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Phase estimation of time-bin qudits by time-resolved single-photon counting
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We present a comprehensive framework for quantum state tomography of time-bin qudits sent through a
fiber. Starting from basic assumptions, we define a positive-operator valued measure which is then applied to
the quantum state reconstruction problem. A realistic scenario is considered where the time uncertainty of the
detector is treated as a source of experimental noise. The performance of the quantum tomography framework is
examined through a series of numerical simulations conducted for different parameters describing the apparatus.
The quality of state recovery, quantified by the notion of minimum fidelity, is depicted on graphs for a range of
fiber lengths. Special attention is paid to relative phase reconstruction for qubits and qutrits. The results present
relevant interdependence between the fiber length and the detector jitter.
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I. INTRODUCTION

In quantum communication there is a demand for methods
which provide complete characterization of quantum sys-
tems. The ability to manipulate well-characterized quantum
resources is essential to encode information and plays a cru-
cial role in quantum computing and cryptography. Since in
general each measurement changes the state, we assume that
the source can reproduce a large number of physical systems
prepared in an identical quantum state. Thus, the problem of
recovering the accurate representation of a quantum system
relies on performing a series of measurements which provide
complete information about the quantum state. This concept
has been the subject of research since 1852, when G. G.
Stokes developed the first technique to determine the polar-
ization state of a light beam from intensity measurements [1].
Contemporary realizations of density-matrix reconstruction
based on polarization measurements were proposed by James
et al. [2,3] and more recently by Bayraktar et al. [4].

For decades there have been different proposals of tomo-
graphic techniques, both theoretical and experimental. Some
quantum state tomography (QST) methods aim to provide an
explicit formula for an unknown density matrix based on data
accessible from an experiment [5–7]. However due to mea-
surement imperfections, such approaches suffer from the risk
of obtaining a matrix which does not belong to the state set
and cannot describe a physical system. For this reason, in this
article we follow numerical methods of state estimation which
allow us to determine the density matrix which fits optimally
to the experimental data. More specifically, we employ the
maximum-likelihood estimation (MLE) [8] and the method of
least squares (LS method) [9]. Both approaches to QST have
been commonly used to solve a variety of research problems,
see, e.g., Refs. [10–14].
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Quantum information can be encoded in photons by ex-
ploiting different degrees of freedom, especially polarization,
spectral, spatial, and temporal modes. In this article, we fol-
low the time-bin approach to quantum information encoding.
Thus, for us a qubit is implemented by a photon delocalized
in two wave packets separated in time. Initially, the concept
of using temporal superposition of single photons was in-
troduced in the context of Bell inequalities violation [15].
Later, it was proposed as a resource for quantum commu-
nication [16,17]. Recent experiments [18,19], which utilize
time-bin encoded photons from a spontaneous parametric
down-conversion source, have demonstrated practical realiza-
tions of quantum information processing. Time-bin encoding
allows one to overcome the problem of polarization-mode
dispersion, which affects polarization-encoded information.
For this reason, the methods which facilitate the conversion of
qubits between polarization and time-bin encoding are gain-
ing in popularity [20]. Since time-domain encoding is more
resistant to thermal and mechanical disturbances, it has been
successfully applied to long-distance quantum key distribu-
tion (QKD) [21–23] and quantum teleportation [24–26].

In this article, we combine the technique of time-bin en-
coding with the methods of QST. Section II presents the
necessary theory, which was originally presented in Ref. [14].
Starting from the definition of a qubit encoded in the time
domain, we can describe its dynamics when it travels through
a fiber. Then, we define time-dependent measurement oper-
ators by employing the Heisenberg representation. Such a
dynamic approach to quantum measurement can be applied to
different types of quantum evolution in order to enhance QST,
cf. Refs. [27,28]. The scenario is made real by imposing a de-
tector timing jitter on the measured photon counts. Detection
uncertainty is considered a limiting factor in quantum state
engineering and, for this reason, theoretical models describ-
ing its formalism have been recently proposed [29,30]. The
assumption that the timing uncertainty is the source of exper-
imental noise differentiates the present work from Ref. [14],
where the measured photon counts were distorted by Poisson
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noise. In addition, contrary to Ref. [14], here we focus on
performing QST with the minimal number of measurements.

The main results are introduced in Sec. III, which consists
of four parts. First, we precisely describe the framework and
provide all assumptions. Next, we define two figures of merit
which can be used to evaluate the quality of QST. Equipped
with this background, we perform numerical simulations and
discuss the efficiency of state reconstruction for qubits and
qutrits, taking into account different values of experimental
parameters. Two kinds of problems are distinguished—the
complete QST and the recovery of relative phase factors. The
analysis is a follow-up of the works reported in Ref. [14].
In the present work, we evaluate the efficiency of the tomo-
graphic technique for a wide range of parameters and the
results are plotted on graphs. This work leads to valuable
conclusions which indicate a potential for future experimental
applications.

II. ENCODING AND MEASURING A SINGLE
QUBIT IN THE TEMPORAL MODE

In the time-domain approach to quantum information en-
coding, a single qubit can be defined as a photon delocalized
in two wave packets separated in time by an interval τ . To
characterize measurement, we study the propagation of a
time-bin qubit through a fiber. Its state changes with respect
to the length of the fiber L and a dispersion parameter β [31].

Then, we utilize the Born rule to get the probability density
of photon detection at time t . The probability density can be
associated with a measurement operator defined in the time
domain:

M̂(t ) = μ(t ) |ψM (t )〉 〈ψM (t )| , (1)

where μ(t ) can be interpreted as the weight relating to the nor-
malized state |ψM (t )〉 [14]. The measurement operator defined
in Eq. (1) can be considered a continuous positive-operator
valued measure (POVM).

In a realistic scenario, the measured probabilities are dis-
torted by noise and errors. For that reason, we take into
account the detector’s timing uncertainty, which may have a
great impact on the accuracy of measurement in the case of
time-bin photons. Thus, we consider measurement operators
influenced by the detector jitter which are constructed as

M̂D(t ) =
∫

M̂(t ′)qD(t − t ′)dt ′, (2)

where qD(t ) is a Gaussian function describing detection un-
certainty, i.e.,

qD(t ) =
exp

( − t2

2σ 2
D

)
√

2πσ 2
D

, (3)

and σD stands for the timing jitter. This parameter plays a
crucial role in our framework. In the case of superconducting
nanowire single-photon detectors (SNSPDs), the timing jitter
is around 25 ps [32,33] and, for state-of-the-art detectors, it
can reach even 1 ps [34].

In the same way, one can define qutrits (then qudits) in the
time domain and describe the probability distribution of pho-
ton detection by means of the operators corresponding both

to the ideal circumstances (no jitter) and the realistic scenario
which includes the timing jitter [14]. Since the measurements
have a solid algebraic representation, it is justified to apply
these operators in QST.

III. QUANTUM STATE TOMOGRAPHY

A. Methods

One can implement QST methods to reconstruct the initial
state of the photon by making measurements on many copies
of the system. For an unknown density matrix ρ, we utilize the
Cholesky decomposition, which ensures that the reconstructed
matrix belongs to the state set [2,3]:

ρ = W †W

Tr{W †W } , (4)

where W denotes a lower triangular complex matrix which
depends on a set of real parameters W = (w1,w2, . . . ). The
set W consists of four elements in the case of qubits and
nine for qutrits. Thanks to this factorization, the problem of
recovering an unknown state can be formulated in terms of
estimation of the parameters W . Numerical methods can be
applied to determine the optimal reconstruction for a given set
of data. In our article, we implement MLE and the LS method
to characterize an unknown quantum state. Both techniques
can be compared in terms of their efficiency [35].

The measurement operators revised in the previous section
can be used as a source of data for density-matrix reconstruc-
tion since they are an approximate POVM. Mathematically,
we follow the Born rule to describe the probabilities of single-
photon detection. When a measurement is repeated for N
photons, then from the experiment we can obtain the values
of the photon count. Noise and errors are inherent in any kind
of measurement and, for this reason, we need methods that
produce adequate estimates of quantum states. In this article,
we assume that the errors attributed to our measurement re-
sults are brought about by the detector jitter.

By nE
k we denote the expected photon count delivered

by the kth measurement operators, whereas nM
k refers to the

photon count actually measured. The first figure can be com-
puted by following the Born rule with the operators from
Eq. (1), i.e.,

nE
k = NTr{M̂(tk )ρ}. (5)

In our scenario, the measured photon count is distorted due
to the detector jitter. Therefore, the formula for nM

k can be
written as

nM
k = NTr{M̂D(tk )ρ}. (6)

By using the formula for the measurement operator includ-
ing jitter we can model an imperfect scenario and simulate
a set of experimental results distorted by the detector uncer-
tainty. The simulated data is used to estimate an unknown
quantum state based on MLE and the LS method. In the case
of MLE, we apply the likelihood function L in the form [36]

L(W ) =
∑

k

[(
nM

k − nE
k

)2

nE
k

+ ln nE
k

]
. (7)
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The goal of MLE is to determine the parameters W which
minimize the likelihood function. When it comes to LS, we
follow the standard approach which allows us to approximate
the solution by minimizing the sum of the squares of differ-
ences between the measured and expected photon counts.

As to compare the present work with that of Ref. [14],
it should be stressed that the photon counts (5) and (6) are
defined by means of different measurement operators. In
Ref. [14], both photon counts involved M̂D(t ) since the goal
was to evaluate the performance of these imperfect operators
in QST. However, the number of photons was distorted by
the Poisson noise. In the current analysis, we assume that the
number of photons per measurement is sufficiently large and
the Poisson noise is negligible (thus, we have the same symbol
N in nE

k and nM
k ).

Since the measurement operators are defined in the time
domain, one needs to select a finite set of time instants,
generating different operators. The moments have to cover
a relevant range which corresponds to the weights μ(t ) such
that the measurements can be considered informative for state
reconstruction. Natural questions concern the number of op-
erators and the width of the time interval.

In QST, there is a strong tendency to search for methods
which allow one to reduce the number of distinct measure-
ments required for state recovery. For this reason, the first part
of the research involved determining the optimal number of
measurement operators. To do so, an initial number of opera-
tors was gradually reduced while the quality of state recovery
was intently observed. It turned out that we can descend to 13
operators without damaging the quality of quantum tomogra-
phy. In Ref. [14], QST was performed with 26 measurement
operators, which implies that we have reduced this number
by 50%.

Therefore, hereafter in the study, each QST result is based
on 13 measurement operators. However, one needs to bear in
mind that a light pulse spreads when it travels through a fiber.
For this reason, the width of the time interval has to increase
along with the length of the fiber. By a proper adjustment
one can ensure that the time domain corresponds with the
spectrum of the light pulse.

B. Performance analysis

In any realistic QST scheme, the reconstructed state ρout

differs from the input state ρin. It happens because the mea-
surement results are always burdened with errors and noise.
Therefore, we need to evaluate how well one can recover
an unknown density matrix in spite of the detector jitter. To
quantify the accuracy of our QST scheme, we introduce two
figures of merit: the minimum fidelity and the maximum trace
distance.

If one wants to compare the output state ρout with the
input state ρin, one can calculate the quantum fidelity from
the formula [37,38]

F (ρout, ρin ) = (Tr
√√

ρoutρin
√

ρout )
2. (8)

This figure is commonly used to describe how close the es-
timated state is to the actual state, see, e.g., Refs. [39–41].
Such a quantity can also be applied to test the efficiency of

the quantum tomography framework in the case of simulated
measurement results, see, e.g., Refs. [42,43].

For a given measurement scheme, the value of quantum
fidelity depends on the state ρin introduced into the algorithm.
However, we would like to have a single figure to evaluate the
accuracy of our QST framework. Thus, we need to consider
a discrete subset of input states, denoted by S , which is a
representative sample of the state set. For each input state ρin,
we first generate the expected and measured photon counts (5)
and (6). Then, we apply the quantum state estimation methods
(MLE and LS) to recover the state. Finally, we compare the
reconstructed state ρout with the input ρin in terms of the
quantum fidelity (8). Since the work is based on numerical
simulations, for each input state we obtain the fidelity, which
describes how accurately it can be recovered by the frame-
work. Ultimately, we define the minimum fidelity as the lowest
value for the considered set:

Fmin := min
ρin∈S

F (ρin, ρout ), (9)

where S refers to the set of input states (the sample).
The other figure of merit is based on the trace distance

between quantum states [44]:

D(ρout, ρin ) = 1
2 Tr|ρout − ρin|, (10)

where we follow standard notation |A| ≡ (A∗A)1/2. Here, in
order to describe the quality of our scheme, we search for the
maximum value of the trace distance within the same set of
input states, i.e.,

Dmax := max
ρin∈S

D(ρout, ρin ). (11)

The definitions of the minimum fidelity and the maximum
trace distance mean that we want to determine the worst-case
performance of our quantum tomography scheme over the
sample of states. Such quantities can be useful to discuss the
effectiveness of our POVM in quantum state reconstruction.
Both figures of merit provide bounds on closeness of input and
output quantum states. The minimum fidelity has been used to
discuss the performance of state reconstruction in the scenario
with imperfect measurements [45] as well as to measure the
distortion of quantum states caused by a noisy channel [46].

The quality of state reconstruction depends on the param-
eters describing our experimental setup. We shall treat two
parameters as variables—detector jitter σD and length of the
fiber L. For quantum tomography of both qubits and qutrits,
we initially consider six combinations of the parameters and
calculate the figures of merit which are a starting point for
further analysis.

C. Quantum tomography of qubits

In the case of qubits, the figures of merit have been gath-
ered in Table I. One can observe that if we assume that the
scenario is perfect, i.e., there is no noise due to the jitter, then
one can flawlessly reconstruct the initial state. This observa-
tion is rather intuitive since, for σD = 0 ps, the detector does
not introduce any uncertainty into the measurements.

For L = 200 m one can notice that, when the timing jitter
increases, the state reconstruction gets less accurate since the
noise associated with the jitter distorts the measured counts
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TABLE I. Minimum fidelity and maximum trace distance in
quantum tomography of qubits. Figures computed numerically for
different values of experimental parameters. The results were ob-
tained after minimization over a sample of 9261 qubits.

L

200 m 500 m

σD Fmin Dmax Fmin Dmax

0 ps LS 1 ≈10−6 1 ≈10−6

0 ps MLE 1 ≈10−6 1 ≈10−6

1 ps LS 0.7803 0.2222 0.9542 0.0459
1 ps MLE 0.7744 0.2259 0.9532 0.0472
4 ps LS 0.4456 0.5544 0.6152 0.3849
4 ps MLE 0.4844 0.5156 0.6105 0.3909

more significantly. We observe that the maximum trace dis-
tance grows along with the timing jitter, whereas the minimum
fidelity declines. Interestingly, both QST methods lead to very
similar results.

The most interesting conclusion can be made if we com-
pare the results for different lengths of the fiber. Both figures
of merit change significantly if, for a nonzero jitter, we sub-
stitute the length L = 200 m for L = 500 m. One can observe
that the quality of state reconstruction improves if we consider
the longer fiber. In particular, for σD = 1 ps we can achieve a
great deal of enhancement. This value of the detector jitter
is experimentally achievable [34] and, therefore, these figures
seem to have potential for future applications. This outcome
suggests that the length of the fiber can be used to overcome
the noise caused by the detector jitter.

To analyze in detail the relation between the length of
the fiber and the quality of state reconstruction, we need to
consider the minimum fidelity as a function of L. In Fig. 1,
one can see the results obtained for σD = 1 ps with L ranging
from 50 to 3000 m by both QST methods (with step 100 m).

The results in Fig. 1 allow one to observe that the function
Fmin(L) for QST for complete state tomography is composed
of three segments. First, Fmin(L) increases along with the

FIG. 1. Plots of Fmin(L) for complete state tomography and
phase reconstruction of qubits by both QST methods. Detector jitter
is fixed σD = 1 ps.

FIG. 2. Plots of Fmin(L) for phase estimation of qubits performed
by MLE in the case of σD = 1 ps (red), σD = 4 ps (blue), and σD =
25 ps (yellow). Fiber lengths are arranged in a logarithmic scale.

length of the fiber. Approximately for L = 1000 m the func-
tion reaches its maximum value ≈0.99 (according to both
QST methods) and then remains roughly constant up to L =
2000 m (LS method) or L = 2300 m (MLE), when it starts to
decline. One can observe that the performance of LS method
degenerates more rapidly than in the case of MLE. For L =
3000 m, the minimum fidelity by the LS method is close to
zero, whereas in the case of MLE it is approximately 1/3.

The declining character of Fmin(L) is associated with the
fact that, for longer fibers, quantum states corresponding to
the measurement operators M̂(t ) approach the equator of the
Bloch sphere, which was shown in Ref. [14]. However, within
the Bloch ball there is a subset of quantum states which ap-
pears to be more resistant to this deterioration of the POVM’s
quality. As a special case, we consider a one-parameter family
of input states given by

ρin(φ) = 1

2

(
1 e−iφ

eiφ 1

)
. (12)

The input states of this form lie on the equator of the Bloch
sphere and differ only in the relative phase φ. However, when
recovering the quantum state of the system, we assume that
there is no a priori knowledge about the state, which means
that we still follow the formula given in Eq. (4) for ρout and
estimate all four parameters characterizing a qubit density ma-
trix. The graphs of Fmin(L) for input states given by Eq. (12)
are also depicted in Fig. 1 by different colors [each value of
Fmin(L) was computed after minimization over a sample of
201 input states parametrized as in Eq. (12)].

It turns out that when we admit only the states from the
equator of the Bloch sphere, Fmin(L) increases asymptotically
to 1 and then the quality of state reconstruction remains stable.
The simulations have been carried on until L = 1000 km and
no deterioration was found out.

The quality of phase estimation can also be studied for
other values of the timing jitter. Since σD = 1 ps corresponds
with state-of-the-art technology, it would be desirable to in-
vestigate and compare how efficiently one can recover the
relative phase with less sophisticated devices. In Fig. 2, one
can find the plots of Fmin(L) in phase estimation for σD = 1

042402-4



PHASE ESTIMATION OF TIME-BIN QUDITS BY … PHYSICAL REVIEW A 103, 042402 (2021)

ps and two larger values of the detector jitter. We restrict the
analysis only to MLE because there is no substantial differ-
ence between both tomographic techniques as far as the phase
estimation is concerned.

For both larger values of the detector jitter, one can notice
that the quality of phase estimation is steadily rising towards
1. If σD = 25 ps, then Fmin(L) exceeds 0.9 when L = 104 m.
On average, one obtains better quality of phase estimation if
σD = 4 ps, which is not a surprise. However, the three func-
tions converge for greater lengths of the fiber. To conclude,
one may say that even for a realistic timing jitter the QST
framework is still effective when it comes to the relative phase
estimation provided one employs a fiber of sufficient length.

However, for some applications, it would be necessary to
bear in mind that increasing the length of the fiber implies
a boost of the attenuation, which involves a greater loss of
photons and statistical uncertainty connected with measure-
ments. In practice, one would need to possess a source of
sufficient power to transmit photons over long distances. For
a longer fiber, the power of the source should be turned up to
compensate for the loss of photons due to greater attenuation.
This is assumed in the present work since we consider the
average number of photons per measurement as constant. Al-
ternatively, it would be required to take into account the errors
that may occur if the number of photons reaching the detectors
drops down. In any case, before experimental applications
an optimal balance between the gains and losses should be
determined.

In Fig. 2, one can notice that the shape of the function cor-
responding to σD = 4 ps appears intriguing. For fiber lengths
such that 100 m < L < 325 m, the function Fmin(L) takes
constant values, equal ≈0.5. This particular property can be
explained by visualizing the measurement operators Eq. (2)
in the Bloch ball of Fig. 3. One can observe that, for lengths
belonging to the interval in question, the measurement oper-
ators arrange along a vertical line between the poles of the
Bloch sphere. This proves that phase estimation, which is
conducted for the states lying on the equator of the sphere,
leads to the fidelity close to 0.5. When the fiber length is
increased, the representation of measurement operators in
Fig. 3 gets inflated, which leads to better quality of phase
estimation.

D. Qutrits

For qutrits the initial figures of merit have been gathered in
Table II. One can instantly notice that if we consider the ideal
scenario (σD = 0 ps), the quantum tomography scheme does
not lead to the perfect state recovery. Interestingly, even if
there is no jitter we again observe an increase in the minimum
fidelity provided we shift to the longer fiber.

The most interesting results have been obtained for σD = 1
ps. Here we can observe the same kind of tendency as for
qubits—the quality of state reconstruction improves signif-
icantly if we consider the longer fiber. In particular, if L =
500 m the state recovery based on the MLE appears to be very
effective since the minimum fidelity equals 0.9009, which is
even more than in the scenario without any detector jitter.

FIG. 3. Graphical representation of the measurement operators
in the Bloch ball for different values of the fiber length. The color
in the temperature mapping represents the probability density of the
measurement, i.e., μ(t ) of the respective POVM element, where the
most probable measurements are colored with red [the highest μ(t )].
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TABLE II. Minimum fidelity and maximum trace distance in
quantum tomography of qutrits. Figures computed numerically for
different values of experimental parameters. The results were ob-
tained after minimization over a sample of 9261 qutrits.

L
200 m 500 m

σD Fmin Dmax Fmin Dmax

0 ps LS 0.8058 0.2859 0.9180 0.1159
0 ps MLE 0.8149 0.2923 0.8865 0.1387
1 ps LS 0.4817 0.7084 0.8490 0.1548
1 ps MLE 0.4824 0.7077 0.9009 0.2250
4 ps LS 0.2267 0.8600 0.2674 0.8246
4 ps MLE 0.1632 0.9018 0.2393 0.8351

Both QST methods appear to have trouble recovering an
unknown density matrix for σD = 4 ps. The figures of merit
are weak for L = 200 m and they only slightly improve if we
use the longer fiber. Compared with qubits, one can conclude
that in the case of qutrits the timing jitter has a more detrimen-
tal impact on the quality of quantum state reconstruction.

In the case of qutrits, for any value of the detector jitter
one gets better minimum fidelity for the longer fiber, although
the extent of the enhancement differs. Since for σD = 1 ps the
scale of improvement is the greatest, we shall thoroughly in-
vestigate this instance. In Fig. 4 there are the plots of Fmin(L)
for QST of qutrits (blue dots). Each point was obtained after
minimization over a sample of 9261 qutrits.

One can notice that, as far as the LS method is concerned,
the minimum fidelity first increases along with the length of
the fiber, then for any length such that 300 m � L � 1800 m
we have 0.8 < Fmin(L) < 0.9, which means that the quality of
state reconstruction remains roughly stable for this spectrum
of lengths. There is no clear maximum within this range.
When L exceeds 1800 m the minimum fidelity quickly de-
clines and around L ≈ 2000 m drops below 0.5.

The plot of Fmin(L) by MLE presents very similar prop-
erties, although for two values of L, i.e., L = 500 m and
L = 550 m, the minimum fidelity exceeds 0.9. The minimum

FIG. 4. Plots of Fmin(L) for complete state tomography and
phase reconstruction of qutrits by both QST methods. Detector jitter
is fixed σD = 1 ps.

fidelity exceeds 0.8 up to L = 2000 m, when it starts to grad-
ually decline towards zero.

Just as in the case of qubits, one may consider a specific
subset of input qutrits which differ only in terms of the relative
phase factors. If we denote by φ12 the relative phase between
the states |1〉 and |2〉, then analogously we introduce φ13

(global phase is omitted), we shall consider qutrits of the form:

ρin(φ12, φ13) = 1

3

⎛
⎝ 1 e−iφ12 e−iφ13

eiφ12 1 ei(φ12−φ13 )

eiφ13 ei(φ13−φ12 ) 1

⎞
⎠. (13)

Then, the input states are generated for a range of different
values of the relative phases (a sample of 1681 input qutrits
was considered in simulations). Each input state was recon-
structed, assuming no a priori knowledge about the density
matrix (i.e., we estimated the values of all nine parameters
which characterize the density matrix of a qutrit). The results
for phase reconstruction of qutrits are presented as the red dots
in Fig. 4.

One can notice that the minimum fidelity for phase recon-
struction of qutrits grows along with the length of the fiber,
exceeds the value of Fmin(L) for the complete state tomogra-
phy and then asymptotically approaches 1. The simulations
have been carried on and the quality of phase estimation
remains stable. This proves that phase recovery can be per-
formed effectively even if we apply longer fibers.

When it comes to qutrits, one can also test whether the
phase estimation is feasible within the abilities of current
technology. We consider two higher values of the detector
jitter: σD = 4 ps and σD = 25 ps, and compare the corre-
sponding functions with σD = 1 ps. For such parameters, we
perform phase estimation by our time-resolved measurement.
The results are presented in Fig. 5.

One can notice that, for σD = 25 ps, the quality of phase
estimation remains very poor up to L = 104 m, when Fmin(L)
starts to grow rapidly to reach the value ≈1 for L = 106 m.
This means that even a realistic timing jitter can be compen-
sated for by a sufficiently long fiber. If we consider σD = 4 ps,

FIG. 5. Plots of Fmin(L) for phase estimation of qutrits per-
formed by MLE in the case of σD = 1 ps (red), σD = 4 ps (blue),
and σD = 25 ps (yellow). Fiber lengths are arranged in a logarithmic
scale.
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then on average we obtain better quality of phase estimation,
but both functions converge at L = 106 m.

Generally, compared with qubits, it can be said that for
three-level systems the framework is less efficient regarding
the complete state tomography, but still by a proper choice
of the fiber length one can ensure that the minimum fidelity
shall come approximately to 0.9. On the other hand, phase
estimation of qutrits appears to be as effective as in the case
of qubits but for higher values of the timing jitter one needs to
consider longer fibers to compensate for the noise caused by
the detector.

IV. SUMMARY AND OUTLOOK

We have introduced a QST framework based on measure-
ment operators defined in the time domain. In our scenario, the
measured photon counts are distorted by the detector timing
jitter which is a major source of errors in time-bin encoding.
By the proper selection of the figures of merit we could eval-
uate the performance of the tomographic technique. As the
main result, we have presented and discussed the minimum
fidelity as a function of the length of the fiber. The results

contribute to the area of quantum state estimation since we
have indicated the optimal conditions for density-matrix re-
construction.

In particular, we have demonstrated that phase recovery is
feasible by our tomographic technique for both qubits and
qutrits. Even if we assume realistic values of the detector
jitter, we can perform high-quality phase estimation with the
time-resolved single-photon counting. Therefore, the method
is in accordance with current technological capabilities. In the
future, the framework shall be tested on multilevel systems
and applied in experiments.
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