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The formalism of continuous-time quantum walks on graphs has been widely used in the study of quantum
transport of energy and information, as well as in the development of quantum algorithms. In experimental
settings, however, there is limited control over the coupling coefficients between the different nodes of the graph
(which are usually considered to be real valued), thereby restricting the types of quantum walks that can be
implemented. In this paper, we apply the idea of Floquet engineering in the context of continuous-time quantum
walks, i.e., we define periodically driven Hamiltonians which can be used to simulate the dynamics of certain
target continuous-time quantum walks. We focus on two main applications: (i) simulating quantum walks that
break time-reversal symmetry due to complex coupling coefficients and (ii) increasing the connectivity of the
graph by simulating the presence of next-nearest-neighbor couplings. Our paper provides explicit simulation pro-
tocols that may be used for directing quantum transport, engineering the dispersion relation of one-dimensional
quantum walks, or investigating quantum dynamics in highly connected structures.
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I. INTRODUCTION

Over the past decades, many efforts have been made in
the study of quantum walks [1]. Apart from describing fun-
damental physical processes such as the quantum transport of
mass and energy, quantum walks also provide a framework for
developing quantum state transfer protocols [2–4] or quantum
algorithms [5]. This has motivated several experimental real-
izations of quantum walks, both in the discrete-time [6,7] and
continuous-time setting [8], in a wide range of experimental
platforms such as optical lattices [9,10], ion traps [11,12],
NMR [13,14], or photonic devices [15,16].

In this paper, we focus on continuous-time quantum walks
(CTQWs), where a quantum particle or excitation propagates
in a network of coupled nodes via continuous-time evolu-
tion. Such a general model finds widespread applications in
condensed-matter physics as well as quantum information and
computation. For one-dimensional (1D) chains, this model
can be used to study, for example, the propagation of a single
spin excitation in a spin chain [2], or localization phenomena
in disordered media [17]. More complicated highly connected
networks have been considered in a variety of contexts, such
as in models of energy transport in specific biological systems
[18–20], in the analysis of quantum walks on complex net-
works [21,22], or in spatial search algorithms [23–25].

In most of the applications of CTQWs, the Hamiltonian
is assumed to have real-valued parameters. This implies that
time-reversal symmetry (TRS) is respected, i.e., the probabil-
ity for a particle to be transferred from one node to another
at time t = T is the same as at t = −T . However, complex-
valued coupling parameters, which appear naturally in the
description of charged particles in a magnetic field [26], can

break TRS, offering the possibility of biasing the direction
of propagation of the quantum walk as well as enhancing
or suppressing quantum transport between different nodes
[27,28]. In an experimental setting, however, tuning coupling
coefficients to arbitrary complex values is, in general, not
possible, especially in systems of neutral particles such as
photons or ultracold atoms. Furthermore, in physical systems
the coupling strength between different nodes typically decays
with the distance, thereby restricting the quantum walks on
graphs that can be implemented experimentally or observed
in nature. One possibility to partially overcome the latter re-
striction was proposed in Ref. [29] where by coupling internal
degrees of freedom of the particles (in this case, the photon
polarization) with spatial degrees of freedom it was possi-
ble to implement quantum walks in certain highly connected
graphs.

In our paper, we exploit the idea of Floquet engineering
[30] in the context of CTQWs and demonstrate that this
versatile technique can be used to create complex coupling
coefficients in quantum walks as well as increase the connec-
tivity of the graph where the quantum walk takes place. The
idea behind Floquet engineering is to design a time-periodic
Hamiltonian in a specific way, such that the dynamics is
approximately described by an effective Hamiltonian with the
characteristics that we would like to simulate. This effective
description provides an accurate approximation to the system
dynamics when the period is much shorter than the typical
system timescales [30]. This method has been applied in sev-
eral contexts, such as the creation of synthetic gauge fields
[31–33], the creation of topological insulators [34,35], or in
order to tune the coupling coefficients of quantum annealers
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[36]. Discrete-time quantum walks can also be seen as pe-
riodically driven systems and analyzed using Floquet theory
[37–39].

In this paper, we consider two central applications of Flo-
quet engineering in the context of simulating CTQWs. The
first is to use this method to simulate chiral quantum walks,
i.e., quantum walks breaking TRS, such as the ones presented
in Ref. [27]. We provide an explicit protocol to simulate the
quantum walk on a switch, where a complex coupling param-
eter can be used to control the propagation direction of the
walk at the intersection between three branches. This protocol
is easily generalized to implementing a chain of triangles,
where end-to-end transport can be enhanced or suppressed
by controlling the phase of the complex coupling parameters
[27]. The protocol involves fast periodic driving of on-site
energies, akin to the methods for creating synthetic gauge
fields in optical lattices via “lattice shaking” [31].

The second application is to effectively increase the con-
nectivity of the graph where the quantum walk takes place.
Starting from a time-dependent quantum walk on a given
graph, we demonstrate that it is possible to create effective
next-nearest-neighbor (NNN) couplings via suitable time-
periodic modulation of the couplings of the original graph.
We present two illustrative examples of this idea. In the first
one, we demonstrate how to simulate NNN couplings in a one-
dimensional quantum walk by periodically modulating the
strength of nearest-neighbor (NN) couplings. Interestingly,
our protocol introduces purely imaginary NNN couplings,
which leads to TRS breaking and a significantly different dy-
namics from the usual one-dimensional CTQW. In the second
example, we consider a time-dependent quantum walk on the
star graph with N + 1 nodes and show that, although this
graph has only N edges, it can be used to simulate quan-
tum walks on highly connected graphs with O(N2) edges.
Throughout the paper, we discuss the possibility of imple-
menting some of our proposals using integrated photonic
circuits [15,16]. Experiments with femtosecond laser-written
waveguides have provided so far a high level of control,
stability, and accuracy, making them one of the leading ex-
perimental platforms for implementing quantum walks.

Our paper is structured as follows. We start with a small
introduction to Floquet theory and the Magnus expansion
in Sec. II, explaining how quantum walks with periodically
driven Hamiltonians can be described effectively by quantum
walks in a network that can be different from the original
one. We derive conditions on the modulation period which
guarantee that the effective description is a good approxi-
mation of the real dynamics. We then focus on engineering
chiral quantum walks in Sec. III from quantum walks with
real coupling coefficients and periodically modulated on-site
energies, covering different examples. In Sec. IV, we describe
how NNN couplings can be introduced in different graphs via
fast periodic modulation of the coupling coefficients. Finally,
we present some concluding remarks in Sec. V.

II. FLOQUET ENGINEERING OF CONTINUOUS-TIME
QUANTUM WALKS

We begin by considering a general model describing
a quantum particle hopping in an arbitrary network. The

network can be represented by a graph G with N sites corre-
sponding to quantum states {|1〉, . . . , |N〉}, and a set of edges
EG, containing the coupled pairs of sites (i, j). We write the
Hamiltonian describing the dynamics of the system as

H =
∑

i

εi|i〉〈i| +
∑

i �= j:(i, j)∈EG

Ji j |i〉〈 j|, (1)

where the coefficients Ji j represent the coupling strength
between sites |i〉 and | j〉, with Ji j = J∗

ji, whereas the real
parameters εi are usually interpreted as on-site energies.
Mathematically, this Hamiltonian can be interpreted as the
adjacency matrix of a weighted graph G with edge weights
Ji j and self-loops εi.

In an experimental setting, the values of Ji j are usually
real-valued tunable parameters that rapidly decay with the dis-
tance between sites. For example, in continuous-time photonic
quantum walks on waveguide lattices, the evanescent cou-
pling between waveguides decreases exponentially with the
distance, and usually only nearest-neighbor couplings are con-
sidered relevant [40]. This constraint highly restricts the kind
of quantum walks that can be realized experimentally. How-
ever, in various experimental platforms, including photonic
waveguides, the parameters describing the Hamiltonian are
highly tunable and can even be made time or space dependent.
The ability to modulate in time the parameters describing
the quantum walk can be exploited to simulate other types
of walks that, a priori, would not be possible to implement
directly due to experimental restrictions. In particular, we
will focus on the case where both the on-site potentials and
couplings can be tuned periodically in time and use Floquet
theory [30] to derive an effective time-independent Hamilto-
nian describing the quantum walk we would like to engineer.

A. Effective Hamiltonian and the Magnus expansion

Let us assume we can prepare a quantum system described
by a time-dependent Hamiltonian H (t ) of the form of Eq. (1)
where the parameters εi(t ) and Ji j (t ) are periodic functions
of time with period T such that H (t + T ) = H (t ). The time-
evolution operator after a period T is given by

U (T ) = T {
e−i

∫ t0+T
t0

dt H (t )} ≡ e−iHeffT , (2)

where T represents the time-ordering operator. For simplicity,
we set t0 = 0 and consider units where h̄ = 1. The strobo-
scopic dynamics for times that are multiples of the period T
is fully described by the effective Hamiltonian Heff since

U (mT ) = U m(T ) = e−iHeff mT (3)

for any positive integer m. When the frequency � = 2π/T is
sufficiently large, the effective Hamiltonian can be approxi-
mately computed via the Magnus expansion [41]:

Heff =
∞∑

n=0

H (n)
eff , (4)

where each term H (n)
eff = O(�−n). Throughout this paper, we

will consider at most the first two terms of this expansion,
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given by

H (0)
eff = 1

T

∫ T

0
dt H (t ) = H0, (5)

H (1)
eff = 1

2Ti

∫ T

0

∫ t1

0
dt1dt2 [H (t1), H (t2)] (6)

= 1

�

∞∑
l=1

1

l
([Hl , H−l ] − [Hl , H0] + [H−l , H0]), (7)

where we have used the expansion of H (t ) in its Fourier
series as

H (t ) =
∑
l∈Z

Hl eil�t . (8)

The idea behind our paper is to simulate a target quantum walk
Hamiltonian

Heff ≈
∑

i

εeff
i |i〉〈i| +

∑
i, j:(i, j)∈EG′

Jeff
i j |i〉〈 j| (9)

by appropriately choosing the periodic functions εi(t ) and
Ji j (t ). In general, the effective Hamiltonian represents a
quantum walk on a graph G′ which might be different
from the original graph G, as we will see in Sec. IV.
Moreover, the effective couplings can now be complex num-
bers, even if the couplings of the original time-dependent
Hamiltonian were real. This can be used to direct the prop-
agation of the walk and increase transport efficiency between
certain nodes as we will discuss in Sec. III.

B. Simulation errors due to truncation of the Magnus expansion

The approximation of the effective Hamiltonian obtained
by truncating the Magnus expansion naturally leads to an error
in the prediction of how the quantum system evolves in time.
Even though this error vanishes as the period of modulation
tends to zero, in reality this period will always be finite. It is
thus useful to have an understanding of how large this error
can be for a finite modulation period T and a total evolution
time Tevol = mT , where m is some positive integer. In this
paper, we consider the approximation Heff ≈ H (0)

eff in Sec. III,
whereas in Sec. IV we consider Heff ≈ H (0)

eff + H (1)
eff . Hence,

we derive here the upper bounds for the simulation error in
these two cases. Our aim is, by finding this upper bound for
the error, to obtain an estimate for the period T that guarantees
that the effective picture will provide an accurate description
of the real dynamics of the system.

In order to estimate the simulation error, it is useful to
consider the expansion of the unitary U (T ) from Eq. (2) as
a Dyson series:

U (T ) =
∞∑

n=0

Dn, (10)

where

Dn = (−i)n

n!

∫ T

0
dt1· · ·

∫ T

0
dtnTH (t1) . . . H (tn). (11)

We define

Hmax = max
t∈[t0,t0+T ]

||H (t )|| (12)

and assume that T is small enough so that HmaxT < 1. This
ensures that the norm of the higher-order terms of this series
will become increasingly small. In fact, an upper bound for
the error in the truncation of the Dyson series [42] is given by∣∣∣∣

∣∣∣∣U (T ) −
K∑

n=0

Dn

∣∣∣∣
∣∣∣∣ � O

(
(HmaxT )K+1

(K + 1)!

)
. (13)

A simple way to understand the error caused by truncating the
Magnus expansion is to compare the time evolution generated
by the approximate effective Hamiltonian to the truncated
Dyson series. To do so, we note that, from Eqs. (5) and (6),
we have ∣∣∣∣H (0)

eff

∣∣∣∣ T = O(HmaxT ), (14)∣∣∣∣H (1)
eff

∣∣∣∣ T = O(
H2

maxT 2
)
. (15)

We first calculate the error obtained by using the approxima-
tion Heff ≈ H (0)

eff . Expanding the approximate time-evolution
operator in Taylor series we obtain

e−iH (0)
eff T ≈ 1 − i

∫ T

0
dt H (t ) + O(

H2
maxT 2

)
, (16)

which is equal to the truncated Dyson series to first order if
we neglect terms of O(H2

maxT 2). From Eq. (13) this implies
that the approximation of Heff by the first term in the Magnus
expression leads to an error per period T given by∣∣∣∣U (T ) − e−iH (0)

eff T
∣∣∣∣ = O(

H2
maxT 2). (17)

In order to ensure that the error is bounded after an evolution
time Tevol = mT we require that

||U (mT ) − e−iH (0)
eff mT || � ε (18)

⇒ T = O
(

ε

Tevol H2
max

)
. (19)

On the other hand, if we consider the two first terms of
the Magnus expansion, we can write the approximate time-
evolution operator as

e−i(H (0)
eff +H (1)

eff )T ≈ 1 − i
(
H (0)

eff + H (1)
eff

)
T

− 1

2

(
H (0)

eff T
)2 + O(

H3
maxT 3)

≈ 1 − i
∫ T

0
dt H (t )

−
∫ T

0

∫ t1

0
dt1dt2 H (t1)H (t2)

+O(
H3

maxT 3
)
, (20)

which is equal to the truncated Dyson series at second order, if
we neglect terms ofO(H3

maxT 3). Hence, via Eq. (13) we obtain
a bound on the error per period:∣∣∣∣U (T ) − e−i(H (0)

eff +H (1)
eff )T

∣∣∣∣ = O(
H3

maxT 3
)
. (21)

Hence, the total error after a time evolution Tevol = mT can be
bounded by ε, by choosing the period T such that

T = O
( √

ε√
Tevol(Hmax)3/2

)
. (22)

042219-3



LEONARDO NOVO AND SOFIA RIBEIRO PHYSICAL REVIEW A 103, 042219 (2021)

We can thus use Eqs. (19) and (22) to estimate the appropriate
modulation period T , depending on the system energy scale
Hmax and the desired total evolution time. Note, however,
that these upper bounds are not necessarily tight and it is
possible that in specific cases the error in Eqs. (17) and (21)
is overestimated. For this reason, we also provide throughout
this paper numerical simulations of the real dynamics in order
to have a more accurate comparison between the real and
effective models. Nevertheless, the bounds we provide are
of independent interest and can be particularly useful when
the real dynamics of the quantum systems involved is hard to
compute numerically.

III. SIMULATION OF QUANTUM WALKS BREAKING
TIME-REVERSAL SYMMETRY

In Ref. [27], it was shown that complex coupling coef-
ficients in a CTQW can be used to break TRS and control
the direction of propagation of the particle. This leads to an
increase in transport efficiency between an initial and a target
node in certain graphs. However, in an experimental setting,
tunable complex coupling coefficients are not always readily
available. Here, we discuss how these effects can be simulated
via quantum walks with real coupling coefficients and peri-
odically modulated on-site potentials and briefly discuss the
possibility to implement our simulation protocol in integrated
photonics circuits, one of the leading experimental platforms
for implementing photonic quantum walks.

A. Time-reversal symmetry breaking in quantum walks

Provided that the coupling parameters of a Hamiltonian are
real, the dynamics of the system respects probability TRS [28]
in the following sense: the transition probability between two
states |i〉 and | j〉 after forward time evolution

P(t )i→ j = |〈 j|e−iHt |i〉|2 (23)

equals the transition probability of the time-reversed process:

P(−t )i→ j = |〈 j|eiHt |i〉|2 = |〈 j|e−iH∗t |i〉|2, (24)

since H = H∗. Equivalently, this symmetry can be interpreted
as the absence of a directional bias in the propagation as

P(t )i→ j = P(−t )i→ j ⇔ P(t )i→ j = P(t ) j→i. (25)

Thus, a necessary condition to break probability TRS in quan-
tum walks is to have complex coupling coefficients. However,
this alone is not sufficient. The transition probabilities are
invariant under gauge transformations |i〉 → eiφi |i〉, which
induce a transformation of the coupling parameters Ji j →
ei(φi−φ j )Ji j . If there is a gauge transformation such that the
transformed couplings are real, then probability TRS is still
respected.

More general conditions which ensure probability TRS
are derived in Ref. [28], wherein the authors show that for
structures such as trees (which includes the linear chain) and
bipartite graphs this symmetry is always respected. For graphs
that do not fall in these categories, the presence of complex
coupling coefficients can lead to probability TRS breaking.

Throughout the paper, we refer to probability TRS break-
ing simply as TRS symmetry breaking. In Ref. [28], the

authors also discuss the concept of amplitude TRS breaking,
i.e., when 〈 j|eiHt |i〉 �= 〈 j|e−iHt |i〉. Since this does not neces-
sarily lead to directional bias of transition probabilities, in our
paper we focus only on probability TRS breaking.

B. Simulating complex couplings via Floquet engineering

In order to show how to simulate quantum walks breaking
TRS, we use a technique known as time-asymmetric lattice
shaking [31], introduced in the context of experiments with
ultracold atoms with the aim of creating synthetic magnetic
fields for neutral particles.

Let us consider the time-dependent periodic Hamiltonian

H (t ) =
∑

i

βi(t )|i〉〈i| +
∑

i, j:(i, j)∈EG

Ji j |i〉〈 j|, (26)

where the on-site terms βi(t ) are periodic functions with pe-
riod T . To analyze the dynamics of the system it is useful
to consider the rotated basis |ψ ′(t )〉 = V (t )|ψ (t )〉, where we
define

V (t ) = exp

(
i
∑

i

Vi(t )|i〉〈i|
)

(27)

and

Vi(t ) =
∫ t

t0

dt ′ βi(t
′) −

〈∫ t

t0

dt ′ βi(t
′)
〉

T

. (28)

Here, we denote the time average of a function f (t ) over a
period T as 〈 f (t )〉T = T −1

∫ t0+T
t0

f (t ) dt . Note that the outcome
probabilities of a measurement of either |ψ (t )〉 or |ψ ′(t )〉 in
the site basis are the same so, for simplicity, in what follows
we will consider only |ψ ′(t )〉.

The wave function |ψ ′(t )〉 obeys the Schrödinger equation
with Hamiltonian

Ĥ ′(t ) = V (t ) Ĥ (t )V †(t ) + iV̇ (t )V †(t ) (29)

=
∑
〈i j〉

Ji j exp [i(Vi(t ) −V j (t ))]|i〉〈 j|. (30)

We assume the period T is small enough, so that the effective
Hamiltonian is well approximated by the first term of the
Magnus expansion

Heff ≈ 〈H ′(t )〉T =
∑
〈i j〉

Jeff
i j |i〉〈 j|, (31)

with the renormalized coupling terms

Jeff
i j = Ji j〈exp [iVi j (t )]〉T , (32)

where we have definedVi j = Vi −V j .
The imaginary part of the effective tunneling in Eq. (32)

Im

(
Jeff

i j

Ji j

)
= 〈sin (Vi j (t ))〉T (33)

can only be nonzero provided that the function βi j (t ) =
βi(t ) − β j (t ) breaks two fundamental symmetries [31]: (i)
The function βi j (t ) needs to break inversion symmetry,

βi j (t − τ ) = −βi j (−t − τ ), (34)
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FIG. 1. (a) Real model. The scheme represents a quantum walk
on a triangle where the site energies of nodes 2 and 3 are modulated
in time with functions β2(t ) and β3(t ). (b) Effective model. The
model represented in panel (a) can be used to simulate the dynamics
of a quantum walk on a triangle with a complex coupling coefficient
between nodes 2 and 3 represented by the red edge with the arrow.
This is the simplest quantum walk breaking TRS and can be used as a
building block in more complex structures in order to direct quantum
transport.

with respect to all points τ in time, and (ii) the function βi j (t )
needs to break shift inversion symmetry:

βi j (t ) = −βi j (t − T/2). (35)

The specific form of the functions βi(t ) depends on the ef-
fective quantum walk Hamiltonian we would like to simulate.
In what follows we present a specific protocol to simulate the
simplest of the Hamiltonians which leads to TRS breaking (a
triangular loop). In addition, we show how to use this protocol
to engineer some of the quantum walk Hamiltonians consid-
ered in Ref. [27], where it is possible to direct the walker and
increase the transport efficiency between certain nodes using
effective complex phases.

1. Triangular loop

The crucial building block for some of the Hamiltonians
discussed in Ref. [27] is a triangle loop where the strength of
the couplings is uniform |Ji j | = J but one of the couplings,
say between nodes 2 and 3, is complex with J23 = Jeiφ (see
Fig. 1(b). Note that this Hamiltonian is equivalent, up to a
gauge transformation, to a Hamiltonian where

J12 = J23 = J31 = Jeiφ/3. (36)

The protocol we consider for the simulation of this system
involves a fast time-periodic modulation of two of the on-site
potentials, say β2(t ) and β3(t ), while keeping β1(t ) = 0 [see
Fig. 1(a)]. Namely, we consider the Hamiltonian

H (t ) = β2(t )|2〉〈2| + β3(t )|3〉〈3| +
∑

i, j:(i, j)∈EG

J ′|i〉〈 j|, (37)

where in this case the graph G is a triangle with uniform real
couplings given by J ′.

A possible form for these functions, which leads to com-
plex coupling coefficients, is based on sine functions that
are turned on and off for a certain time, as proposed in
Refs. [31,43] in the context of simulating artificial mag-
netic fields for ultracold atoms in triangular lattices. Here,
we consider an alternative form for the modulation based
on step functions, motivated by the possibility to implement

our scheme in integrated photonic circuits. The reason is
twofold. First, we show that these steplike modulation func-
tions create higher effective complex phases for the same
modulation amplitude, when compared to the sinelike mod-
ulation of Ref. [31] (see more details for the results using
sine-function modulation in the Appendix). This can be im-
portant if in an experimental setting the maximum modulation
amplitude is restricted. Second, steplike variations of waveg-
uides’ propagation constant have already been experimentally
demonstrated in integrated photonic circuits, as it will be
discussed in Sec. III C.

The steplike modulation functions we consider are

β
(step)
2 (t ) =

⎧⎪⎪⎨
⎪⎪⎩

A, 0 � t � T
3

−A, T
3 < t � 2T

3

0, 2T
3 < t � T

, (38)

β
(step)
3 (t ) =

⎧⎪⎪⎨
⎪⎪⎩

0, 0 � t � T
3

−A, T
3 < t � 2T

3

A, 2T
3 < t � T

. (39)

From Eq. (32), the effective couplings obtained are given by

Jeff = Jeff
12 = Jeff

23 = Jeff
31

= J ′ei AT
9

[
1

3
+ 2i

AT

(
e−i AT

3 − 1
)]

. (40)

Hence, this choice of the modulation functions ensures that
both the absolute value of all couplings as well as their phase
is the same along the loop 1 → 2 → 3 → 1 as in Eq. (36).
The value of the effective phase is then given by

φ = 3Arg(Jeff ) mod 2π. (41)

In Fig. 2, we compare the parameters |Jeff| and φ, extracted
from a numerical calculation of Heff = i log(U (T ))/T and
from the analytical calculation from Eq. (40), showing a good
agreement between the two for the range of parameters shown.
Note that the effective coupling |Jeff| is lower than the value
of J ′. Hence, in order to achieve a desired strength J for the
effective coupling, the value of J ′ has to be chosen accord-
ingly, taking into account the modulation amplitude A and the
period T .

2. Switch and chain of triangles

In Ref. [27], the simplest example that was constructed
to illustrate the role of complex coupling coefficients in a
quantum walk was the switch represented in Fig. 3(a). Starting
from node S, the direction of the propagation of the quantum
walk can be controlled by the complex hopping phase present
in the central triangular loop. To do so, the Hamiltonian of the
system is chosen such that all coupling coefficients are real,
with strength J = 1 (which sets our energy units), except for
the coupling between nodes 2 and 3, which is set to J23 = eiφ .
If the phase φ is zero, due to the graph’s reflection symmetry,
the probability of observing the particle at either node U or
D is the same. A nonzero value of φ breaks this reflection
symmetry (and TRS) and biases the direction of propagation.
It was observed in Ref. [27] that the maximum bias is achieved
for values of φ = π/2 (toward U ) or φ = 3π/2 (toward D).
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FIG. 2. Comparison between real and effective models for the
accumulated phase around the triangular loop φ from Eq. (40) (top)
and absolute value of coupling |J12| (bottom) for two values of the
period T = 0.3 and 0.5 as a function of the modulation amplitude A,
for steplike modulation functions. The units are chosen such that the
couplings of the quantum walk are J = 1.

To simulate this quantum walk, we choose a time-
dependent Hamiltonian with real parameters and periodically
modulated site energies at nodes 2 and 3, as represented in
Fig. 3(b). We choose the steplike modulation functions from
Eqs. (38) and (39), but similar results could be obtained
for the sinelike modulations discussed in the Appendix. The
modulation amplitude, as well as the period, can be tuned
following two requirements: the value of AT is chosen to
generate the desired effective phase, following Eqs. (40) and
(41); the period T is chosen to be short enough, so the ef-
fective model provides an accurate description of the real
dynamics. The latter requirement can be fulfilled by using the
bound from Eq. (19). However, for this particular example, we
have numerically found that this constraint is too conservative,
and higher values of T still guarantee a good correspondence
between the dynamics of the real model and the effective one.

The results are summarized in Fig. 4, wherein we compare
the probabilities of observing the particle at D and U , com-
puted via the real (represented by the marks) and the effective
model (represented by the continuous and dashed lines). We
chose the initial state of the quantum walk to be localized at
node S, the modulation period T = 0.2, and two values of
modulation amplitude in order to create an effective phase
of π/2 in Fig. 4(a) and of 3π/2 in Fig. 4(b). We observe a
good agreement between the system’s real and effective de-
scriptions, especially for lower evolution times. The periodic
modulation of the site energies at nodes 2 and 3 of the central
triangle leads to a significant bias in the direction of propaga-
tion of the wave function. For an effective phase φeff = π/2,
the particle goes mostly toward U , reaching a maximum prob-

FIG. 3. Scheme of the switch structure. (a) Effective model. The
presence of a complex-valued coupling (red link with an arrow) in
the central triangle allows the biasing of the propagation direction
of quantum walk starting at S toward U or toward D. (b) Real
model. The quantum walk represented in panel (a) can be simulated
via a quantum walk with real coupling coefficients and periodically
modulated site energies at nodes 2 and 3, with modulation functions
β2(t ) and β3(t ) [see Eqs. (38) and (39)]. The strength of couplings
inside the triangular loop as well as those between 2 and 2’ and nodes
3 and 3’ (represented by the thicker green edges) needs to be tuned
appropriately in order to avoid backscattering.

ability ≈ 0.8 at this site, whereas for φeff = 3π/2 a similar
bias is achieved toward D, in agreement with Ref. [27].

Note that in order to ensure that all the couplings of Heff.

have a uniform strength |Jeff.| = 1 (in appropriate units), the
values of the coupling strength of the time-dependent Hamil-
tonian H (t ) have to be chosen appropriately. Namely, the
couplings represented by the thick edges in green in Fig. 3(b),
which represent connections to either node 2 or 3, need to be
stronger than the rest in order to compensate for the weak-
ening of the effective coupling strength due to the periodic
site-energy modulation of these nodes, which is visible in
Fig. 2(b). If such compensation is not done, we observe via
numerical simulations that there is a significant backscattering
of the particle at the central triangle, washing out the sharp
probability peaks at nodes U and D observed in Figs. 4(a) and
4(b), respectively.

We remark that the protocol to create complex hopping
phases in a triangle from Sec. III B 1 can be readily used
to simulate the quantum walks in the structure represented
in Fig. 5(a), also studied in Ref. [27]. This structure forms
a chain of coupled triangular loops, where in each loop one
of the coupling coefficients has a complex phase φ as in
Fig. 1(a). It has been shown in Ref. [27] that these com-
plex phases can either significantly enhance or suppress the
transport efficiency between the two ends of the chain. In
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FIG. 4. Comparison between the probabilities of observing the
particle at nodes U and D for the quantum walk on the switch, start-
ing from node S (see Fig. 3). The lines correspond to the dynamics
of the effective model with a complex phase Arg(J23) = φeff = π/2
in panel (a) and Arg(J23) = φeff = 3π/2 in panel (b). The marks
correspond to the stroboscopic dynamics of the real model, where
the on-site energies of nodes 2 and 3 are modulated periodically
according to the steplike functions from Eqs. (38) and (39). The
modulation period was chosen to be T = 0.2 and the modulation
amplitude A = 63.12 in panel (a) and A = 80.2575 in panel (b) so
that the real dynamics approximately simulates the quantum walk on
the switch with uniform coupling strength and a complex hopping
phase Arg(J23) = π/2 and 3π/2, respectively. Our units are chosen
such that the effective Hamiltonian has uniform couplings |Jeff| = 1.

order to simulate this quantum walk on-site energies should
be modulated according to the pattern shown in Fig. 5(b),
where the functions β2(t ) and β3(t ) are chosen according to
Sec. III B 1.

C. Experimental feasibility

Several proposals have been put forward to simulate quan-
tum dynamics showing time-reversal breaking for atomic
ensembles [31], or coherent light [32,33,35]. These proposals
are driven by the systems’ desirable features, such as transport
along the edge states that are robust against backscattering.
However, quantum walks with effective complex hopping
phases in the single- or few-particle regimes have not yet
been realized. Here, we argue that the proposals discussed
in Sec. III B 2 could, in principle, be implemented by cou-
pling waveguides in photonic integrated circuits [15]. This
is an experimental platform that has extensively been used

FIG. 5. Chain of coupled triangles. (a) Effective model. (b) Real
model. In the effective model the complex hopping phase eiφ rep-
resented by the red links with arrows can be used to enhance the
transport efficiency between nodes S and E [27]. These complex
phases can be effectively implemented by modulating the site en-
ergies via the periodic functions β1(t ) [which can be chosen to be
β1(t ) = 0], β2(t ), and β3(t ), according to the pattern represented in
panel (b).

to implement and study quantum walks [16]. The waveguide
fabrication is done through a permanent change in the index of
refraction induced by nonlinear absorption phenomena when
a femtosecond laser is focused on a glass substrate. A pho-
ton can hop from a waveguide to the neighboring one via
evanescent coupling, and the coupling strength [i.e., the Ji j pa-
rameters in Eq. (26)] can be precisely controlled by tuning the
distance between the waveguides. Each waveguide represents
a node of the quantum walk, and planar graphs like those rep-
resented in Fig. 3 or Fig. 5 can be realized by exploiting laser
writing in three dimensions [44,45]. Furthermore, the waveg-
uide’s propagation constant along the photon’s propagation
direction plays the role of a time-dependent on-site potential
felt by the photon [i.e., the βi(t ) parameters in Eq. (26)]. The
latter depends in a nontrivial way on the waveguide refractive

FIG. 6. (a) Effective model. Representation of the graph corre-
sponding to a one-dimensional quantum walk with NN and NNN
couplings. (b) Real model. The dynamics of this quantum walk can
be simulated by a Hamiltonian with oscillating coupling coefficients
with two different oscillating functions, represented by the red and
green wobbly lines and labeled by α1 and α2, respectively. The
Hamiltonians corresponding to the real and effective models are
shown in Table I.
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index and can be tuned by adjusting the laser intensity in the
writing process [40]. This technique has been used to create
random time-dependent steplike potentials to simulate deco-
herence in photonic quantum walks [44,45]. Hence, it is in
principle possible to implement different time-asymmetric pe-
riodic modulation of the waveguides’ propagation constants,
according to the functions proposed in Sec. III B 1.

Interestingly, since the waveguide’s propagation constant
is also a function of the photon wavelength, photons of dif-
ferent wavelengths would feel different amplitudes of the
time-dependent on-site potential. The scheme we propose to
simulate the quantum walk on the switch (see Fig. 3) thus
creates a wavelength-dependent effective complex hopping
phase, which, in turn, translates into a wavelength-dependent
direction bias for the photonic quantum walk. The proposed
scheme could open the possibility to experimentally study
the effect of TRS breaking in photonic quantum walks in the
single- or few-photon regime and exploit effective complex
hopping phases to direct photon propagation.

IV. SIMULATING NEXT-NEAREST-NEIGHBOR
INTERACTIONS VIA TIME-PERIODIC HAMILTONIANS

In physical systems, the coupling strength between two
nodes of a quantum walk tends to decrease with the dis-
tance between them, thereby restricting the connectivity of
the walks that can be implemented. In this section, we show
that time-dependent modulation of the couplings in a quan-
tum walk can be exploited to selectively introduce effective
couplings between NNN. In particular, we demonstrate that
the relative strength between the NN and NNN couplings can
be fully controlled. We illustrate this idea for the 1D walk and
for the quantum walk on the star graph. The NNN couplings
introduced are purely imaginary and can also be used to study
TRS breaking effects.

A. Introducing effective NNN couplings on general graphs

We begin by describing a quantum walk on a graph G with
a general time-dependent Hamiltonian given by

H (t ) =
∑
i, j

Ji j (t ) |i〉〈 j|, (42)

where Ji j (t + T ) = Ji j (t ) is time periodic with real param-
eters and Ji j (t ) = Jji(t ). We assume the on-site terms to be
zero. For simplicity, we consider the sum over all pairs (i, j)
and assume Ji j (t ) = 0 if (i, j) is not an edge of the graph G.
We can expand each of the coupling parameters in the Fourier
series as

Ji j (t ) = J (0)
i j +

∞∑
l=1

J (l )
i j cos

(
l�t + φ

(l )
i j

)
, (43)

where J (l )
i j = J (l )

ji and φ
(l )
i j = φ

(l )
ji . In contrast to Sec. III, we

will consider the first two terms of the Magnus expansion, i.e.,
Heff ≈ H (0)

eff + H (1)
eff . Then, from Eq. (5), we find

H (0)
eff =

∑
i, j

J (0)
i j |i〉〈 j| (44)

as, at zeroth order in the Magnus expansion, only the time-
independent part of the Fourier expansion of the Hamiltonian
contributes. To calculate the first-order term using Eq. (7), we
start by evaluating the following terms:

〈i|[Hl , H−l ]|k〉 = i

2

∑
j

J (l )
i j J (l )

jk sin
(
φ

(l )
i j − φ

(l )
jk

)
, (45)

〈i|[Hl , H0]|k〉 = 1

2

∑
j

[
J (l )

i j J (0)
jk eiφ(l )

i j − J (0)
i j J (l )

jk e−iφ(l )
jk
]
, (46)

〈i|[H−l , H0]|k〉 = 1

2

∑
j

[
J (l )

i j J (0)
jk e−iφ(l )

i j − J (0)
i j J (l )

jk eiφ(l )
jk
]
. (47)

This leads to the following expression for the matrix entries
of H (1)

eff :

〈i|H (1)
eff |k〉 =

∞∑
l=1

i

l�

∑
j

[
1

2
J (l )

i j J (l )
jk sin

(
φ

(l )
i j − φ

(l )
jk

)

− J (l )
i j J (0)

jk sin φ
(l )
i j + J (0)

i j J (l )
jk sin φ

(l )
jk

]
. (48)

Note that 〈i|H (1)
eff |i〉 = 0 as φ

(l )
i j = φ

(l )
ji . Equation (48) can only

be nonzero if there is a site j such that both (i, j) and ( j, k)
are edges of G, i.e., if there exists at least one path of length 2
from i to k. These effective NNN interactions are purely imag-
inary and can be used to simulate quantum walks breaking
TRS. Note that imaginary NNN couplings also appear from
the Magnus expansion of quantum systems with periodically
driven on-site energies [46]. However, in our case, we will see
that the ability to periodically modulate the coupling coeffi-
cients gives us extra freedom to control in a simpler way the
relative strength between NN and NNN couplings.

B. Simulating imaginary NNN neighbor couplings in a 1D
quantum walk

To simplify the expression in Eq. (48), we make the fol-
lowing choice: apart from the time-independent term given by
J (0)

i j , we choose two modulation frequencies, say � and 2�,
such that

φ
(2)
i j = φ

(1)
i j + π, (49)

J (2)
i j = 2J (1)

i j , (50)

while keeping J (l )
i j = 0 for l > 2. This allows us to eliminate

the second and third term of Eq. (48) and arrive at

〈i|H (1)
eff |k〉 = 3i

2�

∑
j

J (1)
i j J (1)

jk sin
(
φ

(1)
i j − φ

(1)
jk

)
. (51)

Let us now consider a 1D system with a time-dependent
periodic Hamiltonian given by

H (t ) =
N−1∑
j=1

Jj, j+1(t ) (| j〉〈 j + 1| + | j + 1〉〈 j|). (52)

As a further simplification, we assume the uniformity of
the terms J (0)

j, j+1 = J (0) and J (1)
j, j+1 = J (1). In this case, from
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TABLE I. On top, we summarize the protocol to simulate uniform imaginary NNN couplings in a quantum walk in the linear chain from
a one-dimensional quantum walk with time-dependent NN couplings. On the bottom, we summarize the protocol to simulate a quantum walk
on a complete bipartite graph from a time-dependent quantum walk on the star graph. The frequency � has to be large enough compared to
the other energy scales for the effective description to be accurate.

Hamiltonian Connectivity

Real H (t ) = ∑N−1
j=1 {J (0) + J (1) [cos(�t − jπ ) − 2 cos(2�t − jπ )]}| j〉〈 j + 1| + H.c. 1D with NN couplings

Effective Heff ≈ ∑N−1
j=1 J (0)| j〉〈 j + 1| + ∑N−2

j=1
3i
2�

(J (1) )2| j〉〈 j + 2| + H.c. 1D with NN + NNN couplings

Real H (t ) = ∑
j∈P J0 j cos(�t )|0〉〈 j| + ∑

j∈P J0 j cos(�t + π/2)|0〉〈 j| + H.c. Star graph

Effective Heff ≈ 1
2�

(J (1) )2
∑

j∈P

∑
k∈P | j〉〈k| + H.c. Complete bipartite graph

Eq. (51) it can be shown that the only entries of Heff ≈
H (0)

eff + H (1)
eff that can be nonzero are

〈 j|Heff| j + 1〉 = J (0), (53)

〈 j|Heff| j + 2〉 = 3i

2�
(J (1) )2 sin

(
φ

(1)
j, j+1 − φ

(1)
j+1, j+2

)
, (54)

as well as its complex conjugate terms. The strength of each
of the NNN couplings can be controlled individually via the
phase difference φ

(1)
j, j+1 − φ

(1)
j+1, j+2. A uniform strength can be

achieved with the choice

φ
(1)
j, j+1 ≡ − j

π

2
. (55)

From Eq. (54) this yields

〈 j|Heff| j + 2〉 = 3i

2�
(J (1) )2. (56)

These choices thus lead to a protocol to simulate imaginary
NNN couplings in 1D quantum walks with uniform strength,
which we summarize in Table I and depict in Fig. 6. As pre-
viously mentioned, the effective NNN coupling coefficients
obtained via this protocol are purely imaginary and, in gen-
eral, cannot be made real via a gauge transformation. This
leads to observable physical consequences such as the loss
of reflection symmetry of the probability distribution of a
quantum walk starting in the middle of the 1D chain, which
can be seen in Fig. 7.

More precisely, let us define a family of 1D quantum walks
with NN couplings K1 and NNN couplings given by K2, with
Hamiltonian

H1D(K1, K2) =
∑

j

K1| j〉〈 j + 1| + K∗
1 | j + 1〉〈 j|)

+
∑

j

K2| j〉〈 j + 2| + K∗
2 | j + 2〉〈 j|. (57)

It can be seen that if either K1 or K2 is zero, the probability
distribution after a certain time t has a reflection symmetry
around the starting node. More generally, if we write K1 =
|K1|eiφ1 and K2 = |K2|eiφ2 , it can be shown that this reflection
symmetry (as well as TRS) is preserved for any quantum walk
where φ2 − 2φ1 = 0 (mod 2π ) [47]. A possible way to break
this reflection symmetry and bias the walk is to introduce
imaginary NNN couplings. This is in contrast with the 1D
coined discrete-time quantum walk where even when it is
possible to hop only between NNs an asymmetric propagation
of an initially localized state can be achieved either by tuning

the initial coin state or by appropriately choosing the coin-flip
operator [48]. In coinless discrete-time quantum walks, asym-
metric propagation in one dimension can also be achieved
using the techniques of Ref. [49].

The protocol we summarize in Table I simulates the
time evolution of a quantum walk with Hamiltonian
H1D(|K1|, i|K2|). In order to achieve an evolution time Tevol,
we can set J (0) = 3K1T/(4π ), J (1) =

√
|K2|. This choice im-

plies that the effective Hamiltonian becomes

Heff ≈ 3T

4π
H1D(|K1|, i|K2|), (58)

which is a rescaled version of H1D(|K1|, i|K2|). Hence, the
time needed to simulate the time evolution of H1D(|K1|, i|K2|)
for time Tevol using Heff is given by

Tsim = 4πTevol

3T
. (59)

FIG. 7. The blue bars represent the probability distribution of a
one-dimensional quantum walk on a line of 50 nodes with imaginary
NNN couplings after time Tevol = 7. The initial state was chosen to
be localized in node 25, the NN coupling strength was set to K1 = 1
(arbitrary units), and the imaginary NNN coupling strength was set
to K2 = 0.2i. The purple bars represent the probability distribution of
the real dynamics generated by our simulation protocol, which uses
the time-dependent periodic Hamiltonian with NN couplings from
Table I. We have used the values for the period T = 0.5 and chosen
the parameters J (0) = 3K1T/(4π ), J (1) =

√
|K2|, and total evolution

time of Tsim = 4πTevol/(3T ). The red dots represent the dynamics of
the quantum walk with K1 = 1 and real NNN coupling to K2 = 0.2.
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Note that the period T has to be sufficiently small to ensure
a good simulation accuracy. This implies that, in general, the
simulation time is larger than Tevol.

We have verified numerically that the choice K1 = 1 and
K2 = 0.2i leads to a particularly asymmetric propagation of
the quantum walk. In Fig. 7, we show the probability distri-
bution of such a walk after a fixed time and compare it to
that obtained via our simulation protocol, observing a good
agreement even for values of the period as large as T = 0.5.
The dynamic of this CTQW with imaginary NNN couplings
is characterized by a sharp peak propagating to the right,
with smaller waves propagating to the left at a faster speed.
This is in clear contrast with the dynamics of the quantum
walk with real NNN couplings of the same strength (K1 = 1,
K2 = 0.2), also shown in Fig. 7. The latter preserves TRS,
and the probability distribution exhibits a reflection symmetry
around the initial position of the walk. It is thus clear that
changing the phase of K2 can have a striking effect on the
propagation.

We also remark that the dispersion relation of the 1D
quantum walk with Hamiltonian H1D(|K1|, i|K2|), assuming
periodic boundary conditions, is given by

Ek = 2|K1| cos (2πk/N ) − 2|K2| sin (4πk/N ), (60)

where k ∈ {0, 1, . . . , N − 1} labels the momentum eigen-
states. Our protocol can thus be used to simulate the
propagation of particles in 1D systems with various engi-
neered dispersion relations.

C. Simulating a quantum walk on a complete bipartite graph

In the previous example, time-periodic coupling modula-
tion was used to effectively introduce NNN couplings in 1D
quantum walks, increasing the number of edges by a factor
of 2. Here, we demonstrate that if we start with a graph with
different connectivity, for instance, a star graph, it is possible
to engineer quantum walks on considerably more complex
graphs, where the number of edges can be effectively in-
creased by a factor of N . More precisely, we will demonstrate
a protocol to simulate a quantum walk on a complete bipartite
graph of N nodes, which can have up to O(N2) edges, starting
from a time-dependent quantum walk on a graph with star
connectivity of N + 1 nodes.

Let the central node of a star graph in Fig. 8(b) be denoted
as |0〉, and consider the Hamiltonian

H (t ) =
N∑

j=1

J0 j (t ) (|0〉〈 j| + | j〉〈0|), (61)

where J0 j (t + T ) = J0 j (t ). In this case, we assume that only
the first frequency � = 2π/T is present in the Fourier
expansion [see Eq. (43)]. This implies that the zeroth-order
term of the Magnus expansion vanishes. For simplicity, we
choose a uniform value for J (1)

0 j = J (1), but our results are valid
in the more general scenario of variable coupling strength.
Using Eq. (48), we obtain that

H (1)
eff = i

2�
(J (1) )2

N∑
j=1

N∑
k=1

sin
(
φ

(1)
0, j − φ

(1)
0,k

)| j〉〈k|. (62)

FIG. 8. (a) Complete bipartite graph of seven nodes, with parti-
tions P = {1, 2, 4, 6} and P̄ = {3, 5, 7}. (b) Schematic representation
of the protocol to simulate a quantum walk on a complete bipartite
graph via time-periodic modulation of the couplings of a Hamilto-
nian with a star connectivity (all nodes coupled to a single central
node). The partitions can be chosen tuning the phase of the oscil-
lation: the couplings between a node from P and the central node
oscillate with a certain phase and those connecting a node from P to
the central nodes oscillate with a phase difference of π/2.

The resulting Hamiltonian only contains couplings between
the nodes {1, 2, . . . , N}, i.e., the central node zero gets effec-
tively decoupled. Furthermore, the choice of the configuration
of the phases φ

(1)
0, j determines which nodes are effectively

connected.
The connectivity of a complete bipartite graph with uni-

form couplings can be obtained as follows. Let P be a subset
of the set of all nodes {1, 2, . . . N}, and P its complement. A
complete bipartite graph is one where each node from subset
P is connected to all other nodes from P and vice versa
[see Fig. 8(a)]. Choosing the phases φ

(1)
0, j = π/2 if j ∈ P,

and φ
(1)
0, j = 0 if j ∈ P, we obtain from Eq. (62) the effective

Hamiltonian

H (1)
eff = i

2�
(J (1) )2

∑
j∈P

∑
k∈P

[| j〉〈k| − |k〉〈 j|], (63)

which represents the Hamiltonian of a quantum walk on a
complete bipartite graph, with an imaginary effective coupling
strength i

2�
(J (1) )2. However, in this case, the fact that the cou-

pling is imaginary has no observable physical consequences,
since this Hamiltonian can be transformed into a real Hamilto-
nian via a gauge transformation. More precisely, if we define
|k′〉 = i|k〉, for k ∈ P, we can rewrite Eq. (63) as

H (1)
eff = (J (1) )2

2�

∑
j∈P

∑
k′∈P

[| j〉〈k′| + |k′〉〈 j|]. (64)

Our scheme to simulate the quantum walk on the complete
bipartite graph is summarized in Table I. This example high-
lights the fact that the original connectivity of the graph can
be significantly increased by using the freedom of periodic
modulation of the couplings. Furthermore, although we have
focused on a simple choice of phases that leads to the simula-
tion of the complete bipartite graph’s connectivity, we believe
that more complex choices of phases in Eq. (62) can be ex-
ploited toward the simulation of quantum walks on many other
different families of graphs.
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FIG. 9. Proposed set of functions x j (z) required to perform the
protocol for simulating imaginary NNN coupling in a system of four
coupled waveguides, where the couplings decrease exponentially
with the distance. We have set γ x1(z) = cos (�z), and the follow-
ing x j (z) are found by solving Eq. (65) with κ = 4, J (0) = 1, and
J (1) = 0.1.

D. Experimental feasibility

For the reasons already mentioned in Sec. III C, an ideal
experimental platform to implement our simulation protocol
for a quantum walk with imaginary NNN couplings is that of
integrated photonic circuits [16]. The high degree of control
of the spatial configuration of laser-written waveguides can be
exploited to create the desired form for the periodic couplings
of the time-dependent Hamiltonian discussed in Sec. IV B (see
also Table I). Specifically, let us assume that the waveguides
are written in the xz plane, where the z direction corresponds
to the propagation direction of the photon, which plays the
role of time, whereas the relative distance between two waveg-
uides is given by |x j (z) − x j+1(z)|. As the evanescent coupling
between two adjacent waveguides decreases exponentially
with their relative distance, we consider an ansatz for the
coupling of the form Jj, j+1 = κ exp [−γ (|x j (z) − x j+1(z)|)].
In Fig. 9, we represent a set of functions x j (z) such that the z
dependence of the couplings has the form required by the pro-
tocol for simulating imaginary NNN couplings of Sec. IV B,
i.e., they obey the relation

κe−γ |x j (z)−x j+1(z)| = J (0) + J (1)[cos(�z − jπ )

− 2 cos(2�z − jπ )]. (65)

Here, we have chosen the first waveguide’s shape to be
x1(z) = cos(�z). By modulating the waveguides in this way
and provided the modulation frequency � is fast enough, it
is, in principle, possible to observe the effects of asymmetric
propagation of the quantum walk with imaginary NNN cou-
plings in this experimental platform.

We note that one-dimensional CTQWs with real NNN
interactions have been previously implemented in arrays of
photonic crystals in Ref. [50]. In contrast, our results from
Sec. IV B allow for the implementation of quantum walks of
the form of Eq. (57) with imaginary NNN couplings, which
break TRS. In addition, we remark that such a Hamiltonian
can describe the dynamics of charged particles on a triangular
ladder with a staggered magnetic field and is thus of interest
in the context of condensed-matter physics [51]. A proposal

to simulate such a system, motivated by its many-body prop-
erties in the presence of interactions, was put forward in
Ref. [51] and exploits light-induced spin-orbit coupling on
optical lattices of ultracold atoms. On the other hand, our
paper focuses on single-particle dynamics, which is easier to
implement and control via photonic quantum walks. Further-
more, an attractive feature of our simulation method is that it
does not require the coupling of spatial and internal degrees
of freedom as in Ref. [51] and only assumes time-dependent
control over the coupling strength between different
nodes.

Regarding the proposal from Sec. IV C, the main challenge
is to implement a Hamiltonian with the connectivity of a star
graph. This is hard to obtain in systems where the couplings
depend on the distance between different nodes of the quan-
tum walk, especially for quantum walks with a large number
of nodes. However, we remark that bosonic hopping Hamil-
tonians with the connectivity of a star graph can be realized
with superconducting qubits by coupling different oscillators
to the same so-called bus mode [36]. Hence, our scheme to
simulate the quantum walks on complete bipartite graphs with
tunable connectivity could, in principle, be realized if it is
possible to modulate the coupling coefficients at high enough
frequency.

V. CONCLUSION

Floquet theory allows us to describe the dynamics of
periodically driven systems in terms of an effective Hamil-
tonian. We use this idea in the context of CTQWs: by
fast periodic control over certain parameters of a quantum
walk on a given graph, an effective description emerges,
which can be seen as a quantum walk on a new graph
with renormalized coupling parameters. This opens up the
possibility to engineer new types of quantum walks that
could not be implemented directly due to experimental
restrictions.

We have investigated two main applications of Floquet
engineering to CTQWs. First, we have discussed how fast
periodic modulation of on-site energy terms can be exploited
to implement effective complex coupling coefficients. This
can be used to control the propagation direction of the
walker and improve transport efficiency in specific graphs
[27]. Second, we have shown how effective NNN cou-
plings can be introduced via time-dependent control over
the coupling coefficients, leading to simulation protocols for
quantum walks on highly connected structures. The pres-
ence or absence of these NNN couplings can be controlled
through the shape of the modulation functions, and their
strength can be tuned to be as large as that of the NN
couplings.

The effective NNN couplings obtained by our approach are
purely imaginary and can lead to TRS breaking. This effect is
evident in the quantum walk dynamics in the one-dimensional
chain with imaginary NNN couplings, which is one example
we explicitly show how to simulate. Our paper may inspire
experimental implementations of robust protocols achieving
high fidelity quantum state transfer such as the one introduced
in Ref. [52], which requires purely imaginary tunable NNN
couplings in a Su-Schrieffer-Heeger chain. Furthermore, it
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would be interesting to extend our approach to two- and
three-dimensional lattices. This could lead to new ways of
engineering dispersion relations or exploiting TRS breaking
in higher-dimensional quantum walks, possibly leading to
improvements in the performance of state transfer protocols
or search algorithms on regular lattices [23,53]. We also leave
open the question of whether real NNN couplings can be
effectively implemented in quantum walks via Floquet engi-
neering. In principle, this could be used to simulate quadratic
perturbations to the usual quantum walk Hamiltonian [54] or
quantum walks on other structures such as complex networks
[22].

Overall, our paper opens up possibilities for exploiting
time-dependent control of quantum walk Hamiltonians toward
directing and enhancing quantum transport in networks as
well as investigating quantum dynamics in highly connected
structures.

Note added. We remark that the long-time dynamics of
the one-dimensional quantum walk with complex NNN cou-
plings were recently analyzed in Ref. [55], extending previous
work for real NNN couplings [56]. This paper shows that the
propagation of the walk exhibits different velocities between
right- and left-moving wavefronts and that the skewness of the
distribution is maximal for purely imaginary NNN couplings.
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APPENDIX: ALTERNATIVE FORM FOR THE
MODULATION FUNCTIONS

Following the work of Refs. [31,43], we consider the set of
modulation functions

β
(sin)
2 (t ) =

{
A sin

(
3πt
T

)
, 0 � t � 2T

3

0, 2T
3 < t � T

, (A1)

β
(sin)
3 (t ) =

⎧⎨
⎩

0, 0 � t � T
3

A sin
(

3πt
T

)
, T

3 < t � T
(A2)

for the site energies of a quantum walk on the triangular loop
discussed in Sec. III B 1. These functions lead to the effective

FIG. 10. Comparison between real and effective models for the
accumulated phase around the triangular loop φ from Eq. (40) (top)
and absolute value of coupling |J12| (bottom) for two values of the
period T = 0.3 and 0.5 as a function of the modulation amplitude A,
for sinelike modulation functions. The units are chosen such that the
couplings of the quantum walk are J = 1.

couplings

Jeff = Jeff
12 = Jeff

23 = Jeff
31

= J ′
[

2

3
J0

(
AT

3π

)
ei AT

9π + 1

3
ei 2AT

9π

]
, (A3)

where we have used Eq. (32) and the integral relation∫ π

0
dθeix cos(θ ) = πJ0(x),

with J0(x) representing the zeroth-order Bessel function.
In Fig. 10, we compare the parameters |Jeff| and φ, ex-

tracted from a numerical calculation of Heff = i log[U (T )]/T
and from the analytical calculation from Eq. (A3), showing a
good agreement between the two for the range of parameters
shown. It is interesting to observe that the steplike functions
lead to higher effective phases φ for the same values of A and
T , when compared to the sinelike modulation functions. For
example, if we fix the modulation period at T = 0.5, a value
of the effective phase of π/2 can be achieved for an amplitude
A ≈ 26 (in units where J ′ = 1) using the steplike functions
(see Fig. 2), whereas for the sinelike modulation we would
need an amplitude A ≈ 35 to obtain the same effective phase.
This type of consideration is of paramount importance for
experimental realizations, where there are natural or techno-
logical limits to the possible modulation amplitudes that can
be reached (see Sec. III C).
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