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Local probability conservation in discrete-time quantum walks
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We show that probability is locally conserved in discrete-time quantum walks, corresponding to a particle
evolving in discrete space and time. In particular, for a spatial structure represented by an arbitrary directed
graph, and any unitary evolution of a particle which respects that locality structure, we can define probability
currents which also respect the locality structure and which yield the correct final probability distribution.
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I. INTRODUCTION

For a particle evolving via the Schrödinger equation in con-
tinuous space and time, it is well known that any changes in its
probability density can be explained by local probability cur-
rents. This result has recently been extended to discrete space
and continuous time [1,2]. In this paper we will demonstrate
that this is also the case for discrete space and time, hence
ensuring local conservation of probability for discrete-time
quantum walks [3–5]. Probability currents have previously
been defined for particular cases of quantum walks in one and
two spatial dimensions [6–8]. However, here we give a general
approach that proves the existence of a probability current for
walks on arbitrary directed graphs.

In continuous space and time the local conservation of
probability for a single particle is expressed by the continuity
equation

∂ρ(�x, t )

∂t
+ ∇· J (�x, t ) = 0, (1)

where ρ(�x, t ) = |ψ (�x, t )|2 is the probability density and
J (�x, t ) is a vector field describing the probability current. For a
particle governed by the nonrelativistic Schrödinger equation

ih̄
∂ψ (�x, t )

∂t
= − h̄2

2m
∇2ψ (�x, t ) + V ψ (�x, t ), (2)

we find that

J (�x, t ) = − ih̄

2m
[ψ∗(�x, t )∇ψ (�x, t ) − ψ (�x, t )∇ψ∗(�x, t )] (3)

is real and satisfies Eq. (1). From this we can conclude that
probability is conserved locally in this case. A similar proba-
bility current can be defined for relativistic systems governed
by the Dirac equation [9].

The same is true if we make space discrete. In this picture
we represent space as a graph. Then the continuity equation

*samuel.mister@bristol.ac.uk
†ben.arayathel@gmail.com
‡tony.short@bristol.ac.uk

representing local conservation of probability becomes

dPn(t )

dt
+

∑
m

Jmn(t ) = 0, (4)

where Pn(t ) represents the probability of being at vertex n at
time t and Jmn(t ) is a matrix element representing the prob-
ability current between vertices n and m [where Jmn(t ) > 0
implies a net flow of probability from n to m]. To ensure
locality we require that Jmn(t ) = 0 whenever n and m are
not linked by an edge in the graph, and in order to obtain
meaningful results, we also require that Jmn(t ) be real and an-
tisymmetric. It has been shown that for any system undergoing
a Schrödinger evolution with Hamiltonian H (t ), we can take
Jmn(t ) to have the form [1]

Jmn(t ) = 1

ih̄
[Hmn(t )ρnm(t ) − ρmn(t )Hnm(t )]. (5)

Here, ρ(t ) represents the density operator of the particle at
time t . Similar results have been obtained by considering
probability currents in tight-binding models and other discrete
solid state structures [2,10–12]. Given that Hmn(t ) and Hnm(t )
are zero whenever n and m are not linked by an edge, J (t )
is a local probability current which satisfies (4) and is real
and antisymmetric. Hence again in these systems probability
is locally conserved.

We now take this further by also making time discrete. In-
stead of the Schrödinger equation, in each time step a unitary
operator is applied to the state. Labeling the discrete times by
integers, we have |ψ (t + 1)〉 = U (t ) |ψ (t )〉. This corresponds
to a discrete-time quantum walk. For simplicity in what fol-
lows, we will focus on a single time step and omit the explicit
time parameter t , writing |ψ ′〉 = U |ψ〉. A quantum walk of
many time steps can be considered by treating each time step
individually.

As time derivatives are not applicable in this case, the
continuity equation (4) must be modified to refer to the change
in probability �Pn = P′

n − Pn at vertex n in one time step, and
the probability current Jmn flowing between n and m in that
time step, giving

�Pn +
∑

m

Jmn = 0. (6)
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There are four main properties that the probability current J
should satisfy. As in the previous case it should be real, anti-
symmetric, and nonzero only when n and m are connected by
an edge in the graph. However, here an additional property to
enforce locality is required—that the probability flux out of a
given vertex in one time step is less than the initial probability
of being at that vertex. This property can be written concisely
as ∑

m∗
Jm∗n � Pn, (7)

where m∗ = {m : Jmn > 0}. We will use this notation for m∗
throughout the paper.

Ideally, it would be possible to find an equation for Jmn in
terms of U and |ψ〉 which satisfies all of the above require-
ments. A promising candidate is [13]

Jmn = 1
2 [(ρU †)nmUmn + (U †)nm(Uρ)mn

−Unm(ρU †)mn − (Uρ)nm(U †)mn], (8)

where ρ = |ψ〉 〈ψ |. This is antisymmetric, real valued, and
equal to zero whenever n and m are not connected by an edge
in the graph [in which case Umn, (U †)nm, Unm, and (U †)mn are
all equal to zero],. Furthermore we show in Appendix A that
this definition satisfies (6). However, we also show that this
definition does not always satisfy (7), and therefore is not a
suitable discrete-time probability current.

While it is possible that an alternative general equation
for Jnm could be found which satisfies all the requirements,
we conjecture that one does not exist, due to the complex
nature of the constraints encoded by (7), which only arise
in discrete time. Instead, we give in this paper a general
nonconstructive proof that a probability current satisfying all
of the requirements exists. This resolves the key foundational
issue, showing that probability is locally conserved in discrete
space and time. We also give an efficient numerical method
for computing the probability current, and extend the results
to cases with internal degrees of freedom and directed graphs,
for which we require that Jmn > 0 only if there is a directed
edge from n to m.

II. SETUP

A suitable description of our discrete space is a graph,
consisting of a set of vertices V and a set of edges E . For full
generality, we consider directed graphs, for which an edge is
associated with a particular direction of travel. Examples of
these types of graphs are shown in Fig. 1. These graphs allow

FIG. 1. Examples of directed graphs that allow discrete-time
quantum walks. Edges without arrows are undirected and can be
traversed in either direction.

us to include space-time structures in which the particle is
restricted to travel in certain directions. An edge is specified
by an ordered pair of vertices E ⊆ {n → m |n, m ∈ V }. For
example, the edge n → m would allow the particle to move
from n to m. We assume that the particle is always allowed
to remain at its current location, so all self-loops are included
in E (n → n ∈ E for all n).1 To restrict to the simpler case
of undirected graphs, we would require that n → m ∈ E ⇒
m → n ∈ E .

The time evolution of a quantum particle in our discrete
space-time model corresponds to a discrete-time quantum
walk on this graph. To define such a quantum walk, we
associate an orthonormal quantum state |n〉 to each vertex
(corresponding to the particle being at that point), and spec-
ify a unitary operator U describing the evolution, for which
the matrix elements Umn = 〈m|U |n〉 satisfy n → m /∈ E ⇒
Umn = 0. Hence the unitary evolution cannot move the par-
ticle between vertices which are not connected by an edge.
Given an initial pure state |ψ〉, we have Pn = |〈n|ψ〉|2 and
P′

n = |〈n|U |ψ〉|2
Note that in the case of discrete space and continuous time,

it is unnecessary to consider directed graphs. If there was a
directed edge from m to n but no corresponding edge in the
opposite direction (i.e., m → n ∈ E but n → m /∈ E ), then we
must have Hmn(t ) = 0 for all time t . However, the Hermitian
nature of the Hamiltonian would then imply that Hnm(t ) = 0
as well. Such cases would be the same as if there was no edge
at all between m and n, with no probability flowing in either
direction [Jmn(t ) = 0 for all t].

In the case of discrete space and discrete time, directed
graphs can lead to interesting results, because there exist uni-
taries with Umn = 0 but Unm �= 0. Hence we can find examples
in which particles propagate along directed edges only in
the allowed direction. Directed graphs have been previously
studied in the context of discrete-time quantum walks. In
particular, it has been shown that reversibility of the graph is a
necessary and sufficient condition to define a coined quantum
walk [5]. An edge from n → m is reversible if there exists a
path from m to n, and a graph is reversible if every edge in
it is reversible. We give the extension of our results to coined
quantum walks, and other cases in which the vertices have
internal states in Sec. III D.

III. RESULTS

A. Probability flow

In order to analyze the locality of probability flows, it is
helpful to break the probability current Jmn (which represents
the net flow of probability between vertices n and m) into the
individual flows of probability along the directed edges n →
m and m → n. In particular, we define the flow of probability

1If we allow graphs for which some self-loops are not included,
then we can still prove local probability conservation using the
probability flow approach given in the next section. However, the
corresponding restrictions on the probability current are more com-
plicated.
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along the edge n → m as fmn. Then

Jmn = fmn − fnm. (9)

Note that the “diagonal” flow matrix element fnn corresponds
to the amount of probability which remains at vertex n.

In order to give meaningful results and satisfy local proba-
bility conservation, the flow matrix elements fmn must satisfy
the following properties:

fmn � 0, (10)

fmn = 0 if n → m /∈ E , (11)∑
m

fmn = Pn, (12)

∑
n

fmn = P′
m. (13)

The first condition specifies that the probability flowing along
an edge in a particular direction must be positive, and the
second that it must respect the locality structure of the graph.
The third condition specifies that all probability initially at
vertex n must either flow to a neighboring vertex or remain
there during one time step. The fourth condition requires that
all probability at vertex n after one time step must either have
flowed to it from a neighboring vertex or have remained there.

Note that these conditions would refer to any local prob-
abilistic evolution on a graph. The quantum nature of the
evolution enters because we use |ψ〉 and U to calculate the
initial and final probability distributions via Pn = |〈n|ψ〉|2 and
P′

m = |〈m|U |ψ〉|2. These probability distributions then enter
the flow conditions (12) and (13) which will be used in the
next two sections to prove the existence of a valid set of
probability flows and to construct explicit solutions numeri-
cally. Not all pairs of distributions Pn and P′

m can arise from a
quantum evolution on a particular graph.

We now show that properties (10)–(13) for fmn yield all the
required properties of Jmn. The flow fmn is a positive number
hence Jmn as defined in (9) is real. We also see that Jmn is
antisymmetric, and nonzero only when an edge exists between
m and n. Note that

�Pn +
∑

m

Jmn = (P′
n − Pn) +

∑
m

fmn −
∑

m

fnm

= (P′
n − Pn) + Pn − P′

n

= 0, (14)

hence Jmn satisfies Eq. (6). Finally, as∑
m∗

Jm∗n =
∑
m∗

fm∗n −
∑
m∗

fnm∗

�
∑

m

fmn −
∑
m∗

fnm∗ � Pn, (15)

Jmn also satisfies Eq. (7).
Below, we show that a valid fnm satisfying properties (10)–

(13) always exists, hence we can also define a valid Jnm

satisfying local probability conservation.
The converse is also true. If we can define a Jnm which is

real, antisymmetric, satisfies (6) and (7), and for which Jmn >

0 only if m → n ∈ E , then we can always generate flows fmn

FIG. 2. A diagram showing the movement of probability in the
network flow picture. The line on the graph is an example of a cut.
Vertices corresponding to n ∈ A and m ∈ B are shown half filled.

satisfying conditions (10)–(13). This is shown in Appendix B,
and illustrates that flow conditions (10)–(13) are equivalent to
the conditions on the Jmn given in the Introduction.

B. Existence of local probability flows

In this section we prove that there exist flow matrix
elements fnm satisfying the conditions (10)–(13) for any
discrete-time quantum walk, and thus that probability is lo-
cally conserved.

We can show the existence of such probability flows using
a result of Aaronson [14], which was proven in a different
context (without considering locality). He showed that for any
unitary evolution of a quantum state, and any fixed basis,
there exist probability flows fmn between basis states that
take the initial probability distribution over the basis to the
final probability distribution over that basis, and which satisfy
fmn � |Umn|. In our case, n → m /∈ E ⇒ Umn = 0 ⇒ fmn =
0, hence such flows would satisfy our requirements. However,
Aaronson’s condition is stronger than we need, because it
also constrains probability flows along edges which do exist.
Therefore, for completeness and clarity, we provide here a
simpler proof of a similar result which is sufficient for our
purposes.

The key insight is to consider probability as a “fluid,”
flowing through a network of “pipes” with different capacities
from a source to a sink. This can be described by a directed
graph with edges which have a maximum capacity specifying
the amount of probability allowed to flow along them. Figure 2
illustrates the configuration we will consider.

This network consists of three different groups of edges.
The first and final sets of edges have capacity corresponding
to initial and final probabilities, respectively. The intermediate
edges represent the evolution of the state and have capacity
defined in the following way,2

Cmn =
{

0 if n → m /∈ E ,

1 otherwise. (16)

2Note that the similar result in Ref. [14] takes Cmn = |Umn|. This
leads to a valid flow satisfying fmn � |Umn|.
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If the total capacity of this network from source to sink is
one, then for any flow configuration achieving this capacity
the flow of probability along the edges in the middle section
will give a valid fmn. In particular, we set fmn equal to the flow
of probability along the intermediate edge with capacity Cmn.

Following a similar approach to Ref. [14], we will show
that the maximum flow allowed by the network is one unit of
probability by making use of the max-flow, min-cut theorem
[15]. This states that the value of the minimum cut in the
network is equal to the maximum flow of the network. A cut is
a set of edges which if removed from the network disconnects
the source from the sink, and its value is the total capacity of
those edges.

Let us first write down the value K of a general cut. Let A
be the set of n such that the edge Source → n is not in the cut
and let B be the set of m such that the edge m → Sink is not
in the cut. Then to disconnect the source from the sink the cut
must contain all the edges n → m such that n ∈ A and m ∈ B.
Therefore the value of the cut can be written as

K =
∑
n/∈A

Pn +
∑
m/∈B

P′
m +

∑
n∈A,m∈B

Cmn

=
(

1 −
∑
n∈A

Pn

)
+

(
1 −

∑
m∈B

P′
m

)
+

∑
n∈A,m∈B

Cmn

= 2 −
(∑

n∈A

Pn +
∑
m∈B

P′
m

)
+

∑
n∈A,m∈B

Cmn. (17)

In order for probability one to be able to flow through the
network, we require that K � 1 for all cuts. We prove this
by considering separately the two cases in which the sum over
Cmn in (17) is either nonzero or zero.

First, consider the case in which at least one of the Cmn ele-
ments in the cut is equal to one. In this case

∑
n∈A,m∈B Cmn � 1

and thus

K � 3 −
(∑

n∈A

Pn +
∑
m∈B

P′
m

)
� 1, (18)

where we have used the fact that any partial sum over elements
of a probability distribution is at most one.

Second, consider the case in which all of the Cmn elements
in the cut are zero, such that

∑
n∈A,m∈B Cmn = 0. In this case,

it is helpful to express the sum over probabilities in (17) in
terms of projection operators as∑
n∈A

Pn +
∑
m∈B

P′
m =

∑
n∈A

| 〈n| |ψ〉 |2 +
∑
m∈B

| 〈m|U |ψ〉 |2

= 〈ψ |
(∑

n∈A

|n〉 〈n| +
∑
m∈B

U † |m〉 〈m|U

)
|ψ〉

= 〈ψ | �A + �B |ψ〉 , (19)

where |ψ〉 is the initial state,

�A = ∑
n∈A |n〉 〈n| and �B = ∑

m∈B U † |m〉 〈m|U .

(20)

�A and �B are projectors onto the spaces spanned by |n〉
such that n ∈ A and U † |m〉 such that m ∈ B, respectively. In
this case, we can show that �A and �B are projectors onto

orthogonal spaces, and thus that �A + �B is itself a projection
operator. In particular,

�B�A =
∑

n∈A,m∈B

U † |m〉 〈m|U |n〉 〈n| = 0, (21)

because by assumption Cmn = 0 for all terms in the sum,
which means that n → m /∈ E and thus Umn = 〈m|U |n〉 = 0.
As �A + �B is a projection operator, 〈ψ | �A + �B |ψ〉 � 1
and thus

K = 2 − 〈ψ | �A + �B |ψ〉 � 1. (22)

Note that this second part of the proof, expressed in (19)–(22),
depends critically on the quantum nature of the evolution.

We have shown that K � 1 for all cuts in the network
shown in Fig. 2. Hence the minimum cut in the network has
a value greater than or equal to one. In fact, the minimum cut
must have a value exactly one, because a possible cut would be
to separate the source from all nodes it is connected to, which
has a value K = ∑

n Pn = 1. Then by applying the max-flow,
min-cut theorem we can conclude that the maximum flow
allowed in the network is also one.

In Appendix C, we show how this general proof applies to
a specific example of a quantum walk on a three-vertex graph,
to further illustrate the method.

As we have shown that one unit of probability can flow
through the network, there exists a valid local probability flow
which changes Pn to P′

n. As this applies to each time step
of a discrete-time quantum walk, it proves that probability is
locally conserved in such evolutions. In other words, probabil-
ity is locally conserved for all quantum evolutions in discrete
space time.

C. Constructing solutions

Although the above proof ensures the existence of a valid
probability flow satisfying local probability conservation, it
does not give a method of constructing such a flow. However,
this can be achieved efficiently for cases with a finite number
of vertices via linear programming.

If N is the number of vertices in V , we can think of the flow
matrix elements fnm as forming an N2-dimensional real vector
f . The constraints (10)–(13) then correspond to a positivity
constraint on each component of f , and a number of linear
equalities satisfied by the components. These can be expressed
in the form

f � 0, (23)

A f = b, (24)

where A and b are a matrix and vector expressing the linear
equalities (11)–(13). Given such constraints, a linear program
can find a vector f∗ which satisfies the constraints and max-
imizes the value of some linear objective function c = v · f .
In this case, as we are only interested in finding a feasible
assignment f , it does not really matter what we choose as
our objective function, but one natural choice would be to
maximize the amount of probability which remains stationary
(i.e., taking c = ∑

n fnn). This would prevent probability from
flowing in both directions between two vertices. Note that this
is not the only source of nonuniqueness of f . Given any cycle
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on the graph around which probability of at least δ flows, there
is another valid solution in which that probability remains
stationary instead.

Various techniques exist to solve linear programming prob-
lems, including the simplex method [16], or Karmarkar’s
algorithm [17]. The latter approach is efficient in the computa-
tional complexity sense, requiring a time which is polynomial
in N .

In Appendix C, we show how to use this method to gener-
ate probability flows for a specific example of a quantum walk
on a three-vertex graph.

D. Systems with internal degrees of freedom

Quantum systems with internal degrees of freedom are
commonly used in the context of coined quantum walks.
In particular, we could consider a particle which carries an
internal degree of freedom, such as a spin, in addition to its
location. Alternatively, we could consider cases in which each
spatial location has its own distinct set of internal states.

In both of these cases we can denote an orthonormal basis
of quantum states by |n, k〉, where n ∈ V gives the spatial lo-
cation and k ∈ Sn gives the internal degree of freedom. In such
cases, we can apply the results obtained earlier, and thus prove
local probability conservation, by mapping the system to one
with no internal degrees of freedom. In this mapping, a vertex
with M internal degrees of freedom can be replaced with a
set of M vertices that are all connected to each other. Note
that this is similar to the staggered fermion approach used in
discrete models of quantum field theory [18–20] where some
issues arise. However, as we are using this as a mathematical
tool to prove probability conservation on the original graph,
these issues do not affect the result.

In particular, suppose that initially the different spatial
locations form a directed graph with edge set E ⊆ {n →
m | n, m ∈ V }, then we can construct a new graph to repre-
sent the situation including the internal degrees of freedom,
with vertices V ′ = {(n, k) | n ∈ V, k ∈ Sn} and edge set E ′ =
{(n, k) → (m, l ) | n → m ∈ E , k ∈ Sn, l ∈ Sm}. For example,
any coined quantum walk of a particle on a line with a two-
dimensional degree of freedom is identical to a walk of a
particle with no internal degrees on the graph shown in Fig. 3.

FIG. 3. Any quantum walk of a particle on a line with a two-
dimensional internal degree of freedom can be represented by a
quantum walk on this expanded graph. For generality, all links are
shown undirected, allowing travel in both directions.

Local probability conservation on the expanded graph then
implies local probability conservation for the original graph,
with the probabilities and currents on the original graph being
Pn = ∑

k P(n,k) and Jmn = ∑
k,l J(m,l ),(n,k).

E. Mixed states and general quantum processes

So far we have considered pure quantum states evolving
unitarily. However, it is also possible to extend these results
to mixed states and general quantum processes (represented
by completely positive trace-preserving maps), which may be
useful when considering open quantum systems or situations
involving uncertainty. In this case the state is represented by
a density operator ρ, and the transformation during a single
time step is given by ρ ′ = ∑

i KiρK†
i , where Ki are Kraus

operators [21]. In order to respect the locality structure of
the graph, such a transformation must satisfy n → m /∈ E ⇒
〈m| Ki |n〉 = 0 ∀ i. Mixed states and general quantum dynam-
ics can always be represented by pure states and unitary
evolutions on a larger Hilbert space composed of the original
system and an ancilla [21]. By treating the ancilla as an in-
ternal degree of freedom as in the previous section, it follows
that local probability conservation also applies in these cases.

IV. DISCUSSION

For quantum evolutions in discrete space and time, in
which the locality structure of space is described by an ar-
bitrary directed graph and the evolution is unitary, we have
shown that probability is locally conserved. Essentially, we
can always explain the change in spatial probability distribu-
tions in terms of probability flows which respect the locality
of space.

The constraint of local probability conservation can be
expressed in terms of the probability current Jnm between
vertices or probability flows fnm along edges. Unlike in the
continuous-time examples which have been considered, the
existence of a valid probability flow is established noncon-
structively, although valid solutions can be obtained efficiently
via numerical methods.

A third approach to the probability flow is to consider a
stochastic matrix3 Pm|n which evolves the initial probability
distribution into the final distribution via

P′
m =

∑
n

Pm|nPn, (25)

with n → m /∈ E ⇒ Pm|n = 0. This is equivalent to the for-
mulation in terms of probability flows. To go from fmn to Pm|n
we take

Pm|n = fmn

Pn
, (26)

whenever Pn �= 0. If Pn = 0, (26) is not well defined. However,
in such cases the distribution Pm|n is irrelevant as there is no
probability initially at n to flow, and we can simply take Pm|n =
δm,n to avoid violating the locality structure. Similarly we can
transform from Pm|n to fmn by taking fmn = Pm|nPn. As in the

3That is, satisfying Pm|n � 0, and
∑

m Pm|n = 1 for all n.
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discussion of probability flows, note that the aim here is not
to derive P′

n by computing Pm|n and then evolving the initial
state, as we need to calculate P′

n in order to find Pm|n. Rather,
it is to show that there exists a Pm|n which is consistent with
the initial and final probability distributions and locality.

This result could be helpful in understanding quantum
walk evolutions, and is also interesting from a foundational
perspective, as it demonstrates that an intuitive property of
quantum theory in continuous space and time and discrete-
space continuous time also holds in the discrete-space and
-time formalism. This could be helpful for any approaches to
particle physics in which discretization of time and space is
pursued, such as Refs. [22–25].
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APPENDIX A: A PROPOSED GENERAL CURRENT

In this Appendix we consider a proposed general form of
the probability current [13], for arbitrary discrete-time quan-
tum walks on undirected graphs, given by

Jmn = 1
2 [(ρU †)nmUmn + (U †)nm(Uρ)mn

−Unm(ρU †)mn − (Uρ)nm(U †)mn]. (A1)

This is an appealing definition as it can be easily verified that
Jmn is antisymmetric, real valued, and equal to zero whenever
n and m are not connected by an edge in the graph [in which
case Umn, (U †)nm, Unm, and (U †)mn are all equal to zero].
Furthermore, note that∑

m

Jmn = 1
2 [(ρU †U )nn + (U †Uρ)nn − 2(UρU †)nn]

= ρnn − (UρU †)nn

= −�Pn, (A2)

and hence

�Pn +
∑

m

Jmn = 0. (A3)

However, this definition does not always satisfy the require-
ment that ∑

m∗
Jm∗n � Pn, (A4)

where m∗ = {m : Jmn > 0}. In particular, it is possible to find
cases in which the probability flow away from a vertex is
greater than the initial probability located at that vertex. A
simple example is provided by considering a quantum walk
on three connected vertices with

U =

⎛
⎜⎜⎝

1
2

1
2 − 1√

2
1
2

1
2

1√
2

− 1√
2

1√
2

0

⎞
⎟⎟⎠ (A5)

and an initial pure state |ψ〉 = 1√
2
(|2〉 + |3〉), corresponding

to

ρ =
⎛
⎝0 0 0

0 1
2

1
2

0 1
2

1
2

⎞
⎠. (A6)

As U and ρ are both Hermitian and real in this case, (A1)
simplifies to

Jmn = Umn[(Uρ)mn − (Uρ)nm]. (A7)

From this, one finds that

J21 = 1

2

[
0 −

(
1

4
− 1

2
√

2

)]
= 1

8

(√
2 − 1

)
> 0. (A8)

This implies that there is a positive flow of probability from
vertex 1 to vertex 2. However, there is initially no probability
of the particle being at vertex 1 (P1 = 0). Hence we obtain a
violation of (A4).

APPENDIX B: EQUIVALENCE OF FLOW AND
CURRENT CONDITIONS

In this Appendix, we show that if we can define a Jnm which
is real, antisymmetric, satisfies (6) and (7), and for which
Jmn > 0 only if m → n ∈ E , then we can always generate
flows fmn satisfying conditions (10)–(13). As we showed in
the main text that these flow conditions always allow one to
construct a probability current Jmn with the specified proper-
ties, this shows that these two sets of properties are equivalent.

To achieve this, we set

fmn =
⎧⎨
⎩

Jmn if Jmn > 0 and m �= n,

Pn − ∑
m∗ Jm∗n, m = n,

0 otherwise.
(B1)

Property (10) is ensured by (7), and property (11) follows
because n → m /∈ E ⇒ m �= n and Jmn � 0 ⇒ fmn = 0. The
remaining two properties are given by∑

m

fmn =
∑
m �=n

fmn + fnn

=
∑
m∗

Jm∗n +
(

Pn −
∑
m∗

Jm∗n

)

= Pn, (B2)∑
n

fmn =
∑
n �=m

fmn + fmm

=
∑

n:Jmn>0

Jmn +
(

Pm −
∑

k:Jkm>0

Jkm

)

= −
∑

k:Jkm<0

Jkm + Pm −
∑

k:Jkm>0

Jkm

= −
∑

k

Jkm + Pm

= �Pm + Pm

= P′
m. (B3)

042220-6



LOCAL PROBABILITY CONSERVATION IN … PHYSICAL REVIEW A 103, 042220 (2021)

FIG. 4. A three-vertex graph on which we consider an example
quantum walk in Appendix C.

APPENDIX C: EXAMPLE OF CONSTRUCTING
PROBABILITY FLOWS

In this Appendix we illustrate the existence proof for local
flows given in Sec. III B, and the method for constructing
probability flows in Sec. III C for a specific example.

We will consider a walk on the three-vertex graph shown
in Fig. 4, according to the unitary

U =

⎛
⎜⎜⎝

1
2

1√
2

1
2

1
2 − 1√

2
1
2

1√
2

0 − 1√
2

⎞
⎟⎟⎠ (C1)

for the initial state

|ψ〉 = 1√
2

(|1〉 + |2〉) =

⎛
⎜⎝

1√
2

1√
2

0

⎞
⎟⎠. (C2)

Note that U32 = 0 as required by the fact that there is no edge
from vertex 2 to vertex 3 in the graph. To proceed, we first
calculate the final state

|ψ ′〉 = U |ψ〉 =

⎛
⎜⎝

1
2

(
1 + 1√

2

)
1
2

(
1 − 1√

2

)
1
2

⎞
⎟⎠. (C3)

We can then calculate the initial and final probability distribu-
tions from |ψ〉 and |ψ ′〉. For all numerical calculations these
are stored and manipulated using machine precision, but for
simplicity we present them below to 2 decimal places,

Pn = |〈n|ψ〉|2 =
⎛
⎝0.50

0.50
0

⎞
⎠, P′

m = |〈m|ψ ′〉|2 =
⎛
⎝0.73

0.02
0.25

⎞
⎠.

(C4)
Our aim is to find a local probability flow that explains

the transition from Pn to P′
n. Let us first consider the proof

that such a flow exists, as given in Sec. III B. To do this, we
construct a flow network as shown in Fig. 5.

If we can find a flow of one unit of probability through this
network, then the flows on the central edges will correspond
to local flows fmn on our original graph as desired. To prove
that such flows exist we use the max-flow, min-cut theorem.

FIG. 5. A flow network with each edge labeled by its capacity.

The maximal flow through the network is equal to the minimal
total capacity of edges that we need to remove to disconnect
the source from the sink.

One way to disconnect the source from the sink is to cut
all three edges coming from the source. This cut has a value
equal to the sum of the capacities of those edges, given by K =
0.5 + 0.5 + 0 = 1. Similarly, disconnecting all of the edges
leading into the sink has K = 0.73 + 0.02 + 0.25 = 1. Any
cut that includes one of the central solid edges with capacity
1 must yield a value of K � 1, so these offer no improvement
to the minimal cut value and can be discounted. The only re-
maining interesting option is to cut the set of edges {Source →
1, Source → 3, 2 → 3, 1 → Sink, 2 → Sink}. This does dis-
connect the source from the sink. However, this cut has value
K = 0.5 + 0 + 0 + 0.73 + 0.02 = 1.25. Hence the minimal
cut value is one, and thus a maximal flow of one through the
network is possible.

In terms of the proof in Sec. III B, the cut with K = 1.25
considered above corresponds to A = {2} and B = {3}, lead-
ing to orthogonal projectors

�A = |2〉 〈2| , (C5)

�B = U † |3〉 〈3|U = 1
2 (|1〉 − |3〉)(〈1| − 〈3|). (C6)

This gives 〈ψ | �A + �B |ψ〉 = 0.75, and thus K = 2 −
〈ψ | �A + �B |ψ〉 = 1.25.

The above proves that a suitable probability flow exists,
but does not give an explicit solution. To find one, we employ
the method in Sec. III C. In particular, we use the Pn and P′

n
we calculated in (C4) to write down the constraint conditions
(11)–(13) on fmn in the form of Eq. (24),

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1
1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f11

f12

f13

f21

f22

f23

f31

f32

f33

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0.50
0.50

0
0.73
0.02
0.25

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

(C7)
As discussed in the main text, we now consider a linear
program which maximizes the objective function c = f11 +
f22 + f33 subject to the linear equations (C7) and the positivity
constraints fmn � 0 for all n and m (23). Such a linear program
can be solved computationally using several algorithms. In
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FIG. 6. For the example considered, the graphs on the left and right show the initial and final probability distributions Pn and P′
m,

respectively, and the central graph shows the probability flows fmn.

this example the simplex method was used and the following
values for the probability flows were determined,

f =
⎛
⎝0.25 0.48 0

0 0.02 0
0.25 0 0

⎞
⎠. (C8)

These are illustrated in Fig. 6, where it can be verified that they
correctly account for the change in probability distribution
from Pn to P′

m, and satisfy all constraints given by (10)–(13)
as we would expect.
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