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Time-traveling billiard-ball clocks: A quantum model
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General relativity predicts the existence of closed timelike curves (CTCs), along which an object could travel
to its own past. A consequence of CTCs is the failure of determinism, even for classical systems: one initial
condition can result in multiple evolutions. Here we introduce a quantum formulation of a classic example,
where a billiard ball can travel along two possible trajectories: one unperturbed and one, along a CTC, where
it collides with its past self. Our model includes a vacuum state, allowing the ball to be present or absent on
each trajectory, and a clock, which provides an operational way to distinguish the trajectories. We apply the two
foremost quantum theories of CTCs to our model: Deutsch’s model (D-CTCs) and postselected teleportation
(P-CTCs). We find that D-CTCs reproduce the classical solution multiplicity in the form of a mixed state,
while P-CTCs predict an equal superposition of the two trajectories, supporting a conjecture by Friedman et al.
[Phys. Rev. D 42, 1915 (1990)].
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I. INTRODUCTION

Closed timelike curves (CTCs) form an interesting class
of objects within the general theory of relativity as they
present the possibility for an observer to travel back in time.
Consequently, any physical system may be able to interact
with its past self, and so the potential existence of CTCs
within our own universe naturally evokes scientific investi-
gation into time travel. The foremost focus of such research
is on questions regarding the nontrivial causal structure of
CTC spacetimes and the consistency of the standard laws of
physics.

Time-travel paradoxes and the concept of retrocausality lie
at the foundation of the issues with CTCs. One way to explore
the compatibility between the laws of physics and these exotic
objects is to determine whether the two can be consolidated
without having unacceptable causality violations manifest.
This is typically accomplished by studying the evolution of
simple physical models in spacetimes containing CTCs. In
these problems, one necessitates that a system, while allowed
to propagate into its own past, must do so in a way that is
consistent with its own original history. Any interaction that
occurs must be compatible with the past, and causal sequences
containing events solely of this nature are characterized as
being self-consistent. The principle of self-consistency [1], an
innate law by which the universe is conjectured to operate,
serves to suppress temporal paradoxes via the prohibition
of pathological causal sequences. Under such a condition, a
globally consistent solution of the local physical laws must
exist, or else the problem is ill posed.

A. Time-traveling billiard balls

For a spacetime with one or more chronology-violating
sets (i.e., time machines), the past can be influenced by the
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future, provided that any changes which are made obey the
self-consistency principle. The lack of such changes (i.e.,
self-interactions) in the Cauchy problem for noninteracting
classical fields seems like a probable cause of it being well
posed on CTC spacetimes [1–10]. Alternatively, a system that
is able to self-interact (e.g., collide with its past or future
self) is more likely to display unusual results—indeed, with
an interacting field, uniqueness is thought to be lost as the
strength of the interaction increases [5]. Therefore, in order
to study this, models of interacting systems near CTCs were
developed, and perhaps the most famous of these consid-
ers the elastic self-collision(s) of a billiard ball that exists
in a wormhole-based time machine spacetime [11–15]. In
this framework, a solid, elastic, spherical mass (the “billiard
ball”) enters one mouth (the future mouth) of a wormhole,
exits the other (the past mouth) at an earlier time (due to
a time shift having been induced between the two), and
then collides with its earlier (past) self. Depending on the
initial position and velocity of the ball, drastically distinct
evolutions of the ball through the CTC-wormhole region can
arise.

Studies [1,14,16–20] involving time-traveling billiard balls
have shown that given the same initial data posed in the pres-
ence of CTCs, there can be multiple self-consistent solutions
which satisfy the equations of motion. Figure 1 illustrates a
prominent example in which there are (at least) two distinct
histories through which the billiard ball may evolve in a CTC-
wormhole spacetime. This scenario is the foremost example
of the (simplified) billiard-ball paradox (due originally to
Thorne in Ref. [1]), and will hereafter be referred to as such.
Unusual for time-travel paradoxes, the paradoxical issue here
is not of self-inconsistent trajectories, but is of indetermin-
ism in the self-consistent ones. This is to say that solutions
always exist because they self-adjust themselves (thereby pro-
viding consistency), but one subsequently faces a different
issue: solution multiplicity. This new problem is interesting,
as the existence of more than one solution to the equations of
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FIG. 1. Two possible spatial trajectories of a classical billiard
ball through CTC-wormhole spacetimes with the same initial data
(i.e., position and velocity) in a two-dimensional slice of three-
dimensional space. (a) A chronology-respecting history (evolution
A) in which the billiard ball evolves freely between the CTC and
wormhole; (b) a chronology-violating history (evolution B) in which
the billiard ball is struck onto the CTC path by its future self, thereby
causing it to time travel into its past and subsequently strike its past
self onto the CTC. The initial and final conditions for both evolutions
are, respectively, exactly the same, meaning that the histories are
(classically) indistinguishable.

motion contrasts with the determinism typically associated
with classical mechanics.

It is natural to question whether the characteristic of so-
lution multiplicity is indeed merely an artifact of a classical
description and vanishes in a fully self-consistent quantum
mechanical treatment, or whether it remains as a pathological
aspect of CTCs and time travel under any physical description.
In past work [1], it has been suggested that the indeterminism
problem of the billiard-ball paradox disappears in quantum
theory. The reasoning behind this is that unlike classical
mechanics, a quantum treatment provides one with ways of
assigning solution probabilities, thereby replacing the classi-
cal theory’s multiplicity of solutions with a set of probabilities
for the outcomes of all sets of measurements.

For example, a quantum prescription based on the
path-integral or sum-over-histories formulation tells us that
classical trajectories are probabilistically superposed. In a
prominent paper by Friedman et al. [1], the authors propose
to apply such a prescription to an idealized scenario where
there are exactly two solutions corresponding to one initial
condition. When the ball begins in a nearly classical wave
packet, Friedman et al. postulate that a Wentzel-Kramers-
Brillouin (WKB) approximation to their sum-over-histories
method would find that the wave packet emerges from the
CTC-wormhole region having traveled along either evolution
A or B with equal (i.e., 1

2 ) probability. One interpretation of
this is to say that the associated quantum billiard ball travels
along both paths simultaneously through the time machine

region, thus ameliorating the indeterminism of classical me-
chanics.

It is important to note, however, that Friedman et al. do not
specify how to extract probabilities from the scenario consid-
ered: the two trajectories coincide not only in their initial state,
but also in their final state. Therefore, a measurement of the
ball’s final position would reveal the same outcome, regardless
of the path taken. Indeed, no calculations are provided in
Ref. [1] or subsequent papers to support their WKB approxi-
mation conjecture. Nonetheless, the pioneering semiclassical
method proposed by Friedman et al. motivates further study
of this problem, as the interesting probabilistic result they
postulated is simply inaccessible to classical mechanics.

B. Quantum mechanical models of time travel

Naturally, the advent of CTCs in the semiclassical general
theory of relativity prompted study into quantum theories of
time travel. In the absence of a complete quantum theory of
gravity, reconciling CTCs with standard quantum mechanics
forms a compelling basis for research. Indeed, exploration
into the interplay between quantum mechanics and CTCs,
even in only a theoretical manner, may provide insight into
a yet unknown full theory of quantum gravity. In any case,
research into this area has so far taken two main routes. The
first, in which the principle of self-consistency is applied to the
density matrix itself, gives the Deutsch model (D-CTCs) [21].
The second, which is equivalent to a path-integral formulation
[22], gives postselected teleportation (P-CTCs) [23,24]. Of
course, alternative prescriptions of quantum time travel do ex-
ist [25–30], but none are as well developed as either D-CTCs
or P-CTCs and so they will not be discussed in this paper.

For D-CTCs, the mathematical formulation of self-
consistent solution(s) is provided by requiring that any given
chronology-violating (CV) system enters the wormhole in the
state θ ∈ HCV, and then emerges in the past in the same state
despite having interacted with a chronology-respecting (CR)
system in the (pure) state,

σ = |ψ〉〈ψ | ∈ HCR, (1)

through a unitary U ∈ HCR ⊗ HCV. Self-consistent solu-
tion(s) to the evolution of the CTC state may then be identified
as fixed point(s) of the CV map, which are expressible via

θ = TU [σ , θ ] = trCR[U (σ ⊗ θ )U †]. (2)

This condition essentially codifies the requirement that the
“younger” CTC state (the right-hand side) exiting the gate
is the same as the “older” CTC state (the left-hand side)
entering the gate. Once solutions to Eq. (2) are determined,
the evolution of the system state σ through the interaction U
in this Deutsch model is then simply given by

DU [σ , θ ] ≡ trCV[U (σ ⊗ θ )U †]. (3)

For P-CTCs, on the other hand, the evolution σ → PU [σ ]
of the system input state is given by

PU [σ ] = W σW †

tr[W σW †]
∼ W |ψ〉√||W |ψ〉|| , (4)

where the relation operator ∼ indicates the pure state form
of the preceding density expression and W ≡ trCV[U ] is the

042223-2



TIME-TRAVELING BILLIARD-BALL CLOCKS: … PHYSICAL REVIEW A 103, 042223 (2021)

partial trace over the Hilbert space of the system in the CTC.
Note that P-CTCs are completely equivalent to the path-
integral formulation of CTCs developed by Politzer [22], as
shown in Ref. [23].

Importantly, while these two prescriptions are distinct, they
each resolve time-travel paradoxes in their own way. P-CTCs
provide unique resolutions, whereas D-CTCs require an ad-
ditional condition (see [15,26,31–34]) to pick out a unique
solution. Since both are treatments of interacting quantum
systems near CTCs, however, we observe nonunitarity in the
evolutions of CR systems in both, which in turn means that
the output states are nonlinear functions of the input states. In
the case of P-CTCs, the output states remain pure (if initially
so), but become unnormalized (thereby requiring renormal-
ization), and such an effect jeopardizes the usual probabilistic
interpretation of quantum states. On the other hand, D-CTCs
produce entropy through mixing of the input states. Addition-
ally, another important difference between the two models is
that for D-CTCs, there is no restriction on the initial data,
while with P-CTCs, the renormalization leads to limits on the
initial data as a function of the future.

Nonlinearity is a highly nontrivial issue as its presence
fundamentally changes the structure of the theory. This is
because the standard proofs of many key theorems in quantum
mechanics, which include the no-signaling, no-cloning, and
indistinguishability of nonorthogonal states theorems, depend
on its linearity. Therefore, given the nonlinearity and nonuni-
tarity of D-CTCs and P-CTCs, it is unsurprising that they have
some very interesting applications. Specifically, both D-CTCs
[35] and P-CTCs [36] have uses in distinguishing nonorthogo-
nal quantum states, while D-CTCs [37,38] can clone arbitrary
states and P-CTCs can both signal to the past [15,39,40] and
delete arbitrary states. Consequences such as these, in addition
to the possibility that either theory accurately describes time
travel, undeniably motivates further study into D-CTCs and
P-CTCs.

C. Quantum billiard-ball paradox

By its very nature, classical physics simply cannot make
sense of solution multiplicity. Despite this, quantum treat-
ments of specific instances of classical multiplicity in
time-travel paradoxes have not actually been investigated
in the literature. Prompted by this notable absence of such
studies, in this paper we present a quantum model of the
billiard-ball paradox in which:

(i) We consider a simplified (1 + 1)-dimensional version
of the classical problem in which, by virtue of the spacetime
dimensionality and geometry of the CTC-wormhole, there are
only two possible classical paths (see Fig. 2).

(ii) This problem is mapped to a quantum circuit represen-
tation and we use a vacuum state to allow the particles to be
present or absent from particular paths.

(iii) An internal degree of freedom that operates like a
clock is included into the particle’s quantum description,
meaning that a measurement of the clock’s final state can
reveal its path’s proper time and therefore which of the two
classical alternatives was realized.

We emphasize the fact that the scenario being effectively
(1 + 1) [point (i)] is not a characteristic specified by Friedman
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FIG. 2. Based on the simplified billiard-ball paradox in Fig. 1,
these diagrams in (1 + 1)-dimensional spacetime visualize the basic
idea of the model under study in the reference frame of the clock.
(a) The history where the clock travels through the CTC-wormhole
region with no interaction; (b) the history of a clock which elasti-
cally interacts with itself. The times as measured by the clocks at
specific points along the histories are given in brackets next to their
analog clock symbols. These clocks begin at time t = 0 and, due
to their initial velocity, measure the proper times tA = tin + tout and
tB = tin + �t + tout = tA + �t for evolutions A and B, respectively.
This means that we denote the duration of the segment on the CTC
in evolution B to be �t , while the inbound and outbound times to and
from the wormhole axis (dashed line) are tin and tout, respectively. It
is important to note that the final position bears no information about
the path the ball has taken.

et al., but is part of our modeling of the paradox. In addition,
our model is based upon two distinct mechanisms. The first
of these [point (ii)] involves the introduction of a “vacuum”
state. By considering such a state to represent the absence of
a billiard ball, we can use it to allow the associated clock to
either travel unperturbed (if there is nothing, i.e., a vacuum,
in the CTC) or else be scattered into the CTC (if the billiard
ball’s future self is trapped inside the CTC). The second
mechanism [point (iii)] of our model consists of an internal
degree of freedom which is incorporated into the billiard ball’s
quantum description. Using this modification, we can measure
the proper time of the model’s distinct classical evolutions,
which is to say that the billiard ball effectively functions like
a clock. This allows us to operationally extract which-way
information, i.e., determine which path the billiard ball expe-
rienced. This is necessary to give operational meaning to the
probabilities associated with the two classical paths, which are
indistinguishable by position measurements alone.

It is important to reiterate that the presence of a clock
makes the two evolutions of the simple billiard-ball paradox
distinguishable. In the Friedman et al. conjecture [1], the
use of a semiclassical sum-over-histories approach is only
meaningful when the evolutions A and B are treated distinctly
a priori. This enables one to assign evolution probabilities
without the need for conventional which-way information.
We, however, stress that Friedman et al. do not provide an
operational prescription on how to associate paths with prob-
ability, which is the reason why we employ a quantum clock.
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One of the open questions that we investigate using our
model is whether a quantum description does indeed address
the issue of evolution indeterminism. In our findings, we
observe a parametrization of the solutions in the D-CTCs
description. Although usually interpreted as solution multi-
plicity, we discuss how this arises naturally as a choice of
“initial state” in the CTC. Alternatively, in P-CTCs, only one
quantum state is offered by the prescription as a solution to the
paradox. Rather simply, the state takes the form of a pure su-
perposition of the clock having evolved and not evolved on the
CTC during its history through the time machine region (with
the possible addition of a vacuum component depending on
the specification of the input state). A focus of these P-CTCs
findings is how this superposition lends credence to the semi-
classical billiard-ball conjecture of Friedman et al. in Ref. [1].
We also show how the well-known P-CTC constraints on the
initial data (where such restrictions depend on the future of
the time-traveling state) limit the actions that one is able to
perform in the billiard-ball interaction.

We begin with a description of our quantum billiard-ball
paradox model in Sec. II (which includes a specification of
our clock state in Sec. II A). General analytical results of the
model are given in Sec. III, while discussions ensue in Sec. IV.
Concluding remarks are lastly made in Sec. V.

II. MODEL

Our quantum billiard ball is modeled as a qudit moving in
a (1 + 1)-dimensional spacetime in which wormhole mouths
appear and disappear in such a way as to allow only two dif-
ferent paths (see Fig. 2). We use the qudit degree of freedom to
encode a clock on the particle as described in the subsequent
section. It is important to note that the particle’s position
degree of freedom starts in a semiclassical wave packet, with
negligible probability that it falls into the wormhole by its own
free evolution. This is a significant point, as it allows us to
justify both dropping position from the particle’s description
and the consideration of only the two trajectories A and B.
It also connects with the WKB approximation mentioned by
Friedman et al., who propose to apply the sum-over-histories
only to the semiclassical trajectories (thus excluding trajecto-
ries that fall into the wormhole without collision).

For simplicity and rigour, we work in (1 + 1) dimensions,
which means the only interaction that can occur between
the billiard-ball clock’s future and past selves is a complete
exchange of momentum. This is a useful characteristic, as
a quantum SWAP gate between two qudit channels perfectly
replicates this action in the quantum circuit framework. To
allow the billiard-ball paradox for our clock to function as
intended, we will also require the CTC-wormhole to be dy-
namical. This means that the mouths of the wormhole appear
and disappear at exactly the right points in the spacetime to
allow our clock to evolve in two distinct ways within the CTC
region. The resulting noncollisional evolution A is trivial;
the particle remains stationary as the past wormhole mouth
appears and disappears behind it, while the future mouth
later appears and disappears in front of the particle. Nothing
emerges from or enters the wormhole. On the other hand, in
the collisional evolution B, a moving particle emerges from
the appearing past mouth and strikes the stationary particle,

transferring all its momentum to it. The struck particle then
travels into the future mouth that appears in front of it, while
the other particle becomes stationary and remains so in place
of its collision partner.

While these trajectories are classical, the particle can be in
superpositions of being absent or present on either path. We
stress that the particle’s position degree of freedom factors out
of the evolution because the two classical trajectories coincide
in final position and velocity. Therefore, the only relevant
degrees of freedom are the internal states of the clock, plus
the presence or absence of the clocks.

It is also important to note that the incoming past and out-
going future momenta of the billiard-ball clock must exactly
match. Assuming a perfectly elastic collision, the combination
of the dynamical wormhole and the law of conservation of
momentum collectively constrains the velocity of the billiard-
ball clock on the CTC to a single value (determined by both
the geometry of the wormhole and mass of the billiard ball).
As a result, there is no need to restrict the paths of the clock
(e.g., with waveguides) or its initial velocity because the two
distinct, desired histories of our model arise naturally as the
only two paths through the spacetime. With this, we can rep-
resent the two evolutions of our clock in its reference frame
through the CTC region as per Fig. 2, where we denote the
proper travel time of the clock through the wormhole to be
exactly �t .

A. Quantum clocks

We introduce an internal qudit degree of freedom to the
billiard ball that through its evolution, tells us how much time
has passed (in its reference frame). In other words, we endow
the billiard ball with a “clock.” For our purposes, this quantum
modification serves to characterize the difference in proper
time between evolutions A and B. Specifically, if this internal
degree of freedom is observable in some manner (e.g., by
looking at the ball’s “wristwatch” upon its emergence from
the CTC region), then, upon measurement, we can deduce
which evolution the particle undertook. Such a modeling of
an internal clock to track a quantum particle’s proper time was
introduced in Ref. [41].

For our analysis, we employ the N-level, pure, equiproba-
bilistic quantum clock state

|φ〉 = 1√
N

N∑
n=1

|n〉, (5)

where the number states {|n〉}N
n=1, which obey orthonormality

via the condition 〈m|n〉 = δnm, collectively form a basis for
the N-dimensional Hilbert space in which the clock resides.
We then define the clock Hamiltonian as

Hc =
N∑

n=1

En|n〉〈n|, (6)

where En is the energy of the nth eigenstate |n〉. Time evo-
lution of a state over the times t ′ → t ′′ is then generated by
the time evolution unitary, which in its standard form may be
written

R(t ′′; t ′) ≡ R(t ′′ − t ′) = e−iHc (t ′′−t ′ )/h̄. (7)
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Equation (6) allows us to express an evolved state |φ(t )〉 in
terms of its constituent basis states {|n〉}N

n=1 as

|φ(t )〉 = 1√
N

N∑
n=1

e−iEnt/h̄|n〉. (8)

The overlap 〈φ(t )|φ(t + �t )〉 between two states at different
stages of time evolution then quantifies the indistinguisha-
bility (i.e., coherence) between the two clock states. Now,
given our freedom of choice in specifying the energies without
losing generality or functionality of the clock, we may choose
them to be equally spaced such that the nth energy En can
be expressed in terms of the ground state E1 and the spacing
�E = En − En−1 as

En = E1 + (n − 1)�E . (9)

From this, we introduce the orthogonalization time of our N-
level clock, defined as

t⊥ = 2π h̄

N�E
, (10)

which represents the minimal time needed for a clock to
evolve [under the now equally spaced Hamiltonian (6)] into
an orthogonal one. A system with finite t⊥ can be thought of
as a clock which “ticks” at a rate proportional to t−1

⊥ . Using
the energy level relation (9) then allows us to write the clock
overlap in terms of the orthogonalization time (10) as

〈φ(t )|φ(t + �t )〉= e−iE1�t/h̄

N

N∑
n=1

exp

[
−2π i

n − 1

N

�t

t⊥

]
. (11)

In the case that the evolution time difference is equal to the
orthogonalization time, i.e., �t = t⊥, one can show that the
clock overlap vanishes, i.e.,

〈φ(t )|φ(t + �t )〉|�t=t⊥ = 0. (12)

The case of �t = t⊥ can thus be interpreted as when the
clock’s “resolution” exactly matches the time difference be-
tween the relevant states. This is the key mechanism with
which one can investigate temporal differences between the
multiple trajectories (such as the two paths in the simple
billiard-ball paradox) that are generated via the indeterminism
present in spacetimes containing CTCs.

As a final point, note that the simple forms of the clock
state and its associated Hamiltonian are only convenient
choices—the results we obtain in this paper are completely
independent of them (provided the initial clock is not an en-
ergy eigenstate, but is a superposition of different energies). In
particular, given that any quantum system can be decomposed
into an orthogonal energy basis, our use of such a basis poses
no restrictions on our findings. The use of uniform 1/

√
N

weights in the initial state also merely provides simplicity
compared to that of general amplitudes, {cn}N

n=1. In the same
vein, the fact that the energy levels are chosen to be equally
spaced means that the orthogonalization time is the same
between orthogonal states.

B. Quantum circuit model of the billiard-ball paradox

The model which we study in this paper involves the evo-
lution of the quantum clock state,

σ = |φ〉〈φ∣∣, (13)

σ R (tin + tout) EA

[
σ
]

θ R (Δt) θ

σ R (tin) R (tout) EB

[
σ
]

θ R (Δt) θ

(a)

(b)

FIG. 3. Quantum circuit models of the two trajectories under
study. (a) The evolution A in Fig. 2(a); (b) the evolution B in Fig. 2(b).

along the trajectories illustrated in Fig. 2. Given these trajecto-
ries, it is easy to construct quantum circuit formulations for the
clock states. Such circuits appear in Fig. 3. Here, the elastic
self-collision of the clock between its past and future selves
may be represented by the SWAP gate,

S =
N∑

i, j=1

|i〉〈 j|CR ⊗ | j〉〈i|CV. (14)

In effect, this exchange of the CV (trapped CTC) and CR
(incoming system) quantum states mimics the momentum-
exchange collision interaction between the billiard ball’s past
and future selves [which necessarily occurs in (1 + 1) dimen-
sions]. Next, in order to combine the two separate subcircuits
of Fig. 3 into a single model, we introduce a vacuum state
|0〉 (orthonormal to the existing number states) into both the
CR and CV Hilbert spaces. We mandate that the vacuum and
clock cannot “collide” with each other, and this effect will be
introduced by modifying the SWAP gate to the form

S̃ = 1̃CR ⊗ |0〉〈0|CV + |0〉〈0|CR ⊗ 1̃CV

− |0〉〈0|CR ⊗ |0〉〈0|CV + S, (15)

where 1̃ = 1 + |0〉〈0| is the identity matrix in a vacuum-
inclusive Hilbert space. This altered SWAP simply excludes the
vacuum from swapping with the nonvacuous states. In this
interpretation, the state |0〉 represents the physical absence
of a clock |φ〉, and hence the “vacuum” nomenclature. In
the associated extended Hilbert space, we write the vacuum-
inclusive time evolution unitary as

R̃(t ′′ − t ′) = |0〉〈0| + R(t ′′ − t ′), (16)

where, for simplicity, we assigned the vacuum with a van-
ishing energy such that its time evolution phase coefficient
is unity. Next, the pure input clock state (5) is modified to
include the vacuum,∣∣φ̃〉 =

√
	|0〉 + √

1 − 	|φ〉, 0 � 	 � 1, (17)

which obeys the normalization condition 〈φ̃|φ̃〉 = 1 and can
be expressed in a density form as

σ̃ = ∣∣φ̃〉〈
φ̃
∣∣. (18)

This is simply the vacuum-inclusive version of the clock den-
sity (13) and is used as input to our circuit.

Given the results from the preliminary analyses of the
circuits in the previous section, we can, without loss of
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generality, set for simplicity the inbound and outbound times
both equal to zero, i.e., tin = tout = 0, for all subsequent anal-
ysis. This means that a clock which does not interact with
the CTC will not time evolve, while one which does interact
will time evolve (by the CTC “duration” �t). With this in
mind, we may depict our billiard-ball paradox circuit model
as per Fig. 4. The vacuum-modified unitary corresponding to
the circuit is simply

Ũ = [1̃CR ⊗ R̃CV(�t )]S̃. (19)
Under this, the input state may either self-consistently interact
with the CTC or it may pass straight through the circuit, thus
allowing it to evolve through the circuit in the two paths of
Fig. 2.

III. RESULTS

Here we present the general analyses of the model using
the N-level clocks introduced in Sec. II A. For supplementary

FIG. 4. The vacuum-based quantum circuit formulation of the
billiard-ball paradox (see Fig. 1) under study. The connected
crosses between the two channels represent our prescribed vacuum-
excluding SWAP gate.

comprehension, visualizations using qubit (N = 2) clocks of
the various relevant quantities appear in the Appendix.

A. D-CTCs results

With the unitary (19) and CR input (18), CV fixed points
present themselves as solutions to the equation

θ̃ = 	R̃θ̃ R̃† + (1 − 	)

{
〈0|θ̃ |0〉|0〉〈0| + (1 − 〈0|θ̃ |0〉)R|φ(0)〉〈φ(0)|R† + 1

N

N∑
i, j=1

R̃[〈i|θ̃ |0〉| j〉〈0| + 〈0|θ̃ | j〉|0〉〈i|]R̃†

}
. (20)

When 	 = 1, the input state is purely vacuous, and so any cross-channel interactions are prevented by the nature of the SWAP

gate (15). Therefore, the trapped state can be any time-independent density matrix, namely, any mixture of energy eigenstates
(i.e., diagonal in the energy basis). On the other hand, for 	 < 1, the CR and CV channels interact nontrivially, resulting in a
stronger constraint. First introducing the evolved clock notation

Rk (t ′′ − t ′)|φ〉 ≡ |φ(k)(t ′′ − t ′)〉, (21)

one can verify that the general solution takes the form

TŨ [σ̃ , θ̃ ](�t,	, g) =
{

g|0〉〈0| + (1 − g)
, 	 = 1,

g|0〉〈0| + (1 − g) (1−	)
	

∑∞
k=1 	k|φ(k)(�t )〉〈φ(k)(�t )|, 	 < 1;

(22)

where 0 � g � 1 is a free parameter and 
 is a arbitrary
classical mixture in the clock subspace, i.e.,


 =
N∑

n=1

cn|n〉〈n|. (23)

The parameter g can be interpreted as the probability that the
CTC contains no clock, and its presence is usually taken to
indicate a multiplicity in the set of solutions. An alternative
interpretation is that g parametrizes some particular properties
of the wormhole itself. Note that when 	 = 1, the vacuous
input state does not interact with the classical CV mixture.
Physically, we can interpret the clock subspace portion 
 as
a preexisting state of the CTC’s time evolution, which man-
ifested before we began our theoretical experiment. This is
to say that 
 is unmeasurable and merely represents some

classical configuration of energy that was perhaps captured
by the wormhole during its construction. In any case, as the
trapped state is not interacted with when 	 = 1, we hereafter
restrict our attention to the more physically interesting regime
of 	 < 1 wherein we will retain the freedom of g and track its
effect through the calculations.

For the measurable part of the solution, observe how it
takes the form of a simple mixture of the vacuum and an
infinite series of clock states at different evolutionary times.
This spectrum of clock CTC “windings” is weighted by the
input vacuum coefficient 	 such that in the case of 	 < 1,
higher-order windings have lesser probability to be trapped
within the CTC.

The D-CTCs output state corresponding to the fixed point
(22) is found to be

DŨ [σ̃ , θ̃ ](�t,	, g) = g|φ̃(0)〉〈φ̃(0)| + (1 − g)
(1 − 	)

	

∞∑
k=1

	k

[
	|0〉〈0| + (1 − 	)|φ(k)(�t )〉〈φ(k)(�t )|

+
√

	
√

1 − 	
tr[Rk (�t )]

N
|0〉〈φ(k)(�t )| +

√
	

√
1 − 	

tr[R†k (�t )]

N
|φ(k)(�t )〉〈0|

]
, (24)
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where we used

〈φ(0)|φ(k)(�t )〉 = tr[Rk (�t )]

N
. (25)

Let us now analyze these results. First, it is easy to analytically verify that the state populations are constant with respect to
�t , and in fact take the values

〈n|TŨ |n〉 =
{

g, n = 0,
1
N (1 − g), n > 0;

(26)

〈n|DŨ |n〉 =
{
	, n = 0,
1
N (1 − 	), n > 0.

(27)

These results tell us that the parameter g directly controls the mixing between vacuous and nonvacuous levels for the CV trapped
state, while 	 has exactly the same effect on the CR output state.

Next, we can compute the probabilities of measuring unevolved and orthogonal clocks in both D-CTCs states to be

〈φ(0)|TŨ |φ(0)〉 = (1 − g)
(1 − 	)

	

∞∑
k=1

	k tr[Rk (�t )]tr[R†k (�t )]

N2
, (28a)

〈φ(t⊥)|TŨ |φ(t⊥)〉 = (1 − g)
(1 − 	)

	

∞∑
k=1

	k tr[R†(t⊥)Rk (�t )]tr[R†k (�t )R(t⊥)]

N2
; (28b)

〈φ(0)|DŨ |φ(0)〉 = g + (1 − g)
(1 − 	)2

	

∞∑
k=1

	k tr[Rk (�t )]tr[R†k (�t )]

N2
, (29a)

〈φ(t⊥)|DŨ |φ(t⊥)〉 = (1 − g)
(1 − 	)2

	

∞∑
k=1

	k tr[R†(t⊥)Rk (�t )]tr[R†k (�t )R(t⊥)]

N2
, (29b)

where we used the fact that

0 = 〈φ(0)|φ(t⊥)〉 = tr[R(t⊥)]

N
. (30)

These quantities tell us the relative likelihoods of detecting
either type of clock trapped within the CTC or exiting the CTC
region. From them, we deduce the relations

〈φ(0)|DŨ |φ(0)〉 = g + (1 − 	)〈φ(0)|TŨ |φ(0)〉, (31a)

〈φ(t⊥)|DŨ |φ(t⊥)〉 = (1 − 	)〈φ(t⊥)|TŨ |φ(t⊥)〉, (31b)

with which we infer that the D-CTCs trapped and output state
clock probabilities are related linearly with respect to t⊥.

B. P-CTCs results

According to the P-CTCs prescription, to find the output
state, we first must trace out the CV channel from the unitary
(19), which yields

W̃ ≡ trCV[Ũ ] = tr[R̃(�t )]|0〉〈0| + 1 + R(�t ). (32)

With this, one can then compute the output in pure state form
to be

PŨ [σ̃ ](�t,	) = W̃ σ̃W̃ †

tr[W̃ σ̃W̃ †]

∼ 1√|N | {
√

	 tr[R̃(�t )]|0〉+ √
1 − 	[|φ(0)〉+ |φ(�t )〉]},

(33)

where the normalization coefficient N is given by

N = tr[W̃ σ̃W̃ †]

= 	 tr[R̃(�t )]tr[R̃†(�t )]

+ (1 − 	)

{
2 + tr[R(�t )] + tr[R†(�t )]

N

}
. (34)

The corresponding state populations are

〈n|PŨ |n〉 = 1

N ×
{
	 tr[R̃(�t )]tr[R̃†(�t )], n = 0,

(1 − 	)|1 + Rnn(�t )|2, n > 0.
(35)

Unlike the D-CTCs populations in Eqs. (26) and (27), we
observe that these expressions are not simply �t-independent
constants in P-CTCs. Lastly, we can compute the clock prob-
abilities to be

〈φ(0)|PŨ |φ(0)〉 = 1

N (1 − 	)

∣∣∣∣1 + tr[R(�t )]

N

∣∣∣∣
2

, (36a)

〈φ(t⊥)|PŨ |φ(t⊥)〉 = 1

N (1 − 	)

∣∣∣∣ tr[R†(t⊥)R(�t )]

N

∣∣∣∣
2

. (36b)

IV. DISCUSSION

Evidently, our quantum circuit model produces nontrivial
results in terms of D-CTCs and P-CTCs. Here, we highlight
some interesting features of the results, compare the two pre-
scriptions, discuss the effects of the parameters g, 	, and �t ,
and conclude with some general remarks.

The form of the D-CTCs trapped state becomes intuitive
in the equivalent circuit picture (ECP) [15,31–34]. In the
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ECP, one determines the CV state by iterating an initial seed
state many times through the circuit until the fixed point
is reached. The corresponding CR state can then be found.
An obvious choice for the seed state is the noninteracting
trapped state when 	 = 1 (24). With this, in each iteration
through the circuit [i.e., application of the unitary (19)], the
nonvacuous portion of the CTC state [initially (1 − g)ρ] ef-
fectively “catches” an unevolved clock from the input state
into the CTC. Any existing nonvacuous states inside the
CTC are then multiplied by the probability that the CR
state is vacuous, i.e., 	, which corresponds to the chance
that the trapped clock(s) will be unable to leave the CTC.
Lastly, everything inside the CTC time evolves, i.e., rotates
by the time delay �t . After an infinite number of interac-
tions, we end up with the infinite spectrum of clocks, (1 −
g)

∑∞
k=1 	k|φ(k)(�t )〉〈φ(k)(�t )|, which after normalization

by (1 − 	)/	 and the addition of the unchanged vacuum por-
tion g|0〉〈0| leaves us with our measurable CV solution (22).

The D-CTCs CR output state is then simple to interpret.
The vacuous CV component allows for input CR clocks to
pass through the circuit unaffected, while the spectrum of
trapped clocks swaps with the input clock and combines
with the input vacuum in the CR output. Note that if the
tr[Rk (�t )]/N and tr[R†k (�t )]/N factors in the output (24)
were unity, then the infinite series term would reduce to the
vacuum-clock spectrum,

∑∞
k=1 	k|φ̃(k)(t⊥)〉〈φ̃(k)(t⊥)|. This,

of course, only occurs when �t = pNt⊥ (p ∈ Z>0) however,
which is the case where the spectrum disappears due to com-
plete revolution of the clock.

Conversely, the P-CTCs output (33) is, excluding the single
pure vacuum state, a simple superposition of the unevolved
and singly evolved clock states. This is in stark contrast
to the spectrum of higher-order windings in D-CTCs asso-
ciated with 0 < 	 < 1. It is only in the case that 	 = 0
where the D-CTCs output reduces to a classical mixture of
the unevolved and singly evolved clock superposition, i.e.,√

g|φ(0)〉 ± √
1 − g|φ(�t )〉.

A. Parameters of the circuit

1. Free parameter g

Normally the free parameter g in the D-CTC model is seen
as an incompleteness of the model, requiring additional as-
sumptions to remove it. An alternative interpretation emerges
from our model. In the ECP, it is easy to analytically verify
that the seed state

θ̃(0)(g) = g|0〉〈0| + (1 − g)ρ (37)

(where ρ is an arbitrary normalized density existing in the
clock subspace), evolves to the general trapped state (22). In
other words, an infinite number of applications of the unitary
(19) to this CV state with the input CR state (17) converge to
the solution (22). This is because the separate components in
the end state fixed point are linear transformations of the input
components of the seed state, which consequently means that

the initial mixture of the seed state (codified by g) directly
controls the form of the CV state.

Thus, as an alternative and perhaps less involved view, one
could simply argue that g is not a parameter to be fixed by
additional constraints on the model itself, but merely charac-
terizes some intrinsic attribute(s) of the wormhole-CTC-time
machine (such as geometry, dynamics and/or energy [temper-
ature]).

2. Vacuum parameter �

Unlike the multiplicity parameter g, the vacuum input
amplitude

√
	 influences the results of both D-CTCs and

P-CTCs. In the former, its presence causes any nonvacuous
components of the CV state to loop around the CTC upon
interaction with the CR state. However, in P-CTCs, its effect
is trivial in that due to the necessary renormalization, it merely
controls the relative amplitude between the vacuum and clock
levels in the output state.

Perhaps intuitively, for the extreme case 	 = 1, the trivial
vacuous input corresponds to likewise vacuous outputs for
both D-CTCs and P-CTCs. Less intuitive is the opposite case
where 	 = 0, in which the input state consists of only the
clock (and no vacuum). Here, of importance is the fact that the
D-CTC states no longer contain clocks of rotation order higher
than 1. This is due to the fact that by setting 	 = 0, we remove
the sole mechanism with which clock states cannot swap out
of the CTC, thereby eliminating any eternally trapped clocks.
As a consequence, the D-CTCs CV state becomes simply
a classical mixture of the vacuum and the singly evolved
clock, which has a direct interpretation as describing a CTC
either containing nothing or a clock, respectively. These two
classical alternatives then directly specify what occurs within
the CTC region. In the former, where there is probability g
that there is no clock in the CTC, there is an equal probability
of the external clock not interacting with the CTC. Hence,
the output clock |φ(0)〉 must have followed the noninteracting
evolution A. Alternatively, in the latter case, a clock was in
the CTC with a complement probability (1 − g). This can
only happen if the initial clock was scattered into it, which
means that the evolved clock (which was kicked out by its
younger self) takes on the form |φ(�t )〉 in accordance with
the interacting trajectory B.

3. CTC time delay �t

The phase rotation of the CTC, denoted as �t and inter-
preted as the CTC’s time delay, yields which-way information
and thus distinguishes the two classical histories. To further
examine the effect which this has on the solutions, we will
look at a few important cases.

First, when �t = 0, one can interpret the CTC as having
a vanishingly short length. As a result, the two histories of
the billiard-ball paradox become, at no fault of our clock,
indistinguishable in the sense that the clock does not time
evolve during its history through the circuit. Conversely, in
the case of �t = t⊥, we can use (30) to write the solutions as

TŨ [σ̃ , θ̃ ]|�t=t⊥ = g|0〉〈0| + (1 − g)
1 − 	

1 − 	N

1

	

N∑
k=1

	k|φ(k)(t⊥)〉〈φ(k)(t⊥)|, (38a)
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DŨ [σ̃ , θ̃ ]|�t=t⊥ = g|φ̃(0)〉〈φ̃(0)| + (1 − g)(1 − 	)

[
	

1 − 	
|0〉〈0| + 1 − 	

1 − 	N

1

	

N∑
k=1

	k|φ(k)(t⊥)〉〈φ(k)(t⊥)|
]

; (38b)

PŨ [σ̃ ]|�t=t⊥ ∼
√

	 |0〉 + √
1 − 	[|φ(0)〉 + |φ(t⊥)〉]√

2 − 	
. (39)

Here, the D-CTCs clock spectrum of the general �t case (22),
which consists of (possibly) an infinite number of distinctly
rotated clocks {Rk (�t )|φ〉}∞k=1, reduces to the spectrum of
N orthogonal clocks {Rk (t⊥)|φ〉}N

k=1. In regards to the origi-
nal billiard-ball paradox, we associate the zeroth orthogonal
state |φ(0)〉 = R0(t⊥)|φ〉 with evolution A, and the first or-
thogonal clock |φ(t⊥)〉 = R1(t⊥)|φ〉 with evolution B. The
existence of higher-order rotations (i.e., clock windings of the
CTC) in D-CTCs merely indicates the entrapment of these
states inside the CTC by the external (CR) vacuum. These
vanish when the input vacuum amplitude likewise vanishes,
i.e., 	 = 0.

The importance of the time delay �t and its relation-
ship with the orthogonalization time t⊥ become apparent in
a physical interpretation of the model. By construction, our
clocks have an intrinsic time between “ticks” which we de-
note t⊥. Our N-level clocks have N such ticks, or times that
we are able to perfectly distinguish between via measure-
ment. This is due to the fact that the only clock states which
have vanishing mutual overlaps are those which form the
mutually orthogonal clock set. The probabilistic interpreta-
tion of our model then leads us to conclude that any clock
not in this set will exist in a superposition of orthogonal
clocks (i.e., those which are in the set). For example, a clock
which has evolved in a nonorthogonal manner possesses a
time between two adjacent ticks and, consequently, would
have a chance to be in either of the two tick states upon
measurement.

Cunning construction of the input clock, such that its or-
thogonalization time exactly matches the CTC time delay,
yields solutions which consist of clock states that are perfectly
distinguishable. As such states correspond to the respective
number of times the clock passed through the CTC, we are
able, due to the clock’s configuration, to extract precise which-
way information from the output states.

4. Special case

Here, we consider perhaps the most enlightening special
case of our model. By mandating that we always send in a
clock into the circuit (	 = 0) while ensuring that the CTC’s
time delay exactly matches the clock’s orthogonalization time
(�t = t⊥), the output states become

TŨ [σ̃ , θ̃ ]| 	 = 0
�t = t⊥

= g|0〉〈0| + (1 − g)|φ(t⊥)〉〈φ(t⊥)|, (40a)

DŨ [σ̃ , θ̃ ]| 	 = 0
�t = t⊥

= g|φ(0)〉〈φ(0)| + (1 − g)|φ(t⊥)〉〈φ(t⊥)|;

(40b)

PŨ [σ̃ ]| 	 = 0
�t = t⊥

∼ 1√
2

[|φ(0)〉 + |φ(t⊥)〉]. (41)

Note that the D-CTCs CR output is a classical mixture of the
evolved and unevolved clocks, while the P-CTCs output is
an equiprobabilistic superposition of the very same clocks. In
fact, given that the postselected teleportation model is equiva-
lent to a path-integral formulation, our circuit appears to lend
credence to the original conjecture of Friedman et al. (con-
cerning the WKB approximation of the billiard-ball paradox)
in Ref. [1].

B. P-CTCs constraints on initial data

One interesting general characteristic of P-CTCs is that
it can pose constraints on initial conditions. Due to the
renormalization, such constraints depend on the future of
the time-traveling state. Here, we explicitly demonstrate the
restrictions associated with the P-CTCs description of our
circuit.

Given our N-level clock (5), there exist exactly N mutually
orthogonal, equally spaced states {|φ(k)(t⊥)〉}N−1

k=0 which it can
assume. As a consequence, one may express the clock gate (7)
in terms of the ground-state energy E1 defined via (9) as

R(t ′′ − t ′) = e−iE1(t ′′−t ′ )/h̄

×
N∑

n=1

exp

[
−2π i

n − 1

N

t ′′ − t ′

t⊥

]
|n〉〈n|. (42)

From this, it is easy to conclude that

RN (t⊥) = e−iNE1t⊥/h̄1, (43)

which simply indicates that N orthogonal rotations of the
clock bring it back to its initial state (up to the global phase
e−iNE1t⊥/h̄). This, therefore, means that a clock |φ〉 which or-
thogonalizes p ∈ Z>0 times accumulates p such phases. With
this, the judicious choice of our clock’s orthogonalization time
t⊥, such that it is related to the CTC time delay �t by

�t = pNt⊥, (44)

means that a clock which completes one journey on the
CTC would orthogonally evolve p times. In such a case, the
P-CTCs reduced operator (32) becomes

W̃ |�t=pNt⊥ = (1 + Ne−ipNE1t⊥/h̄)|0〉〈0|
+ (1 + e−ipNE1t⊥/h̄)1. (45)
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Additionally, if we construct our clock so that its ground-state
energy E1 satisfies

E1 = π h̄

pNt⊥
(1 + 2q), q ∈ Z�0, (46)

then the operator (45) further reduces to

W̃ ′ = W̃ | �t = pNt⊥
E1 = π h̄

pNt⊥ (1 + 2q)

= (1 − N )|0〉〈0|. (47)

After renormalization, the corresponding P-CTCs output is
then, of course, simply the vacuum density, i.e., |0〉〈0|. But
where did our clock go?

To answer this question, we can use the entangled state

|ψ〉rec,CR = 1√
2

[|0〉rec ⊗ |0〉CR + |φ(0)〉rec ⊗ |φ(0)〉CR] (48)

as input to our circuit. Here, the state existing in the first
Hilbert space may be interpreted as a record of what we send
into the second, CR channel. With this entanglement, we find
the P-CTCs unnormalized pure state output, corresponding to
our circuit’s ordinary operator 1̃rec ⊗ W̃CR from (32), to be

(1̃rec ⊗ W̃CR)|ψ〉rec,CR

∝
√

	 tr[R̃(�t )] |0〉rec ⊗ |0〉CR

+ √
1 − 	 |φ(0)〉rec ⊗ [|φ(0)〉CR + |φ(�t )〉CR]. (49)

The persistence of the entanglement means that when the
record indicates that we did not send in a clock, we will
not observe a clock in the CR output. Conversely, when we
definitely did send in a clock, we must observe a clock exiting
the CTC region, which is exactly what one would expect
intuitively. However, under the conditions (44) and (46) which
yield the operator (47), the entanglement of our input state
(48) breaks,

(1̃rec ⊗ W̃ ′
CR)|ψ〉rec,CR ∝ |0〉rec ⊗ |0〉CR. (50)

The mere presence of the interaction with the CTC in the
future implies that the record channel will show that no clock
was ever prepared, even though the initial state (48) included
the possibility that a clock was there (which would show up in
the record if the future interaction with the CTC was avoided).

Given the path-integral correspondence of P-CTCs, the
conditions (44) and (46) collectively form a case in which
no clocks can evolve through the circuit due to destructive
interference in the path integral. This is to say that P-CTCs
suppress all evolutions of nonvacuous states as a result of
the particular future evolution of clock states in our model,
thereby posing constraints on the initial state. This issue
highlights the well-known problem of antichronological and
superluminal influence with P-CTCs [15,39,40]. In contrast,
the initial data for D-CTCs are never affected by the presence
or absence of the CTC in the future.

V. CONCLUSION

In this paper, we presented a quantum circuit formulation
of a (1 + 1)-dimensional version of the billiard-ball paradox.

Our model is based on two important mechanisms. The first,
which involves the incorporation of an internal degree of
freedom into the billiard ball, allows it to effectively function
like a clock. In practice, this meant that we were able to
measure the proper time of the distinct classical evolutions A
and B, from which we could extract which-way information
(distinguishability) regarding these trajectories. The second
mechanism is that of the vacuum state, which allowed the
clock to either travel unperturbed (if there is nothing, i.e., a
vacuum, in the CTC) or be scattered into the CTC (if there is
the external clock’s trapped future self already inside).

We found that the parametrization solution arises in the
D-CTC prescription, and it was discussed how this resembles
the classical solution multiplicity. We also argue how this
parametrization can be naturally interpreted in terms of a
choice of “initial state” (parametrized by g) in the D-CTC. On
the other hand, the P-CTC model presents only one quantum
state as a solution, which takes the form of a pure superposi-
tion of the clock having evolved and not evolved through the
CTC (with the possible addition of a vacuum component if
such a state was initially sent in with the clock). This therefore
reproduces the intuition expressed by Friedman et al. in their
seminal paper [1] (discussed in the latter part of Sec. I and in
Sec. IV A 4).

Our results demonstrated that when one prescribes the ex-
istence of a vacuum, the D-CTCs and P-CTCs output states
become the aforementioned mixture and superposition, re-
spectively, of the histories which do and do not interact with
the CTC. These outcomes thus support the notion that if the
world operates in accordance with D-CTCs, then the classical
picture one gets works like multiple universes; otherwise, if
it operates as per P-CTCs, then there are constraints on the
actions which one is able to perform.

By basing our quantum circuit model on the classical
problem, we assumed that any external degree(s) of freedom
relevant to the propagation of the billiard particle do not play
a role and can therefore be neglected. Further work could
include determining if this is an entirely well-founded pos-
tulate, particularly in the context of continuous degrees of
freedom. Nevertheless, the framework of incorporating quan-
tum clocks into classical particles that evolve along wholly
classical trajectories allowed us to rigorously explore the
billiard-ball paradox. Albeit simple, the ability to allow one to
distinguish between multiple histories through a chronology-
violating region is a powerful function of the methodology,
and one could use it to very easily study other time-travel
paradoxes.
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FIG. 5. D-CTCs CV clock probabilities (unitless) for the vacuum
model plotted against the dimensionless time ratio. The CTC multi-
plicity parameter was taken to be g = 1

3 , and the lines correspond to

varying values of
√

	.

APPENDIX: TWO-LEVEL QUBIT CLOCK

To further investigate the results of the main text, we can
employ numerical methods to generate visualizations of the
various quantities. For simplicity, these plots can be produced
by employing qubit (i.e., N = 2 dimensions) quantum clock
states,

|φ(0)〉 = 1√
2

(|1〉 + |2〉), (A1)

where |1〉 and |2〉 are the ground and excited states, respec-
tively. By Eqs. (9) and (10), the associated clock gate may be
written as

R(�t ) = e−iE1�t/h̄(|1〉〈1| + e−iπ�t/t⊥ |2〉〈2|), (A2)

so that the orthogonalization time �t = t⊥ transforms the
initial clock qubit (A1) into the orthogonal state

|φ(t⊥)〉 = R(t⊥)|φ(0)〉 = e−iE1t⊥/h̄

√
2

(|1〉 − |2〉). (A3)

Importantly, note that qubit clocks only have two mutually
orthogonal states, which means that multiple loops of the CTC
[such as those described by the clock spectrums of (22) and
(24)] cannot be captured by such clocks.

The quantities of interest which we will visualize include
the energy level populations (of the |0〉, |1〉, and |2〉 states) and
clock probabilities (both the unevolved |φ(0)〉 and orthogonal
|φ(t⊥)〉 clocks). From these diagrams, we can discern the
behaviors of the vacuum model in terms of both D-CTCs and
P-CTCs. Note that all of our D-CTCs plots will use g = 1

3 in
accordance with the rule of maximal entropy.

FIG. 6. D-CTCs CR clock probabilities (unitless) for the vacuum
model plotted against the dimensionless time ratio. The CTC multi-
plicity parameter was taken to be g = 1

3 , and the lines correspond to

varying values of
√

	.

1. D-CTCs qubit visualizations

By employing qubit clocks, it is easy to plot the trapped
(28) and output (29) probabilities, and such visualizations
appear, respectively, in Figs. 5 and 6. For both the CV and
CR systems, these plots depict the transition from constant
probability profiles (	 = 1) to curved ones (	 < 1), where
the trough and peak behaviors become more pronounced as
	 → 0. For the CV probabilities, an interesting feature is
that while they are both exactly 1

3 (which corresponds to
the maximally entropic selection of g for our qubit clocks)
for 	 = 1, any infinitesimal variation of 	 below 1 results
in the probabilities jumping discontinuously to assume their
curved behaviors. This indicates that the spectrum of clocks
at differing rotation [as per the series in Eq. (22)] materializes
inside the CTC as soon as 	 varies from 1.

2. P-CTCs qubit visualizations

The qubit clock probabilities (36) are visualized in Fig. 7.
Of interest is the fact that these probabilities behave in the
same manner as the CR output from the D-CTCs analysis of
Fig. 6, barring three relatively small differences. The first two
of these is that the P-CTCs troughs (for the unevolved clock)
and peaks (for the orthogonal clock) are both narrower and
reach the same extrema (which occur at orthogonalization).
The third and perhaps most interesting difference is that the
unevolved clock curves display a kind of behavior inversion as
	 varies. Beginning initially with troughlike profiles at small
	, the lines transition into symmetric peaks (albeit small)
at large 	 (e.g.,

√
	 = 0.8), until they finally flatten out at

	 = 1.
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FIG. 7. P-CTCs clock probabilities (unitless) for the vacuum
model plotted against the dimensionless time ratio. The lines cor-
respond to varying values of

√
	.

Next, the qubit plots appearing in Fig. 8 serve to illustrate
the behavior of the P-CTCs populations (35) in terms of 	

and �t . Note the symmetry about the orthogonalization time
�t = t⊥ and that summation to 1 is preserved for all 	 and �t
(as expected). Also note how as 	 → 1, the populations of the
clock’s nonvacuous energy states {|n〉}N

n=1 go to zero, while the
vacuum population goes to 1. Additionally, the visualizations
indicate how the clock’s collective level amplitudes skew to-
wards the ground state |1〉 as �t → t⊥ from either side.

FIG. 8. P-CTCs populations (unitless) for the vacuum model
plotted against the dimensionless time ratio. The lines correspond
to varying values of

√
	.
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