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Continuous-variable Clauser-Horne Bell-type inequality: A tool to unearth the nonlocality
of continuous-variable quantum-optical systems

Chandan Kumar,* Gaurav Saxena ,† and Arvind ‡

Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81 SAS Nagar, Punjab 140306, India

(Received 22 August 2020; revised 13 April 2021; accepted 13 April 2021; published 28 April 2021)

We consider a continuous-variable Clauser-Horne Bell-type inequality to study nonlocality in four-mode
continuous-variable systems, which goes beyond two-photon states and can be applied to mixed as well as
to states with fluctuating photon number. We apply the inequality to a wide variety of states such as pure and
mixed Gaussian states (including squeezed thermal states) and non-Gaussian states. We consider beam splitters
as a model for leakage and show that the inequality is able to detect nonlocality of noisy Gaussian states as well.
Finally, we investigate nonlocality in pair-coherent states and entangled coherent states, which are prominent
examples of nonclassical, non-Gaussian states.
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I. INTRODUCTION

In 1935, Albert Einstein, Boris Podolsky, and Nathan
Rosen in their famous EPR paper alluded to the possibility of
the incompleteness of quantum mechanics [1]. Bell’s seminal
work of 1964 showed that attempts to complete quantum
mechanics within a local framework is impossible [2]. The
important concepts of entanglement and nonlocality which
arose from this context have occupied the imagination of
physicists ever since and now play a major role in the area
of quantum information [3,4]. Violation of Bell’s inequality
by the predictions of quantum mechanics is an indication of
quantum nonlocality and is the strongest form of all quan-
tum correlations [5]. The relationship between entanglement,
nonlocality, Bell violation, and the classical-quantum divide
can be complicated. While results of spacelike separated mea-
surements on distant parties with classical correlations always
satisfy Bell inequalities, such measurements on pure entan-
gled states always violate Bell inequalities. However, there
exist mixed entangled states which do not violate any Bell
inequalities and there have been efforts to establish a quanti-
tative relation between these two concepts [6–8]. There also
exist nonseparable states with nonseparable classical correla-
tions between two different degrees of freedom in the same
classical beam of light [9,10]. Such states have been shown to
violate Bell’s inequality [11–15]. It is not always necessary
for a state to have entanglement for exhibiting nonlocality
[16,17]. As we shall see, the continuous-variable Clauser-
Horne (CV-CH) Bell-type inequality that we consider detects
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intermode quantum correlations and is not violated if the state
is separable.

In the original EPR paper [1], states entangled in a contin-
uous degree of freedom (position) were considered. However,
most research in nonlocality has been conducted on discrete
variable systems which involve the famous form of Bell in-
equality known as the CHSH inequality [18,19]. Nonlocality
is useful in a wide variety of applications such as quantum
communication and secure quantum key distribution [20–24].
While the CHSH inequality is sufficient for bipartite two-level
systems [5,18,19,25], there have been efforts in the direction
of generalizing Bell-CHSH inequality for multipartite systems
[26–32].

Formulating Bell’s inequalities for continuous variable
(CV) systems is important as it allows us to connect with
quantum-optical systems and helps us in investigating the
notion of quantumness in a variety of new situations. Efforts
have been made to construct Bell-type inequalities for CV
systems with different number of modes [33–38]. Specifically
a generalization of the CHSH inequality for CV systems
was carried out using measurement operators having two
outcomes [33–35,39]. In this formulation, modes were con-
sidered as entities, and the analysis was not restricted to states
with a fixed number of photons. While several studies have
been performed on pinning down nonlocality via Bell-type
inequalities in various states of the CV systems [40–45], the
formulation of universal Bell-type inequalities for CV systems
still remains an open problem.

In quantum optics, if diagonal coherent state representation
function corresponding to a quantum state is positive and no
more singular than a delta function, the state is classified as
classical, otherwise it is considered to be nonclassical [46,47].
Classical states can be simulated by ensembles of solutions
of Maxwell equations, while nonclassical states have intrinsic
quantum properties. The classical or nonclassical status of
a state is unaffected by the action of passive optical ele-
ments which conserve the total photon number. On the other
hand, quantum nonlocality captured via Bell-type inequalities
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is a consequence of quantum entanglement, which arises in
composite systems where intrinsically quantum correlations
exist. The connection between these two quantum features is
therefore very interesting and profound [48–50]. In fact there
is a possibility of converting nonclassicality into entangle-
ment or discord via passive optics [51–57]. The notions of
classicality based on locality and optical considerations are
called C-classicality and P-classicality, respectively [50]. In
our study, we demonstrate how CV-CH Bell-type inequalities
provide an experimentally testable connection between these
two types of nonclassicalities.

In this work, we apply the CV-CH Bell-type inequality
[33] to several situations in order to demonstrate its useful-
ness. First, we analyze the inequality for different two-photon
states, and then consider general pure Gaussian states. Note
that Gaussian measurements cannot be used to detect non-
locality of input Gaussian states [18]. However, we have
used non-Gaussian measurements (on-off detectors) in our
setup and hence, our setup can detect nonlocality in Gaussian
as well as non-Gaussian states [58–60]. The optical circuits
that we consider convert nonclassical squeezing into entan-
glement, which leads to the violation of the inequality. The
analysis of mixed states with noise is carried out for thermal
Gaussian states and for the case where dissipation leading to
loss of photons is modeled by using beam splitters. Nonlocal-
ity vanishes in the case of thermal states once the temperature
reaches a certain value, while nonlocality remains preserved
for all nonzero transmittance values for the photon loss case
modeled via beam splitters. Moving beyond the class of Gaus-
sian states, we analyze pair coherent states and “entangled
coherent states,” which are non-Gaussian nonclassical states
and find that they are indeed nonlocal and violate the CV-CH
Bell-type inequality.

This paper is organized as follows. In Sec. II, we briefly
discuss the CV-CH Bell violation setup that we use in this
work. Section III A discusses nonlocality in two-photon states,
while Sec. III B discusses nonlocality in four-mode general
Gaussian states. Section III C considers non-Gaussian states.
Section IV provides a summary of our results and future
directions. In the Appendix we describe details of phase space
description of the CV systems which is used in our work.

II. THE CV-CH BELL VIOLATION SCENARIO

In this section, we describe the setup which we consider
for the violation of Bell type inequalities. We consider a
four-mode optical system where modes are labeled by two
wave vectors described by k and k′ and two polarizations are
possible for each direction as depicted in Fig. 1. We label
the polarization basis by x̂ and ŷ and by x̂′ and ŷ′ for the
propagation directions k and k′, respectively. Quantum me-
chanically each mode is described by an annihilation operator;
annihilation operators â1 and â2 represent the two polarization
modes for direction k, while annihilation operators â3 and
â4 correspond to the polarization modes for the direction k′.
We first prepare the state by applying compact passive trans-
formations U(4) consisting of beam splitters, phase shifters,
and wave plates on a nonclassical and separable state. Subse-
quently, the photons in each propagation direction are filtered
by a polarizer placed in a particular direction to select pho-

FIG. 1. Setup to study Bell inequality violation for states of a
four-mode radiation field.

tons with a certain linear polarization. After this selection,
the coincidence counts are recorded using an on-off detector,
which performs coarse-grained measurements in the sense it
distinguishes “light” from “no-light.”

We define four dichotomous Hermitian operators which
enable us to evaluate coincidence count rates and can be used
in the CHSH inequality as follows:

Â = (I2×2 − |00〉〈00|)k,

B̂ = (I2×2 − |00〉〈00|)k′ ,

Âθ1 = (Iθ1 − |0〉θ1 θ1〈0|)Iθ1+ π
2
,

B̂θ2 = (Iθ2 − |0〉θ2 θ2〈0|)Iθ2+ π
2
, (1)

where the subscripts θ1 and θ2 are the directions of the po-
larizers and A and B are used to represent operators in the
propagation directions k and k′, respectively. The operators
Â, Âθ1 , B, and B̂θ2 incorporate the quantum mechanical action
of the polarizers and are convenient for mathematical calcula-
tions of the averages. Further, the operator Iθ1 represents a unit
operator for the single mode system with wave vector k and
polarization θ1, whereas the operator Iθ1+ π

2
represents a unit

operator for the orthogonal polarization. The operators Iθ2 and
Iθ2+ π

2
can be defined in a similar way. The operators Â and Âθ1

act on the Hilbert space of modes â1 and â2. The expectation
value of Â is the probability of finding at least one photon
with no polarizer placed in the path, while the expectation
value of Âθ1 is the probability of finding at least one photon
after a polarizer has been placed in the path. The operators B̂
and B̂θ2 play a similar role for the modes â3 and â4. Detectors
D1 and D2 are the usual on-off detectors and are represented
by the POVM operators {|0〉〈0|, I − |0〉〈0|}. The measurement
performed by the on-off detectors is a non-Gaussian one as the
POVM element I − |0〉〈0| is a non-Gaussian operator.

We now define four different types of coincidence count
rates based on different settings of the two polarizers as
follows:

(i) P(θ1, θ2) = 〈Âθ1 B̂θ2〉 := The first polarizer at θ1 and the
second one at θ2 with respect to their respective x axes.
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(ii) P(θ1, ) = 〈Âθ1 B̂〉 := The first polarizer at θ1 and the
second one removed.

(iii) P( , θ2) = 〈ÂB̂θ2〉 := The first polarizer removed and
the second one at θ2.

(iv) P( , ) = 〈ÂB̂〉 := Both the polarizers removed from
the setup.

If the quantum state of the four-mode field is known, then
the above coincidence count rates can be readily evaluated.

If we assume that there is local hidden variable model
(LHVM) which can explain the outcomes of measurement of
operators given in Eq. (1), the coincident count rates have to
satisfy following inequality [61]:

−P( , ) �P(θ1, θ2) − P(θ1, θ
′
2) + P(θ ′

1, θ2)

+ P(θ ′
1, θ

′
2) − P(θ ′

1, ) − P( , θ2) � 0. (2)

This is the state-independent Bell-type inequality valid for
general radiation states and its violation (using quantum the-
ory) by a given quantum state proves that the state has
nonlocal quantum correlations that cannot be accommodated
in realist hidden variable models based on locality. It is worth
emphasizing that we have used operators defined on the four-
mode field and did not imagine the photon as a single particle
moving along a trajectory. In fact the states that we encounter
may not even have a fixed number of photons. More details
regarding this inequality is available in [33].

III. NONLOCALITY USING CV-CH
BELL-TYPE INEQUALITY

In this section, we present our main results where we apply
the CV-CH Bell-type inequality to different four-mode states
of the optical field. We begin with two-photon states, and then
consider a variety of four-mode Gaussian and non-Gaussian
states.

A. Two-photon states

We consider two examples of two-photon states which
are generated by applying compact passive transformations
comprising beam splitters, phase shifters, and wave plates.
An arbitrary passive transformation acting on our four-mode
system with two spatial modes and each mode having two
distinct polarizations can be written as [see Eq. (A23) of the
Appendix for more details]

U =
(

U1 0
0 U2

)(
C S
−S C

)
︸ ︷︷ ︸

D

(
V T

1 0
0 V T

2

)
. (3)

To generate the first state |ψ1〉, we apply the U transformation
(3), with

U1 = U2 = 1√
2

(
1 −1
1 1

)
, V1 = V2 = 12, D = 14,

(4)
on a nonclassical and separable state:

|0〉1|1〉2|0〉3|1〉4
U (U1 )⊗U (U2 )−−−−−−−→ 1

2 (|01〉 − |10〉)12(|01〉 − |10〉)34

= |ψ1〉 = 1
2 (|1〉1|0〉2|1〉3|0〉4 − |1〉1|0〉2|0〉3|1〉4

− |0〉1|1〉2|1〉3|0〉4 + |0〉1|1〉2|0〉3|1〉4), (5)

where U (U1) and U (U2) belong to the infinite dimensional
unitary(metaplectic) representation of U1 and U2 and act on
the modes 1 & 2 (k) and modes 3 & 4 (k′), respectively. It
should be noted that the initial state before the passive trans-
formation is separable and nonclassical; however, the final
state obtained after the passive transformation is clearly en-
tangled. The role of passive transformations in the generation
of quantum correlations have been discussed in the Appendix.

Similarly, the second state |ψ2〉 is generated by applying
the compact unitary transformation (3) with

C = −S = (1/
√

2)12, U1 = U2 = V1 = V2 = 12, (6)

on a nonclassical and separable state:

|0〉1|0〉2|1〉3|1〉4
U (D)−−→ 1

2 (|01〉 − |10〉)13(|01〉 − |10〉)24

= |ψ2〉 = 1
2 (|1〉1|1〉2|0〉3|0〉4 − |1〉1|0〉2|0〉3|1〉4

− |0〉1|1〉2|1〉3|0〉4 + |0〉1|0〉2|1〉3|1〉4). (7)

This transformation mixes the pair of modes 1 & 2 (k) with
the pair of modes 3 & 4 (k′).

Explicit calculation shows that |ψ1〉 does not violate the
CV-CH Bell-type inequality (2) for any value of θ1, θ2, θ

′
1, θ

′
2;

however, the state |ψ2〉 does violate the inequality for some
values of θ1, θ2, θ

′
1, θ

′
2. In the first case since there is no entan-

glement between modes belonging to two different directions,
all the correlation functions factorize, for example,

P(θ1, θ2) = 〈Â1(θ1)Â2(θ2)〉 = 〈Â1(θ1)〉〈Â2(θ2)〉. (8)

Therefore, the CV-CH Bell-type inequality is obeyed. How-
ever, in state |ψ2〉, entanglement is present in modes 1–3 and
modes 2–4. Here, unlike Eq. (8), the correlation functions, for
instance, 〈Â1(θ1)Â2(θ2)〉 �= 〈Â1(θ1)〉〈Â2(θ2)〉, do not factorize
and this results in the violation of the Bell-type inequality.
Thus, CV-CH Bell-type inequality (2) is designed to detect
nonlocality if entanglement exists between either of the modes
along different directions.

B. Four-mode Gaussian states

In this section we consider various situations involving
four-mode Gaussian states. We consider pure as well mixed
cases and also consider leakage modeled by beam splitters.

1. Generic four-mode Gaussians

To produce a generic four-mode Gaussian state, we start
with a four-mode vacuum state or a thermal state and then
apply squeezing transformations on individual modes. The
first and second modes are squeezed by an equal amount u and
the third and fourth modes are squeezed by an equal amount
v. The combined symplectic transformation corresponding
to the squeezing transformations is denoted by S(u, v). The
mathematical expression for S(u, v) can be readily obtained
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FIG. 2. Schematic to generate a four-mode entangled state. Here
S(u) and S(v) represent squeezing transformations. Further, U1, U2,
V1, and V2 represent transformations that can be generated by com-
binations of quarter- and half-wave plates and phase shifters, while
D represents transformations that can be generated using beam split-
ters and quarter- and half-wave plates. The first part of the circuit
generates nonclassicality by squeezing the individual modes and
the passive operations comprising beam splitter, phase shifters, and
quarter- and half-wave plates convert the nonclassicality into entan-

glement. Classical
Squeezing−−−−→ Nonclassical

Passive operations−−−−−−−−→ Entangled.

using Eq. (A15) given in the Appendix as follows.

(9)

Subsequently, the state is passed through a particular setting
of beam splitter, phase shifters, and quarter- and half-wave
plates producing an entangled state as illustrated in Fig. 2.
We consider the passive transformation which generates the
maximum amount of entanglement when acting on a system
with four modes. The corresponding matrix acting on the
annihilation operators (â1, â2, â3, â4)T is given by

U = 1

2

⎛
⎜⎝

1 −1 −1 1
1 1 −1 −1
1 −1 1 −1
1 1 1 1

⎞
⎟⎠. (10)

This can be decomposed in terms of submatrices using the
form given in Eq. (3) as follows:

U1 = −U2= 1√
2

(
1 1

−1 1

)
, V1=−V2 =

(
0 1

−1 0

)
,

and C = S = 1√
2

(
1 0
0 1

)
. (11)

Here U1, U2, V1, and V2 represent transformations that can be
generated by combinations of wave plates and phase shifters,
while D = (

C S
−S C) can be generated using beam splitters and

wave plates.

The corresponding passive transformation acting on the
Hermitian quadrature operators ξ̂ can be written as follows
using Eq. (A11) given in the Appendix.

(12)

We can write the covariance matrix of the final state generated
by the symplectic transformation S = KS(u, v) acting on the
thermal state as

V = KS(u, v)V0S(u, v)T KT , (13)

where

V0 = 1

2κ
18×8, where κ = tanh

(
h̄ω

2kT

)
& 0 � κ � 1, (14)

is the four-mode thermal state. Thus, G = (1/2)V −1 can be
expressed as

G = KS(u, v)−1G0S(u, v)−1K−1, (15)

where G0 = κ18×8. This G matrix enables us to write the
Wigner function for any given state using Eq. (A28) given in
the Appendix. To analyze the nonlocality of the four-mode
generic Gaussian state, we consider the average of the Bell
operator,

f (θ1, θ2, θ
′
1, θ

′
2) = P(θ1, θ2)Gauss

qm − P(θ1, θ
′
2)Gauss

qm

+ P(θ ′
1, θ2)Gauss

qm + P(θ ′
1, θ

′
2)Gauss

qm

− P(θ ′
1, )Gauss

qm − P( , θ2)Gauss
qm . (16)

We show the calculation for one of the correlation functions
involved above:

P(θ1, θ2)Gauss
qm =1 − Tr(ρ|0〉θ1 θ1〈0|) − Tr(ρ|0〉θ2 θ2〈0|)

+ Tr(ρ|0〉θ1 θ1〈0||0〉θ2 θ2〈0|).
(17)

The evaluation of the second term of the above expression
using Eq. (A29) given in Appendix A in the phase space pic-
ture is shown below, while the other terms can be calculated
in a similar way:

Tr
(
ρ|0〉θ1 θ1〈0|)

= 2π

∫
W (U (θ1, 0)ξ )W0(q1, p1)dξ (18a)

= 2
√

Det(G)
√

Det[U (θ1, 0)T GU (θ1, 0) + e11 + e55]−1,

(18b)

where U (θ1, θ2) = R(θ1) ⊕ R(θ2) ⊕ R(θ1) ⊕ R(θ2) with

R(θ ) =
(

cos θ − sin θ

sin θ cos θ

)
, (19)
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FIG. 3. Average of Bell operator as a function of squeezing
parameter u for the four-mode pure squeezed vacuum state. Differ-
ent angles are fixed as θ1 = 1.32, θ2 = 0.93, θ ′

1 = 3.66, θ ′
2 = 3.32.

Thick solid line represents the case v = −u corresponding to the
state |TMSV〉13|TMSV〉24 showing violation of the CV-CH Bell-type
inequality. Dashed line corresponds to v = 0, which also violates the
inequality although to a less extent.

is the rotation in phase space caused by the polarizers with
phase space variables given in Eq. (A25) of the Appendix.

2. Four-mode pure squeezed vacuum state

Now we consider different Gaussian states and analyze
them using the framework developed above. We first analyze
the nonlocality in the four-mode pure squeezed vacuum state,
which corresponds to κ = 1 in Eq. (15). Figure 3 shows a
plot of f (θ1, θ2, θ

′
1, θ

′
2) as a function of squeezing parameter u

for two different cases v = −u and v = 0. A thick solid line
represents the case v = −u and it violates the CV-CH Bell-
type inequality. The corresponding input state takes a very
simple form |TMSV〉13|TMSV〉24 in this case, where TMSV
denotes the two-mode squeezed vacuum state. The dashed
line represents the case v = 0 and it violates the inequality
indicating that the state is nonlocal. The state corresponding
to the case v = −u has the same entanglement structure as
state |ψ2〉 which we analyzed in Sec. III A. The values of
parameters θ1, θ2, θ

′
1, and θ ′

2 are chosen such that the violation
of the inequality is maximum.

3. Four-mode squeezed thermal state

Thermal states of the electromagnetic field arise when
radiation is in contact with a thermal bath at a given tem-
perature. We can imagine the mode under consideration to
be a classical mixture of different energy states (states with
different numbers of photons) with weight factors given by
the Boltzmann distribution. Given a thermal source like the
Sun, if we filter out a beam along a given direction and a fixed
frequency, we will get thermal light for the two polarization
modes. Thermal states are classical in the quantum-optical
sense and the corresponding Wigner distribution is Gaussian.
Thermal states when subjected to squeezing transformations
lead to squeezed thermal states which again are within the
class of Gaussian states however, they are nonclassical [62].

FIG. 4. Average of the Bell operator as a function of squeez-
ing parameter u for the four-mode squeezed thermal state for the
case v = −u. Different angles are fixed as θ1 = 1.32, θ2 = 0.93,
θ ′

1 = 3.66, θ ′
2 = 3.32. Thick solid, dashed, and thin solid graphs

depict κ = 1, κ = 0.8, and κ = 0.7, respectively. Results show that
an increase in temperature results in loss of nonlocal correlations.

We consider four-mode squeezed thermal states for the
case v = −u. Figure 4 shows plot of f (θ1, θ2, θ

′
1, θ

′
2) as a func-

tion of squeezing parameter u for different values of κ . From
this figure, it is clear that nonlocal correlations are present
in the state even at a finite temperature. As the temperature
increases, the detected nonlocal correlations vanish. It is also
to be noted that these states are nonclassical mixed states.
Similar studies have been carried out in Ref. [63], where
a pure nonclassical state is mixed with a thermal state via
a beam splitter and the entanglement vanishes at a certain
temperature. A related phenomena termed as sudden death of
entanglement, where entanglement vanishes at a finite time, is
also observed in a quantum system evolving in a dissipative
environment [64].

4. Leakage model

We consider a scenario in which there is leakage in the
system leading to information loss and energy dissipation.
Such leakages become quite important in various quantum
information protocols [65], for instance, continuous-variable
quantum key distribution [66], and therefore it is important
to analyze the effects of such leakage processes on the state
properties. Typically such leakages occur due to dissipative
processes and can be modeled with beam splitters as shown
in Fig. 5, where we couple each mode of the system in the
state |	〉 = |TMSV〉13|TMSV〉24 with vacuum via two beam
splitters of transmittance T . Subsequently, the mode corre-
sponding to the vacuum is traced out and the output state
of the system modes becomes a mixed Gaussian state. The
results are shown in Fig. 6. The thick solid, dashed, and
thin solid lines correspond to transmittance T = 1, 0.8, and
0.6, respectively. We observe that although there is a loss in
the detected nonlocal correlations as transmittance decreases,
however, it never vanishes even for low transmittance. Hence,
nonlocality of the squeezed Gaussian state is preserved under
leakage. This is contrary to the thermal states where detected
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FIG. 5. Modeling leakage with beam splitters. The input state
of the system is |TMSV〉13|TMSV〉24, which maximally violates the
CV-CH Bell-type inequality. Each mode of the pure input state is
mixed with vacuum using two beam splitters of transmittance T .
Subsequently, mode corresponding to vacuum is discarded, and thus
the output is a mixed state.

nonlocality completely vanishes after a certain threshold
temperature.

This leakage scenario modeled by beam splitters also can
be used to predict the result of a real photodetector with
nonunit quantum efficiency η. A real photodetector without
dark counts can be modeled as an ideal photodetector (unit
quantum efficiency) preceded by a beam splitter of transmis-
sivity η [67]. Hence, our leakage model also allows us to
surmise the effects of nonunit quantum efficiency detectors
without dark counts. However, a more detailed analysis will
be required to model the nonunit quantum efficiency detectors
with dark counts [68].

FIG. 6. Average of Bell operator as a function of squeez-
ing parameter u for a four-mode pure squeezed vacuum state
|TMSV〉13|TMSV〉24 in the presence of leakage. Different angles
are fixed as θ1 = 1.32, θ2 = 0.93, θ ′

1 = 3.66, θ ′
2 = 3.32. Thick solid,

dashed, and thin solid lines correspond to transmittance, T = 1, 0.8,
and 0.6, respectively. Results indicate that the nonlocal character of
state remains preserved under leakage.

C. Non-Gaussian states

In this section, we analyze nonlocality in families of non-
Gaussian states namely pair coherent states and entangled
coherent states.

1. Pair coherent states

Pair coherent states, are a family of non-Gaussian entan-
gled states of a two-mode radiation field defined as [69]

â1â2|ζ , q〉 = ζ |ζ , q〉, (â1â†
1 − â2â†

2)|ζ , q〉 = q|ζ , q〉. (20)

Here eigenvalue q is the photon number difference between
the two modes and eigenvalue ζ is in general complex. Pair
coherent states are simultaneous eigenkets of â1â2 and â1â†

1 −
â2â†

2. The solution to this eigenvalue problem for positive q in
the Fock basis is

|ζ , q〉 = Aq

∞∑
n=0

ζ n

[n!(n + q)!]1/2 |n + q, n〉, (21)

with

Aq = [|ζ |−qJq(2|ζ |)]−1/2
, (22)

where Jq is the modified Bessel function of the first kind of
order q. Entanglement, nonclassicality, and squeezing have
been studied in pair coherent states [70–72] and these states
can also be used as a resource for teleportation [73]. The
covariance matrix of pair coherent states turns out to be

V (ζ , q) =

⎛
⎜⎜⎜⎜⎝

N1 + 1
2 Reζ 0 Imζ

Reζ N2 + 1
2 Imζ 0

0 Imζ N1 + 1
2 −Reζ

Imζ 0 −Reζ N2 + 1
2

⎞
⎟⎟⎟⎟⎠, (23)

where N1 = 〈â†
1â1〉 and N2 = 〈â†

2â2〉. For non-Gaussian states,
the covariance matrix does not capture the full information,
nevertheless, studies have shown [70] that entanglement can
be detected in pair coherent state by inequalities based on the
second-order correlation. However, for nonlocality measure-
ment, we cannot restrict to Gaussian approximation of the
state via the covariance matrix. We evaluate the average of
the Bell operator (16), valid for general radiation states, to
determine whether the state is nonlocal or not. The Wigner
function for the pair coherent states [74] can be used to cal-
culate the required correlation functions in phase space using
Eq. (18a).

We take the input state to be |PCS〉13|PCS〉24 with q = 0
and Im(ζ ) = 0, and calculate the average of the Bell operator
(16). The numerically calculated average is plotted in Fig. 7
which clearly shows that the family of pair coherent states
violates CV-CH Bell-type inequality.

2. Entangled coherent state

We consider the entangled coherent state (ECS) for the
two-mode system as defined in Ref. [75]:

|ECS〉 = No

(∣∣∣∣−α√
2

〉∣∣∣∣ α√
2

〉
−

∣∣∣∣ α√
2

〉∣∣∣∣−α√
2

〉)
, (24)

where No = [2 − 2 exp(−2|α|2)]−1/2.
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FIG. 7. Average of Bell operator as a function of parameter
Re(ζ ) for the pair coherent state with q = 0. The angles are opti-
mized to obtain maximum violation. The result shows that the pair
coherent state violates CV-CH Bell-type inequality.

We consider modes 1 and 2 (direction k) initialized to
vacuum state and modes 3 and 4 (direction k′) prepared in the
odd coherent state |ψo〉 = No(|α〉 − | − α〉). We then apply
the compact passive transformation given in Eq. (3) with

C = −S = (1/
√

2)12, U1 = U2 = V1 = V2 = 12. (25)

This transformation corresponds to mixing of the pair of
modes 1 and 2 with the pair of modes 3 and 4 using a balanced
beam splitter. The final state is |ECS〉13|ECS〉24 given by

N2
o |0〉1|0〉2(|α〉 − | − α〉)3(|α〉 − | − α〉)4

U (D)−−→ N2
o

(∣∣∣∣−α√
2

〉∣∣∣∣ α√
2

〉
−

∣∣∣∣ α√
2

〉∣∣∣∣−α√
2

〉)
13

×
(∣∣∣∣−α√

2

〉∣∣∣∣ α√
2

〉
−

∣∣∣∣ α√
2

〉∣∣∣∣−α√
2

〉)
24

. (26)

We use Eq. (A25) given in Appendix A to compute the Wigner
function of the state N2

o |0〉1|0〉2(|α〉 − | − α〉)3(|α〉 − | − α〉)4

and then transform the Wigner function as W (ξ ) → W (E−1ξ )
to obtain the Wigner function of the final state in Eq. (26),
where E can be written as follows using Eq. (A11) given in
the Appendix.

(27)

FIG. 8. Average of Bell operator as a function of Re(α) for the
entangled coherent state. Different angles are fixed as θ1 = 2.67,
θ2 = 5.59, θ ′

1 = 1.88, θ ′
2 = 3.24. The results clearly indicates that the

entangled coherent state violates CV-CH Bell-type inequality.

This Wigner function can be used to compute the Bell operator
in phase space; for example, Eq. (18a) evaluates to

Tr
(
ρ|0〉θ1 θ1〈0|) = 2

ed2

(ed2 − 1)2

[
− cosh

(
1

4
d2 cos(2θ1)

)

+ cosh

(
3

4
d2

)
cosh

(
1

4
d2 sin(2θ1)

)]
,

(28)

where d = Re(α) and Im(α) = 0. The result is shown in
Fig. 8 clearly indicating the violation of the CV-CH Bell-type
inequality.

In the limit of |α| → 0, after expanding both sides of
Eq. (26) in the Fock basis, we obtain

|0〉1|0〉|2|1〉3|1〉4
U (D)−−→ 1

2 (|01〉 − |10〉)13(|01〉 − |10〉)24.

(29)

This is exactly the state |ψ2〉 considered in Sec. (III A), which
has been shown to violate the CV-CH Bell-type inequality.

D. Comparison with other Bell’s inequalities

In this section, we compare the results of our CV-CH
Bell inequality with three other Bell-type inequalities. We
first consider the Bell-CHSH inequality based on displaced
parity operator measurements [34]. The displaced parity op-
erator acting on a two-mode system labeled by “a” and “b” is
given by

̂ab = D̂a(α)D̂b(β )(−1)n̂a+n̂b D̂a(α)†D̂a(β )†. (30)

Using the above displaced parity operator, the average of the
Bell operator can be written as [42]〈

B̂BW
CHSH

〉 = 〈̂ab(
√

α,−√
α)〉 + 〈̂ab(−3

√
α,−√

α)〉
+ 〈̂ab(

√
α, 3

√
α)〉 − 〈̂ab(−3

√
α, 3

√
α)〉,

(31)

which satisfies the condition |〈B̂BW
CHSH〉| � 2 for any classical

local theory. We plot the average of the Bell operator for
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FIG. 9. Average of the Bell operator as a function of the squeez-
ing parameter u of the TMSV state. Any quantum state violating
the inequality |CHSH| � 2 or −1 � CH � 0 is said to be non-
local. The results show that all the four Bell-type inequalities can
detect nonlocality in the TMSV state. (a) Bell-CHSH inequality
based on displaced parity operator measurements given by Banaszek
et al. [34]. (b) Bell-CHSH inequality based on pseudospin measure-
ments given by Chen et al. [35]. (c) CH inequality based on displaced
on-off measurements given by Banaszek et al. [34]. (d) CH inequality
based on on-off measurements given by Arvind et al. [33].

the TMSV state in Fig. 9(a). Here α has been optimized for
maximum violation.

We next consider a Bell-CHSH inequality based on pseu-
dospin operator measurements [35]. The pseudospin operators
are defined as

sz =
∞∑

n=0

[|2n + 1〉〈2n + 1| − |2n〉〈2n|], (32)

s− =
∞∑

n=0

|2n〉〈2n + 1|, (33)

s+ =
∞∑

n=0

|2n + 1〉〈2n|, (34)

where |n〉 are the usual Fock states, and s− and s+ are the
parity flip operators. These are related to sx and sy as follows:

2s± = sx ± ιsy. (35)

We define an arbitrary vector on the surface of a unit sphere
as

v = (sin θ cos φ, sin θ sin φ, cos θ ). (36)

Using these, the Bell-CHSH inequality is defined as〈
B̂CPHZ

CH

〉 = 〈E (v1, v2)〉 + 〈E (v1, v′
2)〉

+ 〈E (v′
1, v2)〉 − 〈E (v′

1, v′
2)〉, (37)

where v1, v2, v′
1, and v′

2 are unit vectors, ŝ1 and ŝ2 are the
spin operators defined using the pseudospin operators, and
E (v1, v2) = 〈(v1.ŝ1) ⊗ (v2.ŝ2)〉. For the TMSV state, we set
all the azimuthal angles to be zero and choose

θv1 = 0, θv′
1
= π/2, θv2 = −θv′

2
, (38)

for maximum violation. Then the average of the Bell operator
becomes 〈

B̂CPHZ
CH

〉 = 2(cos θv2 + K sin θv2 ), (39)

where θv2 = tan−1 K. The average of the Bell operator for the
TMSV state is plotted in Fig. 9(b).

Finally, we consider Clauser-Horne inequality based on
displaced on-off measurements [34]. The measurement op-
erator corresponding to the displaced “on” measurement on
individual modes is given by

Q̂i(α) = D̂i(α)|0〉i i〈0|D̂i(α)†, (40)

while the measurement operator corresponding to the dis-
placed “on” measurement on modes “a” and “b” is given by

Q̂ab(α, β ) = D̂a(α)|0〉aa〈0|D̂a(α)† ⊗ D̂b(β )|0〉bb〈0|D̂b(β )†.

(41)

Using Clauser-Horne inequality, the corresponding CH in-
equality can be written as〈

B̂BW
CH

〉 = 〈Q̂ab(0, 0)〉 + 〈Q̂ab(α, 0)〉 + 〈Q̂ab(0, β )〉
− 〈Q̂ab(α, β )〉 − 〈Q̂a(0)〉 − 〈Q̂b(0)〉, (42)

which satisfies the condition −1 � 〈B̂BW
CH 〉 � 0 for any clas-

sical local theory. We plot the average of the Bell operator
for the TMSV state in Fig. 9(c). Here α and β have been
optimized for maximum violation. We plot the average of the
Bell operator for our CV-CH Bell-type inequality based on
on-off measurements for the TMSV state in Fig. 9(d). The
results show that all the four Bell inequalities show violation
for the TMSV state.

We now discuss the experimental implementation of differ-
ent Bell inequalities considered above. Since displaced parity
measurements [34] and pseudospin operator measurements
[35] cannot be realized with efficient homodyne detection
[37], it is difficult to realize these inequalities experimentally.
We next analyze the singlet state |ψ〉 = (|01〉 − |10〉)/

√
2 and

entangled coherent state (24) using CH inequality based on
displaced on-off measurements. We plot the average of the
Bell operator in Fig. 10. The results show that it is necessary
to perform displacement before on-off measurements to detect
nonlocality of the singlet state and the entangled coherent
state. To displace the state, a strong local oscillator is required.
Further, to maximize the violation, we need to adjust the
strength of the local oscillator, which is an arduous task [76].
In contrast, there is no such requirement of a strong local
oscillator for our CV-CH Bell-type inequality. Furthermore,
the maximum violation can be obtained by simply adjusting
the angles of the polarizers. Therefore, our CV-CH Bell-type
inequality is preferable whenever it is hard to arrange a strong
local oscillator.

IV. CONCLUSION

In this work we have explored the capacity of the CV-CH
Bell-type inequality to unearth the nonlocality of continuous-
variable systems. In this direction, we considered a variety of
states ranging from a finite number of photons to an arbitrary
number of photons, Gaussian to non-Gaussian. We have used
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FIG. 10. Average of the Bell operator as a function of displace-
ment “d” before on-off measurements. Any quantum state violating
the inequality −1 � CH � 0 is said to be nonlocal. (a) For the
singlet state. (b) For the entangled coherent state.

passive transformations, which are known to convert nonclas-
sicality into entanglement, to enhance the violation of the
Bell-type inequality. The results show that the CV-CH Bell-
type inequality, which is based on the Clauser-Horne 1974
Bell test inequality, is efficient in detecting nonlocality in a
number of situations.

The setup for the CV-CH Bell-type inequality can accom-
modate four modes. The only requirement for the inequality
to detect nonlocality in a given state is that the correlation
should not be limited to modes 1 and 2 and modes 3 and 4 as
these pairs of modes travel along the same physical directions.
For mixed states, the results show that the inequality can
detect nonlocality in thermal states up to a certain temperature
range. On the other hand, when we consider leakage modeled
by beam splitters, the violation never vanishes, although it
diminishes with increasing leakage probability. We have fur-
ther shown that our CV-CH inequality is preferable for the
detection of violation for certain states and does not require a
strong local oscillator for its implementation.

In our work, we have considered dichotomous mea-
surements based on the presence of light or no light and
coincidences thereof. We are thus using very coarse grained
measurements. It would be interesting to consider coincidence
count based on more fine grained measurements, where we
distinguish between the different number of photons detected.
Such measurements are possible now and are being used and
considered in various situations [77,78]. Therefore, while the

inequality based on two outcomes is useful in unearthing
the nonlocality of a variety of states, finding more general
Bell-type inequalities for detecting nonlocality in CV systems
is desirable. Another interesting direction we are pursuing is
to generalize the CV-CH Bell-type inequality for an n-mode
system.
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APPENDIX: CONTINUOUS-VARIABLE SYSTEM:
BACKGROUND MATERIAL

In this section, we briefly recapitulate the CV system and
its phase space description, which have been used in our work.

1. CV system and phase space

The CV system that we consider is a four-mode system
as described in Fig. 1. The annihilation operators a j ( j =
1, 2, 3, 4) and their conjugate creation operators can be ar-
ranged in a column vector as

ξ̂ (c) = (
ξ

(c)
i

) = (â1, . . . , â4, â1
†, . . . , â4

†)T , i = 1, 2, . . . , 8.

(A1)

The commutation relation for the field operators can be com-
pactly written as

[
ξ̂

(c)
i , ξ̂

(c)
j

] = βi j, β =
(

04 14

−14 04

)
, (A2)

where 14 is the 4 × 4 identity matrix. For the ith mode, we
have the corresponding state space spanned by the eigenvec-
tors |ni〉, with {ni = 0, 1, . . . ,∞} being the corresponding
eigenvalues of the number operator N̂i = â†

i âi. These eigen-
vectors are called Fock states or number states and the space
spanned by them is the Hilbert space Hi of the correspond-
ing mode. The combined Hilbert space H⊗4 = ⊗4

i=1Hi of
the four-mode system is spanned by the product basis vec-
tor |n1〉|n2〉|n3〉|n4〉 with {n1, n2, n3, n4 = 0, 1, . . . ,∞}. The
number ni corresponds to photon number in the ith mode. The
field operators âi and â†

i act irreducibly on the Hilbert space
Hi and their action on the number state |ni〉 can be easily
determined by the commutation relation given in Eq. (A2):

âi|ni〉 = √
ni|ni − 1〉, ni � 1, âi|0〉 = 0,

âi
†|ni〉 =

√
ni + 1|ni + 1〉 ni � 0.

(A3)

Alternatively, we can describe our optical setup using four
pairs of Hermitian operators q̂i, p̂i for i = 1, 2, 3, 4 known
as quadrature operators. These quadrature operators can be
arranged in a column vector as

ξ̂ = (ξ̂i) = (q̂1, . . . , q̂4, p̂1, . . . , p̂4)T , i = 1, 2, . . . , 8.

(A4)
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The field operators and the quadrature operators are related as

âi = 1√
2

(q̂i + i p̂i ), â†
i = 1√

2
(q̂i − i p̂i ). (A5)

The canonical commutation relation for the quadrature
operators can be written in a compact form as (h̄ = 1):

[ξ̂i, ξ̂ j] = iβi j . (A6)

The operators q̂i and p̂i satisfy the following eigenvalue
equation:

q̂i|qi〉 = qi|qi〉, p̂i|pi〉 = pi|pi〉. (A7)

The eigenvalues qi and pi are real and continuous and we have

〈q′
i|qi〉 = δ(q′

i − qi ), 〈p′
i|pi〉 = δ(p′

i − pi ),

〈qi|pi〉 =(2π )−1/2eiqi pi .
(A8)

2. Symplectic transformations

The symplectic transformations for the four-mode system,
which form the noncompact group Sp(8, R) are the linear
homogeneous transformations specified by real 8 × 8 matrices
S and they preserve the canonical commutation relations given
in Eq. (A6) while acting on the quadrature variables as

ξ̂i → ξ̂ ′
i = Si j ξ̂ j s.t. SβST = β. (A9)

While there are no finite dimension unitary representations
of this group, according to Stone-von Neumann theorem,
there exists an infinite dimensional unitary representation
U (S), also known as the metaplectic representation, for each
S ∈ Sp(8, R) acting on the Hilbert space. For example, the
metaplectic representation U (S) of S acts on the density oper-
ator as ρ → U (S)ρ U (S)†. These unitary transformations are
generated by Hamiltonians which are quadratic functions of
quadrature and field operators. Further, any symplectic matrix
S ∈ Sp(8, R) can be decomposed as

S = S(X,Y )P, (A10)

where S(X,Y ) is the maximal compact subgroup of Sp(8, R)
isomorphic to U(4) (unitary group in four dimensions) and is
defined as

S(X,Y ) =
(

X Y
−Y X

)
, X − iY ∈ U(4), (A11)

and P ∈ (4) is a subset of Sp(8, R) defined as

(4) = {S ∈ Sp(8, R) | ST = S, S > 0}. (A12)

In the quantum-optical context, the U(4) part is referred to
as passive transformation and the action of its elements in
the Hilbert space through the metaplectic representation con-
serves the total photon number. Phase changes coupled with
mixing via combinations of half- and quarter-wave plates and
beam splitters can be used to generate all such transformations
and are termed as passive operations. Under these transfor-
mations, the classical or nonclassical status of states does
not change. However, such transformations have the potential
to convert separable nonclassical states into entangled non-
classical states. On the other hand, elements of (4) while
acting via the metaplectic representation do not conserve the
total photon number and are active transformations; they are

also called squeezing transformations as they can be used
to generate squeezed states. These operations can generate
nonclassicality as they can transform a classical state to a
nonclassical one.

The symplectic matrix for phase shift operation acting on
the quadrature operators q̂i, p̂i is given by

Ri(φ) =
(

cos φ sin φ

− sin φ cos φ

)
. (A13)

This transformation corresponds to the U(1) subgroup of
Sp(2,R). This operation can be generated by Hamiltonian of
the form H = â†

i âi and the corresponding metaplectic repre-
sentation is

U (Ri(φ)) = exp(−iφ â†
i âi︸︷︷︸

Quadratic

). (A14)

The symplectic matrix for a single-mode squeezing opera-
tor acting on quadrature operators (q̂i, p̂i ) is written as

Si(u) =
(

e−u 0
0 eu

)
. (A15)

The corresponding unitary operator acting on the Hilbert
space is given by

U (Si(u)) = exp
[
u

(
â2

i − âi
†2)

︸ ︷︷ ︸
Quadratic

/
2
]
. (A16)

For two-mode systems, beam splitter transformation Bi j (θ )
acting on quadrature operators ξ̂ = (q̂i, q̂ j, p̂i, p̂ j )T can be
expressed as

Bi j (θ ) =

⎛
⎜⎝

cos θ − sin θ 0 0
sin θ cos θ 0 0

0 0 cos θ − sin θ

0 0 sin θ cos θ

⎞
⎟⎠. (A17)

The beam splitter transformation acting on field operators is
an element of the U(2) compact group.(

âi

â j

)
→

(
cos θ − sin θ

sin θ cos θ

)(
âi

â j

)
. (A18)

The corresponding unitary transformation for the beam
splitter action is

U (Bi j (θ )) = exp[θ (âiâ
†
j − â†

i â j )︸ ︷︷ ︸
Quadratic

]. (A19)

The quadratic expressions involved in Eqs. (A14) and (A19)
is photon number conserving, while the quadratic expression
involved in Eq. (A16) is not photon conserving. The transmit-
tance T of the beam splitter is related to θ via the relation
T = cos2 θ . For a 50-50 (balanced) beam splitter, θ = π/4.

Our system comprises two spatial modes and each spatial
mode consists of two orthogonal polarizations, and since the
beam splitter acts only on distinct spatial modes, we also need
to consider wave plates, which are also compact passive trans-
formations, and can act on two distinct polarization modes.
These wave plates along with beam splitters and phase shifters
enable us to apply arbitrary 4 × 4 compact unitary transfor-
mation on any given state. The action of the half-wave plate,
whose slow axis is at an angle φ to the transverse direction
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of the electric field, on the annihilation operators (âi, â j )T is
given by [79]

Q(φ) = ν(φ)C(π/2)ν(φ)−1, (A20)

with

ν(φ) =
(

cos φ − sin φ

sin φ cos φ

)
, C(η) =

(
eiη/2 0

0 e−iη/2

)
.

(A21)

Similarly, the action of the quarter-wave plate, whose slow
axis is at an angle φ to the transverse direction of the electric
field, on the annihilation operators (âi, â j ) is given by

Q(φ) = ν(φ)C(π )ν(φ)−1. (A22)

We note that any SU(2) compact transformations can be
obtained as a combination of quarter- and half-wave plates.
Further, an arbitrary 4 × 4 compact unitary transformation
can be decomposed as the following using cosine-sine decom-
position [80]:

U =
(

U1 0
0 U2

) (
C S
−S C

)
︸ ︷︷ ︸

D

(
V T

1 0
0 V T

2

)
, (A23)

where U1, U2, V1, and V2 represent 2 × 2 unitary transforma-
tions that can be generated by combinations of wave plates
and phase shifter, while matrix D, with

C =
(

cos θ1 0
0 cos θ2

)
, S =

(
sin θ1 0

0 sin θ2

)
, (A24)

can be generated using beam splitters and wave plates [81].

3. Phase space description

The Wigner distribution corresponding to a density opera-
tor ρ̂ of a four-mode quantum system is defined as

W (ξ ) = (2π )−4
∫

d4q′
〈
q − 1

2
q′|ρ̂|q + 1

2
q′

〉
exp(iq′ · p),

(A25)

where q = (q1, q2, q3, q4)T , p = (p1, p2, p3, p4)T , and ξ =
(q1, . . . , q4, p1, . . . , p4)T . Thus, W (ξ ) is a function of eight
real phase space variables for a four-mode quantum system.

First-order moments are given by

〈ξ̂〉 = Tr[ρ̂ξ̂ ], (A26)

which can be changed without affecting the quantum correla-
tions of the state by applying a displacement operator for the
appropriate mode given by D(α) = eαâi

†−α∗âi .
The second-order moments are best represented by the

covariance matrix defined as

V = (Vi j ) = 1
2 〈{�ξ̂i,�ξ̂ j}〉, (A27)

where �ξ̂i = ξ̂i − 〈ξ̂i〉, and { , } denotes an anticommuta-
tor. We note that the covariance matrix is an 8 × 8 real,
symmetric matrix. The uncertainty principle in terms of the
covariance matrix reads V + i

2β � 0, which implies that the
covariance matrix is positive definite, i.e., V > 0.

States whose Wigner distributions are Gaussian are known
as Gaussian states. Gaussian states are completely determined
by their first- and second-order moments. We take the first-
order moments to be zero and thus the covariance matrix
determines the state. The Wigner distribution Eq. (A25) of a
general zero-centered four-mode Gaussian state takes a simple
form [62]:

W (q, p) = π−4
√

Det(G) exp(−ξT Gξ ), (A28)

where G is also a real symmetric positive definite 8 × 8 matrix
related to the covariance matrix V as G = 1

2V −1. First-order
moments can always be put back if needed, by an appropriate
phase space displacement. Coherent states, squeezed states,
and thermal states are all examples of Gaussian states and the
family contains entangled as well as nonentangled states.

Inner product of operators ρ̂1 and ρ̂2 can be computed in
phase space and for a single-mode system is given as

Tr[ρ̂1ρ̂2] = 2π

∫
R2

dqd pWρ̂1 (q, p)Wρ̂2 (q, p). (A29)

4. Quantum-optical nonclassicality

From a quantum-optical point of view, the nonclassicality
of quantum states is defined through the Glauber-Sudarshan
representation. Arbitrary four-mode quantum states can be
represented by the diagonal coherent state distribution func-
tion φ(z) given by

ρ̂ = 1

π4

∫
d8z φ(z)|z〉〈z|. (A30)

If the function φ(z) is positive and no more singular than a
delta function, the state is defined to be classical, otherwise
it is defined as nonclassical. Coherent states and thermal
states are examples of quantum states that are classical in the
above sense, whereas quantum states such as number states,
squeezed states, and superposition of coherent states are all
nonclassical.

To conclude, we would like to emphasize that all the
discussions in the above section can be generalized for an
arbitrary number of modes and details and mathematical back-
ground is available in [62,82,83].
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