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Quantum-walk-based state-transfer algorithms on the complete M-partite graph
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We investigate coined quantum-walk search and state-transfer algorithms, focusing on the complete M-partite
graph with N vertices in each partition. First, it is shown that by adding a loop to each vertex, the search algorithm
finds the marked vertex with unit probability in the limit of a large graph. Next, we employ the evolution operator
of the search with two marked vertices to perform a state transfer between the sender and the receiver. We show
that when the sender and the receiver are in different partitions, the algorithm succeeds with fidelity approaching
unity for a large graph. However, when the sender and the receiver are in the same partition, the fidelity does
not reach exactly 1. To solve this problem, we propose a state-transfer algorithm with an active switch, whose
fidelity can be estimated based on the single vertex search alone.
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I. INTRODUCTION

Quantum walks [1] are quantum-mechanical analogs of
random walks. Their dynamics can be formulated either in
discrete time steps [2], as we consider in the present pa-
per, or in continuous time [3]. Both have found promising
applications in quantum information processing [4], notably
in quantum spatial search where an unsorted database is
represented by a graph. The solution to the search problem
corresponds to a marked vertex, where the local dynamics
is different from the nonmarked vertices. Usually, the initial
state of the walk is taken as the equal weight superposition
of all basis states. The walk evolves coherently for T steps,
after which we perform a measurement that collapses the state
of superposition and the walker is found on a single vertex.
On various graphs, a quantum walk is capable of finding the
marked vertex with sufficiently high probability in a number
of steps that grows with the square root of the number of
vertices n, i.e., the complexity is the same as for the abstract
Grover search algorithm [5], which is known to be opti-
mal. Initially, the investigation was mostly focused on graphs
with some degree of symmetry or regularity. Continuous-time
quantum walks were shown to be optimal [6] for a complete
graph, hypercube, and lattices of dimensions greater than 4.
Discrete time quantum walks with coins [7] are also optimal
on these graphs [8–11], and they are optimal for lattices of
dimensions greater than 2 [9]. A scattering quantum walk
[12–14], which represents an alternative equivalent formu-
lation of the coined quantum walk [15,16], can perform an
optimal search, e.g., on a star graph or a complete M-partite
graph [17]. However, high symmetry is not required for the
optimal performance of the quantum walk search [18–20].
In fact, it was shown [21] that the continuous-time quantum
walk is optimal on Erdös-Renyi random graphs as long as the
probability of an edge existing between any pair of vertices
is greater than (ln

3
2 n)/n. However, on scale-free networks

[22], the application of a quantum-walk search appears to be
limited since the optimal run time depends on the centrality of
the marked node [23]. More recently [24], several sufficient
and necessary conditions for a continuous-time quantum-walk
search to be optimal were derived.

For the search algorithm (SA) it is not required that we find
the marked vertex with unit probability. As long as the success
probability is constant, we can repeat the SA several times
depending on our error tolerance to find the marked vertex
with high probability without changing the overall complexity
of the algorithm. Even if the success probability is of the
order of 1/ ln n, as for the discrete time quantum walk on
a two-dimensional (2D) lattice [9], we can use amplitude
amplification [25], which increases the run time of the SA by a
factor of

√
ln n. There are several graphs where the quantum-

walk SA is exactly equivalent to the Grover search, e.g., the
star graph [17], which means that the success probability
is unity. It is interesting that for the discrete-time quantum
walks, the success probability of the SA can often be increased
close to unity by adding loops of appropriate weights at each
vertex. This was found originally for the complete graph [9]
and the hypercube [10]. Later investigations [26–30] found
that this result is much more generic, and the optimal weight
of the loop depending on the size of the graph and the degree
of the vertex was identified. Recently, it was proven that
adding loops improves the success probability of the SA on
all regular locally arc-transitive graphs [31].

Quantum walks were also applied to the task of state
transfer [32] between two vertices of a graph. In this con-
text, the initial state of the walk is localized on the sender
vertex, and we want to transfer it with high probability to
the receiver vertex. Provided that the location of the sender
and the receiver vertices is known, we can globally design the
dynamics such that the walker is transferred from one to the
other. This approach was investigated on different graphs such
as a circle [33,34], a 2D lattice [35], regular graphs [36], or
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more general networks [37]. When the sender and the receiver
do not know each other’s position, they can perform state
transfer by modifying the local coins at their own vertices,
i.e., by implementing the evolution operator of the SA for
two marked vertices. This approach was proposed for state
transfer on lattices [38] and further analyzed on various types
of finite graphs, e.g., on cycles and their variants [39,40], a
star and complete graph with loops [41], a complete bipartite
graph [42], circulant graphs [43], or a butterfly network [44].
A similar approach can also be applied for finding a path in a
maze formed by star graphs [45] or trees [46].

We consider the state transfer algorithm (STA) following
the second approach, i.e., based on the evolution operator
of the SA with two marked vertices. For the STA it is desirable
that we succeed in the first attempt, i.e., the fidelity of state
transfer should ideally be 1. Natural candidates for graphs
where the STA works with unit fidelity are those where also
the SA succeeds with certainty. Indeed, the graphs considered
in [41,42] were chosen exactly based on this idea. However,
in this paper we show an example of a graph where the SA
works with certainty yet in some instance the STA does not
have unit fidelity.

We investigate search and state transfer on the complete M-
partite graph with N vertices in each partition, i.e., the graph
has n = NM vertices. A search on the complete M-partite
graph was already investigated in [17] in the framework of
the scattering quantum walk. In the coined walk, the success
probability of the SA reaches 1

2 . We show that by adding a
loop to each vertex, the success probability tends to 1 for
a large graph. Our approach is based on dimensional reduc-
tion [19,47–49]. First, we find an exact invariant subspace
I where the state of the algorithm evolves. Next, we inves-
tigate the eigenvectors of the evolution operator in the limit
of a large graph M → ∞ and N → ∞, and we determine
those that have a nonvanishing overlap with the initial state.
These eigenvectors form an orthonormal basis of the relevant
part of the invariant subspace. For the SA, we find an exact
invariant subspace with dimension 8, and in the asymptotic
limit the relevant part is three-dimensional. We then inves-
tigate the evolution operator of the search with two marked
vertices for the sake of state transfer. There are two possible
configurations—either the sender and receiver are in the same
partition or they are not. In the first case, we find an exact
invariant subspace with dimension 11, while in the second
case it has dimension 22. To simplify the calculations, we em-
ploy the symmetry of the graph, which allows us to exchange
the sender and the receiver vertex, or the whole partitions
containing them in the latter case. This symmetry splits the
invariant subspace I further into two closed subspaces: I+,
in which the search with two marked vertices evolves, and
the complementary subspace I−, which is needed for the state
transfer. In the configuration where the sender and the receiver
are in the same partition, the subspace I+ has dimension
8 and the complementary subspace I− is three-dimensional.
For the second configuration, the subspaces have dimensions
12 and 10, respectively. Nevertheless, in the limit of a large
graph, only five eigenvectors of the evolution operator remain
relevant in both configurations—three in the subspace I+ and
two in I−. The corresponding eigenvalues can also be deter-
mined analytically. We show that when the sender and the

receiver are in different partitions, the phases of the relevant
eigenvalues are harmonic. Hence, state transfer is achieved
with unit fidelity. However, when the sender and the receiver
are in the same partition, the phases are not harmonic, and
the fidelity of state transfer is less than 1. To fix this issue,
we propose an STA with an active switch, where initially
only the sender vertex is marked, and after some number
of steps the marking is switched to the receiver vertex. The
fidelity reachable by this STA can be estimated based on the
properties of the search for a single vertex. We show that an
STA with an active switch achieves perfect state transfer on
the complete M-partite graph in the limit of large N and M for
both configurations of the sender and the receiver vertex, and
we discuss its applicability on other graphs.

The paper is organized as follows: In Sec. II, we describe
discrete time quantum walks with a coin on finite graphs,
and we introduce the quantum-walk search and state-transfer
algorithms. In Sec. III, a search on the complete M-partite
graph with one marked vertex is investigated in detail. Sec-
tion IV is devoted to the STA. The cases of sender and receiver
vertices being in the same or different partitions are analyzed
in Secs. IV A and IV B, respectively. In Sec. V, we consider
a STA with an active switch. We conclude and provide an
outlook in Sec. VI.

II. PRELIMINARIES

In this section, we overview the general design of the
search and the state-transfer algorithms based on the discrete-
time quantum walks with coins [8,9,38]. Before we turn to
the algorithms, we describe the discrete time quantum walks
with coins. Let us start with Hilbert space of the walk. Having
a graph G = (V, E ), the corresponding Hilbert space HG can
be decomposed as a direct sum,

HG =
⊕

v

Hv,

of local Hilbert spaces at each vertex v ∈ V . The orthonormal
basis in Hv is given by vectors |v,w〉 such that there is an
edge between vertex v and w,

Hv = Span{|v,w〉|w ∈ V, {v,w} ∈ E}.
In the basis state |v,w〉 the first index v describes the actual
position of the walker, while the second index w describes
the direction of propagation of the walker. Movement of the
walker is achieved by application of the flip-flop shift operator
Ŝ, which is defined in the following way:

Ŝ|v,w〉 = |w, v〉. (1)

To generate a nontrivial evolution, a coin operator Ĉ is applied
at every step before the shift takes place. The coin operator can
be decomposed into a direct sum,

Ĉ =
⊕

v

Ĉ(l )
v ,

where Ĉ(l )
v acts locally at a vertex v, i.e., it is a unitary operator

on Hv . The evolution operator Û of one step of the walk is
then given by

Û = ŜĈ. (2)
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The main idea of search and state-transfer algorithms is
to apply one local coin operator at the marked vertices and a
different local coin operator at the other vertices of the graph.
Marked vertices are those that we want to find or between
which we want to transfer the walker. Usually, the local coin
that is used at nonmarked vertices is the Grover operator [5],

Ĝ(l )
v = 2|�v〉〈�v| − Î (l )

v , (3)

where Î (l )
v is an identity operator at the subspace Hv , and |�v〉

is an equal weight superposition of all basis states at the vertex
v given by

|�v〉 = 1√
d (v)

∑
w

{v, w} ∈ E

|v,w〉. (4)

Here d (v) denotes the degree of the vertex v, which is also
the dimension of the subspace Hv . The coin operator of the
SA with one marked vertex m reads

Ĉm =
⊕
v ∈ V
v �= m

Ĝ(l )
v ⊕ Ĉ(l )

m , (5)

where Ĉ(l )
m is the local coin operator at the marked vertex. A

usual choice for the marked coin is either a simple phase shift
by π (i.e., Ĉ(l )

m = −Î (l )
m ) or the Grover operator followed by a

phase shift by π (i.e., Ĉ(l )
m = −Ĝ(l )

m ). In the present paper, we
consider the latter case. Using the coin operator (5), we obtain
the evolution operator of the SA,

Ûm = ŜĈm.

The steps of the SA are as follows:
(i) Initialize the walk in the equal-weight superposition of

all basis states,

|�〉 = 1√∑
v∈V

d (v)

∑
v∈V

√
d (v)|�v〉. (6)

(ii) Apply the evolution operator Ûm t-times. The state of
the walk after t steps is given by

|φ(t )〉 = Û t
m|�〉.

(iii) Measure the walk.
The probability to find the walker at the marked vertex is

given by the summation over all basis states in the subspace
Hm,

Pm(t ) =
∑
w

{m, w} ∈ E

|〈m,w|φ(t )〉|2. (7)

The optimal number of steps T providing high success proba-
bility depends on the structure of the graph.

In the case of the STA, we consider two parties, the sender
and the receiver sitting at vertices s and r, respectively, which
want to establish communication between each other. The
sender and the receiver have access only to their local Hilbert
spaces Hs and Hr , respectively. The typical STA [38,41,42]
uses the evolution operator of the search for two marked
vertices,

Ûs,r = SĈs,r,

where we apply the same local coins at both marked vertices
at the same time,

Ĉs,r =
⊕
v ∈ V

v �= s, r

Ĝ(l )
v ⊕ Ĉ(l )

s ⊕ Ĉ(l )
r . (8)

However, the initial state of the STA is different—it starts
localized at the sender vertex in some state |s〉. The standard
choice is the equal-weight superposition of all basis states at
the vertex s, i.e., |s〉 = |�s〉. The steps of the STA are the
following:

(i) The sender initializes the walk at its vertex in the state
|s〉.

(ii) The evolution operator Ûs,r is applied t-times. The state
of the walk after t steps is given by

|φ(t )〉 = Û t
s,r |s〉.

(iii) The receiver measures the walk at its vertex.
The fidelity of the STA, i.e., the probability that the receiver

finds the walker at its vertex, is given by

F (t ) =
∑
w

{r, w} ∈ E

|〈r,w|φ(t )〉|2. (9)

The number of steps T (st) required to achieve state transfer
with high fidelity depends again on the size and the structure
of the graph. In contrast to the SA, it is desirable that the STA
performs with high fidelity in a single run. In such a case, we
talk about perfect state transfer.

III. SEARCH ON THE COMPLETE M-PARTITE GRAPH

Consider the complete M-partite graph (with M > 2). The
complete M-partite graph is a graph that has the set of ver-
tices V divided into M subsets, where vertices have no edges
between them, but they are connected to all vertices in other
subsets. We label the vertices of the graph as vα , where
α = 1, . . . , M denotes the partition. The basis states of the
quantum walk are therefore given by |vα,wβ〉, α �= β. We also
limit ourselves to the case in which all parts have the same size
N , thus the whole graph has n = MN vertices. This choice
greatly simplifies the construction of the invariant subspace.
The graph is d-regular with the vertex degree,

d = N (M − 1).

Without loss of generality, we assume that the marked vertex
is in the first partition.

A search on the complete M-partite graph was carried out
in [17] in the framework of the scattering quantum walk.
The difference between the two formulations is that in the
coined walk the walker lives on the vertices, while in the
scattering walk it lives on the edges. The results of [17] can
be adopted for the coined quantum walk with a single modi-
fication. Namely, for the evaluation of the success probability
(7), we consider only the overlap with the states where the
walker is at the marked vertex, i.e., of the form |m1, kα〉,
k = 1, . . . , N , α = 2, . . . , M, which form the basis of the
local Hilbert space at marked vertex Hm. The equal-weight
superposition of such states corresponds to the state |w2〉 in
[17]. This gives us the success probability of 1

2 for a large
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graph. Note that with probability close to 1
2 , we would find the

walker in some state |kα, m1〉, k = 1, . . . , N , α = 2, . . . , M,
i.e., where the walker is at the vertex kα and would move to
the marked vertex after the application of the shift Ŝ. In the
scattering walk framework, these states are also considered
in the evaluation of the success probability. Nevertheless, we
focus on the coined formulation. In the end, our goal is to in-
vestigate the state transfer between vertices where the coined
formulation is more natural, since the sender and the receiver
are considered to be restricted to their local Hilbert spaces Hs

and Hr , respectively.
We show that one can improve the success probability of

the coined walk search by adding one loop at each vertex.
This is done by adding basis states |vα, vα〉 corresponding to
the loop at each vertex, i.e., the dimension of the local Hilbert
spaces Hvα

increases by 1. Moreover, we modify the local
coin operator (3) by replacing the state |�vα

〉 (4) with the state
|�vα

(l )〉 given by

|�vα
(l )〉 = 1√

d + l

⎛
⎝ M∑

β = 1 β �= α

N∑
k=1

|vα, kβ〉 +
√

l|vα, vα〉
⎞
⎠,

where l is the weight of the loop. Note, however, that the
initial state of the SA remains the same as before, i.e., we
prepare the system in the equal-weight superposition (6) of all
basis states excluding the states corresponding to the loops.
According to [29,31], the optimal weight l of the loops is
given by

l = d

NM
= 1 − 1

M
. (10)

Since we focus on the limit of a large graph, we set l = 1. This
choice corresponds to the local coin operator being the Grover
operator (3) of dimensions d + 1, except for the marked vertex
where we include an additional phase shift by π . First, we
show that the SA evolves in an eight-dimensional invariant
subspace I. We note that in principle the dimension of the
exact invariant subspace can be reduced further, since the
evolution operator restricted on I still has some degenerate
eigenvalues. However, the construction of the basis would not
be as intuitive, and the ensuing calculations will not simplify.
Second, we consider a limit of a large graph that effectively
reduces the dimension of the invariant subspace to 3.

Let us begin with the construction of the basis of the in-
variant subspace I. The numerical simulations indicate that
the state of the walk |φ(t )〉 evolves periodically close to a
state corresponding to the loop on the marked vertex |m1, m1〉.
Hence, we consider this desired target state of the SA as the
first basis vector of the invariant subspace,

|ν1〉 = |m1, m1〉. (11)

Next, we add an equal-weight superposition of all edges leav-
ing the marked vertex,

|ν2〉 = 1√
d

M∑
α=2

N∑
k=1

|m1, kα〉. (12)

Concerning the nonmarked vertices in the first partition, we
add two states corresponding to a superposition of all loops

and a superposition of all edges leaving the first partition,

|ν3〉 = 1√
(N − 1)

N∑
j �=m

| j1, j1〉,

|ν4〉 = 1√
d (N − 1)

N∑
j �=m

M∑
α=2

N∑
k=1

| j1, kα〉.

Next, we consider the edges leading to the first partition from
the outside and ending either on the marked or nonmarked
vertex, and we construct the following two basis states:

|ν5〉 = 1√
d

M∑
α=2

N∑
k=1

|kα, m1〉,

|ν6〉 = 1√
d (N − 1)

N∑
j �=m

M∑
α=2

N∑
k=1

|kα, j1〉. (13)

These states can be obtained by applying the shift operator on
|ν2〉 and |ν4〉. To complete the basis, we consider the states
corresponding to the superposition of all edges between the
vertices outside of the first partition,

|ν7〉 = 1√
d (d − N )

M∑
α, β = 2 β �= α

N∑
j,k=1

| jα, kβ〉,

and the superposition of all remaining loops,

|ν8〉 = 1√
d

M∑
α=2

N∑
k=1

|kα, kα〉.

Clearly, the initial state of the SA (6) lies in I and has the
following form:

|�〉 = 1√
MN

[|ν2〉 + |ν5〉 + √
d − N |ν7〉

+√
N − 1(|ν4〉 + |ν6〉)]. (14)

By direct calculation, one can show that the evolution operator
Ûm of the SA acts on the basis states according to

Ûm|ν1〉 = 1

d + 1
((d − 1)|ν1〉 − 2

√
d|ν5〉),

Ûm|ν2〉 = − 1

d + 1
(2

√
d|ν1〉 + (d − 1)|ν5〉),

Ûm|ν3〉 = 1

d + 1
((1 − d )|ν3〉 + 2

√
d|ν6〉),

Ûm|ν4〉 = 1

d + 1
(2

√
d|ν3〉 + (d − 1)|ν6〉),

Ûm|ν5〉 = 1

d + 1
((1 − d )|ν2〉 + 2

√
N − 1|ν4〉

+2
√

d − N |ν7〉 + 2|ν8〉),

Ûm|ν6〉 = 1

d + 1
(2

√
N − 1|ν2〉 − (d + 3 − 2N )|ν4〉

+ 2
√

(d − N )(N − 1)|ν7〉 + 2
√

N − 1|ν8〉),
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Ûm|ν7〉 = 1

d + 1
(2

√
d − N |ν2〉

+ 2
√

(d − N )(N − 1)|ν4〉
+ (d − 1 − 2N )|ν7〉 + 2

√
d − N |ν8〉),

Ûm|ν8〉 = 1

d + 1
(2|ν2〉 + 2

√
N − 1|ν4〉

+ 2
√

d − N |ν7〉 + (1 − d )|ν8〉). (15)

Hence, I is indeed an invariant subspace of the SA, and the
state of the walk |φ(t )〉 remains in I for all t . Its evolution is
determined by the eigenvalues and eigenvectors of Ûm, which
is in the invariant subspace represented by an 8 × 8 unitary
matrix with matrix elements given by (15). While it is pos-
sible to diagonalize this matrix analytically, the procedure is
rather onerous and the resulting expressions are quite lengthy.
Nevertheless, the analysis can be considerably simplified in
the limit of a large graph, i.e., when N → ∞ and M → ∞.
As we can see from the expansion (14) for large N and M,
the initial state of the algorithm tends to |ν7〉. Hence, the only
eigenvectors of the evolution operator Ûm, which remain rele-
vant in the asymptotic limit, are those that have nonvanishing
overlap with |ν7〉. It turns out that there are only three such
states, and their asymptotic form is given by

|ψ1〉 = 1√
2

(|ν7〉 − |ν1〉),

|ψ (±)
2 〉 = 1

2
[|ν1〉 + |ν7〉 ± i(|ν5〉 − |ν2〉)]. (16)

It can be shown that for the other eigenvectors of Ûm, the over-
lap with the initial state decreases at least as O(1/

√
NM ). Let

us turn to the eigenvalues. The eigenvector |ψ1〉 corresponds
to λ1 = 1. For |ψ (±)

2 〉 the eigenvalues have the form

λ
(±)
2 = e±iω2 .

From the characteristic polynomial of Ûm we find that cos ω2

is given by the largest root of the quadratic equation,

x2 −
(

1 − N

d + 1

)
x − (d + 1)(N − 2) + N − 3

(d + 1)2 = 0.

This leads us to

ω2 = arccos

(
1 − 1 + NM − √

N2M2 − 6NM + 4N + 5

2(d + 1)

)

≈ 2√
NM

. (17)

From the relations (16) we express the initial and the target
state of the SA in terms of the eigenvectors of the evolution
operator as

|�〉 = 1√
2
|ψ1〉 + 1

2
(|ψ (+)

2 〉 + |ψ (−)
2 〉),

|ν1〉 = − 1√
2
|ψ1〉 + 1

2
(|ψ (+)

2 〉 + |ψ (−)
2 〉). (18)

The state after t iterations of the SA reads

|φ(t )〉 = 1√
2
|ψ1〉 + 1

2
(eiω2t |ψ (+)

2 〉 + e−iω2t |ψ (−)
2 〉). (19)

FIG. 1. Overall success probability of the SA (black dots) and the
probability to find the walker in the target state |ν1〉 (blue squares) as
a function of the number of steps t for N = 40 and M = 100. Red
curves correspond to the analytical results [the dashed line corre-
sponds to Eq. (21) and the full line corresponds to Eq. (23)]. Green
diamonds denote the probability that the walker is on the marked
vertex but not in the loop, which follows the curve (22). The success
probability is close to 1 after T ≈ 100 steps, in accordance with (24).

The success probability (7) of the SA after t steps can be
expressed in the form

Pm(t ) = |〈ν1|φ(t )〉|2 + |〈ν2|φ(t )〉|2. (20)

From (19) and (18) we see that the probability to find the
walker in the target state |ν1〉 is given by

|〈ν1|φ(t )〉|2 = sin4
(ω2t

2

)
. (21)

The probability to find the walker in the state |ν2〉 reads

|〈ν2|φ(t )〉|2 = 1
4 sin2 (ω2t ). (22)

Put together, we obtain the overall success probability of the
SA,

Pm(t ) = sin2
(ω2t

2

)
. (23)

We see that for t = π
ω2

the state of the SA is very close to the
target state |ν1〉. Hence, the number of steps needed to find the
marked vertex with probability close to 1 is given by

T = π

ω2
≈ π

√
NM

2
+ O

(
1√
NM

)
. (24)

For illustration purposes, we plot in Fig. 1 the probability
to find the marked vertex (23) as a function of the number of
steps for a graph with N = 40 and M = 100.

We note that the result (23) holds in the limit of large N and
M. To investigate how quickly the success probability at the
optimal time (24) approaches unity, we performed numerical
simulations for various values of N and M. The simulations
indicate that the success probability is essentially independent
of N , and with M it scales according to

Pm(T ) = 1 − O

(
1

M

)
.

The results are illustrated in Fig. 2.
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FIG. 2. Overall success probability of the SA as a function of
the number of partitions M for N = 10 (gray circles), N = 50 (blue
triangles), and N = 100 (brown diamonds). For a given N and M, we
evaluate numerically the evolution of the SA for the optimal number
of steps T given by (24), and we determine Pm(T ) from the formula
(20). To unravel the scaling of the success probability, we plot 1 −
Pm(T ) on the log-log scale. Independent of the value of N , the sets of
data points fit well onto the 1/M slope indicated by the red line.

IV. STATE TRANSFER

We now turn to the analysis of the STA. There are two
possible configurations—the sender and the receiver are in the
same partition, or they are not. Numerical simulations indicate
that for the graph without loops, the STA does not work well.
When the sender and the receiver are in the same partition, the
fidelity does not surpass 0.25. For the second configuration,
the first maximum of fidelity tends to 0.8. Hence, we turn to
the graph with loops. Choosing the initial state of the sender
as the equal-weight superposition (4), i.e., |s〉 = |�s〉, the
numerical simulation reveals that the fidelity tends to 1 for the
second configuration. However, when the sender and the re-
ceiver are in the same partition, the fidelity is still limited. As
we show in Fig. 3, it does not surpass 0.35. A careful analysis
would reveal that the culprit are two orthogonal eigenvectors

FIG. 3. The evolution of the fidelity F of the state transfer during
1000 steps for N = 40 and M = 100. Sender and receiver are in the
same part. The initial state |s〉 is the equal-weight superposition on
the sender vertex |�s〉. We see that the fidelity does not grow over
0.35.

of the evolution operator of the STA corresponding to the
eigenvalue −1, one having a large overlap with |�s〉 and the
other one with |�r〉. In the second configuration this does not
happen, as both |�s〉 and |�r〉 have overlaps with the same
eigenvectors of the evolution operator of the STA. Hence, the
absence of an edge between the sender and the receiver vertex
in the first configuration significantly limits the achievable
fidelity when we use the equal-weight superposition state |�s〉
as the initial state of the STA.

We show that the fidelity of the STA in the first configura-
tion can be improved considerably by choosing the initial state
|s〉 as the loop on the sender vertex. Moreover, we prove that
this initial state works well also in the second configuration. In
both configurations, the walker will be with high probability
transferred to the loop at the receiver vertex. We denote this
receiver state as |r〉.

A. Sender and receiver in the same partition

Let us first consider the case when the sender and the
receiver are in the same partition of the graph, i.e., they are
not connected directly by an edge. Without loss of generality,
we consider that they are in the first one.

We begin by constructing the basis of the exact invariant
subspace. The procedure is similar to the one for the SA, but
we have to consider two marked vertices corresponding to the
sender s and the receiver r. Hence, the basis states of the form
(11), (12), and (13) will appear twice—once for m = s and
once for m = r. In the end, we find the following 11 basis
vectors:

|ν1〉 = |s1, s1〉,

|ν2〉 = 1√
d

M∑
α=2

N∑
j=1

|s1, jα〉,

|ν3〉 = |r1, r1〉,

|ν4〉 = 1√
d

M∑
α=2

N∑
j=1

|r1, jα〉,

|ν5〉 = 1√
N − 2

N∑
j �=s,r

| j1, j1〉,

|ν6〉 = 1√
d (N − 2)

N∑
j �=s,r

M∑
α=2

N∑
k=1

| j1, kα〉, (25)

|ν7〉 = 1√
d

M∑
α=2

N∑
j=1

| jα, s1〉,

|ν8〉 = 1√
d

M∑
α=2

N∑
j=1

| jα, r1〉,

|ν9〉 = 1√
d (N − 2)

N∑
j �=s,r

M∑
α=2

N∑
k=1

|kα, j1〉,

|ν10〉 = 1√
d (d − N )

M∑
α=2

M∑
β=2,β �=α

N∑
j,k=1

| jα, kβ〉,

|ν11〉 = 1√
d

M∑
α=2

N∑
j

| jα, jα〉.
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Let us denote the subspace spanned by these vectors as I.
Clearly, it contains the initial and the desired target state of
the STA (|s〉 = |ν1〉 and |r〉 = |ν3〉). It can be shown by direct
calculation that it is closed under the action of Ûs,r . However,
we will not provide the expression of Ûs,r in this basis because
I can be divided further into two invariant subspaces. This
comes from the fact that the evolution of the STA is invariant
with respect to the exchange of the sender and the receiver
vertex. Let us denote the operator corresponding to this sym-
metry as P̂. Clearly, it holds that

P̂2 = Î, [P̂, Ûs,r] = 0.

P̂ acts on the basis states (25) as

P̂|ν1〉 = |ν3〉, P̂|ν2〉 = |ν4〉, P̂|ν7〉 = |ν8〉,
P̂|ν j〉 = |ν j〉, j = 5, 6, 9, 10, 11.

Since P̂ commutes with Ûs,r , they have common eigenvectors.
From P̂2 = Î we see that the spectrum of P̂ consists of two
eigenvalues 1 and −1. Hence, the invariant subspace I can
be split into two subspaces I+ and I−, which correspond to
eigenvalues 1 and −1 of the operator P̂. The basis of the
invariant subspace I+ is spanned by eigenstates denoted as
|σi〉, i = 1, . . . , 8, and it has the following form:

|σ1〉 = 1√
2

(|ν1〉 + |ν3〉),

|σ2〉 = 1√
2

(|ν2〉 + |ν4〉),

|σ3〉 = |ν5〉,
|σ4〉 = |ν6〉,
|σ5〉 = 1√

2
(|ν7〉 + |ν8〉),

|σ6〉 = |ν9〉,
|σ7〉 = |ν10〉,
|σ8〉 = |ν11〉.

Note that if we perform the SA for two marked vertices
instead of the STA, the subspace I+ would be invariant with
respect to the search. This is due to the fact that the initial state
of the SA algorithm lies within this subspace. The basis of the
invariant subspace I− is spanned by eigenstates denoted as
|τi〉, i = 1, . . . , 3 and it has the following form:

|τ1〉 = 1√
2

(|ν1〉 − |ν3〉),

|τ2〉 = 1√
2

(|ν2〉 − |ν4〉),

|τ3〉 = 1√
2

(|ν7〉 − |ν8〉).

This subspace is needed only in the STA since the initial state
of the SA is orthogonal to this subspace.

The sender and the receiver states in the new basis read

|s〉 = 1√
2

(|σ1〉 + |τ1〉),

|r〉 = 1√
2

(|σ1〉 − |τ1〉). (26)

The evolution operator in the new basis is block-diagonal, i.e.,
Ii are the invariant subspaces of Ûs,r . We find the following
relations for the basis states of I+:

Ûs,r |σ1〉 = 1

d + 1
((d − 1)|σ1〉 − 2

√
d|σ5〉),

Ûs,r |σ2〉 = − 1

d + 1
(2

√
d|σ1〉 + (d − 1)|σ5〉),

Ûs,r |σ3〉 = 1

d + 1
((1 − d )|σ3〉 + 2

√
d|σ6〉),

Ûs,r |σ4〉 = 1

d + 1
(2

√
d|σ3〉 + (d − 1)|σ6〉), (27)

Ûs,r |σ5〉 = 1

d + 1
((3 − d )|σ2〉 + 2

√
2(N − 2)|σ4〉 + 2

√
2(d − N )|σ7〉 + 2

√
2|σ8〉),

Ûs,r |σ6〉 = 1

d + 1
(2

√
2(N − 2)|σ2〉 − (d − 2N + 5)|σ4〉 + 2

√
(d − N )(N − 2)|σ7〉 + 2

√
N − 2|σ8〉),

Ûs,r |σ7〉 = 1

d + 1
(2

√
2(d − N )|σ2〉 + 2

√
(d − N )(N − 2)|σ4〉 + (d − 2N − 1)|σ7〉 + 2

√
d − N |σ8〉),

Ûs,r |σ8〉 = 1

d + 1
(2

√
2|σ2〉 + 2

√
N − 2|σ4〉 + 2

√
d − N |σ7〉 − (d − 1)|σ8〉).

In the second subspace I− the evolution operator acts according to

Ûs,r |τ1〉 = 1

d + 1
((d − 1)|τ1〉 − 2

√
d|τ3〉),

Ûs,r |τ2〉 = − 1

d + 1
(2

√
d|τ1〉 + (d − 1)|τ3〉),

Ûs,r |τ3〉 = −|τ2〉. (28)
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Let us now investigate the dynamics of the STA in the limit
of a large graph. We denote by Û± the restriction of Ûs,r

on I±, and we determine the spectrum and eigenvectors of
these operators. For Û+ the results are similar to those for the
SA. In the subspace I+ three relevant eigenvectors remain,
as for the others the overlap with |σ1〉 tends to zero at least
as O(1/

√
NM ). The limit form of the relevant eigenvectors is

given by

|ψ1〉 =
√

2

3
|σ1〉 − 1√

3
|σ7〉,

|ψ (±)
2 〉 = 1√

6
|σ1〉 + 1√

3
|σ7〉 ± i

2
(|σ5〉 − |σ2〉). (29)

The eigenvector |ψ1〉 corresponds to λ1 = 1. In the case of
|ψ (±)

2 〉 the eigenvalues have the form

λ
(±)
2 = e±iω2 .

From the characteristic polynomial of Û+ we find that cos ω2

is the largest root of the quadratic equation

x2 −
(

1 − N

d + 1

)
x − (d + 1)(N − 3) + N − 5

(d + 1)2 = 0,

which leads us to

ω2 = arccos

(
1 − 1 + NM − √

N2M2 − 10NM + 8N + 9

2(d + 1)

)

≈
√

6

NM
. (30)

In the subspace I− there are two additional relevant eigenvec-
tors in the asymptotic limit,

|ψ (±)
3 〉 = 1√

2
|τ1〉 ± i

2
(|τ2〉 − |τ3〉). (31)

For the last eigenvector of Û− the overlap with the state |τ1〉
behaves like O(1/

√
NM ). The relevant eigenvalues have the

form

λ
(±)
3 = e±iω3 ,

with

ω3 = arccos

(
1 − 1

d + 1

)
≈

√
2

NM
. (32)

Using the results (29) and (31), we see that for a large graph
the sender and the receiver states (26) can be decomposed into
the eigenvectors of the evolution operator Ûs,r according to

|s〉 = 1√
3
|ψ1〉 + 1√

12
(|ψ (+)

2 〉 + |ψ (−)
2 〉)

+ 1

2
(|ψ (+)

3 〉 + |ψ (−)
3 〉),

|r〉 = 1√
3
|ψ1〉 + 1√

12
(|ψ (+)

2 〉 + |ψ (−)
2 〉)

− 1

2
(|ψ (+)

3 〉 + |ψ (−)
3 〉).

Hence, the evolution of the STA takes place in a five-
dimensional subspace,

|φ(t )〉 = 1√
3
|ψ1〉 + 1√

12
(eiω2t |ψ (+)

2 〉 + e−iω2t |ψ (−)
2 〉)

+ 1

2
(eiω3t |ψ (+)

3 〉 + e−iω3t |ψ (−)
3 〉). (33)

The fidelity of the STA can be written as a sum,

F (t ) = |〈r|φ(t )〉|2 + |〈ν4|φ(t )〉|2, (34)

of probabilities that the walker is in the receiver state |r〉 =
|ν3〉 corresponding to the loop, or at the receiver vertex but
not in the loop, i.e., the state |ν4〉. From the relations (29),
(31), and (33), we find that these probabilities are given by

|〈r|φ(t )〉|2 = 1

36
[2 + cos (ω2t ) − 3 cos (ω3t )]2, (35)

|〈ν4|φ(t )〉|2 = 1

24
(sin(ω2t ) −

√
3 sin(ω3t ))2. (36)

From the relations (30) and (32) we see that the frequencies
are not harmonic, since for a large graph

ω2 =
√

3ω3.

The overall fidelity of the STA is then given by

F (t ) = 1

36
[2 + cos(

√
3ω3t ) − 3 cos(ω3t )]2

+ 1

24
(sin(

√
3ω3t ) −

√
3 sin(ω3t ))2. (37)

The fidelity of the STA will not reach 1 exactly. However, for
a large graph the first maximum of fidelity reaches the value

F1 ≈ 0.94. (38)

The number of steps required to reach the first maximum is
approximately given by

T (st) ≈ 2.39
√

NM. (39)

At this time the walker is with high probability in the receiver
state |r〉.

For illustration purposes, we show in Fig. 4 the evolution
of fidelity for a graph with N = 40 and M = 100.

The fidelity (38) in the first maximum is reached in the
limit of large N and M. We have performed numerical simu-
lations to investigate how quickly the fidelity at the optimal
time (39) approaches the asymptotic value (38). Similarly
to the results for the SA, the simulations indicate that the
fidelity is essentially independent of N , and with M it scales
according to

F (T (st) ) = F1 − O

(
1

M

)
.

The results are illustrated in Fig. 5.

B. Sender and receiver in different partitions

Let us now turn to the case when the sender and the receiver
are in different parts of the complete M-partite graph. Without
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FIG. 4. Fidelity of the state transfer as a function of the number
of steps t for N = 40 and M = 100. The sender and the receiver
vertices are in the same partition. Black dots are obtained from the
numerical simulation, and the full red curve corresponds to (37).
Since the frequencies (30) and (32) are not integer multiples, the
fidelity behaves anharmonically. At the time of the first maximum
(39), the walker is with high probability in the receiver state |r〉,
which is depicted by the blue squares. The probability to be in the
receiver state follows the curve (35) represented by the red dashed
curve. The green diamonds correspond to the probability that the
walker is at the marked vertex but not in the loop, which follows
the curve (36).

loss of generality, we label the partition containing the sender
as 1 and the partition with the receiver as 2.

The construction of the basis of the invariant subspace I is
more involved, since we have to consider the second partition
with the receiver vertex separately from the rest of the graph.
We begin with the states starting at the sender vertex,

|ν1〉 = |s1, s1〉,
|ν2〉 = |s1, r2〉,

|ν3〉 = 1√
N − 1

N∑
j �=r

|s1, j2〉, (40)

|ν4〉 = 1√
d − N

M∑
α=3

N∑
j=1

|s1, jα〉,

which correspond to the loop, the edge from the sender to the
receiver, the equal-weight superposition of all edges from the
sender to the remaining vertices in the second partition, and
the edges to all remaining vertices. We repeat the same for the
receiver vertex:

|ν5〉 = |r2, r2〉,
|ν6〉 = |r2, s1〉,

|ν7〉 = 1√
N − 1

N∑
j �=s

|r2, j1〉, (41)

|ν8〉 = 1√
d − N

M∑
α=3

N∑
j=1

|r2, jα〉.

FIG. 5. Overall fidelity of the STA as a function of the number of
partitions M for N = 10 (gray circles), N = 50 (blue triangles), and
N = 100 (brown diamonds). The sender and the receiver vertices are
in the same partition. For a given N and M, we evaluate numerically
the evolution of the STA for the number of steps T (st) needed to reach
the first maximum (39) and determine F (T (st) ) according to (34).
To unravel the scaling of the fidelity, we plot F1 − F (T (st) ) on the
log-log scale. The data points follow the 1/M slope indicated by the
red line, with almost no dependence on N .

Next, we consider the same edges but starting at the non-
marked vertices in the first partition, and we prepare the
following superpositions:

|ν9〉 = 1√
N − 1

N∑
j �=s

| j1, j1〉,

|ν10〉 = 1√
N − 1

N∑
j �=s

| j1, r2〉,

|ν11〉 = 1

N − 1

N∑
j �=s

N∑
k �=r

| j1, k2〉,

|ν12〉 = 1√
(d − N )(N − 1)

N∑
j �=s

M∑
α=3

N∑
k=1

| j1, kα〉.

(42)

The same procedure is repeated in the second partition:

|ν13〉 = 1√
N − 1

N∑
j �=r

| j2, j2〉,

|ν14〉 = 1√
N − 1

N∑
j �=r

| j2, s1〉, (43)

|ν15〉 = 1

N − 1

N∑
j �=r

N∑
k �=s

| j2, k1〉,

|ν16〉 = 1√
(d − N )(N − 1)

N∑
j �=r

M∑
α=3

N∑
k=1

| j2, kα〉.
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Next, we consider the edges leading to the sender or the
receiver vertex from the outside of the first two partitions:

|ν17〉 = 1√
d − N

M∑
α=3

N∑
j=1

| jα, s1〉,

|ν18〉 = 1√
d − N

M∑
α=3

N∑
j=1

| jα, r2〉. (44)

Then we add states corresponding to edges leading to the
nonmarked vertices in the first or the second partition from
the outside:

|ν19〉 = 1√
(d − N )(N − 1)

N∑
j �=s

M∑
α=3

N∑
k=1

|kα, j1〉,

|ν20〉 = 1√
(d − N )(N − 1)

N∑
j �=r

M∑
α=3

N∑
k=1

|kα, j2〉. (45)

Finally, we consider all edges between vertices in the rest of
the graph, and all remaining loops:

|ν21〉 = 1√
N (d − N )(M − 3)

M∑
α=3

M∑
β=3,β �=α

N∑
j,k=1

| jα, kβ〉,

|ν22〉 = 1√
d − N

M∑
α=3

N∑
j=1

| jα, jα〉. (46)

It can be shown by direct calculation that the 22 vectors
(40)–(46) constitute an invariant subspace of the STA. To
proceed further, we employ the symmetry P̂, which switches
the sender and the receiver partitions. Its action on the basis
states |ν j〉 is given by

P̂|ν j〉 = |ν j+4〉, j = 1, 2, 3, 4, 9, 10, 11, 12,

P̂|νi〉 = |νi+1〉, i = 17, 19,

P̂|νk〉 = |νk〉, k = 21, 22.

Since P̂ commutes with the evolution operator of the STA, we
can split I into subspaces I± corresponding to eigenvalues
±1. Subspace I+ has dimension 12 and it is spanned by the
following eigenvectors of P̂:

|σi〉 = 1√
2

(|νi〉 + |νi+4〉), i = 1, 2, 3, 4,

|σ j〉 = 1√
2

(|ν j+4〉 + |ν j+8〉), j = 5, 6, 7, 8,

|σ9〉 = 1√
2

(|ν17〉 + |ν18〉),

|σ10〉 = 1√
2

(|ν19〉 + |ν20〉),

|σ11〉 = |ν21〉,
|σ12〉 = |ν22〉.

Subspace I− has dimension 10 and it is spanned by the fol-
lowing eigenvectors of P̂ corresponding to the eigenvalue −1:

|τi〉 = 1√
2

(|νi〉 − |νi+4〉), i = 1, 2, 3, 4,

|τ j〉 = 1√
2

(|ν j+4〉 − |ν j+8〉), j = 5, 6, 7, 8,

|τ9〉 = 1√
2

(|ν17〉 − |ν18〉),

|τ10〉 = 1√
2

(|ν19〉 − |ν20〉).

In the new basis, the sender and the receiver states have the
following form:

|s〉 = 1√
2

(|σ1〉 + |τ1〉),

|r〉 = 1√
2

(|σ1〉 − |τ1〉). (47)

The evolution operator Ûs,r is block-diagonal. We find the following relations for the basis vectors of I+:

Ûs,r |σ1〉 = 1

d + 1
((d − 1)|σ1〉 − 2|σ2〉 − 2

√
N − 1|σ6〉 − 2

√
d − N |σ9〉),

Ûs,r |σ2〉 = 1

d + 1
(−2|σ1〉 + (d − 1)|σ2〉 − 2

√
N − 1|σ6〉 − 2

√
d − N |σ9〉),

Ûs,r |σ3〉 = 1

d + 1
(−2

√
N − 1|σ1〉 − 2

√
N − 1|σ2〉 + (d − 2N + 3)|σ6〉 − 2

√
(d − N )(N − 1)|σ9〉),

Ûs,r |σ4〉 = 1

d + 1
(−2

√
d − N |σ1〉 − 2

√
d − N |σ2〉 − 2

√
(d − N )(N − 1)|σ6〉 − (d − 2N − 1)|σ9〉),

Ûs,r |σ5〉 = 1

d + 1
(2|σ3〉 − (d − 1)|σ5〉 + 2

√
N − 1|σ7〉 + 2

√
d − N |σ10〉),

Ûs,r |σ6〉 = 1

d + 1
(−(d − 1)|σ3〉 + 2|σ5〉 + 2

√
N − 1|σ7〉 + 2

√
d − N |σ10〉),

Ûs,r |σ7〉 = 1

d + 1
(2

√
N − 1|σ3〉 + 2

√
N − 1|σ5〉 − (d − 2N + 3)|σ7〉 + 2

√
(d − N )(N − 1)|σ10〉),

Ûs,r |σ8〉 = 1

d + 1
(2

√
d − N |σ3〉 + 2

√
d − N |σ5〉 + 2

√
(d − N )(N − 1)|σ7〉 + (d − 2N − 1)|σ10〉),
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Ûs,r |σ9〉 = 1

d + 1
(−(d − 3)|σ4〉 + 4

√
N − 1|σ8〉 + 2

√
2N (M − 3)|σ11〉 + 2

√
2|σ12〉),

Ûs,r |σ10〉 = 1

d + 1
(4

√
N − 1|σ4〉 − (d − 4N + 5)|σ8〉 + 2

√
2N (N − 1)(M − 3)|σ11〉 + 2

√
2(N − 1)|σ12〉),

Ûs,r |σ11〉 = 1

d + 1
(2

√
2N (M − 3)|σ4〉 + 2

√
2N (N − 1)(M − 3)|σ8〉 + (d − 4N − 1)|σ11〉 + 2

√
N (M − 3)|σ12〉),

Ûs,r |σ12〉 = 1

d + 1
(2

√
2|σ4〉 + 2

√
2(N − 1)|σ8〉 + 2

√
N (M − 3)|σ11〉 − (d − 1)|σ12〉).

The action of the evolution operator on the basis vectors of I− reads

Ûs,r |τ1〉 = 1

d + 1
((d − 1)|τ1〉 + 2|τ2〉 + 2

√
N − 1|τ6〉 − 2

√
d − N |τ9〉),

Ûs,r |τ2〉 = 1

d + 1
(−2|τ1〉 − (d − 1)|τ2〉 + 2

√
N − 1|τ6〉 − 2

√
d − N |τ9〉),

Ûs,r |τ3〉 = 1

d + 1
(−2

√
N − 1|τ1〉 + 2

√
N − 1|τ2〉 − (d − 2N + 3)|τ6〉 − 2

√
(d − N )(N − 1)|τ9〉),

Ûs,r |τ4〉 = 1

d + 1
(−2

√
d − N |τ1〉 + 2

√
d − N |τ2〉 + 2

√
(d − N )(N − 1)|τ6〉 − (d − 2N − 1)|τ9〉),

Ûs,r |τ5〉 = 1

d + 1
(−2|τ3〉 − (d − 1)|τ5〉 − 2

√
N − 1|τ7〉 + 2

√
d − N |τ10〉), (48)

Ûs,r |τ6〉 = 1

d + 1
((d − 1)|τ3〉 + 2|τ5〉 − 2

√
N − 1|τ7〉 + 2

√
d − N |τ10〉),

Ûs,r |τ7〉 = 1

d + 1
(−2

√
N − 1|τ3〉 + 2

√
N − 1|τ5〉 + (d − 2N + 3)|τ7〉 + 2

√
(d − N )(N − 1)|τ10〉),

Ûs,r |τ8〉 = 1

d + 1
(−2

√
d − N |τ3〉 + 2

√
d − N |τ5〉 − 2

√
(d − N )(N − 1)|τ7〉 + (d − 2N − 1)|τ10〉),

Ûs,r |τ9〉 = −|τ4〉,
Ûs,r |τ10〉 = −|τ8〉.

To investigate the dynamics of the STA in more detail, we
again turn to the limit of a large graph. We denote by Û± the
restriction of Ûs,r on I±. For Û+ there are three eigenstates
that have nonvanishing overlap with the state |σ1〉, namely

|ψ1〉 =
√

3

2
|σ1〉 − 1

2
√

3
|σ2〉 − 1√

6
|σ11〉,

|ψ (±)
2 〉 = 1√

8
(|σ1〉 + |σ2〉) ± i

2
(|σ9〉 − |σ4〉) + 1

2
|σ11〉. (49)

Note that for the other eigenstates, the overlap with |σ1〉 de-
creases at least as O(1/

√
NM ). Turning to the eigenvalues, we

find that the eigenvector |ψ1〉 has eigenvalue λ1 = 1. From the
characteristic polynomial of Û+ we find that the eigenvalues
of |ψ (±)

2 〉 have the form λ
(±)
2 = e±iω2 , where cos ω2 is the

largest root of the cubic equation:

0 = x3 −
(

1 − N + 2

d + 1

)
x2 − (d + 1)(N − 1) − N + 5

(d + 1)2 x

+ NM − 4

(d + 1)2 .

We find that it has the following asymptotic form:

ω2 ≈ arccos

(
1 − 4

NM

)
≈ 2

√
2

NM
. (50)

Considering the subspace I−, there are two eigenvectors that
remain relevant in the asymptotic limit [for the others, the
overlap with |τ1〉 vanishes at least as O(1/

√
NM )], namely

|ψ (±)
3 〉 = 1√

2
|τ1〉 ± i

2
(|τ9〉 − |τ4〉). (51)

The eigenvalues are λ
(±)
3 = e±iω3 , where cos ω3 is the largest

root of the quartic equation,

0 = x4 + N − 2

d + 1
x3 −

(
1 − NM

(d + 1)2

)
x2

− (N − 2)(d − 1)

(d + 1)2 x + N (M − 2)

(d + 1)2 .

Its asymptotic form is given by

ω3 ≈ arccos

(
1 − 1

NM

)
≈

√
2

NM
. (52)

From (49) and (51) we see that for a large graph, the sender
and the receiver states can be decomposed into the eigenvec-
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tors of the evolution operator Ûs,r according to

|s〉 =
√

3

8
|ψ1〉 + 1

4
(|ψ (+)

2 〉 + |ψ (−)
2 〉)

+ 1

2
(|ψ (+)

3 〉 + |ψ (−)
3 〉),

|r〉 =
√

3

8
|ψ1〉 + 1

4
(|ψ (+)

2 〉 + |ψ (−)
2 〉)

− 1

2
(|ψ (+)

3 〉 + |ψ (−)
3 〉).

The evolution of the STA takes place in a five-dimensional
subspace:

|φ(t )〉 =
√

3

8
|ψ1〉 + 1

4
(eiω2t |ψ (+)

2 〉 + e−iω2t |ψ (−)
2 〉)

+1

2
(eiω3t |ψ (+)

3 〉 + e−iω3t |ψ (−)
3 〉). (53)

The fidelity of the STA after t steps (9) can be expressed as a
sum,

F (t ) =
8∑

j=5

|〈ν j |φ(t )〉|2. (54)

From (49), (51), and (53), we find that the transfer probabili-
ties to individual states |ν j〉 are given by

|〈ν5|φ(t )〉|2 = 1

64
[3 + cos (ω2t ) − 4 cos (ω3t )]2,

|〈ν6|φ(t )〉|2 = 1

16
sin4

(ω2t

2

)
,

|〈ν7|φ(t )〉|2 = 0,

|〈ν8|φ(t )〉|2 = 1

32
[sin(ω2t ) − 2 sin(ω3t )]2.

(55)

From the asymptotic expansions (50) and (52), we see that for
a large graph, the frequencies are harmonic,

ω2 = 2ω3.

Hence, we find that with probability

|〈r|φ(t )〉|2 = sin8
(ω3t

2

)
, (56)

the walker is in the receiver state |r〉 = |ν5〉, i.e., at the receiver
vertex in the loop, and with probability

|〈ν6|φ(t )〉|2 + |〈ν8|φ(t )〉|2

= 1

2
sin2 (ω3t ) sin4

(ω3t

2

)
+ 1

16
sin4 (ω3t ), (57)

it is at the receiver vertex but not in the loop. Overall, the
fidelity of the STA for a large graph is given by

F (t ) = sin4
(ω3t

2

)
. (58)

We conclude that the state transfer is achieved after T (st) steps,
where

T (st) ≈ π

√
NM

2
. (59)

FIG. 6. Overall fidelity of the STA as a function of the number of
steps t for N = 40 and M = 100. The sender and the receiver vertices
are in different partitions. Black dots are obtained from the numerical
simulation, and the full red curve corresponds to (58). The walker is
transferred to the receiver vertex with fidelity close to 1 after T (st) ≈
140 steps, in accordance with (59). At this time, the walker is found
with high probability in the loop (blue squares), as follows from the
analytical prediction (56) depicted by the red dashed curve. Green
diamonds represent the probability that the walker is at the marked
vertex but not in the loop, which follows the curve (57).

At this time, the walker is with high probability in the receiver
state |r〉.

For illustration purposes, we show in Fig. 6 the evolution
of fidelity for a graph with N = 40 and M = 100.

The result (58) holds in the limit of large N and M. To
investigate how quickly the fidelity at the optimal time (59)
approaches unity, we performed numerical simulations for
various values of N and M. The simulations indicate that the
fidelity can be again estimated by

F (T (st) ) = 1 − O

(
1

M

)
,

however the dependence on N is more complex than for search
and the STA with the sender and the receiver in the same
partition. The results are illustrated in Fig. 7.

V. STATE-TRANSFER ALGORITHM WITH
AN ACTIVE SWITCH

As we have shown in the previous section, the STA does
not perform with unit fidelity on the complete M-partite graph
with loops when the sender and the receiver are in the same
partition. Note that if the receiver does not know the position
of the sender, the measurement should be made at the optimal
time (59) corresponding to the more likely configuration, i.e.,
when the sender and the receiver are in different partitions.
This reduces the fidelity of the STA further to approximately
0.91.

To fix this issue, we introduce an STA where the sender
and the receiver will actively switch the local coins at their
vertices. We use that for M → ∞ and N → ∞ the state of the
SA (19) on the complete M-partite graph with loops evolves
periodically from the initial state |�〉 to the target state |ν1〉
and back with a period of 2T , where T is the run-time of the
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FIG. 7. Overall fidelity of the STA as a function of the number of
partitions M for N = 10 (gray circles), N = 50 (blue triangles), and
N = 100 (brown diamonds). The sender and the receiver vertices are
in different partitions. For a given N and M, we evaluate numerically
the evolution of the STA for the optimal number of steps T (st) given
by (59), and we determine F (T (st) ) from the formula (54). To unravel
the scaling of the fidelity, we plot 1 − F (T (st) ) on the log-log scale.
The full red line has a 1/M slope, while the dashed red line follows
1/M2. The plot indicates that O(1/M ) > 1 − F (T (st) ) > O(1/M2),
and that the fluctuations decrease with increasing N .

SA given by (24). Hence, we can perform the state transfer
in the following way. The sender initializes the walk on its
vertex in the target state of the search algorithm |s〉 = |ν1〉,
which corresponds to the loop at the sender vertex. For the
first T steps, only the sender will use the marked coin, i.e.,
the walk will evolve according to the operator Ûs of the SA
with the marked vertex s. The sender state |s〉 will evolve close
to the equal-weight superposition |�〉, i.e., the initial state of
the SA (6). Afterward, the sender switches off the marked
coin, and the receiver switches it on, i.e., the walk evolves
according to the operator Ûr of the SA with the marked vertex
r. After another T steps, the walk will evolve close to the state
|r〉 corresponding to the loop at the receiver vertex, and the
receiver will detect it with high probability. In this way, we
can achieve state transfer with high fidelity on the complete
M-partite graph with loops irrespective of the relative position
of the sender and the receiver.

For illustration purposes, we show in Fig. 8 the comparison
of the fidelities of state transfer of the original STA and the
STA with an active switch when the sender and the receiver
are in the same partition. We see that the STA with an active
switch takes more steps, however the fidelity reaches 1.

Let us now formalize the STA with an active switch on
more general graphs. Namely, we consider graphs where the
optimal number of steps T of the SA does not depend on the
position of the marked vertex m. The steps of the STA with an
active switch can be formulated as follows:

(i) The sender initializes the walk at its vertex in the state
|s〉 corresponding to the target state of the SA with the marked
vertex s.

(ii) The sender uses a marked coin on his vertex for T steps,
i.e., the evolution operator Ûs is applied T -times.

(iii) The receiver uses a marked coin on his vertex for T
steps, i.e., the evolution operator Ûr is applied T -times.

FIG. 8. Comparison of fidelity of the original STA (37) (red
diamonds) with fidelity of the STA with an active switch (black dots)
as a function of the number of steps t for N = 40 and M = 100. The
sender and the receiver vertices are in the same partition. The switch
between Ûs and Ûr is done after T ≈ 100 steps, corresponding to the
run time of the SA.

(iv) The receiver measures the walk at its vertex.
We show that the fidelity of the STA with an active switch

can be lower-bounded using only the results from the SA with
one marked vertex, which is not true for the original STA. As
we have seen in the case of the complete M-partite graph with
loops, the SA does not tell us anything about the evolution of
the STA in the subspace I−.

To derive the lower bound of fidelity of the STA with an
active switch, we first introduce two conditions on the SA.
The first condition is related to the target state of the SA. We
suppose that after T steps, the state of the SA can be expressed
in the form

|φ(T )〉 = Û T
m |�〉 = αm|m〉 + εm|ηm〉 (60)

for every marked vertex m in the graph. Here |m〉 ∈ Hm is the
target state of the SA, i.e., if the walk is in this state, the suc-
cess probability of finding the marked vertex m is exactly 1,
and |ηm〉 is a unit vector orthogonal to |m〉. Complex numbers
αm and εm are such that |αm| is close to 1 and |εm| � 1. |αm|2
is closely related to the success probability of the SA, since

Pm(T ) = |〈m|φ(T )〉|2 +
∑

| j〉 ∈ Hm

〈 j|m〉 = 0

|〈 j|φ(T )〉|2

= |αm|2 + |εm|2
∑

| j〉 ∈ Hm

〈 j|m〉 = 0

|〈 j|ηm〉|2. (61)

Note that if the vector |ηm〉 does not have a support at the
marked vertex, then the success probability is exactly |αm|2.
From the relation (60) for m = s we express the initial state of
the STA with an active switch as

|s〉 = 1

αs

(
Û T

s |�〉 − εs|ηs〉
)
. (62)

The second condition describes the periodicity of the SA.
Namely, we suppose that after 2T steps, the state of the SA
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can be written in the form

Û 2T
m |�〉 = βm|�〉 + δm|ρm〉, (63)

where |ρm〉 is a unit vector orthogonal to the initial state |�〉.
βm and δm are again complex numbers where |βm|2 is the
return probability. We assume that it is close to 1 and that
|δm| � 1. In other words, this condition says that if we double
the number of steps, the SA returns close to its initial state.

Assuming that the SA satisfies the conditions (60) and (63),
we write the final state of the STA with an active switch in the
following manner:

Û T
r Û T

s |s〉 = 1

αs
Û T

r Û T
s

(
Û T

s |�〉 − εs|ηs〉
)

= 1

αs
Û T

r

(
Û 2T

s |�〉 − εsÛ
T
s |ηs〉

)

= 1

αs
Û T

r

(
βs|�〉 + δs|ρs〉 − εsÛ

T
s |ηs〉

)

= αr

αs
βs|r〉 + βs

αs
εr |ηr〉 + δs

αs
Û T

r |ρs〉

− εs

αs
Û T

r Û T
s |ηs〉, (64)

where we have first used (62), then (63), and finally we again
use (62) but for the state |r〉. The fidelity of the STA with an
active switch can be expressed as

F = ∣∣〈r∣∣Û T
r Û T

s

∣∣s〉∣∣2 +
∑

| j〉 ∈ Hr 〈 j|r〉 = 0

∣∣〈 j
∣∣Û T

r Û T
s

∣∣s〉∣∣2
.

Hence, the square root of the fidelity can be bounded from
below by

√
F �

∣∣〈r∣∣Û T
r Û T

s

∣∣s〉∣∣.
To approximate |〈r|Û T

r Û T
s |s〉|, we use the following estimates:∣∣〈r∣∣Û T

r

∣∣ρs
〉∣∣ � |||r〉||∣∣∣∣Û T

r |ρs〉
∣∣∣∣ = |||r〉|||||ρs〉|| = 1,∣∣〈r∣∣Û T

r Û T
s

∣∣ηs
〉∣∣ � |||r〉||∣∣∣∣Û T

r Û T
s |ηs〉

∣∣∣∣ = 1, (65)

which follow from the Cauchy-Schwarz inequality and the
unitarity of evolution operator Ûm. Combining (64) with (65),
we find the lower bound for the square root of the fidelity,
which reads

√
F �

∣∣∣∣αr

αs
βs〈r|r〉 + βs

αs
εr〈r|ηr〉

+ δs

αs

〈
r
∣∣Û T

r

∣∣ρs
〉 − εs

αs

〈
r
∣∣Û T

r Û T
s

∣∣ηs
〉∣∣∣∣

� |αr |
|αs| |βs| − |δs|

|αs|
∣∣〈r∣∣Û T

r

∣∣ρs
〉∣∣ − |εs|

|αs|
∣∣〈r∣∣Û T

r Û T
s

∣∣ηs
〉∣∣

� |αr |
|αs| |βs| − |δs|

|αs| − |εs|
|αs| . (66)

It is easy to see from (66) that if |αs|, |αr |, and |βs| are close
to 1 and if |εs| � 1 and |δs| � 1, then the fidelity of the state
transfer is close to 1.

The result derived above guarantees that if the SA succeeds
with unit probability in the limit of a large graph, then the STA
with an active switch achieves perfect state transfer. Moreover,

FIG. 9. Overall fidelity of the STA with an active switch as a
function of the number of partitions M for N = 10 (gray circles),
N = 50 (blue triangles), and N = 100 (brown diamonds). The walk
is initialized at the sender vertex in the loop. For a given N and M
we evaluate numerically the evolution operator Ûs of the SA with
marked vertex s, and we apply it for the optimal number of steps
T given by (24). Then we repeat the same steps with Ûr . Finally,
we make a measurement at the receiver vertex r and determine the
fidelity F (2T ). To unravel the scaling of the fidelity, we plot 1 −
F (2T ) on the log-log scale. The full red line has a 1/M slope, while
the dashed red line follows 1/M2. The plot indicates that O(1/M ) >

1 − F (2T ) > O(1/M2).

even for small graphs, the STA with an active switch can
actually achieve very good fidelity. For illustration, we have
investigated numerically the STA with an active switch on the
complete M-partite graph for various values of N and M (see
Fig. 9). The results are similar to those presented in Fig. 7.

VI. CONCLUSION

We have investigated search and state-transfer algorithms
based on the coined quantum walks, focusing on the complete
M-partite graph. It was shown that adding loops to all vertices
increases the success probability of the SA close to 1 for
a large graph. This is by now a standard method [9,10,26–
30], which has a potential to significantly improve the success
probability on a much broader class of graphs [31]. However,
the analysis of the SA does not provide the necessary insight
for the investigation of the STA, as the latter requires larger
invariant subspace. As we have seen in the example of the
complete M-partite graph with loops, a success probability of
the SA close to 1 does not guarantee an STA with unit fidelity.
The reason is that the phases of the relevant eigenvalues of the
evolution operator are not harmonic when the sender and the
receiver are in the same partition. Although the modification
of the initial state has improved the fidelity considerably, the
absence of an edge between the sender and the receiver vertex
on the complete M-partite graph does not allow for perfect
state transfer. It would be interesting to find out if this occurs
for different graphs as well.

In the present paper, we have limited our investigations
to the case in which all partitions have the same number of
vertices N . This enabled us to find exact invariant subspaces
for the SA and the STA, which have dimensions independent
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of N and M. Allowing partitions with different numbers of
vertices appears to break this feature, and the dimension of
the invariant subspace is likely to depend on M. We plan to
investigate this behavior in the near future for small values
of M.

To improve the STA on the complete M-partite graph, we
have introduced the STA with an active switch. This approach
allows for perfect state transfer in the limit of a large graph in
both configurations of the sender and the receiver vertex. The
tradeoff is that the STA with an active switch requires more
steps than the original STA. Indeed, when the sender and the
receiver are in different partitions, the number of steps for the
original STA to reach unit fidelity is twice the number of steps
of the search for two vertices. On the other hand, the STA with
an active switch takes twice the number of steps as the SA for
one vertex. Since the search for two vertices is

√
2 faster than

the search for one vertex, the STA with an active switch is
slower by the same factor.

The main advantages of the STA with an active switch are
that it can be applied to other graphs, and that its fidelity
can be estimated based on the analysis of the SA for one
marked vertex alone. In this way, we can achieve state transfer
with high fidelity on graphs, where the SA for one marked
vertex has success probability close to 1 and evolves almost
periodically. For many symmetric graphs, these conditions are
well satisfied, at least in the limit of a large graph. Moreover,
the exact periodicity of the Grover walk (i.e., without the
marked vertex) was recently investigated for various graphs

[50–52]. It would be of interest to determine if the SA works
on these graphs as well.

The STA with an active switch also has some disadvan-
tages. As we have already mentioned, it will have a longer
run time in comparison with the original STA. Moreover, the
sender and the receiver have to actively switch their marked
coins off or on. However, this is only a local operation, and
since we consider that the run time of the SA is independent
of the location of the marked vertex, the time of the switching
is determined solely by the global properties of the graph, e.g.,
the number of vertices. Hence, the sender and the receiver still
do not need to know each other’s position. Finally, we have
to determine the target state of the SA, which serves as the
initial state for the STA with an active switch. Nevertheless,
for highly symmetric graphs this target state is usually either
the equal weight superposition of all directions or the state
corresponding to a loop.
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