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Nonclassicality of bright Greenberger-Horne-Zeilinger–like radiation of an optical
parametric source
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With the emerging possibility to obtain emissions of triples of Greenberger-Horne-Zeilinger–entangled pho-
tons via direct parametric generation, we study here bright emissions of this kind which involve higher-order
emissions of two triples, three triples, etc. Such states would constitute a natural generalization of the four-mode
(two beams plus polarization) squeezed vacuum. We show how to avoid technical difficulties related to straight-
ahead generalization of the usual approximate description of parametric down-conversion which uses a classical
pump field. Using Padé approximation, we turn the first terms of the nonconverging perturbation expansion
into elements of a converging series. This allows us to study nonclassicality of the new bright generalized
Greenberger-Horne-Zeilinger states. We present both violations of local realism by such a radiation and simple
entanglement indicators tailored for this case.
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I. INTRODUCTION

Multiphoton interferometry is extensively studied and used
in the context of revealing nonclassical phenomena [1]. Para-
metric down-conversion (PDC) is a robust source of entangled
photon pairs (for early trailblazing steps see [2]) and with
the use of special techniques can be used to observe cor-
relations characteristic of three- and four-photon entangled
states [3–6] and cluster and Dicke states [7–9]. These states
find use in demonstrating paradoxical predictions of quantum
mechanics and are observable in laboratories and in exper-
imental applications of quantum information theory [10],
quantum metrology [11], cryptography, communication pro-
tocols [12,13], imaging [14], and related research. Thus,
nowadays, PDC is considered a versatile tool that can be
employed to demonstrate nonclassicality or quantum commu-
nication protocols, etc., with quantum optics.

All that we mentioned above is related to techniques and
observations related to phenomena due to emissions of a suit-
able fixed numbers of pairs of PDC photons. Still “bright”
states of undefined photon number of pairs, e.g., bright
squeezed states of light [15], which can be produced via PDC
for higher pump powers [16] and involve induced emission
of multiple pairs, also exhibit nonclassical properties (see,
e.g., [17–19]) and can be used to demonstrate, e.g., Einstein-
Podolsky-Rosen-Bell nonclassicality.

An emblematic example of nonclassical light of undefined
photon number is a 2 × 2 mode bright squeezed vacuum gen-
erated via type-II parametric down-conversion which exhibits
Einstein-Podolsky-Rosen–like (EPR-like) anticorrelations of
Stokes observables for the two beams [20]. Its singletlike form
gives the invariance of polarization effects under any pair of
identical unitary transformations of polarization performed
on both subsystems. Thus, it is commonly considered a

generalization of the Bell singlet state, as it shares a lot of
its properties [21].

The following question emerges. As the 2 × 2 mode
squeezed vacuum can be a generalization of the singlet Bell
state, can we have similar analogs for Greenberger-Horne-
Zeilinger (GHZ) states, i.e., states that demonstrate quantum
features of the GHZ state for qubits and simultaneously have
an undefined photon number? Can they be obtained via a
suitable PDC process? A parametric process which produces
photon correlations in three beams via emissions of triples is
well defined quantum optically [22] and hence can be achiev-
able in the laboratory. Several experimental attempts to obtain
three-photon down-conversion were performed successfully
[23–25]. Yet nonlinear crystals are not the only possible tool
to obtain such states. In [26] the authors report an observation
of three-photon parametric down-conversion in a supercon-
ducting parametric cavity.

As the process is becoming experimentally feasible, it is
high time to give it an effective theoretical description and see
what types of nonclassicality we can expect. It was shown in
[27] that a straightforward generalization of the usual approx-
imate description of PDC processes to three-photon emissions
is impossible. The source of the problem is the paramet-
ric approximation in which emitted photons are treated in a
quantum optical way, while the pump field is approximated
by the classical wave. This approximation works perfectly
fine for two-photon down-conversion, but its generalization
to three- (or more) photon processes is impossible. One must
describe the pump field as a quantum one [28]; for a specific
application of this method see [29]. One may be tempted to
think that the description of the pump in the form of a coherent
state is the one avoiding approximations and that it takes into
account its depletion due to the emission of the photon triples.
But that is not so. The description is an approximation because
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we take into account only emissions into three phase-matched
directions which we collect. In reality, on the one hand, we
have emissions into other phase-matched directions, and the
depletion is much higher. Also other loss processes contribute.
On the other hand, to observe a reasonable count of the triples
the pump must be very strong, and its depletion due to emis-
sions of the triples would be negligible with respect to its
intensity.

We present an approximate method of how to avoid math-
ematical difficulties emerging for higher-order parametric
Hamiltonians which still allows a classical approximation of
the pump field. This is done using a form of Padé approxima-
tion: we turn the first terms of the nonconverging perturbation
expansion into elements of a converging series.

The nature of the cubic nonlinearity of the crystal po-
larization is such that only a three-beam emission process
is feasible, i.e., one pump photon splitting into three down-
converted photons. Thus, we show specific results and figures
only for the three-beam case. However, we discuss also cur-
rently infeasible higher-order processes (requiring even higher
nonlinearities and thus most likely out of experimental reach).
The aim of this exercise is to test our approximation method
in even more demanding situations.

We construct entanglement indicators and Mermin-GHZ
Bell inequalities which allow us to reveal the GHZ-like
properties of the radiation and give our estimates of critical
(maximal) values of the pump parameters, which allow us to
see entanglement or violate the inequalities.

II. BRIGHT GHZ STATES

In the famous EPR paper [30], the authors described a
thought experiment which, in their opinion, pointed out the
incompleteness of quantum mechanics. In Bohm’s version of
the EPR experiment, a particle of spin 0 decays into two 1

2
spin particles in the singlet state that are sent in opposite
directions [31]. The particles are correlated in such a way that
after performing a spin-component measurement on the first
particle one can predict with certainty the result of a mea-
surement of the same spin component of the second particle;
that is, we are able to predict the result of a remote identical
measurement without performing the actual measurement on
the other particle. Thus, following EPR, such a result must
be an “element of physical reality.” As “elements of reality”
are not present in the quantum-mechanical description, EPR
concluded that quantum theory is not complete [30]. Such was
the birth of local realism.

However, in 1964 Bell showed that it is impossible to
construct a local realistic [local hidden variable (LHV)] model
that would explain all possible correlations between two such
spins and would agree with statistical predictions of quantum
mechanics for measurements of arbitrary pairs of spin compo-
nents. In 1989 Greenberger, Horne, and Zeilinger showed that
for three or four spins one could directly show that the concept
of “elements of reality” is at odds with quantum predictions
[32].

With emerging bright parametric sources of three-beam
entanglement, one should check to what extent the highly
nonclassical properties of GHZ states are also shared with
their “bright” versions.

A. Pitfalls of the parametric approximation (classical pump)

Here, we shall study the technicalities concerning the the-
oretical description of the multiphoton GHZ-like state (bright
GHZ) of n beams of light which is a kind of n-beam general-
ization of the 2 × 2 mode squeezed vacuum. We assume that
each beam has two orthogonal polarization modes, but equiv-
alently, one can imagine that there are n pairs of beams, with
each pair directed to a different observer who is equipped with
a Mach-Zehnder interferometer, into which the local beams
enter (each via a different entry port). Such an interferometer
is capable of performing any U(2) transformation of the pair
of modes, and thus, it is endowed with the power to show the
same type of interference effects as a universal polarization
beam splitter. Thus, we shall use the “polarization picture”
throughout just for the simplicity of presentation. However,
we do not suggest here that the polarization version of the
experiment would be more feasible (as a matter of fact, it
seems less feasible due to the complicated phase matching
required for such a case, whereas the two-beams-per-observer
situation is much clearer).

Let us introduce the following notation:

Â†
n =

n∏
X=1

â†
X , (1)

B̂†
n =

n∏
X=1

b̂†
X , (2)

where a†
X and b†

X are creation operators for two orthogonal
polarization modes of the X th party’s beam.

The parametric approximation in which the “pump” is
described as a classical field [5,18,33] leads to the following
Hamiltonian:

Ĥn = γ (Â†
n + B̂†

n) + H.c., (3)

where γ is an effective coupling with the classical pumping
field. Parametric approximation is simple, very intuitive, and
widely used in the description of a quantum system interact-
ing with intense electromagnetic field [5,15,18]. For n = 2
the unitary transformation with Hamiltonian (3) acting on
a vacuum state produces a 2 × 2 mode squeezed vacuum
state, with perfect correlations for Stokes observables, which
is an analog of the two-qubit Bell state |�+〉 [20]. Still,
like any other approximation, this one also has a range of
applicability that requires investigation in every considered
case. The approximation causes no mathematical problems
in the case of two-photon down-conversion. Still, it is known
that for n > 2 an expression of the form exp[itγ Hn] is not
a well-defined unitary transformation (the expansion series
does not converge) [27,33]. Thus, a straightforward gener-
alization for n > 2 is impossible. Still, one can show that
for the pump treated as a (coherent) quantum field, the fully
quantum Hamiltonian leads to a well-defined evolution. This
approach is way more demanding than the parametric one.
Nevertheless, this is not the only option. The Hamiltonian
(3) can be used with a suitable approximation that allows the
convergence of a perturbation series (for example, see, [22]).
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B. Convergence via Padé method

Our approach is based on two steps. First, we expand eiHnt

acting on the vacuum state. As noted earlier, there are prob-
lems with convergence. To address this problem, we apply
Padé approximants. By combining the two approximations,
we get a convergent formula.

Consider the following Hamiltonian:

HA
n = γ Â†

n + H.c. (4)

For n = 1 the unitary transformation with Hamiltonian (4)
produces a coherent state, and for n = 2 it produces a
two-mode squeezed vacuum. For n = 3 the Hamiltonian (4)
corresponds to the Hamiltonian presented in [26]. Thus, after
time t we seem to have

|�n〉 = eiHA
n t |�〉 =

∞∑
k=0

(i�)k

k!
(Â†

n + Ân)k|�〉, (5)

where � = γ t is the amplification gain. However, formula (5)
for more than two parties is meaningless! The series in (5)
does not converge; that is, the sum of probabilities tends to
infinity instead of 1. Thus, (5) is not a well-defined state. The
vacuum state is not an analytical vector for unitarylike expres-
sion eiHA

n t based on Hamiltonian (4) for n > 2 [27]. However,
the expansion of (5) is only a formal description, which is an
approximate form of the considered state. We shall introduce
an additional, compensatory approximation that allows for its
convergence.

Note that (5) can be set as follows:

|�n〉 =
∞∑

k=0

Cn
k (Â†

n)k|�〉, (6)

where Cn
k are coefficients. We show in the Appendix that Cn

k
can be expanded as follows:

Cn
k =

∞∑
l=0

(i�)n+2l

(k + 2l )!
Pk,n

k+2l , (7)

where Pk,n
l obey the recurrence relation: Pk,n

l = Pk−1,n
l−1 + (k +

1)nPk+1,n
l−1 . Still, the series (7), just like (5), does not converge.

Its infinite sequence of the partial sums does not have a finite
limit. To impose convergence, we use a numerical method of
Padé approximants [34].

Characteristics of an n-mode squeezedlike state with Padé
approximants and convergence of the photon number

Even if a power series does not converge, we can still
derive an alternative convergent approximation. Note that the
reason for nonconvergence is the fact that we treat the pump-
ing field as classical. Thus, we do not have overall energy
conservation in the case of emitted photons. Still, it is obvious
that only the first dozen or so of the expansion terms matter
because the process of emission has a very low probability.
Hence, we shall seek an approximation that is suitable for
such a case. There are many methods that allow one to extract
information from a power series outside of its convergence ra-
dius. One such method, which is extensively used in numerical
calculations, is Padé approximants.

TABLE I. Probability p(k) of observing k single photons emitted
in a coherent state (n = 1), photons pairs from two mode-squeezed
vacuum (n = 2), and triples of photons from three-beam radiation
(n = 3). The range of k is 1–10, and the calculation is performed
for a constant value of amplification gain � = 0.8. For n = 2 ob-
tained values are consistent with theoretical results. Note that the
probability of vacuum increases with n. This is due to the fact that
higher-order states are generated in processes with a higher degree
of nonlinearity. As k increases, the probability starts to increase with
n. The probability of observing k triples of photons for three-beam
radiation is higher than the probability of getting k pairs of photons
for n = 2 for the same � starting from k = 4.

p(k)
k n = 3 n = 2 n = 1

0 0.60 0.55 0.53
1 0.16 0.24 0.34
2 0.074 0.11 0.11
3 0.040 0.048 0.023
4 0.024 0.021 0.0037
5 0.016 0.0093 0.00047
6 0.011 0.0041 5 × 10−5

7 0.0087 0.0018 4.6 × 10−6

8 0.0066 0.0008 3.7 × 10−7

9 0.0052 0.00035 2.6 × 10−8

10 0.0042 0.00016 1.7 × 10−09

Padé approximants are based on the idea of reformulating
power series

∑
cnxn into a limit of a sequence of the ratio

of polynomials. Elements of this sequence have the following
form:

QN
M (x) =

∑N
n=0 Xnxn∑M

m=0 Ymxm
, (8)

where Xn and Ym are such that the first (N + M + 1) terms
of the Taylor series expansion of QN

M (x) match the first (N +
M + 1) terms of

∑
cnxn.

We denote by [N/M] the respective QN
M (x). We use a diago-

nal series of approximants, i.e., [N/N], and the highest degree
of approximants is [40/40] in order to avoid machine epsilon
and other numerical errors.

Still, we must remember that convergence of coefficients
in the Fock space is not sufficient itself. We must also ensure
convergence of the average photon number of the super-
position (6). That convergence will determine the range of
applicability of Padé approximants for our expansion. To test
our method we reconstructed the expansion coefficients for
the n = 1 case, i.e., those for a coherent state and the coef-
ficients for n = 2 that are for a two-mode squeezed vacuum
(generated by PDC; see Table I).

Let us consider the problem of the convergence of the total
photon number. The problem was pointed out in [28]. We shall
define the range of amplification gain for which the expecta-
tion value of the photon number converges. If p(k) converges
faster than

∑∞
k=1

1
k2 from some k, the average photon number

is always finite. For the realistic case of n = 3, the critical
applicable amplification gain is around � = 0.9. Thus, here,
our approximation breaks down, and therefore, the results
for � approaching 0.9 most likely do not describe the real
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FIG. 1. Probability p(k) of observing k triplets of photons for
k = 0, . . . , 5 as a function of the amplification gain �. The prob-
ability of a vacuum event decreases when � increases. Also, all
probabilities approach zero when the number of triples goes to in-
finity: p(k → ∞) → 0. This tendency is typical also for a two-mode
squeezed vacuum.

situation. Figure 1 shows the probabilities p(k) of observing k
triples of photons as a function of the amplification gain �.

III. NONCLASSICAL PROPERTIES OF THREE-PARTY
SIX-MODE BRIGHT GHZ

Applying the results from previous sections, we construct
a GHZ-like state |BGHZ〉 which can be generated with the
use of Hamiltonian (3) for n = 3. Since operators Â3 and B̂3

commute, we have

ei�(Â†
3+Â3+B̂†

3+B̂3 ) = ei�(Â†
3+Â3 )ei�(B̂†

3+B̂3 ). (9)

Thus, we can put the state into the following form:

|BGHZ〉 =
∞∑

k=0

k∑
m=0

C3
k−mC3

m(Â†
3)k−m(B̂†

3)m|�〉, (10)

where C3
Q for Q = k or Q = k − m can be obtained with the

Padé approximants described in previous sections. From (10)
we can see that the state |BGHZ〉 is symmetric under a change
in indices (k − m ↔ m); that is, the amplitudes of probability
for states obtained with the action of operators (Â†

3)q(B̂†
3)p and

(Â†
3)p(B̂†

3)q on the vacuum are equal.
We denote by T̂ the correlation tensor, the elements of

which are given by Ti jk = 〈Ŝ1
i Ŝ2

j Ŝ
3
k 〉, where ŜX

q is the qth nor-
malized Stokes operator for the X th party introduced in [35]
and rediscovered in [36], the form which we use here. For a
general theory of such quantum Stokes operators, see [37].
These operators for the X th party can be represented with

photon number operators for the respective modes as follows:

〈ŜX
q 〉 =

〈
�̂X

(
n̂X

j − n̂X
j⊥

)
(
n̂X

j + n̂X
j⊥

)�̂X

〉
. (11)

In the formula j, j⊥ denote a pair of orthogonal polariza-
tions of one of three mutually unbiased polarization bases
j = 1, 2, 3. Further down, we assign index 1 for polarizations
{45◦,−45◦}, index 2 for {R, L} (circular), and index 3 for
the {H,V } basis. The projector �̂X = 1 − |�X 〉〈�X |, where
|�X 〉 is the vacuum state of the X th party, makes the formula
well defined, as it does not allow zero eigenvalues for the
denominator. The zeroth operator is 〈ŜX

0 〉 = 〈�̂X 〉. The nor-
malized quantum optical Stokes operators (11) allow one to
straightforwardly introduce Bell inequalities for optical fields
based on photon number observables [36,37].

One can show (see the Appendix) that nonvanishing ele-
ments of T̂ are T111 = t and T122 = T212 = T221 = −t , where
t is given by

t =
∞∑

k=1

k∑
m=0

((
C3

k−m−1

)∗(
C3

m+1

)∗ [(k − m)!(m + 1)!]3

k3

+ (
C3

m−1

)∗(
C3

k−m+1

)∗ [m!(k − m + 1)!]3

k3

)
C3

mC3
k−m. (12)

Thus, we have the same set of nonvanishing elements of
the correlation tensor with the same relative signs as for the
three-qubit (spin- 1

2 ) |GHZ〉 state. This observation shows that,
indeed, |BGHZ〉 has the same type of correlations as a three-
qubit state which is a mixture of “white noise” and a |GHZ〉
state.

A. Mermin-GHZ-like Bell inequality violation by |BGHZ〉
We are going to derive the Mermin-like Bell inequality

[38] for three-beam optical fields and local measurements of
(normalized) Stokes parameters. As shown in [36], thus far,
we do not have a Bell inequality which involves standard
Stokes parameters.

Observer X measures the intensity of a light beam using an
analyzer of jth polarization. The outcomes given as intensities
in the presence of local hidden variables λ can be written as
IX

j (λ) and IX
j⊥ (λ). As we want to model the quantum Stokes

parameters, their values are natural numbers [they must agree
with the eigenvalue spectrum of the number operators used in
(11)]. The distribution of λ is denoted ρ(λ).

With the above model for intensities, we introduce local
hidden variables SX

j (λ), which represent the predetermined
values of stokes parameters (11): for IX

j (λ) + IX
j⊥ (λ) 
= 0,

SX
j (λ) = IX

j (λ) − IX
j⊥ (λ)

IX
j (λ) + IX

j⊥ (λ)
, (13)

and if IX
j (λ) + IX

j⊥ (λ) = 0, then SX
j (λ) = 0 see [36].

Consider the following expression:

S1
1 (λ)S2

1 (λ)S3
1 (λ) − S1

1 (λ)S2
2 (λ)S3

2 (λ)

−S1
2 (λ)S2

1 (λ)S3
2 − S1

2 (λ)S2
2 (λ)S3

1 (λ).
(14)
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The values of SX
j (λ) are bounded by ±1. As (14) is linear

with respect to all SX
j (λ), we can find extremal values of (14)

considering only border values, i.e., for which |SX
j (λ)| = 1.

With that, we get the bound of (14) equal to 2. The LHV
averages for terms of (14) are given by

〈
S1

i (λ)S2
j (λ)S3

k (λ)
〉
LHV =

∫
dλρ(λ)S1

i (λ)S2
j (λ)S3

k (λ). (15)

Thus, the following generalization of the Mermin inequality
holds:∣∣〈S1

1 (λ)S2
1 (λ)S3

1 (λ) − S1
1 (λ)S2

2 (λ)S3
2 (λ)

− S1
2 (λ)S2

1 (λ)S3
2 (λ) − S1

2 (λ)S2
2 (λ)S3

1 (λ)
〉
LHV

∣∣ � 2. (16)

In the quantum case, if we straightforwardly calculate
inequality (16) for |BGHZ〉, we see that it is not violated
due to the high probability of vacuum events in |BGHZ〉. To
bypass this problem, we shall modify inequality (16). This
can be done by reformulating observables (13) in such a way
that we can assign the value −1 for the case in which no
light detection occurs (this concept was first introduced in
[36]). The ideas of [39] were our inspiration. For the modi-
fied hidden values, if IX

j (λ) + IX
j⊥ (λ) 
= 0, we have the same

approach as for (13), SX
j (λ) → SX ′

j (λ) = SX
j (λ), but when

IX
j (λ) + IX

j⊥ (λ) = 0, we assign SX ′
j (λ) = −1. Still, the bound

for the reformulated Bell inequality remains the same because
we have −1 � SX ′

j (λ) � 1. Hence, the modified Mermin-like
inequality has the same form as inequality (16):

|〈S1′
1 (λ)S2′

1 (λ)S3′
1 (λ) − S1′

1 (λ)S2′
2 (λ)S3′

2 (λ)

− S1′
2 (λ)S2′

1 (λ)S3′
2 (λ) − S1′

2 (λ)S2′
2 (λ)S3′

1 (λ)〉LHV| � 2.

(17)

In the quantum case, we reformulate the normalized Stokes
operators in the following way:

ŜX
j → ˆSX ′

j = ŜX
j − |�X 〉〈�X |. (18)

For |BGHZ〉 we get,〈
Ŝ1′

i Ŝ2′
j Ŝ3′

k

〉
BGHZ = 〈

Ŝ1
i Ŝ2

j Ŝ
3
k

〉
BGHZ − |〈�|BGHZ〉|2, (19)

because the expectation values of combinations of two
Stokes operators and one projector into vacuum vanish, e.g.,
〈Ŝ1

i Ŝ2
j |�3〉〈�3|〉BGHZ = 0 and 〈Ŝ1

i |�2〉|�3〉〈�2|〈�3|〉BGHZ =
0.

Figure 2 shows the left-hand side of inequality (19) as a
function of the amplification gain. Note that the range of �

for which inequality (17) is violated covers almost the whole
range for � for which the Padé approximation works.

B. Violation of the Mernin-like inequality by |BGHZ〉 for the
case of imperfect detection efficiency

We study here the resistance of the above results with
respect to photon losses. We assume a model of the ex-
perimental setup in which all photon losses are modeled as
inefficient detectors. The standard quantum optical model for
that is as follows. The lossy detector is defined as a perfect
detector (with efficiency η = 1) with a beam splitter of tran-
sitivity

√
η in front of it. Assume that kX

j photons reach the

FIG. 2. Left-hand side of inequality (19) as a function of amplifi-
cation gain � (�t ). The threshold value of �, such that for all � < �t

inequality (19) is violated, is �t = 0.77.

detector of observer X which collects photons of polarization
j. However, due to the losses, only κX

j counts are registered
(κX

j � kX
j ). The probability of registering κX

j photons for im-
perfect efficiency η is then given by the binomial distribution:

p(κX
j |kX

j ) =
(

kX
j

κX
j

)
ηκX

j (1 − η)kX
j −κX

j . (20)

For simplicity let us consider just the expectation value
〈Ŝ′1

3 Ŝ′2
3 Ŝ′3

3 〉, where the lower index 3 stands for the mea-
surement in basis {H,V } [see (11)]; then, e.g., for |φ〉 =
|k1

H , k1
V , k2

H , k2
V , k3

H , k3
V 〉 in the presence of losses we get

〈
Ŝ′1

3 Ŝ′2
3 Ŝ′3

3

〉
φ

= lim
ε→0

3∏
X=1

kX
H∑

κX
H =0

kX
V∑

κX
V =0

p
(
κX

H |kX
H

)

× p
(
κX

V |kX
V

)( κX
H − κX

V

κX
H + κX

V + ε
− δ0,κX

H +κX
V

)
, (21)

where δpq describes the Kronecker delta.
In order to calculate other elements of inequality (17) it

is enough to apply a unitary transformation that links Stokes
operators (see Appendix A5).

Obviously, the value of the threshold efficiency ηt such that
for the η < ηt inequality (17) is not violated varies depending
on the amplification gain �. We calculated ηt for the range of
� for which (17) is violated (see Fig. 3).

IV. DETECTION OF ENTANGLEMENT OF |BGHZ〉
We discuss two entanglement indicators for the |BGHZ〉

state. The first one is based on an entanglement indicator for
|GHZ〉 for qubits presented in Ref. [40]. The second one is
derived from the above Mermin-like Bell inequality.

The entanglement indicator for three qubits given in
Ref. [40] reads

ŵ = 3
21 − σ̂ 1

1 σ̂ 2
1 σ̂ 3

1 − 1
2

(
σ̂ 1

3 σ̂ 2
3 + σ̂ 2

3 σ̂ 3
3 + σ̂ 1

3 σ̂ 3
3

)
, (22)
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FIG. 3. Threshold efficiency ηt as a function of amplification
gain �. As expected, the value of ηt increases with �. Note that
for small values of amplification gain (� → 0) threshold efficiency
ηt = 0.79, and it conforms with ηt for qubits given in [3]. That is
because for � → 0 our |GBHZ〉 effectively becomes a superposition
of |GHZ〉 and vacuum.

where σ X
k denotes the kth Pauli matrix related to measurement

performed by the X th party. Using the isomorphism between
Pauli matrices and normalized Stokes operators given, e.g.,
in Ref. [37], we straightforwardly obtain an entanglement
indicator for |BGHZ〉:
ŵ1 = 3

2 Ŝ1
0 Ŝ2

0 Ŝ3
0 − Ŝ1

1 Ŝ2
1 Ŝ3

1 − 1
2

(
Ŝ1

3 Ŝ2
3 Ŝ3

0 + Ŝ1
0 Ŝ2

3 Ŝ3
3 + Ŝ1

3 Ŝ2
0 Ŝ3

3

)
.

(23)

The isomorphism is simply a replacement of Pauli operators
by normalized Stokes operators, namely, σ̂ X

ν → ŜX
ν , where

ν = 0, 1, 2, 3.
Using (23), we can detect entanglement of |BGHZ〉. Still,

the indicator (23) performs quite weakly; for example, for
small � it does not detect entanglement. This is due to a large
number of vacuum events in |BGHZ〉. To improve detection
of entanglement, we use the approach presented in [41]. Let
us denote the density matrix for |BGHZ〉 as ρ̂. We remove the
vacuum contribution from ρ̂ in the following way:

ρ̂ → ρ̂ ′ = 1

Tr(�ρ̂�̂)
�̂ρ̂�̂, (24)

where �̂ = �̂1�̂2�̂3. Note that as this is a product of local
operations, it does not create new entanglement, and thus,
the procedure is admissible. Figure 4 shows the violation of
condition (23) for ρ̂ and ρ̂ ′ as a function of amplification
gain �.

Note that the procedure (24) is definitely commonplace in
the laboratory, as the replacement of ρ by ρ ′ amounts to cases
in which, despite the source being switched on (here, it is good
to imagine that the pump field is pulsed), for the given run at
each of the measurement stations we receive no counts. Such
lack-of-counts events are usually by default ignored.

Let us now move to the other entanglement indicator,
which is inspired by the Mermin-like inequality. It is well

FIG. 4. Expectation value of entanglement indicator (23) for
|BGHZ〉 as a function of amplification gain �. The lower blue line
is for state ρ ′, from which we removed the vacuum contribution
and renormalized it, (24). This procedure allows one to see better
violations for low �, as in the original state in such a case the vacuum
term is dominant. The value −1 points to the theoretical value for
the three-qubit entangled GHZ state and the original entanglement
witness (22). This is because, for a very small �, the state |BGHZ〉 is
effectively just a superposition of vacuum and a single three-photon
GHZ emission. Removal of vacuum and renormalization leaves just
the GHZ state.

known that Bell inequalities are entanglement indicators. Still,
one can improve their functioning in that role by taking the
Bell operators linked with them and calculating, for specific
settings, the maximal value for a separable state. This may
lead to a lower bound than for local hidden variables (as
a separable state can be viewed as a specific local-hidden-
variable model). This allows one to create an entanglement
indicator (witness) which is more efficient than the initial Bell
inequality.

Consider the following operator:

〈M̂〉 = 〈
Ŝ1

1 Ŝ2
2 Ŝ3

2 + Ŝ1
2 Ŝ2

1 Ŝ3
2 + Ŝ1

2 Ŝ2
2 Ŝ3

1 − Ŝ1
1 Ŝ2

1 Ŝ3
1

〉
. (25)

Let us search for its highest value for fully separable states,
i.e.,

ρ1,2,3 =
∑

λ

pλ|ψ (λ)〉〈ψ (λ)|, (26)

where

|ψ (λ)〉 = f 1
λ (â†) f 2

λ (b̂†) f 3
λ (ĉ†)|�〉 (27)

and f 1
λ (â†), f 2

λ (b̂†), and f 3
λ (ĉ†) are functions of powers of

creation operators for polarization modes corresponding to
optical beams 1, 2, and 3 of the property that f 1

λ (â†)|�〉 is
a proper state in the Fock space.

For every λ we have

〈Ŝ1
1 Ŝ2

1 Ŝ3
1〉λsep = 〈Ŝ1

1〉λsep〈Ŝ2
1〉λsep〈Ŝ3

1〉λsep , (28)

where 〈Ô〉λsep = 〈ψ (λ)|Ô|ψ (λ)〉 for an operator Ô. In order
to find the bound, it is enough to use the following prop-
erty of the normalized Stokes operators (see Ref. [41]). If
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FIG. 5. Comparison of the violation of (32) for ρ̂ and ρ̂ ′ as a
function of amplification gain �. See also the caption of Fig. 4. Note
that in the case of indicator (32) we seem to have slightly more robust
violations of the separability threshold than for (23).

one constructs a three-dimensional “Stokes” vector 〈 
̂SX 〉 =
(〈SX

1 〉, 〈SX
2 〉, 〈SX

3 〉), one has ||〈 
̂SX 〉|| � 1, that is, 〈Ŝ1〉2 +
〈Ŝ2〉2 + 〈Ŝ3〉2 � 1. Thus, 〈 
̂SX 〉 is a vector in the Bloch ball.

Note that (25) involves only two different local measure-
ments, so it is enough to consider only 〈Ŝ1〉2 + 〈Ŝ2〉2 � 1.
Hence, the relevant Stokes vector of maximal length can have
the following representation:

〈−→̂SX 〉 = (cos αX , sin αX ), (29)

where α is a certain angle. As the value of operator M̂ for
pure separable states is proportional to the product of the
lengths of the Stokes vectors for each of the beams, using the
above representation, we search for the maximum of (25) by
bounding from above the following expression:

cos α1 sin α2 sin α3 + sin α1 cos α2 sin α3

+ sin α1 sin α2 cos α3 − cos α1 cos α2 cos α3

= cos(α1 + α2 + α3) � 1.

(30)

Thus, we get

−1 � 〈M̂〉sep � 1. (31)

This bound is two times smaller than the one for local-hidden-
variable models.

Still, inequality (31) may be an inefficient entanglement
indicator in the case when the state contains a significant
vacuum component or admixture. The trick of considering
only the nonvacuum part of the state, given by (24), leads to a
new entanglement indicator (witness),

0 � 〈M̂ + �̂1�̂2�̂3〉sep = 〈ŵ2〉sep. (32)

For |BGHZ〉 we get

〈ŵ2〉BGHZ = −4t + 1 − |C3
0 |4, (33)

where |C3
0 |4 is the probability of vacuum events for all beams.

Figure 5 shows the violation of separability conditions (25)
and (32) as a function of amplification gain �.

When comparing these two entanglement conditions (23)
and (32), it seems that (32), derived from the Mermin-like
inequality, is more efficient than (23). Comparing Figs. 4 and
5, we see that (32) is violated for a broader range of �, and
thus, it is more robust. For example, 50% of the negative value
for � → 0 is reached in the case of ŵ1 for � ≈ 0.55, whereas
for ŵ2, � ≈ 0.61. When analyzing Fig. 5, one must have in
mind that our approximation breaks down around � ≈ 0.9.

V. FINAL REMARKS

We have shown that a version of the Padé approximation
is a candidate for an effective description of the bright GHZ
states, which cures, to some extent, the pitfalls of the usual
parametric approximation, of the kind that works well for two-
beam PDC. As such states are interesting and are on the verge
of experimental feasibility, the results presented here may be
a useful tool for further investigations and for estimating the
influence of the higher-order emissions on, for example, some
quantum information protocols. An open question is finding
better entanglement indicators, which would be more efficient
for higher �.
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APPENDIX

1. Equivalence of representations of an n-beam
multiphoton state

Here, we show that formulas (5) and (6) are equivalent, that
is, that

|�n〉 =
∞∑

k=0

(i�)k

k!
(Â†

n + Ân)k|�〉 =
∞∑

k=0

C(n)
k (Â†

n)k|�〉.

First, note that Ân|�〉 = 0, so every term with an operator
An on the very left is equal to zero. We now show that

Âl
n(Â†

n)p|�〉 =
[

l∏
j=1

(p − j + 1)n

]
(Â†

n)p−l |�〉. (A1)

Let us analyze the action of operator ÂÂ† on the n-beam k-
photon state |k1 · · · kn〉:

ÂÂ†
n|k1 · · · kn〉 =

[
k∏

i=1

(ki + 1)

]
|k1 · · · kn〉 (A2)
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because âX â†
X |k1 · · · kn〉 = (â†

X âX + 1)|k1 · · · kn〉 = (n̂X +
1)|k1 · · · kn〉 = (kX + 1)|k1 · · · kn〉. Hence,

Âl
n(Â†

n)p|k1 · · · kn〉 =
n∏

i=1

√
ki + p!√

ki!
Âl−1

n Ân(Â†
n)

×|(k1 + p − 1) · · · (kn + p − 1)〉

=
[

n∏
i=1

(ki + p)

]
Âl−1

n (Â†
n)p−1|k1 · · · kn〉. (A3)

Iterating such operation l times, we obtain

Âl
n(Â†

n)p|k1 · · · kn〉

=
l∏

j=1

[
n∏

i=1

(ki + p − j + 1)

]
(Â†

n)p−l |k1 · · · kn〉. (A4)

In the case of |k1 · · · kn〉 = |�〉 relation (A4) takes the form
of (A1). Thus, for p = l the action of Âl

n(Â†
n)l boils down to

only a real coefficient. Therefore, all terms in (5) can be set
as (Â†

n)l |�〉 for some integer l multiplied by some coefficient.
From that, we conclude that the formula (A1) is correct.

2. Derivation of coefficients Cn
k

First, let us notice that each coefficient Cn
k is composed of

an infinite sum of coefficients Pk,n
l that stay by (Â†

n)k operators
linked with the action of the lth power of the Hamiltonian (4)
on |�〉. Using the structure of (4) and state (6), we can propose
the following form of Cn

k :

Cn
k =

∞∑
l=0

(i�)l

l!
Pk,n

l . (A5)

Now let us define boundary conditions for Pk,n
l . Note that

Pk,n
l = 0 if k < 0 or l < 0. Also, analyzing the first elements

(6), we conclude that Pk,n
0 = δ0k . In the next step, we realize

that there are only two ways to obtain a term proportional to
(Â†

n)k|�〉 with Hamiltonian (4) acting on a state of the form∑
i pi(A†

n)i|�〉 (pi is some coefficient):

Ân(Â†
n)k+1|�〉 = (k + 1)n(Â†

n)k|�〉, (A6)

Â†
n(Â†

n)k−1|�〉 = (Â†
n)k|�〉, (A7)

where we used identity (A1).
Finally, combining (A6) and (A7), after noticing that

Hl
n|�〉 = Hn(Hl−1

n |�〉), we get the following recurrence pat-
tern for Pk,n

l :

Pk,n
l = Pk−1,n

l−1 + (k + 1)nPk+1,n
l−1 . (A8)

Let us now make some remarks on when we have Pk,n
l = 0:

(i) Since (Â†
n + Ân)k acts on |�〉 [see (5)], we have Pk,n

l = 0
if k > l . Also, Pk,n

k = 1.
(ii) We have Pk,n

l = 0 if (l mod 2) 
= (k mod 2). The
proof of this statement uses mathematical induction. One can
check easily that P0,n

1 = 0. Let us assume that Pk,n
k+1 = 0. Using

(A8), we construct Pk+1,n
k+2

Pk+1,n
k+2 = Pk,n

k+1 + (k + 2)nPk+2,n
k+1 = 0, (A9)

TABLE II. First few coefficients of Pk,n
l .

k
l 0 1 2 3

0 1 0 0 0
1 0 1 0 0
2 1 0 1 0
3 0 1 + 2d 0 1
4 1 + 2d 0 1 + 2d + 3d 0

which proves that the assumption is correct for every k. Now
let us make another induction assumption that ∀k∈N Pk,n

k+1+2l =
0 for some l ∈ N . Now, we have to check if this also holds
for l + 1. We calculate P0,n

1+2(l+1) = P1,n
2+2l = 0 due to the as-

sumption. We go through an analogous reasoning to that for
the case of Pk+1,n

k+2 and as a result we conclude that the given
thesis is correct and each second element of an infinite sum
(A5) vanishes.

Consequently, sum (A5) turns into its simplified form (7).

3. The explicit form of Pk,n
l coefficients

Here, we give the explicit form of nonvanishing coeffi-
cients Pk,n

l for l > k:

Pk,n
l =

k+1∑
i=1

in
i+1∑
j=1

jn · · ·
x+1∑
y=1

yn, (A10)

where we have l−k
2 sums. The proof is based on mathematical

induction and goes as follows. First, we calculate the first few
Pk,n

l coefficients that are given in Table II. We observe that
they obey relation (A10).

Let us assume that relation (A10) remains valid for Pk,n
l−1.

We apply the recursive formula (A8) for the lth step. We get

Pk,n
l = Pk−1,n

l−1 + (k + 1)nPk+1,n
l−1 . (A11)

Note that the element Pk−1,n
l−1 is composed of (l − k)/2 sums,

and Pk+1,n
l−1 has (l − k − 2)/2 sums:

Pk,n
l =

(k+1)−1∑
i=1

in
i+1∑
j=1

jn · · ·
x+1∑
y=1

yn

+(k + 1)n
(k+1)+1∑

j=1

jn · · ·
x+1∑
y=1

yn.

(A12)

The second term extends the first sum
∑(k+1)−1

i=1 by the ele-
ment corresponding to i = k + 1. Thus, by merging two terms
of (A12), we get (A10).

4. Derivation of elements of the correlation tensor for |BGHZ3〉
Let us consider state |BGHZ3〉 of the following form:

|BGHZ3〉 =
∞∑

k=0

k∑
m=0

C3
k−mC3

m(Â†
3)k−m(B̂†

3)m|�〉. (A13)
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Standard Stokes operators for the X th beam of light can be
written as follows [17]:

�̂X
1 = b̂†

X âX + â†
X b̂X ,

�̂X
2 = i(b̂†

X âX − â†
X b̂X ),

�̂X
3 = â†

X âX − b̂†
X b̂X .

(A14)

Using formula (A14), we recall the structure of normalized
Stokes operators:

ŜX
j = �̂X

�̂X
j

â†
X âX + b̂†

X b̂X

�̂X , (A15)

where �̂X = ÎX − |�X 〉〈�X |. We are going to calculate ele-
ments of the correlation tensor for |BGHZ3〉. Let us start with
〈S1

3S2
3S3

3〉. For simplicity, we use standard Stokes operators
�̂X

j , but our conclusions remain valid for normalized ones.
Let us calculate how standard Stokes operators act on the
components of |BGHZ3〉 of the following type: |φk−m,m〉 =
|k − m, m〉1|k − m, m〉2|k − m, m〉3 and |φm,k−m〉. We get

�̂1
3�̂

2
3�̂

3
3|φk,k−m〉 = (k − 2m)3|φk−m,m〉 (A16)

and

�̂1
3�̂

2
3�̂

3
3|φk−m,k〉 = (2m − k)3|φm,k−m〉. (A17)

Due to the symmetry of probability amplitudes in |BGHZ3〉
we have the same amplitudes of probability for |φm,k−m〉 and
|φk−m,n〉. Hence, after applying 〈BGHZ3| to (A16) and (A17),
these two terms cancel out. Obviously, also S1

3S2
3S3

3 |φk,k〉 = 0.
It follows that 〈Ŝ1

3 Ŝ2
3 Ŝ3

3〉 = 0.
Now, let us make two observations. First, note that â†

X b̂X

and b̂†
X aX flip one photon between modes without changing

the total number of photons at the X th party, whereas oper-
ators â†

X âX and b̂†
X b̂X do not change the number of photons

between modes. Also, let us observe that we have to take into
consideration the terms of 〈Ŝ1

i Ŝ2
j Ŝ

3
k 〉 which are products of op-

erators Â3, Â†
3, B̂3, and B̂†

3 because |BGHZ3〉 is a superposition
of states of the form (Â†

3)k (B̂†
3)l |�〉 and so, due to the first

observation, other terms acting on |BGHZ3〉 will flip photons
only in some parties, leaving the rest of them with unchanged
numbers of photons in modes, making the state orthogonal to
|BGHZ3〉.

Therefore, we can easily conclude that all elements of T̂
that contain one or two Ŝ3 operators are equal to zero.

Next, we consider element 〈Ŝ1
1 Ŝ2

1 Ŝ3
1〉. Note that operator

�̂1
1�̂

2
1�̂

3
1 due to the second observation effectively takes the

following form: B̂†
3Â3 + Â†

3B̂3. Hence, we have

(B̂†
3Â3 + Â†

3B̂3)|φk−m,m〉
= [(k − m)(m + 1)]3/2|φk−m−1,m+1〉
+[(m)(k − m + 1)]3/2|φk−m+1,m−1〉 (A18)

and

(B̂†
3Â3 + Â†

3B̂3)|φm,k−m〉
= [(m)(k − m + 1)]3/2|φm−1,k−m+1〉

+[(k − m)(m + 1)]3/2|φm+1,k−m−1〉. (A19)

After taking into account probability amplitudes and taking
into account the full structure of normalized Stokes operators
(with the total photon number in the denominator), we get

m3/2(k − m)3/2C3
mC3

k−m〈BGHZ3|Ŝ1
1 Ŝ2

1 Ŝ3
1 |φk,k−m〉

=
((

C3
k−m−1

)∗(
C3

m+1

)∗ [(k − m)!(m + 1)!]3

k3

+ (
C3

m−1

)∗(
C3

k−m+1

)∗ [m!(k − m + 1)!]3

k3

)
C3

mC3
k−m

(A20)

and

m3/2(k − m)3/2C3
mC3

k−m〈BGHZ3|Ŝ1
1 Ŝ2

1 Ŝ3
1 |φk−m,k〉

=
((

C3
k−m−1

)∗(
C3

m+1

)∗ [(k − m)!(m + 1)!]3

k3

+ (
C3

m−1

)∗(
C3

k−m+1

)∗ [m!(k − m + 1)!]3

k3

)
C3

mC3
k−m.

(A21)

Note that formulas (A20) and (A21) are equal. Finally, we
obtain

〈Ŝ1
1 Ŝ2

1 Ŝ3
1〉

=
∞∑

k=1

k∑
m=0

((
C3

k−m−1

)∗(
C3

m+1

)∗ [(k − m)!(m + 1)!]3

k3

+(
C3

m−1

)∗(
C3

k−m+1

)∗ [m!(k − m + 1)!]3

k3

)
C3

mC3
k−m.

(A22)

Let us now consider elements which contain one oper-
ator Ŝ1 and two operators Ŝ2. Analogous to the reasoning
above, the product of such operators turns out to be i2(B̂†

3Â3 +
(−1)2Â†

3B̂3) = −(B̂†
3Â3 + Â†

3B̂3). Thus, these elements have
the same absolute value as (A22).

Next, we investigate element 〈Ŝ1
2 Ŝ2

2 Ŝ3
2〉. Again, the opera-

tors there can be transformed into i3[B̂†
3Â3 + (−1)3Â†

3B̂3] =
−i(B̂†

3Â3 − Â†
3B̂3). It is also easy to notice that the expectation

value of this operator is zero (the respective terms cancel out).
Also, for elements with two Ŝ1 operators and one Ŝ2, one

can transform the product of the operators into i(B̂†
3Â3 −

Â†
3B̂3). Thus, this element is equal to −〈Ŝ1

2 Ŝ2
2 Ŝ3

2〉 = 0.

5. Unitary transformations that link Stokes operators in the
context of a mutually unbiased basis

According to formula (11), one can express Stokes oper-
ators as the ratio of the difference and the sum of photon
number operators related orthogonal polarizations of a given
polarization basis. The three measurement bases, j = 1, 2, 3,
are mutually unbiased.

By this we mean the following. When we expand annihila-
tion operators a j and a j⊥ in terms of a j′ and a j′⊥ of a different
basis of the three, j′ 
= j, the squares of the moduli of all
expansion coefficients are 1/2.
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In other words, if we put â j = â1( j) and â j⊥ = â2( j), we
have

â†
r ( j′) =

2∑
s=1

Urs( j → j′)â†
s ( j), (A23)

where Urs( j → j′) is a unitary matrix linking two mutually
unbiased bases in a Hilbert space of dimension 2.

The transformation (A23) gives the links between the three
normalized Stokes operators, which in the notation used above

read Ŝ j =
∑2

s=1(−1)(s−1)â†
s ( j)âs ( j)∑2

s=1 â†
s ( j)âs ( j)

(see, e.g. [37]). Applying this

reasoning to formula (21), we can recover all terms from (19).
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[36] M. Żukowski, M. Wieśniak, and W. Laskowski, Phys. Rev. A
94, 020102(R) (2016).

[37] J. Ryu, B. Woloncewicz, M. Marciniak, M. Wieśniak, and M.
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