fig. 8. However, in
general, different values of R(γ ,�0) may be found, since the
reduction also depends on the form of the coupling between
the logical qubits. Thus, if the coupling term is changed, the
logical state infidelity can change since both h̃L(t ) and the
V (i)

q terms in Eq. (63) are dependent on this coupling [see
Eq. (28)]. For example, if the sign of the σ (1)

z σ (2)
z term in

Eq. (62) is flipped, then the final time reduction factor R is
close to 6 instead of 14.

C. Modified logical error operations

Our analysis of logical errors due to spurious coherent evo-
lution in the error subspaces during error diagnosis (scenario
2 in Sec. IV A) employed the conventional error correction
operators of the three-qubit bit flip code as the correction op-
erators, i.e., Cop = Xq with Xq = X1, X2, or X3 [see Eq. (26)].
It is possible to further increase the reduction factors R of the
final logical state infidelity by using the following modified
error correction operations:

C̃op(t ) = exp
(−it (q)

det H (t )
)

exp
(
it (q)

det Xq H (t ) Xq
)
Xq, (64)

where t is the time moment when the error Xq is detected, and
t (q)
det is the time that it takes to diagnose such error. To analyze

the performance of the modified error correction operations
C̃op(t ), we can use the effective evolution equation (38) for the
logical state without the term describing the logical errors due
to spurious evolution in the error subspaces, i.e., without the
last term at the right-hand side of Eq. (38). This can be shown
by carrying out the analysis of Sec. IV A with error correction
operations given by Eq. (64). We emphasize that spurious
evolution is not fully compensated by using the modified error
correction operations in an experimental setup because the
error-detection times t (q)

det are random.
From the solution of Eq. (38) without the last term at its

right-hand side, we have estimated the reduction factor R for
the final logical state infidelity that corresponds to our CQEC
operation with error correction operations given by Eq. (64).
The blue line in Fig. 10 shows our results for this situation and
for a bit-flip error rate γ = 1.25 × 10−4�m. By comparing the
blue and the purple lines in Fig. 10, we see that, by using
the modified error correction operations, R increases by a
factor of �3.3 with respect to the case of CQEC with conven-
tional error correction operations, Cop = X1, X2, or X3. This
improvement factor in R depends on the physical error rate
γ ; for instance, for γ = 1.25 × 10−3 �m we obtain that R is
increased by a smaller factor �1.7 by using the modified error
correction operations. We have also calculated the reduction
factor R from (computationally expensive) full quantum tra-
jectory simulations of Eq. (14) with the double-thresholding
error detection protocol and error correction operations given
by Eq. (64), where t (q)

det is given by Eq. (30). Our results show
that the reduction factors indicated by the blue line in Fig. 10
are somewhat larger than those from full trajectory simula-
tions by �15%, for operation times top in the range 100 �−1

m
to 1000 �−1

m , which is the region where the reduction factor is
roughly independent of the operation time; see Fig. 10.

FIG. 10. Reduction factor R of the final logical state infidelity as
a function of the operation time top for single logical qubit annealing
under CQEC. Blue, orange, and purple lines depict the reduction
factors corresponding to the cases where the error correction oper-
ations are given by C̃op(t ) [Eq. (64)], C̃approx

op (t ) [Eq. (65)], and Cop =
Xq, respectively. Parameters: γ = 1.25 × 10−4�m, �0 = 0.1�m, τ =
2.5�−1

m , �1 = −0.54, �2 = 0.8, and η = 1.

The modified error correction operations C̃op(t ), Eq. (64),
may be challenging to implement, so we have also analyzed
the performance of the following error correction operations
that can be regarded as an approximate version of C̃op(t ):

C̃approx
op (t ) = exp

(
it (q)

det

[
Xq H (t ) Xq − H (t )

])
Xq. (65)

We note that the exponent in Eq. (65) is 2it (q)
det �0b(t )Zq/3

for the Hamiltonian given in Eq. (5). If we carry out the
analysis of Sec. IV A with error correction operations given
by Eq. (65), we arrive to an effective evolution equation for
the logical state that is similar to Eq. (38) with the operator
Vq(t ) replaced by

Ṽ approx
q (t ) = exp

(
it (q)

det hL(t )
)

× exp
(
it (q)

det [hspurious(t ) − hL(t )]
)

× exp
(−it (q)

det hspurious(t )
)
. (66)

From this effective evolution equation for the logical state, we
have estimated the performance of our CQEC operation with
error correction operations given by Eq. (65). The reduction
factors in this case are about 80% of those obtained with
the error correction operations of Eq. (64) (see orange and
blue lines in Fig. 10, respectively), which is still a significant
improvement over using the Cq operators alone.

The main advantage of using C̃approx
op (t ) as the error correc-

tion operations rather than C̃op(t ) is, of course, that the former
are simpler to implement. Clearly, implementing Eq. (64)
requires the ability to simulate evolution under the original
Hamiltonian H (t ) which was assumed to be hard. In contrast,
for the Ising-type Hamiltonians used in quantum annealing,
the approximation in Eq. (65) gives simple forms such as ZL or
XL, or generalizations of this to commuting logical operators
that can be efficiently implemented.

This simplification also works for full quantum error cor-
recting codes that can correct both bit-flip and phase-flip
errors, such as the [[9,1,3]] Bacon-Shor code [47]. Note
that the simplification is obtained when the residual terms
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described by the exponent of Eq. (65); i.e., the terms in
EH (t )E − H (t ), with E being the error operator, commute
with each other. For the [[9,1,3]] Bacon-Shor code [47], the
1-logical qubit operators are XL = X1X4X7 and ZL = Z1Z2Z3,
so bit-flip errors and phase-flip errors will anticommute with
ZL and XL, respectively. In quantum annealing problems, the
Hamiltonian typically has the form H = A(t ) + B(t ) in which
A(t ) includes only XL terms of the logical qubits, and B(t )
describes the Ising Hamiltonian, which is dependent only on
ZL terms of the logical qubits [see Eqs. (11) and (62)]. Then,
in the case of bit-flip or phase-flip errors, the exponent op-
erator EH (t )E − H will include either terms from A(t ) only,
or terms from B(t ) only and these residual terms will then
commute with each other, allowing efficient implementation.
The choice of which residual operators are implemented at
any given time will be determined by the error diagnosis; i.e.,
the estimation of which error operator E was involved in the
detected error.

VI. DISCUSSION AND CONCLUSIONS

We have developed a continuous quantum error correction
protocol for operation under both quantum memory and evo-
lution under a time-dependent Hamiltonian. We illustrated the
approach with a detailed analysis of the continuous operation
performance of the three-qubit bit flip code, which is designed
to preserve the coherent evolution of the logical qubits against
decoherence from bit-flip errors. Error detection is carried
out using a relatively simple and nearly optimal protocol that
consists of filtering (time-averaging) the noisy bare readout
signals and using a double thresholding scheme to diagnose
the error syndrome in real time. In addition, immediately
after diagnosing an error, discrete (i.e., instantaneous) error
correction operations are applied to the physical qubits, as
in the conventional code operation. We have shown that this
combination of continuous detection of errors in real time with
discrete correction of errors is very effective and yields, e.g.,
in the case of quantum memory operation, a logical X error
rate that exhibits a nearly quadratic scaling on the physical
qubit error rate and has a magnitude that is slightly larger than
the logical X error rate of the linear variant of the optimal
Wonham filter [44]. The advantage of our double threshold
CQEC protocol is that it can be simpler to implement.

Spurious coherent evolution of the system state in the error
subspaces [51], due to a (time-dependent) encoded Hamil-
tonian, leads to a new type of logical errors, for which we
have found the corresponding effective Kraus logical error
operators, Vq(t ), that act on the instantaneous logical state.
The Kraus logical error operator Vq(t ) is parametrized by the
time t (q)

det that the CQEC protocol takes to detect the error Xq;
see Eq. (28). The time t (q)

det should be as small as possible in
order to minimize the detrimental effect of logical errors due
to spurious evolution on the performance of the double thresh-
old CQEC protocol. For this protocol, t (q)

det is estimated to be
proportional to the averaging time parameter τ [Eq. (30)],
which, however, cannot be arbitrarily small without degrading
the performance of the CQEC protocol to correctly diagnose
single bit-flip errors X1, X2, or X3.

We have developed an effective open-system model for
the logical qubit state [see Eq. (38)] that accounts for the
two types of logical errors that are relevant for, e.g., quantum
simulation and quantum annealing applications: logical errors
due to spurious coherent evolution in the error subspaces and
the usual logical X errors of quantum memory operation. This
effective model is very useful because it allows us to readily
estimate and optimize the performance of the double threshold
CQEC protocol without performing computationally expen-
sive numerical calculations on the full encoding qubit system
(full numerics). We have shown that the effective model accu-
rately describes the actual logical state during the continuous
operation; see Fig. 8. In addition, we have discussed how
to generalize the effective model for multiple logical qubits,
where we have again found excellent agreement with the more
cumbersome and computationally expensive full numerics ap-
proach; see Fig. 9.

Using the effective open-system model for one logical
qubit, we have analyzed the performance of the double thresh-
old CQEC protocol to preserve the coherent evolution of the
logical qubit due to a quantum-annealing type Hamiltonian
with a linear schedule. We have introduced the reduction
factor R of the final logical state infidelity, see Eq. (53), as
a measure of the performance of the CQEC protocol. The
performance depends on the relative magnitudes of three
problem-specific parameters; namely, the bit-flip error rate, γ ,
the strength of the logical Hamiltonian, �0, and the strength
of the continuous measurements of the code stabilizer gen-
erators, characterized by the measurement strength parameter
�m.

For a given magnitude of the error rate γ , the reduction
factor R increases as the magnitude of �0 decreases, which
our analysis shows is due to the fact that a reduction in �0

causes the contribution of spurious coherent evolution to logi-
cal errors to decrease. In contrast, for a given ratio �0/�m, the
reduction factor R increases as we decrease the physical qubit
error rate γ , until R reaches a plateau level Rplateau. This reduc-
tion factor is the analog of the reduction of error probability
obtained with discrete operation of quantum error correcting
codes, which becomes increasingly effective as the physical
qubit error rate decreases [55]. The plateau level depends on
the relative magnitude of the logical Hamiltonian strength
�0 and the strength of continuous measurements �m, as is
evident in Fig. 6. For instance, we obtain Rplateau ≈ 37, 184,
or 1002 for measurement strengths �m = 10�0, 30�0, or
90�0, respectively, assuming that continuous measurements
are performed by ideal detectors (η = 1). These reduction
factors become Rplateau ≈ 15, 66, or 340, respectively, if the
measurement efficiency is η = 0.5 (nonideal detectors).

Overall, our results reveal that the region of optimal per-
formance is defined by the following hierarchy of timescales:

10

�m
� �−1

0 � top. (67)

For example, for measurement rate �m = (20 ns)−1 ≈ 2π ×
8 MHz, effective correction of bit-flip errors can be achieved
for annealing Hamiltonians of strength �0 = 2π × 1.6 MHz
and operation time top � γ −1, with bit-flip error rates γ =
(10 μs)−1 ≈ 2π × 16 kHz. Such decoherence rates are the
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same order of magnitude as thermal relaxation rates of quan-
tum annealers operating at temperatures of 8–20 mK [56–58].
In this case, the reduction factors R are approximately equal to
10 and 20 (see purple line in Fig. 6) for measurement quantum
efficiencies η = 0.5 and 1, respectively.

It is useful to consider here the feasibility of parity
measurements on these timescales. Parity measurement with
superconducting qubits [59] can be realized by dispersively
coupling two qubits with a single resonator (cavity) such that
their interaction Hamiltonian is Hint = χ (Z1 + Z2)n̂, where χ

is the dispersive coupling parameter and n̂ is the intracavity
photon number. In this setup, a superposition of odd-parity
states |01〉 and |10〉 does not decohere due to measurement,
because they do not shift the cavity resonance frequency. In
contrast, a superposition of even-parity states |00〉 and |11〉
exhibits decoherence due to measurement at a rate that is
proportional to (κ/χ )2 when χ � κ . In this situation, the
odd-parity states show an identical high response and the
even-parity states an identical low response to the cavity drive.
To use this setup for parity measurement, it is required that
χ � κ and the cavity is driven at a frequency equal to the
average of the cavity resonance frequencies corresponding
to the four two-qubit states: |c, d〉 with c, d = {0, 1} [30].
The measurement rate is then �m ≈ κ n̄01/2, where n̄01 is the
average number of intracavity photons when the two-qubit
state is |01〉. This measurement rate dictates the exponential
decay of the off-diagonal matrix elements of the two-qubit
density matrix connecting states of even and odd parities; i.e.,
〈ρ00,01(t )〉 ∼ e−�mt . Now, assuming realistic parameter values
of κ/2π = 3 MHz and n̄01 = 5 yields �m ≈ (21.2 ns)−1. For
measurement efficiency η = 0.5 and the above-mentioned pa-
rameters γ = (10 μs)−1,�0 = 2π × 1.6 MHz, Eq. (49) then
predicts a value τopt ≈ 2.439/�m for the optimal filtering time,
which results in an error detection time of t (q)

det ≈ 76 ns using
Eq. (30). We note that the typical operation times for a single-
qubit gate with current technology are 10–20 ns [60], which is
shorter than the detection time, making the assumption of an
instantaneous or near-instantaneous correction plausible.

The CQEC approach developed in this work is applicable
to a wide range of analog quantum simulations, allowing the
encoded logical quantum states to be efficiently corrected as
they evolve under a general time-varying Hamiltonian and
in the presence of environmental decoherence. The reduc-
tion factor Rt measures the overall effectiveness and success
of the CQEC strategy under a given Hamiltonian evolution,
while the quadratic scaling of the logical error rate �L with
physical qubit error rate γ guarantees that the strategy is
correcting single physical qubit errors. As in discrete quantum
error correction, this active correction of errors for greater
fidelity of quantum simulation comes with an overhead of
additional qubits for the logical encoding. However, unlike
discrete protocols, we do not require additional ancilla qubits
and entangling operations to transfer the logical state informa-
tion for measurement.

The reduction factor expresses the decrease in error prob-
ability due to quantum error correction. This is the metric
of success that is used for analysis of performance of error
correcting codes in quantum computation, and can be also
be used for quantum simulations. The cost of CQEC will

depend on the specific application. Since quantum annealing
is a heuristic analog approach that is not guaranteed to find
the global minimum of the final Hamiltonian in a single run
and instead finds it with a less than unit success probability
ps, it is conventional to measure the cost of quantum anneal-
ing on a specific device by measuring the time to achieve a
desired success probability at least once during multiple runs,
defined as the time to solution (TTS), often also taking the
parallelization possible on a given device into account [61].
This TTS metric, which is applied to both algorithmic and
error mitigation protocols, reflects a tradeoff between a high
single-run success probability with a long operation time, and
a low single-run success probability with a short operation
time [62]. It is generally defined for quantum annealing as

TTS(top) = topRs(top)
N

Nmax
(68)

with

Rs(top) = log(1 − pd )

log[1 − ps(top)]
. (69)

This refers just to the pure annealing time and not to the wall-
clock time that also contains the setup, cooling, and readout
times on a real device. In Eq. (69), pd is the desired success
probability to get the solution at least once, ps(top) is the
success probability of a single run, N is the required number of
qubits in a single run, and Nmax is the total available number of
qubits in the device. Rs is the number of total runs needed to
get the solution at least once with desired probability pd and
the factor N/Nmax takes into account the possible reduction
by parallelization of runs. A separate analysis applies to the
time for readout and state preparation. Comparing the TTS
for our CQEC protocol with a classical protection strategy
utilizing parallelization alone shows that CQEC provides a
smaller TTS for the quantum annealing dynamics than does
the classical strategy. Detailed results and analysis are pre-
sented in Appendix C. This improvement over the classical
strategy is noteworthy since at small encodings such as the
three-qubit code employed here, proposals for suppression of
errors during quantum annealing using stabilizer encodings
with penalty Hamiltonians have shown that these perform
worse than the classical parallelization scheme [63].

Overall, the high level of reduction of infidelity achieved
by this CQEC for a small three-qubit code requiring overhead
of just two additional qubits in both quantum memory and
quantum simulation under a time-evolving Hamiltonian is
excellent. The reduction in time to solution relative to classical
parallelization for quantum annealing shows the benefits of
this in application to analog quantum simulations. In prin-
ciple, one can expect even better performance with larger
encodings. Indeed, the continuous time quantum error correc-
tion protocol presented in this work can be readily applied
to any subspace stabilizer QEC code, such as the three-qubit
repetition code studied here, and can also be extended to sub-
system stabilizer codes [47]. In practice, the limitations will
be achieving continuous measurement of multiqubit stabilizer
operators. For larger systems, subsystem codes [64] such
as the Bacon-Shor codes [65,66] or generalizations of this
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[67,68] would be preferred since these require measurement
of only two-body operators.

An important direction for further work is to apply the
CQEC protocol to other error models. Clearly arbitrary
single-qubit errors can be corrected using this approach
with larger stabilizer codes. Of particular interest for quan-
tum annealing is correction of thermal errors. The bit-flip
code alone is not effective here, since it cannot correct X
and Y errors at the same time. However, active continuous
correction of thermal errors can be achieved by implement-
ing the present CQEC protocol in a adiabatic frame and
combining this with error suppression techniques in which
an energy penalty consisting of the negative of the bit-
flip code stabilizer operators is added to the time-dependent
Hamiltonian [69].

More generally, one would like to develop CQEC protocols
for architecture-specific errors, such as biased noise. In the
future, developing error correction diagnostics for physical
errors encountered in realistic devices may be assisted by
the use of machine learning techniques [70] or filters for
non-Markovian noise [71]. In addition, experimental imple-
mentations frequently see drift of the key parameters such
as the measurement rate �m and efficiency η as well as slow
temporal variations of the offset of the measurement signals.
Exploring the use of machine learning techniques to track
these parameters and adjust the CQEC protocol accordingly
in real time during an experiment would be a useful direction
for further work. Another important direction for further study
based on CQEC is the extension of this approach to fault-
tolerant error correction [66,72,73].

The favorable performance of the CQEC protocol seen
for the quantum annealing application presented here, in par-
ticular the lack of any significant decrease in performance
going from one to two logical qubits, indicates the potential
viability of modular approaches to quantum error correction
for quantum simulation and for quantum annealing in partic-
ular. For quantum computation and simulation on near-term
quantum machines, it is advantageous to use encodings that
generate only low-weight logical operators, while also requir-
ing only low-weight measurement operators. Since the weight
of the logical operators of stabilizer codes, whether subspace
or subsystem, always grow with the number of encoding
qubits, small codes are therefore highly attractive from this
perspective. Indeed, quantum annealing Hamiltonians of the
Ising spin glass form, i.e., containing only terms of the form
HZ = ∑

i hz
i σ

z
i , HX = ∑

i hx
i σ

x
i , HZZ = ∑

i j Ji jσ
z
i σ z

j , that are
encoded with the three-qubit stabilizer code result in logical
operator terms of only weights 2 and 3. The three-qubit code
thus presents an attractive modular option for implementing
error correction of quantum annealing with large numbers of
logical qubits. Specifically, for this small code the logical X
operator has weight 3 while the logical Z operator has weight
1. An increasing number of proposals are being pursued
for realization of n-body interactions for superconducting
qubits, both as direct couplers [74–77] or as gadgets [78],
while a recent experimental demonstration has been made
for a four-body interaction using Kerr-nonlinear parametric
oscillators [79]. Realization of this and the three-body inter-
actions for quantum annealers would provide the necessary
capability to implement continuous quantum error correc-

tion of quantum annealing with a quantum error correcting
code.
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APPENDIX A: NUMERICAL METHOD TO GENERATE
DISCRETIZED READOUT SIGNALS AND DENSITY

MATRIX EVOLUTION

We describe here the numerical approach used to generate
discretized realizations of the readout signals I1(t ) and I2(t )
[see Eq. (2)], the filtered readout signals I1(t ) and I2(t ) [see
Eq. (17)], and the system density matrix ρ(t ), with a time step
dt . ρ(t ) evolves according to the combined action of Eq. (14)
and the error correction operations Cop [Eq. (16)] that are
applied on the physical qubits whenever an error is diagnosed
by the double threshold CQEC protocol.

We use the Bayesian update method of Ref. [52] to obtain
the discretized readout signals Īk (t + dt ) that correspond to
the averages of Ik (t ) during the time interval (t, t + dt ) and
hence to measurement of the stabilizer generators Sk [see
Eq. (1)]. Īk (t + dt ) is obtained from

Īk (t + dt ) = sk +
√

τm/dt ζk, (A1)

where sk = ±1 is a binary random number that has the value
of +1 with probability equal to ρ000,000(t ) + ρ001,001(t ) +
ρ110,110(t ) + ρ111,111(t ) for k = 1 (i.e., S1 = Z1Z2) and with
probability equal to ρ000,000(t ) + ρ011,011(t ) + ρ100,100(t ) +
ρ111,111(t ) for k = 2 (i.e., S2 = Z2Z3), and ζk is a Gaussian
random number with zero mean and variance 1. We employed
a time step dt = 5 × 10−3 �−1

m in all our numerical calcula-
tions.

The quantum state of the system is then updated according
to the information, Īk (t + dt ), obtained from this measure-
ment of Sk , according to

ρi j (t + dt ) =
√

pi
(
Īk (t + dt )

)
p j

(
Īk (t + dt )

)
p
(
Īk (t + dt )

) e−γi j dt

× ρi j (t ). (A2)

Here pi(I ) = exp [−(I − 〈i|Sk|i〉)2/2D]/
√

2πD is the condi-
tional probability density for the ouput signal I given that
the system is in the state |i〉, where |i〉 indicates one of the
three-qubit computational states, i.e., 〈i|Sk|i〉 = ±1 and D =
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τm/dt . In addition, γi j = �m(1 − η)(〈i|Sk|i〉 − 〈 j|Sk| j〉)2/4.
Note that for ideal measurements (η = 1), we have γi j =
0. The denominator of Eq. (A2) is the probability dis-
tribution of the continuous random variable I , defined by
p(I ) = ∑

i=0,1,..7 ρii(t ) pi(I ), where the sum is over all three-
qubit computational states |i〉. Equations (A1)–(A2) provide
Bayesian updates for the discretized readout signals Īk (t ) as
well as the corresponding conditional state ρ(t ), which is
conditioned on the recorded readout signal Īk (t ), at all times
t = n dt , n = 0, 1, . . . , nop, where nopdt = top.

The discretized filtered readout signals Ik (t ) are then read-
ily obtained from the discretized readout signals Īk (t ) using
Eq. (17):

Ik (t + dt ) =
(

1 − dt

τ

)
Ik (t ) + dt

τ
Īk (t + dt ). (A3)

The system quantum state ρ(t ) also evolves due to the Hamil-
tonian H (t ) and to decoherence (bit-flip errors in this work).
The state update due solely to Hamiltonian-induced evolution
during the time step dt is obtained as

ρ(t + dt ) = U (t, t + dt ) ρ(t )U†(t, t + dt ), (A4)

where the unitary evolution operator U (t, t + dt ) is approxi-
mated using the first-order Magnus expansion [80],

U (t, t + dt ) ≈ UM(t, t + dt ) = exp[−iH (t + dt/2) dt].
(A5)

The state update due only to decoherence is evaluated as

ρ(t + dt ) = ρ(t ) + ρ̇decoh(t ) dt, (A6)

where ρ̇decoh(t ) is given in Eq. (13).
To account for all three processes of measurement, co-

herent evolution, and decoherence at each time step, we
apply the quantum Bayesian update twice (once for measure-
ment of S1 = Z1Z2 and once for measurement of S2 = Z2Z3),
followed by state update due to Hamiltonian-induced evolu-
tion [Eq. (A4)], and then state update due to decoherence
[Eq. (A6)]. After this, we use the double threshold CQEC
protocol to determine whether we need to apply an error cor-
rection operation Cop to the system state at the moment t + dt :
ρ(t + dt ) → Copρ(t + dt )Cop. For example, if I1(t + dt ) <

�1 and I2(t + dt ) > �2, then the diagnosed error syndrome
is (Z12 = −1, Z23 = +1), the diagnosed error is X1, and so we
have to apply the error correction operation Cop = X1. After
error correction, we also reset the filtered readout signals:
Ik (t + dt ) → +1 for k = 1, 2. If there is no error correction
operation in this timestep, the filtered readout signals are not
reset.

APPENDIX B: PROBABILITY OF MISDIAGNOSING
BIT-FLIP ERROR X2

We derive here the result Eq. (42) for the probability
p(X2 )

misdiag to misdiagnose the bit-flip error X2. In contrast to the
conventional implementation of the bit-flip QEC, in the con-
tinuous operation misdiagnosis of single bit-flip errors occurs
when relatively large fluctuations affect one or both filtered
readout signals Ik (t ). It is, however, more likely that only
one of the filtered readout signals exhibits a large fluctuation,
so we consider this situation to obtain an estimate for the

probability p(X2 )
misdiag. The bit-flip error X2 is misidentified as

X1 if, at the moment when the filtered readout signal I1(t )
exits the “syndrome uncertainty region” by crossing the lower
error threshold �1 (see Fig. 1), the filtered readout signal
I2(t ) is above the upper error threshold �2 due to a unusually
large positive fluctuation of size larger than �2 − �1. The
probability that this situation occurs is given by the probability
that �I (t ) ≡ I2(t ) − I1(t ) � �2 − �1. From Eq. (17), we
have

d �I (t )

dt
= −�I (t )

τ
+

√
τm

τ
[ξ2(t ) − ξ1(t )], (B1)

where the noises ξ1(t ) and ξ2(t ) are the uncorrelated noises
of the bare readout signals Ik (t ) [see Eqs. (2) and (3)]. Note
that Eq. (B1) is valid both before and after the occurrence of
the bit-flip error X2 because the “signal parts” of the readout
signals I1(t ) and I2(t ) cancel each other in �I (t ). Specifically,
before (after) occurrence of the error X2, the signal parts of
I1(t ) and I2(t ) are both equal to +1 (−1). This implies that the
probability that �I (t ) � �2 − �1 can be obtained from the
stationary probability distribution, pst (�I ), of �I (t ). From
Eq. (B1), we obtain

pst (�I ) =
[ τ

2πτm

]1/2
e−(�I )2τ/2τm . (B2)

The probability that �I (t ) is larger than �2 − �1 is then
equal to

p(�I � �2 − �1) = 1

2

[
1 − erf

(√
τ

2τm
(�2 − �1)

)]
,

≈ 1√
2π

e−(�2−�1 )2τ/2τm

(�2 − �1)
√

τ/τm
, (B3)

where erf (·) is the error function and the approximation ap-
plies in the limit of large averaging time parameters τ . The
result (B3) is our estimation for the probability that the bit-flip
error X2 is misdiagnosed as the error X1. The same result is
also obtained for the probability that the error X2 is misdiag-
nosed as the error X3. Therefore, the probability that the error
X2 is misdiagnosed is given by

p(X2 )
misdiag = c

e−(�2−�1 )2τ/2τm

(�2 − �1)
√

τ/τm
. (B4)

The numerical coefficient c that follows from the above anal-
ysis is

√
2/π ≈ 0.7979. By fitting our numerical results to

Eq. (B4), we obtain that the coefficient c is larger; specifically,
fitting to the data in Fig. 3 yields c ≈ 1.607. Equation (B4)
with c ≈ 1.607 has been successfully tested against numerical
results for various values of the error threshold parameters �1

and �2 in addition to the values indicated in Fig. 3.

APPENDIX C: TIME-TO-SOLUTION METRIC

We present here analysis of the application of our CQEC
protocol to quantum annealing with the time-to-solution
(TTS) metric. In particular, we show how the value of this
metric depends on the annealing operation time top. We com-
pare the performance of our CQEC protocol with regard
to TTS with that of the so-called classical (C) strategy of
Ref. [63], in which annealing is carried out on m unencoded
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FIG. 11. Final infidelity with respect to the ground state of the
problem Hamiltonian for one qubit annealing as a function of opera-
tion time top. Panel (a): γ = 1.25 × 10−4�m. Panel (b): γ = 1.25 ×
10−3�m. Red line: one unencoded physical qubit, no error correction.
Green line: classic protection scheme of Ref. [63] (see text). Blue
line: one logical qubit with CQEC and modified error correction,
Eq. (64). Parameter values: η = 1, � = 0.1�m, θ1 = −0.54, θ2 =
0.8, and τ = 2.5�−1

m .

copies in parallel and the infidelity estimated from the bino-
mial distribution function [1 − punenc

s (top)]m, with punenc
s (top)

the probability of successfully reaching the ground state of
the problem Hamiltonian, i.e., the final Hamiltonian at t = top,
for a single unencoded qubit (see Ref. [63]). We use the
example of single-qubit quantum annealing from Sec. V for
this detailed analysis, before summarizing the performance of
both single-qubit and two-qubit quantum annealing problem
at a particular value of top.

Figure 11 shows how the final CQEC infidelity [blue
lines, with modified logical error correction operations; see
Eq. (64)] depends on the operation time top for single-qubit
quantum annealing, and compares this with the corresponding
infidelities obtained for the unencoded dynamics (red lines)
and the classical (C) strategy (green lines). Note that here we
are plotting the final fidelity with respect to the ground state
of the problem Hamiltonian. The two panels show results for
two different physical error rates γ , with the value of the

FIG. 12. Ratio of the TTS value for the classical (C) strategy
to that for CQEC, as a function of top. Panel (a): one logical qubit,
γ = 1.25 × 10−4�m. Panel (b): one and two logical qubits, γ =
1.25 × 10−3�m. Green lines are for one logical qubit, with error
correction operations in the CQEC calculations given by Eq. (64)
(solid lines) and Eq. (65) (dashed lines). Blue lines are for two logical
qubits, with error correction operations in the CQEC calculations
given by Eq. (64) (solid line) and Eq. (65) (dashed line). Parameters:
one logical qubit calculations use the same values as in Fig. 11,
two logical qubit calculations employ τ = 2.1�−1

m , with all other
parameter values the same as for one logical qubit.

product γ top for the maximal value of top held constant at
2.5. This corresponds to the same overall average number of
errors at the largest shown value of top in both panels. The
calculations related to the blue lines in Fig. 11 were carried
out using the effective evolution equation (38) without the last
term at its right-hand side. The accuracy of this was confirmed
by full quantum trajectory simulation of Eq. (14) together
with the double thresholding error detection protocol and error
correction operations given by Eq. (64). For example, for
γ = 1.25 × 10−4 �m and top = 104 �−1

m , we obtain infideli-
ties of 6.6 × 10−3 from the quantum trajectory simulations
(averaging over 1000 trajectories) and 5.14 × 10−3 from the
effective evolution equation (38), respectively. The unencoded
calculations (red lines) are simulated directly from Eq. (14)
without the measurement terms, and the classical strategy
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values (green lines) are obtained as the third power of the
unencoded values.

It is evident that CQEC performs better than both the
unencoded annealing and the classical strategy at longer
operation times. The final infidelity of unencoded anneal-
ing of the single qubit tends toward that of the completely
mixed state on the timescales shown here, consistent with
the lack of any error correction, while that of the classi-
cal strategy tends to the corresponding binomial function
of this. In contrast, once the operation time is long enough
that nonadiabatic errors are small, the CQEC strategy is
successful in correcting the bit-flip errors due to coupling
to the environment and can achieve significantly lower
infidelities.

The data in Fig. 11 are then used to evaluate the TTS
for single-qubit annealing, according to Eqs. (68) and (69) in
the main text. We have chosen the target success probability
pd = 0.99. Figure 12 shows how the ratio of the TTS value
for the classical strategy to that for the CQEC strategy varies

with operation time top, for a given value of physical error rate
γ . At the longer operation times in the timescale range shown
here, this TTS ratio is larger than 1, indicating that the clas-
sical strategy will require a longer time to reach the desired
ground-state solution for the annealing problem. In terms of
this TTS metric, the CQEC strategy thus clearly outperforms
the classical strategy at the longer operation times top that
suppress nonadiabatic errors and are preferred for quantum
annealing.

To illustrate the performance on larger systems, we have
also calculated the corresponding ratio of TTS values for
quantum annealing of two logical qubits, using the effective
two qubit model Eq. (63). The blue lines in Fig. 12(b) show
the resulting ratio TTSC/TTSCQEC as a function of top. Com-
paring with the green lines for one logical qubit, it is evident
that in terms of the TTS metric, the CQEC protocol performs
increasingly better than the classic strategy when scaled up to
two qubits. This is encouraging for the use of a modular form
of CQEC for larger systems.
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