
PHYSICAL REVIEW A 103, 042221 (2021)

Topological Uhlmann phase transitions for a spin-j particle in a magnetic field
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The generalization of the geometric phase to the realm of mixed states is known as the Uhlmann phase.
Recently, applications of this concept to the field of topological insulators have been made and an experimental
observation of a characteristic critical temperature at which the topological Uhlmann phase disappears has also
been reported. Here we study the case of the Uhlmann phase of a paradigmatic system such as the spin- j particle
in the presence of a slowly rotating magnetic field at finite temperature in an exact analytical form. We find that
the Uhlmann phase is given by the argument of a complex-valued second-kind Chebyshev polynomial of order
2 j. Correspondingly, the Uhlmann phase displays 2 j singularities, occurring at the roots of such polynomials
which define the critical temperatures at which the system undergoes topological order transitions. Appealing to
the argument principle of complex analysis, each topological order is characterized by a winding number, which
happens to be 2 j for the ground state and decreases by unity each time the increasing temperature passes through
a critical value. We hope this study encourages experimental verification of this phenomenon of thermal control
of topological properties, as has already been done for the spin-1/2 particle.
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I. INTRODUCTION

The emergence of the geometric phase in quantum physics
has been a groundbreaking event [1]. It has served as a tool
to comprehend its fundamentals, such as the spin statistics
theorem [2] or the Aharanov-Bohm effect [1]. In the field of
condensed-matter physics, the geometric phase is a quantity
that comes out in the theoretical description of the quantum
Hall effect [3,4], the correct expression for the velocity of
Bloch electrons [5], ferromagnetism [6,7], and topological
insulators [8], among other phenomena. It is also a central
concept in holonomic quantum computation [9].

First proposed for adiabatic cyclic evolution [1], the ge-
ometric phase concept has already been broadened to the
arbitrary evolution of a quantum state [10–12] and is thus
ubiquitous in quantum systems. Nevertheless, the Berry ap-
proach [1] to the geometric phase considers pure states only,
while a more realistic description of quantum phenomena
requires making use of the density matrix formalism.

An extension of the geometric phase to mixed states was
developed by Uhlmann [13,14] and is thus called the Uhlmann
phase. It has been theoretically studied in the context of
one-dimensional (1D) and 2D topological insulators [15–18],
for example the 1D Su-Schrieffer-Heeger model [19] and
the Qi-Wu-Zhang 2D Chern insulator [20]. A key feature
of these systems is the appearance of a critical temperature
above which the Uhlmann phase vanishes, regardless of the
topological character of the system in the ground state. This
temperature sets a regime of stability of the topological prop-
erties in such systems, and has already been experimentally
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observed in a superconducting qubit [21], which gives the
Uhlmann phase a higher ontological status.

Not only has this phase emerged as an interesting quantity
in physics, but also the related one called the Uhlmann mean
curvature [22], which might be regarded as an analog of the
Berry curvature for mixed states. Notably, this quantity can
formally be linked to the dissipative part of the dynamical
susceptibility within the linear response theory [23,24], which
allows one to connect measurable physical quantities to topo-
logical invariants of the system. It has also been useful for
characterization of finite-temperature topological properties
in the Kitaev chain model [25].

For pure quantum systems, a paradigmatic example to il-
lustrate the abstract notions of quantum holonomies is the
spin- j particle interacting with a slowly rotating magnetic
field. In its original paper [1], Berry obtained the beautiful
solid angle formula for the eigenstates of this system. More
recently, a generalization of the solid angle formula for arbi-
trary spin- j states has been found in terms of the Majorana
constellation [26,27], which also gives insight into their en-
tanglement properties [28]. From a more practical standpoint,
the study of the geometric phase for a spin-1/2 particle is
the workhorse to build one-qubit holonomic quantum gates
[9,29], with a possible extension to SU(2) qudit gates for
higher spins [30]. This makes the study of the geometric phase
for spin- j particles of vital importance.

Here, we calculated the Uhlmann phase of a spin- j particle
subjected to a slowly rotating magnetic field in a circular sim-
ple closed loop. We derived a compact analytical expression
in terms of the argument of the complex-valued second-kind
Chebyshev polynomials [31,32] U2 j (z) multiplied by the Pauli
sign (−1)2 j . When the field describes a circle instead of a
cone, the Uhlmann phase becomes topological with respect
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to temperature: the change from zero to π (or vice versa)
at certain critical temperatures related to the roots of U2 j (z).
Based on a theorem of complex analysis [33,34], we define
the Chern-like Uhlmann numbers [35] as winding numbers.
For arbitrary direction of the external field, and as a function
of temperature, the colored plot of the phase allows one to
visually identify the number of critical temperatures and the
Uhlmann topological numbers for a given spin number j.

The Uhlmann holonomy of density matrices describing
mixed states of high-spin systems has been previously ad-
dressed. For example, in hydrogenlike atoms with spin-orbit
coupling, this phase was studied [36] in relation to the entan-
glement properties of the internal degrees of freedom. Some
time ago, Uhlmann [13,37] treated the case of the spin- j
particle in a Gibbsian ensemble under the action of time-
independent SU(2) Hamiltonians, where the holonomy of the
density operator was reported. Later, the holonomy of this
system was used to perform a numerical comparison between
the Uhlmann geometric phase and the Sjöqvist interferometric
phase [38–40]. We note that the problem considered in those
references can be seen to be equivalent to the one in our
paper, since the evolution of the density matrix in both cases
is along closed O(3) orbits in the projective space. However,
an exact closed form of the Uhlmann phase was not given, nor
was mention of the temperature-dependent topological phase
transitions made.

More recently, the Uhlmann phase for the evolution of ther-
mal density matrices when the magnetic field winds around
the equator n times was derived [41]. They found an expres-
sion of the Uhlmann phase in terms of the diagonal entries
of the Wigner d ( j)

m,m′ matrices [42], which allowed them to
show the emergence of n and 2n topological phase transitions,
when j equals 1/2 and 1, respectively. They explained how
to experimentally observe these topological transitions, which
we did not address here. Nevertheless, an analysis of critical
temperatures at j > 1 is absent, as well as the definition of the
appropriate Chern-like Uhlmann numbers that characterize
different topological orders at different temperatures. Even
though we restricted our calculation to single closed loops
(n = 1), for this particular case the Uhlmann phase derived
here is more general since it contains evolution of the mag-
netic field with arbitrary values of θ . For n > 1, our analysis,
as we will argue in the next section, still yields the Uhlmann
phase in terms of Chebyshev polynomials for any θ .

The paper is organized as follows. In Sec. II, we derive the
Uhlmann phase for the spin- j particle. In Sec. III, we show
the emergence of multiple thermal topological transitions and
obtain their corresponding Chern-like numbers. In Sec. IV,
we analyze the Uhlmann phase with respect to temperature
and the magnetic field’s polar angle. Section V contains the
conclusions.

II. UHLMANN PHASE FOR AN ARBITRARY SPIN J IN AN
EXTERNAL MAGNETIC FIELD

The Uhlmann phase of a mixed quantum state is given by
the expression [17,18]

�U = arg(Tr[ρ̂ Pe
∮

ÂU ]), (1)

where ρ̂ is the system’s density matrix with a spectral decom-
position

∑
k pk |k〉 〈k| and P is the path-ordering operator [5].

Expression (1) assumes ρ̂ to be isospectral along the cyclic
evolution, which turns out to be the case for this problem. The
Uhlmann connection ÂU is given by [18]

ÂU =
∑
l,k

(
√

pl − √
pk )2

pl + pk
〈l| (d |k〉) |l〉 〈k| , (2)

where d is the exterior derivative operator [5]. This equation is
written in the density matrix eigenbasis, and thus a parameter
dependence on the eigenkets is to be understood.

The Hamiltonian of a spin- j particle interacting with a
magnetic field is expressed as

Ĥ = Bn̂ ·Ĵ, (3)

where all physical constants which give rise to the inter-
action are taken into account in B. The vector operator
Ĵ has the components (Ĵx, Ĵy, Ĵz ), where Ĵi are the usual
angular momentum matrices of spin j [42]. We will con-
sider the familiar fixed magnitude magnetic field that rotates
along the ẑ axis at constant frequency. The unit vector n̂ =
(sin θ cos φ, sin θ sin φ, cos θ ) is taken with fixed θ , while φ

changes during the evolution from 0 to 2π . For a thermal
ensemble, the corresponding unnormalized density matrix is
written as

ρ̂ = e−βBn̂·Ĵ, (4)

where β = 1/kBT . The partition function Z can be ignored in
the calculation of the Uhlmann phase (1), since it is real and
represents just a scaling factor of the complex number Tr[M̂],
where M̂ = ρ̂ Pe

∮
ÂU . The thermal basis is, in this case, a

rotated | j, m〉 basis, which, in Euler angle representation, is
given by

| j, m; n̂〉 = e−iφĴz e−iθ Ĵy eiφĴz | j, m〉 . (5)

The thermal occupation probabilities pm are readily seen to be
e−βBm/Z .

We now proceed to calculate the the Uhlmann connection
for the problem at hand. The factor involving the thermal
occupation probabilities in (2) can be expressed as

(
√

pm − √
pm′ )2

pm + pm′
= 1 − sech[βB(m − m′)/2], (6)

while the factor involving the exterior derivative d becomes

〈m′| d |m〉 = ie−i(m′−m)φ sin θ 〈m′| Ĵx |m〉 , (7)

plus a negligible diagonal term. Inserting Eqs. (6) and (7) into
(2) straightforwardly yields

ÂU = −iη
(
Ĵz sin θ − e−iφĴz ĴxeiφĴz cos θ

)
dφ, (8)

where η = sin θ [1 − sech(βB/2)]. Calculation of the time-
ordered integral Pe

∮
ÂU is equivalent to solving a Schrödinger

equation,

i
d

dφ
Û = V̂ (φ)Û , (9)

where the solution Û is just the time-ordered exponential and
V̂ (φ) is iÂU . Solving Eq. (9) for a closed loop followed by the
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direction of the external field results in [5]

Pe
∮

ÂU = (−1)2 je−i2π[(η sin θ−1)Ĵz−η cos θ Ĵx]. (10)

In order to obtain the Uhlmann phase, we need to take the
trace of M̂. Except for the lowest total angular momentum
representations, its exact closed form is very cumbersome.
Also we would need to find the specific matrix M̂ for every
j, which is not very practical for our purposes. A way out of
this pothole is noticing that the object we need to trace out
belongs to the Lie group SL(2,C) in the ( j, 0) representation.
Basic representation theory of this group [43] tells us that
once the eigenvalues (λ+, λ−) of the (1/2, 0) representation
are known, the eigenvalues for higher j are given by

λ2 j,λ2 j−2, . . . , λ−2 j+2, λ−2 j, (11)

with λ = λ+ = λ−1
− , where λ± are the eigenvalues obtained

from j = 1/2. The equality above follows from the property
that the group has unit determinant. Having noted this, the
trace of M̂ is readily seen to be

Tr[ρ̂ Pe
∮

ÂU ] = λ2 j+1 − λ−2 j−1

λ − λ−1
. (12)

It remains to obtain the exact form of the eigenvalue λ. By
diagonalizing M̂ in the (1/2, 0) representation, we find

λ =z +
√

z2 − 1, (13)

with z(θ ) being the complex variable,

z = cosh(βB/2) cos(πC) − i sinh(βB/2) sin(πC)
cos θ

C
,

(14)

where C(θ ) =
√

1 − sin2 θ tanh2(βB/2). The function z(θ )
defines a simple closed curve in the complex plane, with this
property being of fundamental importance in what follows.
With all these ingredients, the Uhlmann phase is readily ob-
tained,

�
( j)
U = arg

[
(−1)2 j (z + √

z2 − 1)2 j+1 − (z − √
z2 − 1)2 j+1

2
√

z2 − 1

]

= arg[(−1)2 jU2 j (z)], (15)

where U2 j (z) are the second-kind Chebyshev polynomials
[32]; we will refer to them just as Chebyshev polynomials to
simplify matters. Equation (15) is valid under cyclic adiabatic
evolution and is exact in this regime. The upper index ( j)
tells us that the Uhlmann phase is that of a spin- j particle.
Also, in the low-temperature limit, this equation reduces to
the corresponding Berry phase [1,5,17]. We note that the nice
compact form of result (15) is not simply a phase portrait of
the Chebyshev polynomials in the whole complex plane be-
cause the point z(θ ) lies on a curve, with its shape depending
on the parameter βB. However, the relation between the phase
of polynomials U2 j (z) and an observable phase of a quantum
system is interesting. The appearance of Chebyshev polyno-
mials in the Uhlmann phase can be traced back to Ĥ pertaining
to su(2) algebra and the particle being in thermal equilibrium.
This generates an element of SL(2,C) via ρ̂Pe

∮
ÂU , whose

eigenvalues can always be written as v ± √
v2 − 1, v ∈ C.

This is also true when the magnetic field rotates n times

around the z axis since the path-ordered integral, in this case,
is just Û n, where Û is given by Eq. (10), and thus the product
ρ̂Û n also pertains to SL(2,C). We will not explore the n > 1
cases here. In Ref. [41], the case with the magnetic field
rotating on the equatorial plane (θ = π/2) is treated and the
results for the cases with n = 1 and 2 are shown. It would be
interesting to explore what kind of mathematical object the
Uhlmann phase would be when considering a Hamiltonian
that belongs to su(n) for n > 2.

III. TOPOLOGICAL UHLMANN PHASE TRANSITIONS

A. Critical temperatures

The Uhlmann phase just obtained is determined by the
argument of the complex Chebyshev polynomials U2 j (z). The
function U2 j has real roots only, 2 j in number, lying in the
open interval (−1, 1) [32]. The zeros of any polynomial Pn(z)
define points in the complex plane where its magnitude be-
comes zero, implying that its argument becomes undefined
[33]. These points are referred to as phase singularities and are
a general phenomenon of wave physics. In the field of optics,
for example, they allow one to define optical vortices, which
have found a number of applications [44].

The Uhlmann phase displays 2 j phase singularities. The
restriction on the variable z(θ ) to acquire real values implies
that θ = π/2, that is, the magnetic field should lie on the
equator of the sphere of directions. As a consequence, there
are as many as 2 j critical temperatures T ( j)

c,k (k = 1, . . . , 2 j)
determined by

cosh(βkB/2) cos[πsech(βkB/2)] = cos

(
kπ

2 j + 1

)
, (16)

where the kth root of the Chebyshev polynomial U2 j (x), with
x = z(θ = π/2), is on the right-hand side.

Figure 1 shows the Uhlmann phase as a function of βB for
θ = π/2 and several values of j. Note that for half-integer j,
there is a negative sign multiplying U2 j (x). It can be seen that
�

( j)
U (βB) = arg[(−1)2 jU2 j (x)] is 0 or π and, in this manner,

topological. The topological transitions, between trivial and
nontrivial phases, occur at temperatures (or field magnitudes)
such that the Chebyshev polynomials vanish, and the precise
value, 0 or π , of the phase �

( j)
U is determined by the sign

of the polynomials times the Pauli sign (−1)2 j . Note that
for very high temperatures (βB � 1), the Uhlmann phase
vanishes, as expected for a system under thermal noise [17].
For very low temperatures (βB � 1), the phase �

( j)
U is either

π or zero for half-integer and integer values of j, respectively,
which is expected because the Uhlmann phase of a thermal
ensemble approaches the geometric phase of a pure system
in its ground state as we approach zero temperature [17]. For
example, a ground-state spin- j particle in a slowly rotating
planar (θ = π/2) magnetic field acquires a Berry phase [1]
γ− j = 2π j, consistent with the aforementioned description.
What is remarkable about this result is the emergence of
many critical temperatures, distributed in a nonuniform way
as j varies. There are 2 j critical temperatures, some of which
are at higher or lower values from that of the j = 1/2 case.
Thus, additional nontrivial topological phases appear at higher
temperatures in comparison to the simplest spin-1/2 particle,
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FIG. 1. Uhlmann topological phases �
( j)
U (solid) and Chebyshev

polynomials (−1)2 jU2 j (dashed) as functions of βB, for θ = π/2.
The left column presents the phase for the half-integer values (a) j =
1/2, (c) =3/2, and (e) =5/2. The right column displays the phase
for the integer values (b) j = 1, (d) =2, and (f) =3. The integers
between the zeros of the polynomials indicate associated wind-
ing numbers, corresponding to Uhlmann numbers n( j)

U (see text in
Sec. III B).

and are in this sense more robust against thermal noise. On
the other hand, the critical temperatures cannot reach arbitrary
large values for higher j, given the constraint imposed by
Eq. (16) or, equivalently, due to the fact that all the roots of
U2 j (z) lie in the interval (−1, 1) [32].

Viyuela et al. predict [35] the existence of two critical
temperatures in a 2D topological insulator with high Chern
numbers, suggesting the possibility of purely thermal topo-
logical transitions. Furthermore, the thermal topological phase
transition for j = 1/2 has already been confirmed experi-
mentally [21] in a superconducting qubit. We regard this
as a strong suggestion of the physical existence of multiple
Uhlmann topological transitions for a spin- j particle, and thus
hope our results encourage experimental verification of this
phenomenon.

B. Topological Uhlmann numbers

The case j = 1/2 is illustrative. There is only one topo-
logical transition, occurring at βB = 2 ln(2 + √

3) [Fig. 1(a)].
Viyuela et al. [15] report this single critical temperature [45]
for three representative 1D models of topological insulators
and superconductors. At zero temperature, T = 0, the ground
state of the system acquires a Berry phase of π and a Chern
number of +1. At finite temperature, for T < T (1/2)

c,1 , the same
phase is preserved, but above the critical temperature, the
Uhlmann topological phase becomes trivial. This is in sharp
contrast to the zero-temperature behavior. A question that
naturally arises at this point is about the invariants associated
with the topological phases that occur for higher j. A look at
Fig. 2 will give insight about writing the proper definition of
them. The figure depicts the z(θ ) curve (14) for four tempera-
tures, where the dots mark the roots of U3(z(θ )). The smallest
curve (solid purple) corresponds to the highest temperature,

FIG. 2. Argand diagram of z(θ ) for several values of βB. Con-
sidering the case j = 3/2, the points marked on the real axis are the
roots of polynomial U3(z). At high enough temperatures, the curve
z(θ ) (solid purple) does not enclose any root. As the temperature
reduces, the curve expands and progressively encloses the roots. The
Uhlmann numbers are given by the number of roots inside z(θ ).

while the largest (dotted red) is for the lowest temperature.
As the temperature decreases, the curve expands and pro-
gressively encloses the roots of U3, whenever the temperature
crosses a critical value T ( j)

c,k . The number of enclosed roots
is zero at high temperatures, and ends up being 2 j for low
enough temperatures.

According to the argument principle of complex analysis
[33,34], if z(θ ) encloses k roots of U2 j , then the curve [46]
U2 j (z(θ )) winds around the origin k times, so the number of
closed roots equals the winding number. The winding number
of the curve, (−1)2 jU2 j (z(θ )), tells us how many times its
phase changes from 0 to 2π [47], but this phase is just �

( j)
U (θ ).

This suggests the definition of the Uhlmann number,

n( j)
U (T ) = 1

2π

∫ π

0

d�
( j)
U (z(θ ))
dθ

dθ, (17)

to be the winding numbers of the (−1)2 jU2 j (z(θ )) curve,
for a temperature between two successive critical values.
These integer numbers are the equivalent of the Chern num-
bers of pure states [7]. In fact, expression (17) is consistent
with that proposed as the definition of Uhlmann numbers for
two-dimensional topological insulators [17]. Here, we have
followed a more ad hoc path, motivated by the specific form
of the Uhlmann phase (15), given in terms of polynomials.

Figure 3 shows the Uhlmann numbers for different values
of j. The steps at which n( j)

U change by one are located at
the critical temperatures T ( j)

c,k . Note that the maximum value

that n( j)
U takes on is 2 j, which equals the Chern number of

a spin- j particle in its ground state [5]. The figure illustrates
how the appearance of multiple critical temperatures makes
possible transitions between nontrivial topological orders of
the type 2 j → 2 j − 1 → 2 j − 2 → · · · → 0 for increasing
temperature.
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FIG. 3. Uhlmann number as a function of temperature, for some
values of the spin number j. The steps are located at a set of values
of βkB, which define critical temperatures T ( j)

c,k , with k = 1, . . . , 2 j.

In the model of a 2D topological insulator which presents
two critical temperatures [35], there are three topological
phases, i.e., one trivial with nU = 0 and two nontrivial with
nU = 1 and 2, which can be accessed by varying the temper-
ature. The appearance of 2 j + 1 distinct Uhlmann numbers
in the spin- j particle is a more dramatic example of a system
with more than one nontrivial order.

IV. UHLMANN GEOMETRIC PHASES
FOR ARBITRARY FIELD DIRECTION

In Fig. 1, we show the temperature dependence of the
Uhlmann phase for θ = π/2. We now turn to analyze this
dependence for directions in the whole interval 0 � θ � π .
Figure 4 shows a color map of �

( j)
U (θ, βB) for distinct spin

number j. In each panel, 2 j vortices can be distinguished
along the line θ = π/2, which correspond to the zeros of
U2 j (z) or, equivalently, the critical temperatures. Note that for
all cases, the phase �

( j)
U (θ, βB) → 0 for high temperatures

βB � 1, as expected. On the other hand, for very low tem-
peratures βB � 1, the Uhlmann phase must converge to the
Berry phase [1,5], �

( j)
U (θ, βB) → 2 jπ (1 − cos θ ). For exam-

ple, in the j = 1/2 panel at low temperatures, the sequence of
colors, as θ goes from zero to π , is that of the color boxes
on the right: the Uhlmann phase is 0 for θ = 0 and increases
up to 2π for θ = π . Let us call that sequence of colors a
phase cycle. For panels with higher j at low temperatures,
we see that the phase cycles appear 2 j times. Lowering the
temperature, the number of phase cycles decreases by a unit
when crossing a critical temperature. A look to the j = 1
panel illustrates this point. For low temperatures, there are
two phase cycles as θ goes from 0 to π . When increasing the
temperature above the first critical value T (1)

c,1 , the Uhlmann
phase only traverses one phase cycle, and none of them above
the second critical temperature.

This behavior can also be illustrated in a similar way to
that used to see the argument principle in action through the
colored phase portrait of a complex function [33]. To take a

FIG. 4. Uhlmann phases �
( j)
U (θ, βB) for j = 1/2, 1, . . . , 3.

There are 2 j singularities along the θ = π/2 line. The Uhlmann
number characterizing a topological order can be obtained visually
by encircling one or more singularities with a simple closed curve
and counting the number of times an isochromatic line is repeated
(see text).

concrete example, consider a simple closed path encircling
the three singularities of the phase in Fig. 4 for j = 3/2,
and follow the number of phase cycles occurring when it is
crossed. It can be seen that this number is exactly 2 j, the
number of zeros enclosed, which is also the number of critical
temperatures. The isochromatic lines (for instance, the green
ones) appear just 2 j times. The number of cycles diminishes
by one each time the path shrinks to leave out a zero, where
shrinks means to increase the temperature, in line with the
geometrical interpretation of the Uhlmann numbers suggested
by Fig. 2. Thus, in our problem, the Uhlmann numbers can
also be obtained from the number of cycles displayed by the
function �

(2 j)
U (θ, βB) in the vicinity of singularities.

V. CONCLUSIONS

In this paper, we have studied the Uhlmann phase of a
spin- j particle interacting with a slowly varying magnetic
field. We obtained a simple expression for that phase given
by the argument of complex-valued second-kind Chebyshev
polynomials U2 j (z) multiplied by the Pauli sign (−1)2 j , with
the complex variable z being a function of the direction of the
external field and temperature. As a consequence, 2 j phase
singularities appear, which implies the possibility of topolog-
ical phase transitions at 2 j distinct critical temperatures. This
is remarkably in contrast to the temperature dependence of
the Uhlmann phase reported for topological insulators and
superconductors. Based on the principle argument of com-
plex analysis, we derived a proper topological invariant, the
Uhlmann number, as a winding number associated to a topo-
logical order of the system, existing between two successive
critical values of the temperature. The Uhlmann number lies
between 0 and 2 j.

Our study suggests a purely thermal manipulation of topo-
logical transitions of a spin- j particle. This nontrivial effect
has already been observed for the j = 1/2 case and thus we
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hope this study encourages experimental verification of this
phenomenon.

The physical implications of multiple topological phase
transitions remains as an open issue. For example, in the
Kitaev chain model, there are critical temperatures at which
the Uhlmann phase changes from zero to π [25]. The in-
tricate distribution of the critical temperatures is not related
to the topology of the band structure and direct connec-
tion to the physical properties seems hard to grasp [25].
Budich and Diehl [48] noted that the lack of an additive
group structure of the Uhlmann phase makes ambiguous
the definition of topological invariants as 1D winding num-
bers for general 2D systems. They showed that by applying

constraints on the spectrum of the density matrix, nontriv-
ial topological invariants can be defined by means of the
Uhlmann curvature. Nevertheless, these topological numbers
do not have any temperature dependence, beyond vanishing
at the infinite-temperature limit. Thus, interpretation of the
temperature-dependent Uhlmann numbers remains elusive at
the present time and requires further investigation.
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