
PHYSICAL REVIEW A 103, 042404 (2021)

Generalized figure of merit for qubit readout
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Many promising approaches to fault-tolerant quantum computation require repeated quantum nondemolition
(QND) readout of binary observables such as quantum bits (qubits). A commonly used figure of merit for
readout performance is the error rate for binary assignment in a single repetition. However, it is known that
this figure of merit is insufficient. Indeed, real-world readout outcomes are typically analog instead of binary.
Binary assignment therefore discards important information on the level of confidence in the analog outcomes.
Here, a generalized figure of merit that fully captures the information contained in the analog readout outcomes
is suggested. This figure of merit is the Chernoff information associated with the statistics of the analog
readout outcomes in one repetition. Unlike the single-repetition error rate, the Chernoff information uniquely
determines the asymptotic cumulative error rate for arbitrary readout noise. As a result, non-Gaussian readout
noise common in experiments can be described by effective Gaussian noise with the same Chernoff information.
Importantly, it is shown that such a universal description persists for the small number of repetitions and
non-QND imperfections relevant to real experiments. Finally, the Chernoff information is used to rigorously
quantify the amount of information discarded by analog-to-binary conversion. These results provide a unified
framework for qubit readout and should facilitate optimization and engineering of near-term quantum devices
across all platforms.
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I. INTRODUCTION

The ability to readout binary quantum observables such as
quantum bits (qubits) is an important desideratum for quan-
tum information processing [1]. In particular, it is often highly
desirable that the readout have high fidelity and be quan-
tum nondemolition (QND). For instance, many promising
fault-tolerant architectures for scalable fault-tolerant quantum
computation require that stabilizer parities be repeatedly read
out during the computation [2–13]. For fault tolerance to be
achieved in these architectures, it is crucial that the readout
fidelity be above the threshold of the error-correcting code
[14,15]. Moreover, it is necessary that the readout be QND
so that the code is projected onto the eigenstate corresponding
to the observed stabilizer eigenvalues. QND readouts have the
important advantage that repeated readouts leave the eigenval-
ues of the observable unchanged. Therefore, each repetition
provides additional information on the observable. As a result,
the readout fidelity increases exponentially with the num-
ber of repetitions [16,17]. This property has been exploited
to improve the readout fidelity of quantum bits (qubits) for
a variety of implementations including trapped ion qubits
[18,19], solid-state spin qubits [20–33], and superconducting
qubits [34]. The same temporal correlations in the outcomes
of consecutive QND readouts can be used to correct stabilizer
readout errors in quantum error-correcting codes [35–37].

A seemingly natural figure of merit for the performance
of repetitive QND readout is the probability ε of a readout
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error occurring in a single repetition. Here, each repetition is
assigned a binary outcome, with ε being the probability of
an incorrect assignment. The readout errors are then corrected
by performing a majority vote on the binary outcomes. The
cumulative readout error rate eN after N repetitions is simply
proportional to the probability that an error has occurred in
more than half of the repetitions, eN ∝ εN/2. Therefore, it
appears that the cumulative readout error rate is fully deter-
mined by the single-repetition error rate ε. However, a typical
real-world readout does not only have two outcomes. Rather,
the readout outcomes are commonly analog (see Fig. 1) and
need not even be scalar. For instance, the single-repetition
readout outcome could be a continuous electrical voltage or
current [38–62], a nonbinary photon count at a photodetector
[23,63–70], or a collection of such outcomes. If each individ-
ual repetition is assigned a binary outcome, information on
the level of confidence in each analog outcome is discarded.
Such analog-to-binary conversion is known as “hard decod-
ing”. It was shown that taking into account the additional
information contained in the distribution of analog readout
outcomes, or “soft decoding”, can significantly reduce eN

compared to hard decoding [33,71–74]. It follows that two
repetitive QND readouts characterized by the same value of ε

can yield different values of eN . This suggests that ε is not a
universal descriptor of readout performance [75]. Moreover,
it was shown that the existence of a soft-decoding advantage
is highly dependent on the details of the often highly non-
Gaussian distributions of analog readout outcomes. Heuristic
arguments have been put forward to predict when an ad-
vantage exists in common cases [33,71], but a unified and
economical description that fully captures the performance of
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FIG. 1. Schematic illustration of single-repetition probability
distributions P±(O) of analog readout outcomes conditioned on the
observable eigenvalue a = ±1. The corresponding log-likelihood
ratio λ(O) is also shown. The single-repetition error rates ε± condi-
tioned on the eigenvalue a = ±1 are represented by the shaded areas.

repetitive QND readout for all outcome distributions is highly
desirable.

The present work suggests a figure of merit that fully
captures the cumulative error rate eN of the repetitive QND
readout of binary observables with an arbitrary distribution
of analog readout outcomes. That figure of merit is the
asymptotic rate of decrease of ln eN with the number of rep-
etitions N . In the classical theory of hypothesis testing, this
quantity is known as the Chernoff information for the dis-
crimination of two probability distributions [76,77]. Like the
single-repetition readout error rate ε, the Chernoff information
can be obtained solely from the statistics of readout outcomes
in a single repetition. In fact, it is closely related to ε when the
readout outcomes are binary. Unlike ε, however, the Chernoff
information does not discard information associated with the
level of confidence in each analog readout outcome. There-
fore, the Chernoff information enables a universal description
of repetitive QND readout, in the sense that all outcome dis-
tributions with the same Chernoff information have the same
asymptotic cumulative readout fidelity. Therefore, theoretical
analysis of repetitive QND readout is reduced to the calcula-
tion of the Chernoff information. Importantly, this universality
persists in the nonasymptotic regime and in the presence of
non-QND imperfections. This leads to simple and universal
expressions for the cumulative error rate of a QND read-
out that remain accurate for small N . Finally, the Chernoff
information is used to predict the soft-decoding advantage
in cases of practical importance without having to resort to
time-consuming simulations [31,33,71–74]. The present work
paves the way for a generalized understanding of the real-
world readout of quantum observables and should facilitate
the engineering of high-fidelity QND readout in near-term
quantum devices on all platforms.

II. REPETITIVE QUANTUM NONDEMOLITION
READOUT

A. Quantum nondemolition readout

A binary quantum observable A has only two distinct
eigenvalues a = +1 and a = −1. The observable A could

be, e.g., the Z Pauli observable of a qubit or a parity-check
stabilizer in an error-correcting code. If the system is pre-
pared in an eigenstate of A with eigenvalue a, an ideal QND
readout of A yields the value a with certainty. Moreover,
the post-readout state is also an eigenstate with eigenvalue
a. However, a real-world QND readout is subject to noise
that introduces uncertainty in the value of a. In general, it
is therefore not possible to determine a with certainty after
a single readout. Fortunately, the QND property guarantees
that every subsequent readout yields the same eigenvalue as
in the first readout. Thus, repeated readouts “average out”
the noise and enable readout of the observable A to arbitrary
accuracy. A more detailed overview of the theory of quantum
nondemolition readout is given in Appendix A.

B. Single repetition

A single repetition of a general QND readout yields an
outcome O that depends on the eigenvalue a. More precisely,
the statistics of the readout outcomes are described by the
probability distribution P±(O) for observing O if a = ±1.
Here, the distributions P±(O) can take any form. For in-
stance, the outcome O could be a discrete random variable,
a continuous random variable, or a multidimensional set of
random variables. Possible distributions P±(O) are illustrated
schematically in Fig. 1. Several other experimentally relevant
examples are discussed in Secs. III and IV. In the following, it
is assumed that these distributions are known a priori, either
empirically or from theoretical modeling. The precise mean-
ing of the distributions P±(O) within quantum measurement
theory is reviewed in Appendix A.

The most commonly used figure of merit for readout per-
formance in a single repetition is the error rate ε, defined as
the average probability of assigning the incorrect eigenvalue
to the observed outcome. The value of ε depends on the rule
chosen to assign an eigenvalue a to each outcome O. In the
following, it is assumed that the two eigenvalues are equally
likely a priori. This leads to a definition of ε that is agnostic
about the value of a. Moreover, this case is common and
desirable because it maximizes the information extracted by
readout. Under this assumption, the assignment rule that mini-
mizes ε is obtained by calculating the log-likelihood ratio [78]

λ(O) = ln
P+(O)

P−(O)
. (1)

When λ(O) is larger (smaller) than 0, the eigenvalue a = +1
(a = −1) is assigned. If λ(O) = 0, the eigenvalue is assigned
at random. The log-likelihood ratio, Eq. (1), is central to hy-
pothesis testing. It should be interpreted as the observer’s level
of confidence in the assignment given the observed outcome
O. The log-likelihood ratio is depicted in Fig. 1 alongside the
distributions P±(O). The average single-repetition error rate
is ε = (ε+ + ε−)/2, where

ε+ = P+(λ < 0), ε− = P−(λ > 0) (2)

are the error rates conditioned on preparation of a = +1 and
a = −1, respectively. Here, P±(λ) are the probability distri-
butions for λ conditioned on a = ±1. The conditioned error
rates ε± are represented by the shaded areas [79] in Fig. 1.
Because ε+ and ε− are, respectively, integrals of P+(O) and
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P−(O) only, the error rate ε cannot contain information on
the relative value of P+(O) and P−(O). Therefore, important
information contained in the functional form of log-likelihood
ratio λ(O) is discarded.

C. Multiple repetitions

That the single-repetition error rate discards information
is most readily seen by considering the repeated QND readout
of the binary observable A. Repeated readout yields a string of
outcomes ON = {O0,O1, . . . ,ON−1}. Due to the QND nature
of the readout, all outcomes are independently sampled from
the same distribution P±(O) when an eigenstate with eigen-
value a is prepared. Accordingly, the joint distribution of the
readout outcomes conditioned on the eigenvalue a = ±1 is
P±(ON ) = ∏N−1

k=0 P±(Ok ). A quantum-mechanical derivation
is given in Appendix A. The cumulative log-likelihood ratio
for the entire string of outcomes ON is thus

lN = ln
P+(ON )

P−(ON )
=

N−1∑
k=0

λ(Ok ). (3)

As before, the eigenvalue a = +1 (a = −1) is assigned when
lN > 0 (lN < 0). Equation (3) shows that in the general case,
each outcome must be weighed by λ(Ok ) in order to per-
form optimal assignment. Therefore, discarding information
contained in λ(O) in each repetition is necessarily subopti-
mal. The average cumulative error rate is now eN = (e+,N +
e−,N )/2, where

e+,N = P+(lN < 0), e−,N = P−(lN > 0) (4)

are the cumulative error rates conditioned on preparation
of a = +1 and a = −1, respectively. Here, P±(lN ) are the
probability distributions for lN conditioned on a = ±1. Be-
cause the noise is sampled independently in each repetition,
eN is expected to decrease exponentially as N grows, eN ∝
exp (−CN ) for some constant C. The constant C is the
Chernoff information, which will be argued to be a more
appropriate figure of merit for repetitive QND readout than
the single-repetition error rate ε.

III. A GENERALIZED FIGURE OF MERIT

A. The Chernoff information

The asymptotic behavior of the cumulative error rate eN

is given by the theory of large deviations [80] developed by
Cramér [81] and Sanov [82], and applied to hypothesis testing
by Chernoff and Hoeffding [76,77]. The theory is summarized
in Appendix B. The result is that

ln eN ∼ −CN as N → ∞, (5)

where

C = − inf
s∈[0,1]

ln

[∫
dO P+(O)sP−(O)1−s

]
. (6)

Here, “∼” denotes asymptotic equality. The quantity C is
known as the Chernoff information [83]. It is a symmetric
distance measure between the distributions P+(O) and P−(O)
and can be interpreted as a rate of information gain per rep-
etition. Like the single-repetition readout error rate ε, the
Chernoff information depends only on the statistics of readout

outcomes in a single repetition. Unlike ε, however, it depends
on the relative value of P+(O) and P−(O). Consequently,
the Chernoff information encodes information contained in
the level of confidence λ(O) in each readout outcome. As a
result, readout outcome distributions P±(O) with the same
single-repetition error rates ε± do not necessarily have the
same Chernoff information.

B. Universality

The power of using the Chernoff information as a figure
of merit for readout of binary observables is that all readout
outcome distributions P±(O) with the same Chernoff informa-
tion, no matter their shape, give the same asymptotic behavior
for ln εN as N → ∞. Here, it is argued that such universal
behavior persists even in the nonasymptotic regime N � 1. As
discussed in Sec. IV B, the Chernoff information for Gaussian
noise with signal-to-noise ratio r is simply given by C = r/2.
This suggests an interpretation of the Chernoff information
as an effective Gaussian signal-to-noise ratio. More precisely,
it suggests that as far as the cumulative error rate eN is con-
cerned, non-Gaussian noise may be replaced by an effective
Gaussian noise with signal-to-noise ratio 2C. In the case of
Gaussian noise, however, an exact expression for eN can be
obtained for all N , namely, eN = e±,N = erfc(

√
rN/2)/2 [84].

This naturally leads to the ansatz that the same relationship
holds for arbitrary noise by setting r = 2C:

eN = e±,N = 1

2
erfc(

√
CN ). (7)

It can be shown from simple counter-examples at N = 1
that Eq. (7) is not exact for finite N . Nevertheless, its ap-
proximate validity was assessed by performing numerical
Monte Carlo simulations for a variety of readout outcome
distributions P±(O) (see Appendix C). The results are shown
in Fig. 2. It is found that Eq. (7) captures ln eN extremely
well for all N � 1 and for all the considered noise models.
These include Gaussian noise ubiquitous in readouts relying
on electronic and homodyne detection [39,41,43–48,50,52–
55,57,59,61,62], Poissonian noise ubiquitous in readouts rely-
ing on fluorescence detection [23,63–70], Cauchy noise with
fat polynomial tails, and the heavily bimodal non-Gaussian
readout noise observed empirically in Ref. [33]. The latter
two cases show that Eq. (7) approximately holds for noise
distributions that are heavily non-Gaussian and need not even
have a finite variance [85]. The approximate validity of Eq. (7)
can be intuitively understood with the following argument.
For a fixed value of CN , the number of readouts N increases
as C → 0. Therefore, the noise becomes effectively Gaussian
on all time scales and the limit of a continuous readout sub-
ject to Gaussian noise is recovered [84,86]. This expresses a
generalized central-limit theorem for the probability of rare
events in Eq. (4). What the simulations in Fig. 2 shows is
that Eq. (7) remains an excellent approximation for common
non-Gaussian sources of noise with finite N and finite C � 1.
This is precisely the situation where repetitive QND readout
is most useful.

In the regime where Eq. (7) is less accurate, C � 1, a more
general approximate universal form of the cumulative error
rates is obtained with the help of a saddle-point approximation

042404-3



B. D’ANJOU PHYSICAL REVIEW A 103, 042404 (2021)

0 2 4 6 8 10

- 5

- 4

- 3

- 2

- 1

0

FIG. 2. (a) Monte Carlo simulations of the cumulative error rate eN for (b) Gaussian noise (C = 0.5, α = 1, s∗ = 0.5), (c) Poissonian
noise (C = 0.2533, α = 0.9999, s∗ = 0.5569), (d) Cauchy noise (C = 0.4422, α = 1.1079, s∗ = 0.5), and (e), (f) the analog (C = 0.1634,
α = 1.0522, s∗ = 0.5203) and binary (C = 0.1577, α = 1.0536, s∗ = 0.5199) noise observed in Ref. [33]. In (b)–(f), the blue distribution
corresponds to a = +1 and the red distribution corresponds to a = −1. The cumulative error rate is a universal function of CN and C/p for
all simulated noise models. The ideal QND case corresponds to C/p = ∞. The solid black line is obtained from Eq. (7). The details of the
simulations are discussed in Appendix C.

[87,88]. While such an approximation becomes more accurate
as N increases, it typically remains very accurate for finite N
[88]. As discussed in Appendix B, the saddle-point approxi-
mation for the average error rate is

eN ≈ 1

2
erfc(

√
CN ) + (α−1/2 − 1)√

4πCN
exp(−CN ), (8)

and the saddle-point approximations for the conditioned error
rates are

e±,N ≈ eN ± (2s∗ − 1)√
4παCN

exp(−CN ). (9)

Here, α is a parameter that is easily computed from the dis-
tributions P±(O) as described in Appendix B. Moreover, s∗
is the position of the optimum in Eq. (6). These parameters
quantify the deviation from the Gaussian behavior of Eq. (7).
Indeed, it is shown in Appendix B that α → 1 and s∗ → 1/2
as C → 0. In that limit, the saddle-point approximation re-
duces to Eq. (7) for all CN . Note that universality persists even
in the extreme case where the saddle-point approximation
breaks down, αCN 
 1. In that case, the cumulative error rate
approaches the Chernoff upper bound, eN ≈ exp (−CN )/2
[80]. Finally, it must be noted that deviations from Eqs. (8)
and (9) may occur at finite N for discrete readout noise [89].
It is possible to modify the above expressions to account for
these so-called “continuity corrections” if necessary [88].

The above discussion shows that Eq. (7) can be used to
accurately estimate the cumulative error rate eN for arbitrary
analog readout noise and finite N , obviating the need for time-
consuming simulations [31,33,71–74] that are specialized to
the noise model. Even in the regime where Eq. (7) becomes
less accurate, universal behavior is retained at the cost of
introducing only two additional parameters α and s∗. This
approximate nonasymptotic universal behavior should greatly
facilitate readout engineering by reducing the analysis of the
great variety of noise models discussed in the literature to

the calculation of the Chernoff information and its auxiliary
quantities α and s∗.

C. Non-QND imperfections

In practice, the error rate of a QND readout is limited
by non-QND imperfections that generate transitions between
the eigenvalues of A. To achieve a low cumulative error rate
eN , non-QND processes must necessarily act on a time scale
longer than (1) the duration �t of a single readout and longer
than (2) the time scale �t/C for achieving low error rate.
In this “single-shot readout” regime, transitions between the
eigenvalues of A are effectively classical [90,91]. More pre-
cisely, the observed quantum jumps are well described by
classical transition probabilities for all Markovian non-QND
processes (see Appendix A for a more detailed discussion).
A very common case is relaxation from a = +1 to a =
−1 with small probability p 
 min(C, 1) in each repetition
[31–33,39,43,44,46,48,52–54,57,59,61,63]. It is important to
verify that universality persists in this more realistic scenario.

For Gaussian noise, it is known that eN is a function of
rN and r/p only [84]. Therefore, eN should be a universal
function of CN and C/p regardless of the details of the noise
in the regime where Eq. (7) holds, α ≈ 1 and s∗ ≈ 1/2. It
was verified that this is indeed the case by performing Monte
Carlo simulations using the procedure described in Appendix
C. The results are shown in Fig. 2. All noise models with
the same value of C/p collapse on the same curve when
plotted as a function of CN . Therefore, the cumulative error
rate eN may simply be tabulated for various values CN and
C/p by assuming Gaussian noise. The cumulative error rate
for arbitrary non-Gaussian noise can then be directly read
off from the Gaussian results. Although the simulation is
not shown here, it was also verified that the above conclu-
sions hold when both relaxation and excitation occur with
probability p.
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In the regime where Eq. (7) is less accurate, α �= 1 and
s∗ �= 1/2, it was observed numerically that the above con-
clusions hold provided that the values of α and s∗ are also
specified. That is, the logarithm of the cumulative readout
error rate appears to have the functional form

ln eN = f (CN,C/p, α, s∗). (10)

Note that the average error rate may now depend on s∗
because non-QND imperfections may affect different states
asymmetrically. Just as in the perfectly QND case, additional
“continuity corrections” may be required in the case of dis-
crete distributions and finite N [88].

IV. HARD AND SOFT DECODING

A. Soft-decoding advantage

The Chernoff information can also be used to quantify
the information lost by converting analog readout outcomes
to binary values. To do this, the Chernoff information C for
analog outcomes is compared to the Chernoff information Cb

for the corresponding binarized outcomes. This is reflected in
the soft-decoding advantage

A = C

Cb
. (11)

If A = 1, no information is discarded by binarizing readout
outcomes. If A > 1, however, a significant amount of infor-
mation has been lost. Indeed, inspection of Eq. (5) shows that
binarizing readout outcomes changes the order of magnitude
of eN by a factor A,

eN ∝ (eN,b)A as N → ∞. (12)

Here, eN,b is the cumulative error rate for binarized outcomes.
Equivalently, the number of readouts required to achieve a
desired value of eN is A times larger with hard decoding
than with soft decoding. Accounting for such lost informa-
tion could prove critical in pushing readout errors below the
threshold of quantum error-correcting codes. Due to the per-
sistence of universality at small N discussed in Sec. III B, the
asymptotic soft-decoding advantage is expected to also persist
in the nonasymptotic limit. Indeed, it was verified that Eq. (11)
accurately predicts the soft-decoding advantage observed for
small N in Ref. [33].

A general analytical expression for Cb is given in
Appendix D. In the important limit ε± → 0, it takes the form

Cb ∼
[

1

ln(ε−1
+ )

+ 1

ln(ε−1
− )

]−1

. (13)

Similar to the average single-repetition error rate, ε = (ε+ +
ε−)/2, Cb is a monotonic function of both ε+ and ε−. This
makes Cb an appropriate substitute for ε to quantify the per-
formance of a single repetition.

To illustrate the usefulness of the Chernoff information in
characterizing readout, the soft-decoding advantage, Eq. (11),
is now calculated for two examples of experimental interest.

B. Example 1: Gaussian distributed readout outcomes

It is first assumed that the readout of the eigenvalues
a = ±1 is subject to additive Gaussian noise, such that the

distributions of analog readout outcomes are

P±(O) =
√

r

2π
exp

[
− r(O ∓ 1)2

2

]
. (14)

Here, r is the (power) signal-to-noise ratio. Gaussian
noise is ubiquitous in real experiments. For instance, elec-
tronic noise in the readout of semiconductor spin qubits
[39,41,45,47,48,50,52–55,59,62] as well as quantum noise
in the readout of superconducting qubits [43,44,46,57,61]
are well modeled by additive Gaussian noise. An applica-
tion of Eq. (6) gives C = r/2 for all r. The single-repetition
error rates corresponding to these distributions are ε± =
erfc(

√
r/2)/2. Using this expression, it is possible to show

that Cb ≈ r/π for r 
 1 and Cb ≈ r/4 for r  1 (see
Appendix D). Thus, the soft-decoding advantage varies
smoothly from

A = π
2 for r 
 1 to A = 2 for r  1. (15)

Therefore, hard decoding of Gaussian distributions leads to
loss of information for all signal-to-noise ratios. In particular,
the number of repetitions required to reach a desired error
rate is always at least π/2 ≈ 1.57 times larger if the analog
outcomes are binarized. The result for r  1 is consistent
with the analysis of Ref. [71] and with known results from
the classical theory of soft-decision decoding [92,93].

C. Example 2: Gaussian distributed readout outcomes
with conversion errors

In the presence of Gaussian readout noise, the eigenvalues
a = ±1 are ideally each converted to Gaussian distributions
with means ±1. In practice, however, imperfections in the
readout scheme may lead to conversion errors. As a result, the
distributions P±(O) often resemble mixtures of Gaussian dis-
tributions [33,39,41,43,44,46,48,52–54]. Such imperfections
can be modeled with the distributions

P±(O) = (1 − η)

√
r

2π
exp

[
− r(O ∓ 1)2

2

]

+ η

√
r

2π
exp

[
− r(O ± 1)2

2

]
. (16)

Here, η is the rate of conversion errors. Expressions for C
and Cb for these distributions are given in Appendix D. The
resulting soft-decoding advantage A is shown in Fig. 3 as
a function of η and of the rate of errors due to Gaussian
noise, εG ≡ erfc(

√
r/2)/2. There is a clear transition from

a region of parameter space where A = 1 when conversion
errors dominate to a region where A > 1 when Gaussian
errors dominate. This agrees with the heuristic conclusions
of Refs. [33,71]. Note, however, that while previous work
had to resort to time-consuming simulations to quantify soft-
decoding advantage of non-Gaussian distributions [31,33,71–
74], the present approach enables an accurate prediction of A
by computing a single integral. This makes it much easier to
explore the parameter space to engineer and optimize readout.

V. CONCLUSION

In conclusion, a generalized figure of merit for the repet-
itive QND readout of a binary quantum observable A was
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FIG. 3. Soft-decoding advantage A for a QND readout with both
Gaussian noise and conversion errors. Here, εG = erfc(

√
r/2)/2 is

the rate of pure Gaussian errors and η is the rate of conversion errors.
Note that the Chernoff information increases as εG and η decrease.
The soft-decoding advantage was calculated using the expressions
given in Appendix D.

suggested. This figure of merit is the Chernoff information
associated with the analog distributions of readout outcomes
for each eigenvalue of A [see Eq. (6)]. When the readout out-
comes are binary, the Chernoff information is closely related
to the commonly used single-repetition error rate. Contrary to
the single-repetition error rate, however, the Chernoff infor-
mation is a universal figure of merit: all noise models with
the same Chernoff information yield the same asymptotic
functional form for the cumulative error rate. It follows that
arbitrary non-Gaussian readout noise can be modeled by ef-
fective Gaussian noise without loss of generality. Crucially,
it was shown that universal behavior persists for the small
number of repetitions and non-QND imperfections relevant
to real-world experiments. Finally, the Chernoff information
was used to quantify the amount of information discarded by
binarizing readout outcomes in each repetition, and simple
results were derived analytically for experimentally relevant
readout models. The results presented here provide a unified
description of repetitive QND readout and should greatly fa-
cilitate the standardization, optimization, and engineering of
quantum readout across all experimental platforms.

There are several possible avenues for future research.
Firstly, it would be interesting to generalize the results pre-
sented here for noise that is nonstationary or correlated
between repetitions, two features that are likely to appear in
real experiments. Extensions to the discrimination of nonbi-
nary observables [94,95] could also be of interest in some
architectures. Moreover, a rigorous justification of the univer-
sal behavior described by Eq. (10) is highly desirable. Such a
justification could potentially be obtained by using extensions
of large deviation theory for Markov processes [88,96] or
through the relationship between probability theory and the

renormalization group [97]. In the latter approach, the readout
outcomes Ok are thought of as classical degrees of freedom
on an N-site lattice and non-QND transition probabilities are
interpreted as weak interaction parameters between the Ok .
The functional form of the error rate could then be obtained
by analyzing the renormalization group flow around the fixed
point at N = ∞. While the present work focuses on repetitive
QND readout, the results are expected to be relevant for all
quantum information processing tasks where large streams of
analog readout outcomes must be processed. In particular, it
would be of great interest to investigate whether the Chernoff
information can help to universally parametrize the logical
failure rate [98] as well as quantify the soft-decoding advan-
tage for quantum error-correcting codes subject to arbitrary
readout noise.
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APPENDIX A: QUANTUM NONDEMOLITION READOUT

1. Review of quantum measurement theory

Let �0 be the density operator of a quantum system prior
to readout. The system is assumed to be initially disentangled
from the environment. The density operator �1 conditioned on
a readout outcome O is then [99]:

�1(O) =
∑

μ Mμ(O)�0M†
μ(O)

P(O)
≡ M(O) ◦ �0

P(O)
. (A1)

Here, the Mμ(O) are the Kraus operators for outcome O and
P(O) is the probability of outcome O occurring. The Kraus
operators define a linear quantum operation M(O) on den-
sity operators (indicated with the symbol “◦”). The quantum
operation depends on the details of the readout apparatus and
on the initial state of the environment. The probability P(O)
is expressed in terms of the positive operator-valued measure
(POVM) elements E (O) = ∑

μ M†
μ(O)Mμ(O):

P(O) = Tr[E (O)�0]. (A2)

The unconditioned density operator ρ is the average of � over
all readout outcomes:

ρ =
∫

dO P(O)�(O). (A3)

2. Quantum nondemolition readout of a binary observable

The readout of an observable A is said to be quantum
nondemolition (QND) if the interaction of the system with
the readout apparatus commutes with A. This implies that the
Kraus operators Mμ(O) and M†

μ(O) commute with each other
and with A. Therefore,

Mμ(O) =
∑

x

mμ,x(O)|x〉〈x|, (A4)
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where the {|x〉} are common eigenstates of the Kraus operators
and of A. The POVM elements for the readout of Eq. (A4) are

E (O) =
∑

x

Px(O)|x〉〈x|, (A5)

where the distributions of outcomes for each eigenstate are

Px(O) =
∑

μ

|mμ,x(O)|2. (A6)

For the readout to be “of the observable A” only, the outcome
distributions must be the same for eigenstates |x〉 that share
the same eigenvalue [99], Px(O) = Pa(x)(O). The binary ob-
servable discussed in the main text has only two eigenvalues
a = ±1. In this case, the POVM elements take the form

E (O) = P+(O)
+ + P−(O)
−. (A7)

Here, 
± is the projector on the eigenspace of A with eigen-
value a = ±1. The distributions P±(O) depend on the details
of the readout. They must be normalized but can otherwise
take any form. The resulting distribution of outcomes is

P(O) = P+(O)P(+) + P−(O)P(−), (A8)

where P(±) = Tr(
±�0) are the initial occupations of the
eigenspaces of A.

Using Eqs. (A1), (A3), and (A4), it is simple to verify
that the QND readout does not change the unconditioned
occupations of the eigenspaces of A:

Tr[
±ρ1] = Tr[
±ρ0]. (A9)

Moreover, let |x+〉 and |x−〉 be two eigenstates that correspond
to distinct eigenvalues of A. The magnitude of the coherence
between these two eigenstates after readout is

|〈x+|ρ1|x−〉| = e−G|〈x+|ρ0|x−〉|, (A10)

where the rate of decoherence per readout is

G = − ln

∣∣∣∣∣
∫

dO
∑

μ

mμ,x+ (O)m∗
μ,x− (O)

∣∣∣∣∣. (A11)

Applying the triangle inequality for the integral followed by
the Cauchy-Schwarz inequality for the sum yields

G � B, (A12)

where

B = − ln

[∫
dO

√
P+(O)P−(O)

]
(A13)

is the Bhattacharyya distance between the distributions P+(O)
and P−(O). Note that the Chernoff information gives both
an upper and a lower bound to the Bhattacharyya distance,
C/2 � B � C [100]. Therefore, discriminating the eigen-
values a = ±1 of A guarantees decoherence between the
eigenspaces of A as expected [91,101,102]:

G � C/2. (A14)

3. Repetitive quantum nondemolition readout
of a binary observable

Repeating the readout N times yields a string of outcomes
ON = {O0,O1, . . . ,ON−1}. If the environment and readout

apparatus are reset to their initial state after each readout (the
Markov assumption), the density operator �N conditioned on
the outcome of N repetitions is obtained by repeated applica-
tions of Eq. (A1):

�N = MN−1(ON−1) ◦ · · · ◦ M0(O0) ◦ �0

P(ON )
. (A15)

The probability distribution of the string ON is P(ON ) =
Tr[E (ON )�0], with the cumulative POVM element

E (ON ) =
∑

μN−1,...,μ0

M†
μ0

(O0) . . . M†
μN−1

(ON−1)

× MμN−1 (ON−1) . . . Mμ0 (O0). (A16)

For a QND readout, all Kraus operators Mμ(O) and M†
μ(O)

commute with each other and with the POVM elements
E (O). Using this property and Eq. (A16) yields P(ON ) =
Tr[E (ON−1) . . . E (O0)�0]. Using Eq. (A7) then leads to

P(ON ) = P+(ON−1) . . . P+(O0)P(+)

+ P−(ON−1) . . . P−(O0)P(−).
(A17)

The coherences between eigenspaces of A do not enter
Eq. (A17). Thus, the statistics of QND readout outcomes
are identical to the statistics for the repeated readout of a
binary classical observable with state-dependent noise P±(O).
The likelihood ratio of Eq. (3) is therefore the appropriate
readout statistic. Moreover, note that the dynamics of the
unconditioned density operator is simply given by repeated
application of Eqs. (A9) and (A10). The occupations re-
main unchanged for all N , Tr[
±ρN ] = Tr[
±ρ0], and the
coherences decay exponentially at rate G, |〈x+|ρN |x−〉| =
e−GN |〈x+|ρ0|x−〉|.

4. Non-QND imperfections

In real experiments, there are usually other physical pro-
cesses that do not conserve the binary observable A. In the
following, these processes are assumed to be Markovian, i.e.,
their correlation time is much smaller than the duration of a
single readout. The analysis of non-Markovian processes goes
beyond the scope of this work.

To simplify the discussion, the case where the observable is
the Pauli Z observable of a single qubit, A = Z , is considered
first. For a perfectly QND readout, the common eigenstates
{|x〉} of the Kraus operators and of A are simply the eigenstates
|±〉 of Z . The presence of a non-QND Markov process causes
transitions between |+〉 and |−〉. This could be due to, e.g., a
T1 relaxation process, pure dephasing in a basis other than |±〉,
coherent gate errors, or unwanted readout backaction. The
repetitive readout can only improve readout if the non-QND
process acts on a time scale tD that is long compared to (1) the
duration �t of a single readout and to (2) the time scale �t/C
required to achieve a low error rate:

tD  �t

min(C, 1)
. (A18)

Equation (A18) defines the single-shot readout regime. The
condition tD  �t ensures that the distributions of outcomes
P±(O) for each individual readout remain unchanged by
the transitions. Moreover, the condition tD  �t/C guaran-
tees that the occupations of the eigenstates change slowly
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compared to the coherence between them [see Eq. (A14)].
Therefore, the coherences quickly reach a steady state that de-
pends only on the instantaneous occupations of the eigenstates
|±〉. As a result, the coherences can be adiabatically elimi-
nated from the equations of motion to yield effective classical
rate equations for the occupations. More precisely, the ob-
served quantum jumps take the form of a random telegraph
signal [90,91] with transition rates �1/tD. This is the physics
of the quantum Zeno effect. In this limit, a classical hidden
Markov model such as the one discussed in Appendix C is
sufficient to accurately describe the statistics of the readout
outcomes.

For a more general binary observable A with degenerate
eigenspaces, the general argument is slightly complicated by
the fact that there can be coherent dynamics within the de-
generate eigenspaces during readout. In practice, however,
readout is often designed so that the observed quantum tra-
jectories are effectively classical. In quantum stabilizer codes,
notably, a series of parity-check stabilizers {A0, A1, A2, . . . }
encode logical qubits in degenerate subspaces with fixed syn-
drome eigenvalues {a0, a1, a2, . . . }. The stabilizers are chosen
so that (logical) error processes acting directly within these
subspaces occur extremely rarely during one round of stabi-
lizer readout. The dominant error processes are the ones that
change the syndrome [103]. In the single-shot readout limit,
Eq. (A18), all stabilizers are read out rapidly compared to
the time scale of these errors. Using the same argument as
for the single-qubit case, the coherences between eigenspaces
with different syndromes can be adiabatically eliminated from
the dynamics. The observed quantum trajectories then take
the form of classical trajectories in the space of syndromes.
From the point of view of a single stabilizer, say A0, the
observed trajectories are also classical, though the statistics of
the associated quantum jumps are not necessarily described
by a simple random telegraph signal.

APPENDIX B: LARGE DEVIATION THEORY

1. The necessity of large deviation theory

The cumulative log-likelihood ratio lN , Eq. (3), is the
sum of the independent and identically distributed (i.i.d.)
variables λ(Ok ). According to the central-limit theorem,
the distributions P±(lN ) therefore asymptotically converge to
Gaussians. Thus, one might hope to evaluate the cumula-
tive error rates, Eq. (4), using the cumulative distribution
function of a Gaussian distribution. As was first noted by
Cramér, however, this approach produces wildly inaccurate
results [81]. Indeed, according to the Berry-Esseen theo-
rem [104,105], the cumulative distribution function of P±(lN )
converges only polynomially to a Gaussian as N increases.
Meanwhile, the error rates e±,N decrease exponentially with
N . Therefore, the relative accuracy in e±,N explodes as
N → ∞ and the central-limit theorem fails. This problem
is solved with the theory of large deviations summarized
below.

2. Asymptotic large deviations

Let x̄ = (1/N )
∑N−1

k=0 xk be the sample mean of N i.i.d.
variables xk . In its simplest form, the main result of large devi-

ation theory is that the complementary cumulative distribution
function of x̄ asymptotically satisfies [80]

ln P(x̄ > x) ∼ −NI (x), (B1)

where the so-called rate function I (x) is independent of N .
Here, “∼” denotes asymptotic equality as N → ∞. Large de-
viation theory provides an explicit expression for the function
I (x):

I (x) = − inf
s

[K (s) − x s]. (B2)

Here, K (s) is the cumulant-generating function of the distri-
bution P(xk ):

K (s) = ln

[∫
ds P(x) exp(xs)

]
. (B3)

Setting x̄ = lN/N and x = 0 yields asymptotic expressions
for the conditioned cumulative error rates, Eq. (4):

ln e±,N ∼ −C±N. (B4)

Here,

C± = − inf
s∈[0,1]

K±(∓s), (B5)

and

K±(∓s) = ln

[∫
dλP±(λ) exp(∓λs)

]
. (B6)

Note that in Eq. (B5), the infimum occurs in the interval
s ∈ [0, 1]. This is because the cumulant-generating functions
K±(∓s) are convex and vanish at s = 0 and s = 1. Therefore,
the infimum must occur between s = 0 and s = 1. Finally, the
integration variable is changed back to the readout outcome O
by setting λ = ln [P+(O)/P−(O)] in Eq. (B6). This yields

K+(−s) = ln

[∫
dO P+(O)1−sP−(O)s

]
,

K−(+s) = ln

[∫
dO P+(O)sP−(O)1−s

]
.

(B7)

These functions have the same infimum. Therefore, C+ =
C− = C, with C given by Eq. (6).

3. Nonasymptotic corrections

The nonasymptotic corrections to Eq. (B1) are most natu-
rally obtained using a saddle-point expansion of the cumulant-
generating function K (s). It yields an approximate expression
for the complementary cumulative distribution function of a
continuous-valued sample mean x̄ = (1/N )

∑N−1
k=0 xk [88]:

P(x̄ > x) ≈ �(−wN ) + φ(wN )

(
1

uN
− 1

wN

)
. (B8)

Here, �(z) = erfc(−z/
√

2)/2 and φ(z) = exp(−z2/2)/
√

2π

are the standard normal cumulative distribution function and
normal probability density function, respectively, and

wN = sgn(s∗)
√

2N[xs∗ − K (s∗)],

uN = s∗√NK ′′(s∗).
(B9)
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In this expression, s∗ is the same optimum as in Eq. (B2):

s∗ = arginf
s

[K (s) − xs] ⇔ K ′(s∗) = x. (B10)

The condition in Eq. (B10) is known as the saddle-point
equation. Applying the above expressions to the cumulant-
generating functions K±(∓s) of the log-likelihood ratio by
setting x̄ = lN/N and x = 0 gives the conditioned and average
cumulative error rates:

e±,N ≈ eN ± (2s∗ − 1)√
4παCN

exp(−CN ),

eN ≈ 1

2
erfc(

√
CN ) + (α−1/2 − 1)√

4πCN
exp(−CN ).

(B11)

Here,

α = 2s∗2(1 − s∗)2K ′′
−(s∗)

C
. (B12)

The values of s∗ and C = −K−(s∗) are obtained either by
minimizing K−(s) directly in Eq. (B7) or by solving the
saddle-point equation K ′

−(s∗) = 0. In terms of the readout
noise distributions P±(O), the saddle-point equation takes the
form ∫

dO Peff(O)λ(O) = 0, (B13)

where λ(O) = ln [P+(O)/P−(O)] and where the following
effective distribution of outcomes is introduced:

Peff(O) = P+(O)s∗
P−(O)1−s∗∫

dO P+(O)s∗P−(O)1−s∗ . (B14)

Finally, the value of K ′′
−(s∗) is obtained as the second cumu-

lant of the log-likelihood ratio with respect to the effective
distribution:

K ′′
−(s∗) =

∫
dO Peff(O)λ(O)2. (B15)

Note that higher derivatives K (n)
− (s∗) are similarly obtained as

the higher cumulants of λ(O) with respect to Peff(O).

4. Generalized central limit

The Chernoff information is a distance measure between
the two readout noise distributions P±(O). It follows that
P+(O) ≈ P−(O) in the limit C → 0. In that limit, it is con-
venient to rewrite the distributions as

P±(O) = P̄(O)

[
1 ± y(O)

2

]
. (B16)

Here, y is the relative error between the distributions,

y(O) = δP(O)

P̄(O)
, (B17)

and P̄(O) and δP(O) are the average and difference distribu-
tions, respectively,

P̄(O) = P+(O) + P−(O)

2
,

δP(O) = P+(O) − P−(O).
(B18)

The cumulant-generating function K−(s), Eq. (B7), may be
expanded in powers of y. Performing the expansion and min-
imizing K−(s) to leading order, it is found that the leading
contributions to K−(s) and its derivatives at the optimum are

K−(s∗) ≈ −〈y2〉/8,

K ′′
−(s∗) ≈ 〈y2〉,

K (3)
− (s∗) ≈ 〈y3〉,

K (4)
− (s∗) ≈ 〈y4〉 − 3〈y2〉2,

(B19)

where the expectation values are taken with respect to the
average distribution P̄(O). Note that the higher derivatives are
cumulants of the relative error y(O) with respect to P̄(O). In
addition, the parameters α and s∗ are approximately

α ≈ 1 + 1

16
〈y2〉 + 1

48

〈y3〉2

〈y2〉2
− 1

48

〈y4〉
〈y2〉 ,

s∗ ≈ 1

2
+ 1

24

〈y3〉
〈y2〉 .

(B20)

These expressions show that α → 1 and s∗ → 1/2 as C (and
thus y) approach zero. They may be rewritten as

α ≈ 1 + 1

48

[(
K (3)

− (s∗)

K ′′−(s∗)

)2

− K (4)
− (s∗)

K ′′−(s∗)

]
,

s∗ ≈ 1

2
+ 1

24

K (3)
− (s∗)

K ′′−(s∗)
.

(B21)

Therefore, the deviations of α from unity and of s∗ from 1/2
are controlled by the ratio of the higher cumulants to the
second cumulant. This makes it clear that α and s∗ measure
the deviation of the log-likelihood ratio lN from Gaussian
behavior.

APPENDIX C: MONTE CARLO SIMULATIONS

1. Hidden Markov model

The results of Sec. III are obtained by simulating the cu-
mulative readout error rate eN for arbitrary distributions of
analog readout outcomes and in the presence of non-QND
imperfections. In the presence of non-QND imperfections,
the eigenvalue a may change from one repetition to the next.
For Markovian non-QND imperfections in the single-shot
readout regime, the statistics of these transitions are effec-
tively classical (see Appendix A). Therefore, the dynamics
are fully characterized by the probability PaN (aN+1) to tran-
sition to eigenvalue aN+1 given the previous eigenvalue aN

[106]. Moreover, the distribution of analog readout outcomes
PaN (ON ) is now conditioned on the eigenvalue aN realized
in repetition N . In Sec. III C, the common case where the
observable eigenvalue relaxes from ak = +1 to ak+1 = −1 at
rate � is considered. For this relaxation process, the transition
probabilities Pak (ak+1) in a repetition of duration �t are

Pak=+1(ak+1 = +1) ≈ 1 − p, Pak=−1(ak+1 = +1) = 0
Pak=+1(ak+1 = −1) ≈ p, Pak=−1(ak+1 = −1) = 1,

(C1)
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where p = ��t 
 min(C, 1) is the transition probability.
Processes described by the distributions PaN (aN+1) and
PaN (O) define a hidden Markov model [107]. Such models
can be sampled and decoded efficiently as described below.

2. Sampling

A large number M = 106 of independent strings of read-
out outcomes ON = {O0,O1, . . . ,ON−1} is sampled for both
initial eigenvalues a0 = ±1. Each string is sampled with the
following algorithm:

(1) Set the initial eigenvalue a0 and set k = 0;
(2) Repeat the following until k = N :

(a) Sample the readout outcome Ok from the distribu-
tion Pak (Ok );

(b) Sample the next eigenvalue ak+1 according to the
distribution Pak (ak+1);

(c) Increase k by 1.

3. Decoding

Decoding is performed by determining which initial eigen-
value a0 most likely generated the sampled data. As discussed
in Sec. II C, this is done by calculating the log-likelihood ratio

lN = ln
Pa0=+1(ON )

Pa0=−1(ON )
, (C2)

where Pa0 (ON ) are the probabilities of obtaining the string
ON conditioned on the initial eigenvalue a0. The probabil-
ities Pa0 (ON ) are the likelihoods for the eigenvalues a0. If
lN > 0, a0 = +1 is assigned. If lN < 0, a0 = −1 is assigned.
If lN = 0, the value of a0 is assigned at random. If the assigned
value of a0 differs from the true value, an error has occurred.
For each true value a0 = ±1, the number of errors E±,N is
divided by the number of simulations M to yield an estimate
e±,N ≈ E±,N/M of the cumulative error rate. The statistical
uncertainty in that estimate is

δe±,N ≈
√

e±,N (1 − e±,N )

M
. (C3)

Moreover, the statistical uncertainty in the average error rate
eN = (e+,N + e−,N )/2 is

δeN ≈ 1

2

√
δe2

+,N + δe2
−,N . (C4)

4. Calculation of the likelihood

The likelihoods Pa0 (Ok ) can be efficiently calculated for all
substrings Ok , k � N , using the procedure described below.
In what follows, the dependence on a0 is omitted to simplify
notation. The likelihood can be decomposed as

P(Ok ) =
∑

ak

�k (ak ), (C5)

where

�k (ak ) ≡ P(Ok, ak ). (C6)

The advantage of this decomposition is that �k (ak ) can be
calculated iteratively using the theory of hidden Markov mod-
els [13,31–33,60,63,67,72,84,108–110]. Let �k be a column

vector with elements �k (ak ) in the basis {ak = +1, ak = −1}.
This vector obeys the recurrence relation [107]

�k+1 = V k · �k . (C7)

Here, V k is a matrix with elements that depend on Ok:

Vk (ak+1, ak ) = Pak (Ok )Pak (ak+1). (C8)

The probability of the string Ok occurring is then

P(Ok ) = Tr[�k]. (C9)

Here, the trace of a vector is defined as the sum of its el-
ements. Note that the above recurrence automatically yields
the likelihood for all k � N after N iterations. The initial state
is set to �0 = (1, 0)T to calculate the likelihood for a0 = +1
and to �0 = (0, 1)T to calculate the likelihood for a0 = −1. A
numerically stable algorithm to calculate the log-likelihood is
summarized below:

(1) Set p0 = �0 and set k = 0;
(2) Repeat the following until k = N :

(a) Calculate p̃k+1 = Vk · pk;
(b) Calculate Nk+1 = Tr[ p̃k+1];
(c) Update the normalized vector as pk+1 =

p̃k+1/Nk+1;
(d) Update the log-likelihood as ln P(Ok+1) =

ln P(Ok ) + lnNk+1;
(e) Increase k by 1.

This update procedure is the direct classical analog of
Eq. (A1).

APPENDIX D: CALCULATION OF THE
SOFT-DECODING ADVANTAGE

1. Chernoff information for binary readout outcomes

A hard-decoding strategy converts each analog outcome
O to binary outcomes ± in each repetition. The conditioned
probabilities for the binary outcomes are

P+(+) = 1 − ε+, P−(+) = ε−,

P+(−) = ε+, P−(−) = 1 − ε−.
(D1)

Here, the ε± are the conditioned single-repetition error rates
defined in Eq. (2). The Chernoff information Cb for binary out-
comes is then obtained by substituting Eq. (D1) into Eq. (6).
The optimization over s can be performed exactly. The result
is

Cb = − ln[(1 − ε+)s∗
ε1−s∗
− + εs∗

+ (1 − ε−)1−s∗
], (D2)

where

s∗ =
ln

[ (1−ε− )
ε−

ln( 1−ε−
ε+ )

ln( 1−ε+
ε− )

]
ln

[ (1−ε+ )(1−ε− )
ε+ε−

] ,

1 − s∗ =
ln

[ (1−ε+ )
ε+

ln( 1−ε+
ε− )

ln( 1−ε−
ε+ )

]
ln

[ (1−ε+ )(1−ε− )
ε+ε−

] .

(D3)
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Simple expressions for Cb can be obtained in two limits of
practical relevance. When ε± → 0, Eq. (D3) takes the form

s∗ ∼ ln(ε−1
− )

ln(ε−1
+ ) + ln(ε−1

− )
,

1 − s∗ ∼ ln(ε−1
+ )

ln(ε−1
+ ) + ln(ε−1

− )
.

(D4)

Substituting these expressions back into Eq. (D2) gives
Eq. (13). Another case of interest is the symmetric case,
ε+ = ε− = ε. In this case, s∗ = 1/2 and Eq. (D2) reduces to

Cb = ln

[
1√

4ε(1 − ε)

]
. (D5)

2. Soft-decoding advantage for Gaussian noise

The Chernoff information for Gaussian noise is obtained
by substituting Eq. (14) into Eq. (6). By symmetry of the
distributions, the infimum occurs at s∗ = 1/2. Performing the
Gaussian integral yields

C = r

2
. (D6)

Next suppose that the analog outcomes are binarized in each
repetition. By symmetry, it is clear that ε+ = ε− = ε. The av-
erage single-repetition error rate for Gaussian noise is simply

εG =
∫ 0

−∞
dO P+(O)

=
∫ ∞

0
dO P−(O) = 1

2
erfc

(√
r

2

)
.

(D7)

The Chernoff information for binary outcomes, Eq. (D5), is
then

Cb = ln

[
1√

4εG(1 − εG)

]
. (D8)

Expanding this expression in the two extreme limits r 
 1
and r  1 gives

Cb =
{ r

π
− (

π−3
3π2

)
r2 + O(r3) for r 
 1,

r
4 + 1

4 ln
(

πr
8

) + O
(

1
r

)
for r  1.

(D9)

Comparing Eqs. (D6) and (D9) gives the soft-decoding advan-
tage A = C/Cb in both limits:

A =
{

π
2 + (

π−3
6

)
r + O(r2) for r 
 1,

2 − 2
r ln

(
πr
8

) + O
[(

1
r ln r

)2]
for r  1.

(D10)

The expression for r  1 is the one obtained in Ref. [71] by
other means.

3. Soft-decoding advantage for Gaussian noise
with conversion errors

The Chernoff information for Gaussian noise with conver-
sion errors is obtained by substituting Eq. (16) into Eq. (6).
By symmetry of the distributions, the infimum occurs at s∗ =
1/2. Rearranging the integral gives

C = r

2
− ln

[∫ ∞

−∞
dx

e− x2

2√
2π

√
1 + 4η(1 − η) sinh2(

√
rx)

]
.

(D11)

The second term gives a correction to Eq. (D6) due to the finite
rate of conversion errors η. The symmetry of the distributions
also means that ε+ = ε− = ε. The average single-repetition
error rate in the presence of conversion errors is

εη = (1 − η)εG + η(1 − εG), (D12)

where εG = erfc(
√

r/2)/2 as before. The Chernoff informa-
tion for binary outcomes is then obtained from Eq. (D5):

Cb = ln

[
1√

4εη(1 − εη )

]
. (D13)

The soft-decoding advantage A = C/Cb can be calculated
from Eqs. (D11) and (D13) by performing a simple integral.
The result is plotted as a function of εG and η in Fig. 3.
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