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Relaxation to equilibrium in controlled-NOT quantum networks
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The approach to equilibrium of quantum mechanical systems is a topic as old as quantum mechanics itself,
but has recently seen a surge of interest due to applications in quantum technologies, including, but not limited
to, quantum computation and sensing. The mechanisms by which a quantum system approaches its long-time,
limiting stationary state are fascinating and, sometimes, quite different from their classical counterparts. In this
respect, quantum networks represent mesoscopic quantum systems of interest. In such a case, the graph encodes
the elementary quantum systems (say qubits) at its vertices, while the links define the interactions between
them. We study here the relaxation to equilibrium for a fully connected quantum network with controlled-NOT

(CNOT) gates representing the interaction between the constituting qubits. We give a number of results for the
equilibration in these systems, including analytic estimates. The results are checked using numerical methods for
systems with up to 15–16 qubits. It is emphasized in which way the size of the network controls the convergency.
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I. INTRODUCTION

Quantum networks [1,2] find a wide range of applications
in quantum theory and information processing. In rather gen-
eral terms, a quantum network is an ensemble of quantum
systems—typically qubits—with a prescribed set of interac-
tions between them, defining the overall pattern that enables
them to carry out specific tasks. Quantum networks can have
different degrees of complexity and hence also execute tasks
that can be more or less sophisticated. Quantum networks
can be used to carry out computations, communications, or
storage of quantum information [3,4].

The information about the details of the network and the
mutual interactions between its constituting parts is efficiently
encoded into graphs. The vertices represent the quantum
systems and the edges (links) the interactions between the
network elements. In the simplest case the links of the graph
are static and unchangeable. In such a case we assume that the
network dynamics is described by a unitary dynamics which is
not changing in time. However, it is not difficult to generalize
such a structure to encompass more general situations. The
links between the elements of the network can be activated
or terminated and the underlying graph encodes then only
the potentiality of two or more elements to interact. Such
situations can describe, for instance, a quantum gas where the
elements of the network are not qubits but atoms or molecules,
and by using the concept of network we follow the formation
of the asymptotic-stationary states due to elementary interac-
tions between them [5,6]. In such a case each link edge is

given a weight representing the probability with which a given
interaction is carried out and hence we follow the evolution of
the system with sufficient time resolution. Such a situation is
inherently random and, while the elementary time evolution
(represented by a given sequence of operations) is unitary and
given by the product of individual unitary operations, the over-
all evolution is nonunitary [7]. Even though all input states
are available, the evolution of the system tends in general to
a network specific attractor space of the network and does
not take place in a subspace of the original Hilbert space.
Mathematically, the evolution of the system is described by
the repeated application of a completely positive map. The
basic task in solving the dynamics of the network is twofold:
one first determines the asymptotic space, and then finds the
rate at which the system approaches this subspace. Such a
task is in general intimately linked to the choice of the graph
chosen, the weight of the links, and naturally the form of
interaction between the constituting parts. In the following
we will focus on qubit networks with controlled-NOT (CNOT)
operations between any chosen pair of qubits, hence the un-
derlying graph will be the fully connected graph [8,9]. The
choice of this elementary operation or interaction is motivated
by a number of reasons.

The CNOT network is a particular example of a collision
model. Such models are reminiscent of the popular Boltzmann
gas of statistical physics [5,10,11], in which one has sufficient
time resolution to guarantee that only bipartite interactions be
considered. They are routinely used in studies of approaching
equilibrium, transport phenomena, decoherence and
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dephasing, and the study of temporal synchronization [12].
In this context, it is worth noticing that the approach
to equilibrium, and lack thereof, of a quantum system
has received a lot of attention due to both theoretical
advances [13–22] and experimental results [23,24]. More
to our problem, one can imagine that, with the advent of
the first digital quantum computers [25], the dynamics of
quantum networks could be experimentally simulated, and,
conversely, will have bearing on the behavior of running
quantum algorithms. In particular, one has in mind population
transfer and similar algorithms [26–28] which can benefit
from fast spreading over a subset of preferred configurations
(the equilibration time is the running time of the algorithm).

One of the fundamental aspects of quantum networks is
the presence, creation, and transmission of entanglement.
For qubits, entanglement can be formed in different ways,
and one of the simplest examples is the use of CNOT op-
erations between the qubits. Besides being well established
and physically motivated, the CNOT operation is realistic and
can be implemented on a wide range of systems, ranging
from photons to trapped ions. When such CNOT operations
are randomly applied in networks, they compete against each
other in entanglement formation (monogamy of two-particle
entanglement) and the asymptotic regime (state) of the net-
work is a density matrix of a rather simple form. Nonetheless,
such asymptotic form is nontrivial, as it cannot be represented
by a classical state, being endowed with inherent nonclassical
features. Entanglement creation among the qubits and deco-
herence originating from the loss of control over the system
give rise to a nontrivial and largely unexpected asymptotics.

While the determination of the asymptotic regime is given
by the solution of a well-defined set of conditions specified by
the underlying graph structure (and independent of the actual
weights of the edges), the rate of convergence to the asymp-
totic is crucially dependent of these weights. The structure
of the asymptotic state is quite clear and even accessible to
analytic treatment; on the other hand, the question of the con-
vergence rates is largely unexplored and depends on a much
larger set of parameters than the structure of the asymptotic
space.

In the following we provide quantitative estimates for the
convergence of a fully connected graph undergoing CNOT

interactions. This simple example enables us both to demon-
strate the influence of the network size (number of qbits)
on the convergence rate at leading order, and to discuss the
influence of the geometry of the network, focusing in particu-
lar on two limiting cases, the complete graph and the circle
graph. We shall also give a few hints on the influence of
altering the edge probability (via the introduction of noise) on
the convergence rate. A full understanding of our numerical
outcomes will be obtained in the light of a general theorem on
the convergence rate.

The properties to be discussed in the following sections
make CNOT gates particularly appealing on a number of
grounds. First of all, they are entanglement forming (although,
as discussed before, the map will induce dephasing, adding
an inherent competition in the global dynamics); second, they
are mathematically simple, and in particular they form a finite
group (see Secs. III and IV); third, propagation and/or entan-
glement loss in an n-partite system are of general interest for

the quantum information community; finally, CNOT is a special
case of controlled rotations, which are the building blocks of
dephasing in collisional models [8].

This article is organized as follows. We set up the problem
and introduce notation in Sec. II. In Sec. III we make an ob-
servation that leads to a drastic simplification of the problem.
In Sec. IV we clarify the general framework in terms of a
rather elementary example that can be solved explicitly. The
problem is then recast in simpler terms in Sec. V. We perform
a numerical analysis in Sec. VI, and conclude in Sec. VII.

II. SETTING UP THE PROBLEM

We consider N qubits with the Hilbert space H = (C2)⊗N

undergoing the following iterated dynamical evolution [7,8]:

�(ρ) =
∑
i∈I

piUiρU †
i , (1)

where state ρ ∈ T (H) is a trace class operator on the Hilbert
space H, Ui are unitaries, pi a probability distribution, and
I a set of indices (each representing a couple of qubits).
We shall focus on the behavior of the iterated map �n(ρ) =
�(�(· · · (�(ρ)))) and its speed of convergence to equilibrium
when the Ui’s are CNOT gates, acting on qubits a and b accord-
ing to

Ui=(a,b) = CNOT(a,b) ⊗ 1rest, (2)

and the interaction graph is fully connected. Some of the ideas
presented in this article are valid for more general networks,
if the map that governs the evolution satisfies some proper-
ties: see the discussion that follows Eq. (5). In the following
and in our numerical investigation we will limit ourselves to
CNOT maps of the type (1)–(2). Extensions to more general
situations will be presented elsewhere.

We first observe that the superoperator (1) is linear, so
that its eigenvalues are Lyapunov coefficients. Moreover, as
CNOT gates are Hermitian, the superoperator is also normal
with respect to the Hilbert-Schmidt scalar product (A, B) =
Tr (A†B), where A, B are operators on H. Consequently, it
admits an orthonormal basis {Xλ,i} on T (H) consisting of
eigenvectors Xλ,i associated with eigenvalues λ from the spec-
trum σ of the superoperator �. The index i takes into account
a possible degeneracy of the eigenvalue λ. While the eigen-
vectors Xλ,i associated with eigenvalues |λ| = 1 are called
attractors and their span � contains all the asymptotic states
of the given iterated dynamics, the eigenvectors Xλ,i associ-
ated with |λ| < 1 contribute solely to the transient part of
evolution.

Let ρ(n) = �n(ρ(0)) be the state after the nth iteration.
By employing a Hilbert-Schmidt distance d (ρ1, ρ2) = ||ρ1 −
ρ2|| = [Tr (ρ1 − ρ2)2]1/2 to quantify the distance between the
actual and the asymptotic state, one can prove that

d (ρ(n),�) � (β∗)nd (ρ(0),�), (3)

where β∗ = max|λ|<1 |λ| denotes the maximal absolute value
of the eigenvalues |λ| < 1 and is known as the subleading
eigenvalue of the map [29,30]. Indeed, by expanding the initial
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FIG. 1. Distance d in Eq. (3) between evolving states and their
corresponding asymptotic limits: We considered a fully connected
network of six qubits with equally distributed weights. The (blue)
solid line represents the upper bound in Eq. (3). The (green) dotted,
(red) dash-dotted, and (light-blue) dashed lines correspond to initial
states |000001〉, |101010〉, |111111〉, respectively.

state ρ(0) in orthonormal eigenbasis

ρ(0) =
∑
λ∈σ,i

aλ,iXλ,i (4)

we get

d (ρ(n),�)2 =
∣∣∣∣∣

∣∣∣∣∣
∑

|λ|<1,i

aλ,iλ
nXλ,i

∣∣∣∣∣

∣∣∣∣∣
2

=
∑

|λ|<1,i

|λ|2n|aλ,i|2

� β2n
∗

∑
|λ|<1,i

|aλ,i|2 = (β∗)2nd (ρ(0),�)2. (5)

We have adopted the Hilbert-Schmidt norm among operators,
even though it is not generally contractive [31] for dissi-
pative quantum systems undergoing a Gorini-Kossakowski-
Sudarshan-Lindblad (GKLS) dynamics [32–34]. The reason
for our choice is twofold. First, such a distance is known
to work well for dephasing processes [35], that can be de-
scribed in terms of self-dual maps (Hermitian with respect
to the Hilbert-Schmidt product) and do not entail probability
fluxes [36]. It is straightforward to show that the evolution
generated by the superoperator (1) is indeed Hermitian with
respect to the Hilbert-Schmidt product. Thus, there is an or-
tohonormal eigenoperator basis Xλ,i of the superoperator (1)
which allows us to prove the bound (3). Second, we employ
this norm solely to quantify the distance between the actual
state of the dynamics and its asymptotically evolved state.
From that perspective all norms are equivalent on a finite-
dimensional vector space. Hence, up to a given multiplicative
constant, the bound (3) is correct for any other chosen norm.

Hence, the speed of convergence to equilibrium is bounded
by the subleading eigenvalue β∗. A concrete example is shown
in Fig. 1: one notices that the dynamics significantly depends
on the initial state and the bound (3) appears to be rather loose.

The aim of this article is to analyze the rate of convergence
for (rather large) networks. This is a difficult problem, because
it involves the eigenvalue of large superoperators (e.g., for
as few as 20 qubits the dimension of the superoperator is
240 � 1012) and depends on the rich structure of the interac-
tion graphs. We shall therefore look for upper bounds of the
subleading eigenvalue.

III. A PRELIMINARY OBSERVATION

We start from an observation. Consider the random unitary
channel (1)

�(·) =
∑
i∈I

piUi(·)U †
i (6)

and let |ei〉 be an orthonormal basis of the Hilbert space H .
This map acts on the matrices ρ. In the basis |ec〉〈ed |, since

Tr(|eb〉〈ea|�(|ec〉〈ed |)) = 〈ea|�(|ec〉〈ed |)|eb〉
=

∑
i∈I

pi〈ea|Ui|ec〉(〈ed |Ui|e j〉)∗, (7)

the matrix form of map � reads

� =
∑
i∈I

piUi ⊗ U ∗
i , (8)

where ∗ means complex conjugation. For the particular
case (2) (CNOT gates, on which we shall focus)

Ui = U †
i = U ∗

i , and so U 2
i = 1, (9)

and we are therefore interested in the eigenvalues of the map

� =
∑
i∈I

piUi ⊗ Ui. (10)

Consider the operators Ui = Ui ⊗ Ui on the space H ⊗ H.
Notice that the group properties of Ui and Ui are exactly the
same: U2

i = 1, while algebraic properties are not necessar-
ily maintained, e.g., an equation UiUj = aUk would map to
UiU j = a2Uk . However, for CNOT gates these equations never
generate coefficients a �= 1, so the full algebraic properties are
maintained.

Notice also that � can be viewed as the average of the
random process

F = Ui, with probability pi, (11)

in the sense that

� = 〈F 〉. (12)

Moreover, using the superoperator space trace,

Tr � = Tr 〈F 〉 = 〈Tr F 〉, (13)

and higher traces are connected to the multiplicative random
process (MRP)

Tr �n = Tr 〈
n∏

a=1

Fa〉, (14)

where Fa are independent F random variables. This is true
irrespective of the definition of Tr but only due to its linearity.

Using now that fact that for CNOT gates Ui ∼ Ui is an
algebra-preserving isomorphism, it is not difficult to convince
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oneself that we obtain, for purpose of computing Tr (�n)
and therefore the maximum Lyapunov exponent, a completely
equivalent problem if we simplify the situation and consider
the map

φ =
∑
i∈I

piUi (15)

and the random process

f = Ui with probabilitypi, (16)

with the associated MRP. The usual definition of operator
trace is used. Notice that some quantitative features compar-
ing F and f are lost, since the values of the superoperator
and operator traces are different. This gives rise to different
spectra, although the important eigenvalues (the largest and
second largest) are the same in all cases we have analyzed.

Let us now concentrate on the case of f and let G be the
multiplicative group generated by the operators Ui. We write
G = {ga}a=1,...,M and 1,Ui ∈ G. In the case of the CNOT gates
to be considered in this article, this group is a finite subgroup
of the (finite) group GLn(Fq).

Then

Tr φn =
∑

a

ka(n)Tr (ga), (17)

where ka(n) are coefficients measuring the probability that
the MRP, starting at n = 0 in the identity, ends up in ga

after n steps. The MRP on the group is represented by an
M-by-M stochastic matrix W , whose entry Wa,b is a transition
probability from the element b to the element a. As CNOT

gates are unitary and Hermitian, they twofold application map
any element of the group G back to its origin. Consequently,
the matrix W is symmetric and doubly stochastic, and we can
solve this problem using its eigenvalues ωa and eigenvectors
|ωa〉:

ka(n) =
∑

b=1,...,M

ωn
b〈ga|ωb〉〈ωb|1〉, (18)

where |1〉 is the vector associated with the group element
identity ga = 1.

IV. AN EXAMPLE

Let us look at an explicit example. Consider the case
of two qubits with p1 = p and p2 = 1 − p. The group G =
{1,U1,U2,U1U2,U2U1,U1U2U1 = U2U1U2}. The matrix rep-
resenting the MRP is

W =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 p 1 − p 0 0 0

p 0 0 0 1 − p 0

1 − p 0 0 p 0 0

0 0 p 0 0 1 − p

0 1 − p 0 0 0 p

0 0 0 1 − p p 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(19)
with eigenvalues

ωa = (1,−1,−
√

1 − 3p + 3p2,−
√

1 − 3p + 3p2,

×
√

1 − 3p + 3p2,
√

1 − 3p + 3p2). (20)

The Perron-Frobenius theorem [37], together with stochas-
ticity, guarantees that the maximum eigenvalue is 1 and
corresponds to the uniform eigenvector

〈ga|ω1〉 = 1√
6
. (21)

The eigenvector corresponding to eigenvalue −1 is

〈ga|ω2〉 = (−1)Pa

√
6

, (22)

where Pa is the parity of ga, which is 0 for 1,U1U2,U2U1 and
−1 for the remaining three elements. The remaining sublead-
ing eigenvalues s = ±

√
1 − 3p + 3p2 with their associated

eigenvectors |sc〉c=1,..,4. Notice that the subleading eigenvalue
coincides with that obtained by explicit calculation. Putting
all together we find

Tr φn = 1

6
1n

∑
a

Tr (ga) + 1

6
(−1)n

∑
a

(−1)Pa Tr (ga) + snA.

(23)
Notice that

∑
a

Tr (ga) = 12, (24)

∑
a

(−1)Pa Tr (ga) = 4 + 1 + 1 − 2 − 2 − 2 = 0, (25)

so that

Tr φn = 2 + snA, (26)

which means that the leading and subleading eigenvalues of
φ are given by the leading and subleading eigenvalues of W .
Notice how the Tr (ga) is reflected in the degeneracy of the
eigenvalues (for example 2 for the eigenvalue 1).

The only nontrivial step is the cancellation of the contri-
bution of the eigenvalue −1. It is not difficult to prove that
(i) this eigenvalue always exists and it is due to the fact that
parity breaks the group G in two, G+ and G−, and that the
MRP necessarily connects G± → G∓, and (ii) that its contri-
bution, once the trace is taken, is always 0. Therefore, we can
assert that the subleading eigenvalue of W is the subleading
eigenvalue of φ.

We now go back to the problem of the map �. One can
repeat exactly the same steps as before if we identify the group
G as generated by U1 ⊗ U1 and U2 ⊗ U2. This is exactly the
same group G as before (it is the diagonal projection of the
group G ⊗ G) and therefore the very same calculations occur.
There is one, crucial difference as the superoperator trace will
give different results from the operator trace. This affects the
polynomials Tr φn and Tr �n but we observe that this does not
change the subleading eigenvalue, which is the same in both
maps in all the examples we have checked. Therefore, the rate
to approach to ergodicity is the same for both maps.

V. A SIMPLER PROBLEM AND SOME BOUNDS

The observation in Sec. III and the explicit example in
Sec. IV show that the eigenvalue problem can be significantly
simplified for certain types of interaction graphs and unitaries.
Consider the random unitary channel � in Eq. (1) and let
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σ (�) be the spectrum of � and σ1(�) the set of the elements
of σ (�) with magnitude 1. Consider now the operator

φ =
∑
i∈I

piUi. (27)

Then for certain quantum networks the subleading eigenvalue
of the operator (8) coincides with the subleading eigenvalue
of the operator (27) and both are positive, i.e.,

β∗(�) = sup
λ∈σ (�)\σ1(�)

λ = β∗(φ) = sup
λ∈σ (φ)\σ1(φ)

λ. (28)

This property has been numerically checked and appears to
be valid for the wide class of all strongly connected graphs
(made up of, e.g., unitary transpositions, controlled and/or
local rotations, and the special case of CNOT gates analyzed
in this article). On the other hand, it is not valid for general
(e.g., non-strongly-connected) graphs, which contain a larger
set of attractors. We shall assume henceforth that the property
is valid, at least in the cases to be investigated in this article.

We now turn to the study of the specific features of the
subleading eigenvalue of operator (27) when all unitaries Ui

are CNOT gates acting on two qubits only, as in (1)–(2), and
leaving the remaining ones unchanged. In such a case, in the
computational basis, operator (27) is bistochastic or doubly
stochastic,

2N∑
i=1

φi j =
2N∑
j=1

φi j = 1, ∀ 1 � i, j � 2N (29)

and is the adjacency matrix of an undirected weighted graph
G, whose vertices are elements of the computational base and
where there is an edge between two vertices (basis vectors)
whenever one vector is the image of the second one under
application of some Ui. Due to this definition the graph can
contain loops. The weight of an edge is the sum of the proba-
bilities assigned to the unitary operations that define this edge.
In other words, a unitary operator Ui contributes to the weight
of an edge with probability pi if the vectors corresponding to
the end vertices of the edge are images of each other under
application of this Ui (edges are not directed, as CNOT2 = 1).
This definition applies also for loops. As a simple conse-
quence, the weights of the edges adjacent to a given vertex,
with the inclusion of the weights of loops, always sum up
to 1. Now, the operator φ is simply the adjacency matrix of
this weighted graph G. Because the interaction graph is fully
connected, the graph G has two components of continuity: the
vertex corresponding to the vector with zero excitation and
the remaining connected vertices. The one-vertex component
contributes to the spectrum of Laplacian matrix by one eigen-
value of zero. Let us remove this vertex from the graph in
order to still have a connected graph Gφ with its adjacency
matrix Aφ and its Laplacian matrix given by [38,39]

Lφ = 1 − Aφ, (30)

where 1 is the (2N − 1) × (2N − 1) identity matrix. Equa-
tion (30) follows from the fact that the degree of each vertex
is one. An example of such a graph Gφ is displayed in Fig. 2.
The interaction graph is the three-qubit oriented star. Only
edges contributing to the weights of a given edge are explicitly
displayed. Loops are not displayed.

FIG. 2. Graph Gφ induced by graph of interaction: four-qubit
oriented star. Vertices correspond to elements of computational basis.
Two vertices are linked iff one of them is an image of the other
under some CNOT gate from the interaction graph. The list of pairs
of indices are the CNOT gates which contribute to weights of a given
edge.

Let us denote the algebraic connectivity [40] (the second-
smallest eigenvalue (counting multiple eigenvalues sepa-
rately) of the Laplacian matrix of G) of the graph Gφ by γφ .
From the previous discussion it follows that

β∗(�) = β∗(φ) = 1 − γφ. (31)

Hence, spectral graph theory can be employed to find a good
lower bound for the algebraic connectivity and use it to upper
bound the subleading eigenvalue of the superoperator �.

In order to obtain meaningful bounds, let us start by noting
that

γφ � 4

(2N − 1)diam(Gφ )
, (32)

“diam” being the diameter of the graph. This is easy to
prove [41]. This bound has the advantage of being valid for
an arbitrary interaction graph with an arbitrary probability
distribution. The disadvantage is that it exponentially depends
on the number N of qubits. Of course, this simply recasts
the problem in terms of determining the diameter of the
(weighted or unweighted) graph Gφ (which is possible at
least in particular cases). For example, for a circle unweighted
interaction graph with N vertices, the associated graph Gφ

has diam(Gφ ) = 2(N − 1), while for a fully connected un-
weighted graph with N vertices the associated graph Gφ has
diam(Gφ ) = N . The diameters of weighted graphs are much
more involved.

As shown Fig. 2, the vertices corresponding to the same
number of excitations are not connected. They can be con-
nected only to vertices whose numbers of excitation differ by
1 [42].

In the case we are considering (fully connected interaction
graph with random CNOT gates acting on pairs of qubits) two
vertices of the graph Gφ are connected if and only if their
excitations differ only for one qubit. Therefore, omitting the
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weights of the graph Gφ , the associated unweighted graph G′
φ

is almost the hypercube Hn. Indeed, we obtain the graph G′
φ

from the hypercube Hn by removing the vertex |0, 0, . . . , 0〉
and all its adjacent edges. This construction allows us to use
results of spectral graph theory. The spectrum of the Laplacian
matrix for hypercube Hn reads {0, 2, 4, . . . , 2n} [43], and the
lowest eigenvalue 0 is not degenerated. Hence the subleading
eigenvalue of the Laplacian matrix for Hn is γHn = 2. Now
we use the well known fact [40] that the subleading eigevalue
γG1 of the Laplacian matrix for graph G1, which is obtained
by the removal of k vertices from graph G, follows the rela-
tion γG1 � γG − k. Consequently, the subleading eigenvalue
γ ′

φ for the graph G′
φ satisfies γ ′

φ � γHn − 1 = 1. Further, we
exploit the Courant-Fischer principle, which allows us to write
down the subleading eigenvalue of the Laplacian matrix for
the weighted graph Gφ in the form [40]

γφ = min
x ⊥ e
x �= 0

〈x, Lx〉
〈x, x〉 = min

x ⊥ e
x �= 0

∑
u∼v (xu − xv )2w(u, v)∑

u x2
u

, (33)

where the minimum is taken with respect to all nonzero
real (2n − 1)-dimensional vectors x perpendicular to e =
(1, 1, . . . , 1). The sum runs through all adjacent pairs of
vertices u ∼ v of the graph Gφ with its weights denoted as
w(u, v). Based on that we get

γφ � min
u∼v

w(u, v) × min
x ⊥ I
x �= e

∑
u∼v

(xu − xv )2

∑
u

x2
u

= γ ′
φ min

u∼v
w(u, v). (34)

Therefore we can finally conclude

γφ � γ ′
φ min

u∼v
w(u, v) � min

u∼v
w(u, v) = min

i j∈I
pi j . (35)

This is the bound shown in Fig. 1: it depends very weakly
on the weights, but does not depend exponentially on the
number of qubits, which makes it useful and also very easy
to calculate. A relevant situation is when the probabilities are
equally distributed on the N (fully connected) qubits

pi j = 1

N (N − 1)
, ∀ i, j. (36)

VI. NUMERICAL ANALYSIS

We now turn to a numerical analysis. The analysis was
performed on the CRESCO/ENEAGRID High Performance
Computing infrastructure [44]. The numerical evaluations
were performed on the “small” map φ in Eq. (15), for fully
connected graphs of CNOT gates (2). In the light of our dis-
cussion, the results are also valid for the “larger” map � in
Eq. (1). For the sake of comparison, we also performed some
analyses for interaction circle graphs of CNOT gates.

Figure 3 displays the algebraic connectivity γφ of a fully
connected graph with equally distributed weights, as in (36),
for 3 � N � 15. The bound (35) is shown for comparison and
appears to be far from tight. The approach to equilibrium,
measured by the subleading eigenvalue of the superoperator
�, β∗(�) = β∗(φ) in Eq. (31), is slower for increasing N , as
intuitively expected. We now try to unveil the N dependence.

3 4 5 6 7 8 9 10 11 12 13 14 15
N

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

γφ

fully connected

bound

FIG. 3. Fully connected graph with equally distributed weights.
Dots: algebraic connectivity. Dash-dotted (green) line: bound (35).

The function γφ = a/N , with a = 0.707, yields a good fit.
As can be seen in Fig. 4, the addition of a contribution O(N−2)
yields an excellent fit at large N :

γφ = a

N
+ b

N2
, (37)

with a = 0.704 and b = 0.030. We emphasize that other func-
tional forms (such as different power laws) do not yield
equally good results. We offer no explanation for the N de-
pendence in Eq. (37).

In Fig. 5 we show the N dependence of the algebraic con-
nectivity for a circle graph with equally distributed weights.
This yields a good comparison with the data displayed in
Figs. 3–4. The approach to equilibrium is much slower, as
expected, being the less connected graph. The best fit yields
the functional dependence

γφ = a

N3/2
+ b

N5/2
, (38)

with a = 0.301 and b = −0.189×10−3.

4 6 8 10 12 14
N

0.05

0.10

0.15

0.20

0.25

γφ

fully connected

fit

FIG. 4. Dots: algebraic connectivity. Dotted (green) line, fit in
Eq. (37), with a = 0.704 and b = 0.030, obtained by fitting the
points N � 8.
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0.10

0.12

γφ

circle graph

fit

FIG. 5. Same as in Fig. 4, for the circle graph. Dots: algebraic
connectivity. Dotted (green) line: fit in Eq. (38), with a = 0.301 and
b = −1.888×10−4, obtained by fitting the points N � 8.

We now turn to an analysis of the convergence features
of the network in the presence of noise. This will yields
additional insight into the mechanisms of convergence and the
bound (35).

In Fig. 6, we add a noise to the probabilistic weights
in Eq. (36). Each probability is multiplied by a random
number in the interval [1 − ε, 1 + ε]; the probabilities are
subsequently normalized so that they sum up to 1. We take
ε = 0.3, 0.6, 1 (increasing noise), the last figure being the
maximum value if the positivity of the probabilities is to be
preserved. The presence of noise yields a slower approach to
equilibrium. This result, at first a bit surprising, is understood
by realizing that noise makes some probabilities smaller, so
that some nodes are more isolated than others, and tend to

3 4 5 6 7 8 9 10 11 12 13
N

0.05

0.10

0.15

0.20

0.25

γφ

fully connected

ε = 0.3

ε = 0.6

ε = 1.0

FIG. 6. Algebraic connectivity of a fully connected graph vs
N , for different noise on the probabilistic weights pi j . Noise ε

increases from top to bottom: Full (blue) line, noiseless; dashed
(orange) line, ε = 0.3; dotted (green) line, ε = 0.6; dashed-dotted
(red) line, ε = 1.0. The vertical bars are standard deviations. The fits
(not shown) always yield a dependence γφ = a/N + b/N2, with (ε =
0.3) a = 0.695, b = −0.117; (ε = 0.6) a = 0.735, b = −1.013;
(ε = 1.0) a = 0.702, b = −1.763.

3 4 5 6 7 8 9 10 11 12 13 14 15
N

0.00

0.02

0.04

0.06

0.08

0.10

0.12

γφ

circle graph

ε = 0.3

ε = 0.6

ε = 1.0

FIG. 7. Same as in Fig. 6, for a circle graph. Noise ε increases
from top to bottom: Full (blue) line, noiseless; dashed (orange)
line, ε = 0.3; dotted (green) line, ε = 0.6; dashed-dotted (red) line,
ε = 1.0. The vertical bars are standard deviations.

equilibrate later. Notice that, at a given noise realization, the
iterated map is always the same. Observe also that this be-
havior is in qualitative accord with the philosophy behind the
bound (35).

In Fig. 7 we add a noise to the weights of a circle graph.
As expected, in the light of the preceding comments, some
nodes become more isolated than others, and the approach to
equilibrium is significantly slower (as, unlike with the fully
connected graph, is it now easier to create more isolated
nodes). This corroborates and completes the picture discussed
above.

One problem that remains to be understood is whether the
bound (35) can be saturated in some sense. A moment’s re-
flection shows that, in general, this cannot be the case. Indeed,
take one of the pi j = 0 in Eq. (35); the graph is almost fully
connected (only one link is missing), but will nonetheless tend
to equilibrium, as there are many nonvanishing links between
any given qubit and the other qubits in the network. For such
a graph, γφ must be strictly positive and β∗ in Eq. (31) strictly
smaller than 1.

Motivated by the preceding comments, in Fig. 8 we consid-
ered a fully connected network with very unbalanced weights:
we took N (N − 1) − 1 links with probability ε = O(N−3),
except one link with a probability O(1), so that

min
i j∈I

pi j = N−3

1 + [N (N − 1) − 1]N−3
∼ 1

N3
. (39)

As expected, in the light of the preceding comments and
discussion, the approach to equilibrium is very slow (in fact,
the slowest we have observed in our numerical simulations).
However, as can be seen, the bound (35) is not saturated. A fit
yields the dependence

γφ = a

N2
+ b

N4
, (40)

with a = 0.629 and b = −3.831 (by fitting points with N �
8).

Summarizing, the numerical analysis shows that there are
a number of factors that influence the approach to equilibrium
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γφ

fully connected ε = O(N−3)

fit

bound

FIG. 8. A very unbalanced fully connected graph. N (N − 1) − 1
links have probabilities ε = O(N−3), while one link has probabil-
ity O(1). Dots: algebraic connectivity. Dotted (green) line: fit in
Eq. (40), with a = 0.629 and b = −3.831, obtained by fitting the
points N � 8. Dash-dotted (green) line: bound (35).

in a fully connected quantum network of qubits whose inter-
actions are represented by CNOT gates. Change of connectivity
and weights can induce very different convergence rates, even
at the qualitative level. The mathematical bound (35) is clearly
valid, but appears to be loose in most situations. Further
analyses are required to elucidate the underlying equilibration
mechanisms.

VII. CONCLUSIONS

We studied the rate of convergence of full graph quantum
networks with emphasis on CNOT networks. Using analytic
methods we gave estimates for this rate and by using numer-
ical methods we determined the rates of convergence to the
asymptotic state. The convergence is inversely proportional
to the number of vertices (qubits) forming the graph. The
expansion coefficients have been determined numerically. The
numerical tests are limited up to 15–16 qubits, which turn out
to be sufficient to determine the convergence rates at leading
order.

The estimate of convergence rates is clearly of fundamental
importance, as it is one of the basic parameters charac-
terizing random quantum networks. At the same time, the
convergence rate is also of practical importance, as it gives
experimental physicists the typical scale after which the net-
work “equalizes” and its asymptotic is reached. As repeatedly
mentioned, the determination of the asymptotics is in many
cases accessible by analytic methods and can be worked out
in detail. However, results (especially analytic ones) on the
convergence rates are scarce. Our estimates, both analytic and
numerical, are a step into this uncharted territory.

The observation in Sec. III enabled us to drastically sim-
plify the problem, significantly reducing its complexity. As
already emphasized, besides such inherent complexity, a num-
ber of factors (connectivity, topology, probabilistic weights)
heavily influence the approach to equilibrium, yielding very
different convergence rates. While our work is limited to
special types of graphs, we expect the approach and results
to hold also for similar situations. Further work is needed in
order to scrutinize the underlying equilibration mechanisms
and possibly generalize the results discussed in this article to
different networks.
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