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Single-particle steering and nonlocality: The consecutive Stern-Gerlach experiments
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Quantum nonlocality and quantum steering are fundamental correlations of quantum systems which cannot
be created using classical resources only. Nonlocality describes the ability to influence the possible results of
measurements carried out in distant systems, in quantum steering where Alice remotely steers Bob’s state.
Research in nonlocality and steering is of fundamental interest for the development of quantum information and
in many applications requiring nonlocal resources like quantum key distribution. On the other hand, the Stern-
Gerlach experiment holds an important place in the history, development, and teaching of quantum mechanics
and quantum information. In particular, the thought experiment of consecutive Stern-Gerlach experiments is
commonly used to exemplify the concept of noncommutativity between quantum operators. However, to the best
of our knowledge, the consecutive Stern-Gerlach experiments have not been treated in a fully fledged quantum
manner yet, and it is a widely accepted idea that atoms crossing consecutive Stern-Gerlach experiments follow
classical paths. Here we demonstrate that two consecutive Stern-Gerlach experiments generate nonlocality and
steering, and these nonlocal effects strongly modify our usual understanding of this experiment. Also, we discuss
the implications of this result and its relation with entanglement. This suggests the use of quantum correlations,
of particles possessing mass, to generate nonlocal tasks using this experiment.
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I. INTRODUCTION

Nonlocality, one of the fundamental features of quantum
mechanics, refers to the fact that for entangled states the
result of a measurement in one observable depends on the
choice of measurement in the other observable; this result
manifests itself at spacelike separation [1]. Steering refers to
the ability to steer a state of one subsystem by measurements
made in another subsystem [2–6]; it is a nonlocal property
that differs from nonlocality and nonseparability [2,3]. Ad-
ditionally, nonlocality rests in the uncertainty principle and
in the steering of physical states [7,8]. The nonlocality of
the collapse of the wave function of a single particle was
experimentally proved for photons in Ref. [9], for atoms in
Ref. [10], and for an experimental proof of nonclassical col-
lapses using box games [11]. Steering was experimentally
proven in a single-photon experiment by Guerreiro et al. [12].
Additionally, there is a strong relation between steering and
joint measurability [13,14]. Nowadays, it is understood that
quantum nonlocality is a fundamental resource for quantum
information tasks which cannot be generated by using random
data only [15]. Nevertheless, see the interesting discussion
over quantum nonlocality given by Khrennikov [16–18].

Moreover, although in some works it has been conjectured
that single-particle entanglement does not possess nonlocal
correlations [19,20], the fascinating fact is that these nonlocal
effects could be generated using the Stern-Gerlach experiment
(SGE) by measuring the internal degree of freedom of the par-
ticle that traverses it, i.e., by measuring σ̂z or σ̂x, the position
of the particle could manifest itself at either of two different
places at (possible) spacelike distance [21]. These nonlocal
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properties of the SGE were associated with the spreading of
the wave function and named single-particle steering [21].
Hence, depending on the kind of states, the spreading of the
wave function plays also a crucial role in the nonlocality of
quantum mechanics [21].

Furthermore, single-particle entanglement [20] has many
applications in quantum information like quantum key dis-
tribution [22,23], bidirectional quantum teleportation [24],
swapping states [25], and entanglement concentration [26].
Recently, the single-particle entanglement between the spin
and orbital angular momentum (OAM) of photons was re-
ported in metamaterials [27] and the entanglement between
polarization and OAM was studied in Ref. [28]. As mentioned
earlier, steering was experimentally proven using the single-
photon entanglement [12]; this effect was called single-photon
steering by Brunner [29].

On the other hand, the SGE is a pillar in the historical
development of quantum mechanics and nowadays is an active
field of research, both of its experimental capabilities and
theoretical studies [30–49] (in other words, the fundamental
understanding of the SGE is evolving), and it also is an im-
portant tool in the teaching of both quantum mechanics and
quantum information.

The quantum phenomena that is usually introduced in
quantum mechanics courses using the Stern-Gerlach experi-
ment include the concept of spin and the noncommutativity
of quantum operators [50]. For the latter, the of most impor-
tance is the thought experiment of consecutive Stern-Gerlach
experiments (CSGE), formally introduced by Feynman in his
famous lectures [50], although its first conception comes from
Heisenberg in 1927 [51]. In quantum information and compu-
tation theory the CSGE is used to exemplify the structure of
the qubit and the collapse of the wave function.
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FIG. 1. Scheme of the consecutive Stern-Gerlach experiments.
The inhomogeneity of the magnetic field in the first experiment is
in direction x, which is associated with a Hamiltonian, Ĥ2, and an
evolution operator, Û2; the inhomogeneity of the magnetic field of
the second is in direction z, with its respective Hamiltonian, Ĥ3, and
evolution operator, Û3.

Despite its importance, there has been a lack of quantum
analyses of the CSGE. This is surprising given the amount of
research dedicated to describing and studying the usual SGE;
in recent years, there have been important advances describing
the SGE in a completely quantum manner [30–37,43–47]. In
particular, it was shown that the SGE behaves as an entangled
device and not as a measurement device, as it had been re-
garded for decades [30,31]. Additionally, the violation of Bell
inequalities in the SGE was shown in Ref. [52]; this violation
of the Bell inequalities was associated with quantum nonlo-
cality, instead of quantum contextuality, and the difference is
explained in Ref. [21].

In this article, we analyze CSGE using the tools of quantum
mechanics; in order to do that, we calculate the complete
quantum evolution of a spin-1/2 particle in such consecu-
tive configuration by means of the evolution operator method
[53,54]. These results also could serve to define a basis of
comparison for a possible experimental realization of this
experiment. The quantum treatment of the CSGE gives us the
opportunity to study the quantum characteristics of the sys-
tem, such as the quantum correlations, entanglement [32,52],
and steering [21].

The paper is organized as follows. In Sec. II, starting from
the time-dependent Schrödinger equation for the particle, we
found its time evolution by applying a factorized evolution
operator to the initial state of the particle, similar to that
done in Refs. [30,31]. We calculate in this way the evolution
in each of the Stern-Gerlach apparatuses that are arranged
consecutively and arrive at the result for the total evolution
by applying the sequential evolutions. In Sec. III, we analyze
the steering produced by changing the measurement basis. In
Sec. IV, we describe the quantum correlations of the CSGE
and we test three different Bell-type inequalities, with which
we find that this system is nonlocal. In Sec. V, we visualize
the relation between the quantum correlations and the entan-
glement in the CSGE by means of the works of Piceno et al.
[32] and Roston et al. [36]. Finally, the main results obtained

are summarized in Sec.VI, and we close the paper with some
concluding remarks.

II. DYNAMIC EVOLUTION OF THE CSGE

The array of consecutive experiments that we take into
account appears in Fig. 1; this configuration has two Stern-
Gerlach apparatuses (each apparatus acts as an entangling
device). The initial state entering the SGE in x direction is
a state previously prepared by another SGE not shown in the
figure; that is, the initial state is given by the product of a
spin-up state (internal degree of freedom) with a wave packet
(external degree of freedom), which we can write as follows:

|ψi〉 = 1(
2πσ 2

0

) 3
4

exp

(
− (x2 + y2 + z2)

4σ 2
0

+ ikyy

)
|↑z〉 , (1)

with σ0 being the initial width of the wave packet and ky being
the component y of the wave vector.

The quantum evolution of the Stern-Gerlach experiment
has already been described in Ref. [30]; therefore, from this
we know that if the initial state is a product between a Gaus-
sian wave packet and a spin degree of freedom (DoF) the
resulting evolved wave packet widens with time and gets
translated in z depending on the spin component, thanks to
the interaction with the inhomogeneous magnetic field when
we select the spin component. With these considerations, the
general packet of Eq. (1) can be seen as that resulting from
such preparation with a final width σ0 and taking the z position
of such state as our origin [30,31].

To obtain the evolution as the state goes through the first
experiment, we have the associated evolution operator from
Refs. [30,31],

Û2(t ) = exp

(
−1

6
κ

)
exp

[
− it

2mh̄

(
p2

y + p2
z

)]

× exp
[
− itμc

h̄
(B2 + b2x)σx

]
exp

(
it2μcb2

2mh̄
pxσx

)

× exp
(
− it

2mh̄
p2

x

)
, (2)

with κ = (it2μ2
cb2

2)/(mh̄), B2 the homogeneity parameter of
the magnetic field, b2 the inhomogeneity parameter, σx the
Pauli operator, μc = geh̄/(4m), g the gyromagnetic ratio, m
the mass of the particle, and e the unit charge.

Applying Û2(t ) during certain time t2 to |ψi〉, we have
obtained the middle state |ψm(t2)〉. See Appendix A for this
calculation. Next, following our description, we apply the
evolution operator associated with the last SGE for a fixed
time t3, that is, the operator in z direction to the state |ψm(t2)〉.
This operator is given by

Û3(t ) = exp

(
−1

6
κ

)
exp

[
− it

2mh̄

(
p2

x + p2
y

)]
exp

[
− itμc

h̄
(B3 + b3z)σz

]
exp

(
it2μcb

2mh̄
pzσz

)
exp

(
− it

2mh̄
p2

z

)
. (3)

Then we obtain the final state as

|ψ f 〉 = |ψ+〉 |↑z〉 + |ψ−〉 |↓z〉 , (4)
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in which we define

|ψ±〉 = M exp
(∓i

√
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3τ3z0
)

exp
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√
2k3
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4[1 + i(τ2 + τ3)]

}

± exp
(
i
√

2k3
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exp

{
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2k3
2τ

2
2 − i2

√
2k3

2τ2(1 + iτ2)
]2

4[1 + i(τ2 + τ3)]

})
, (5)

with M being a normalization factor. Equation (5) is dimen-
sionless thanks to the following definitions:

τ2,3 = h̄t2,3

2mσ 2
0

, k2,3 =
√

2σ0

(
mμcb2,3

2h̄2

)1/3

,

x0 = B2

σ0b2
, z0 = B3

σ0b3
,

Z = z

σ0
, X = x

σ0
. (6)

The definitions in Eq. (6) make all the variables dimensionless
and our results completely comparable with those of other
works that study the entanglement in the SGE [32,36]. We
found that the final state is a superposition state of the spin
eigenstates—entangled with the position DoF—in the same
way as the state coming out from a single SGE [30,31], and
therefore it does not represent a state following a definite tra-
jectory to the screen. This state presents hybrid entanglement
between the position DoFs and the spin DoF, congruently with
the known effect present in the SGE, the separation of spins.
The presence of the Z variable in this entangled state attests to
the noncommutativity between the different spin operators for
the different spatial orientations; this is in good accordance
with the observations of the semiclassical argument for the
thought experiment. We also found an interesting effect for the
configuration proposed here in the presence of entanglement
also with the position DoF in the X coordinate.

III. STEERING

As was mentioned earlier, steering is a manifestation of
quantum correlations. It was defined by Schrödinger (as a
property of entangled systems) as the possibility that by suit-
able measurements taken on one subsystem only, the state of
the other subsystem can be determined by the choice of the
measurement and without interacting with it. That is to say, it
is possible to steer the state of a subsystem by choosing what
kind of measurement to implement on the other subsystem.

The actual understanding of steering comes from the op-
erational definition given by Wiseman et al. [2], who define
steering as a task; i.e., the task of Alice is to convince Bob
that she can prepare a bipartite entangled state. To do it, Alice
prepares a bipartite quantum state and sends one of them to
Bob; then, they measure their respective subsystem. If the
correlations between their measurement can be explained by
a local hidden state model for Bob, then Alice could have
taken a pure state at random and sent it to Bob. But if the

measurements cannot be explained by a local hidden state
model, then Alice steers Bob’s state. Wiseman et al. [2]
demonstrated that steering is stronger than nonseparability
and weaker than nonlocality. The existence of nonlocality
rules out local hidden variables and, in essence, steering rules
out the existence of local hidden state models [2]. Steering
was experimentally proven in a single-photon experiment by
Guerreiro et al. [12]. In the case of pure tripartite states, He
and Reid have demonstrated that it is enough that each party
can be steered by one or both of the other two to certify
steering [55].

In Ref. [21], it was demonstrated that in the case of a single
SGE Alice can steer Bob’s state depending on the measure-
ment she chooses. In that paper [21], a thought experiment
where Alice is located in Tokyo and Bob in Paris was posed.
Hence, by choosing which one of the possible observables
to measure, Alice can steer Bob’s state. This confirms the
nonlocality of the entangled wave function of the SGE and
Ref. [21] associates this nonlocality with the spreading of the
entangled wave function.

In the case of the CSGE, a similar situation—in fact more
rich—can be conceived. This is depicted in Fig. 2: Alice in
Tokyo is in full control of a fully automatized CSGE located

Bob Paris

Oven

SGE-z

Classical 
communication 
between  
Alice and 

Bob

Classical communication which allows 
Alice to turn on the SGE

Friend 1

z

SGE-x x

Friend 2
Alice 
Tokyo

FIG. 2. CSGE featuring the Einstein’s boxes; see Ref. [21]. The
red box is the oven, in violet a SGE in the x direction is depicted,
in blue the SGE in z direction is shown, and the red and green
dots represent the fact that there are not classical trajectories; see
Refs. [30,31]. Alice could communicate with Bob by using the
classical channel in magenta. Moreover, Alice is in full control
of the SGE by using the classical channel in yellow, and she possess
the ability to turn it on and to choose between a single or N atoms.
The red dots end in the z axis in Tokyo with Alice and in Paris with
Bob. The green dots in the x axis arrive at suitable places where there
are two friends of Alice.
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at a suitable place, can turn it on and off, and can send a single
or many atoms one by one as she wishes.

Therefore, if Alice makes a measurement of |↓z〉 and
she finds −h̄/2, then the entangled wave function given by
Eq. (4), i.e., |ψ f 〉 = |ψ+〉 |↑z〉 + |ψ−〉 |↓z〉 , would collapse to
|ψ−〉 |↓z〉 in Tokyo. Notice that |ψ−〉 comprises a superposi-
tion state in X . On the other hand, if she detected nothing,
then the wave function would collapse to |ψ+〉 |↑z〉 in Paris
(see Ref. [21] for an explanation of this effect in terms of the
Einstein’s boxes); similarly, |ψ+〉 comprises a superposition
state in X .

However, if Alice decides to measure in a different basis,
for example, σ̂x, to ascertain the possibilities we must rewrite
Eq. (4) in the σ̂x basis, getting

|ψ f 〉 = {|ψ+〉 + |ψ−〉} |↑x〉 + {|ψ+〉 − |ψ−〉} |↓x〉 . (7)

Then, the following situations can arise:
(i) If she measures spin down in the basis of σ̂x and ob-

tains −h̄/2, then the wave function would collapse toward
{|ψ+〉 − |ψ−〉} |↓x〉. Notice that {|ψ+〉 − |ψ−〉} comprises a
superposition state in Z .

(ii) If she checks spin up in the basis of σ̂x and ob-
tains h̄/2, then the wave function would collapse toward
{|ψ+〉 + |ψ−〉} |↑x〉.

Therefore, we must conclude that Bob’s state is steered
depending on the kind of observable Alice decides to measure,
confirming the nonlocality of the wave function generated by
the CSGE.

On the other hand, a similar procedure could be used by
Bob in Paris to steer Alice’s state, or by one of the friends
of Alice to steer states to Alice or Bob. Therefore, the He and
Reid criterion cited above is fulfilled: The CSGE possesses the
nonlocal property of steering. As can be seen in Fig. 2, a richer
situation than the one given in Ref. [21] arises, because in
the CSGE case there could be participation by four people to
address all the possibilities. For example, if Alice’s friend 2 in
a different location decides to check for h̄/2 in the σ̂x basis and
obtains nothing in their measurement, then the wave function
would collapse toward the state {|ψ+〉 − |ψ−〉} |↓x〉. This is
equivalent to Alice measuring σ̂x and obtaining −h̄/2 and is
also equivalent to friend 1 measuring σ̂x and obtaining −h̄/2;
both of them will collapse the wave function (by effects of
their measurements) toward {|ψ+〉 − |ψ−〉} |↓x〉, i.e., the same
function as that obtained by friend 2 when testing h̄/2 in the
basis σ̂x and obtaining nothing.

IV. NONLOCALITY OF THE CONSECUTIVE STERN
GERLACH EXPERIMENTS

The study of quantum correlations of quantum sys-
tems is strongly related to nonclassical tasks [15,30–
32,36,43,46,52,56–64] that open the way to important appli-
cations. We quantify the quantum correlations of the CSGE
with a correlation function for hybrid spin systems that has
already been tested for bipartite states [52,61]

C(x, px, z, pz, θ ) = 〈ψ f |Ŵ (x, px, z, pz )σ̂ (θ )|ψ f 〉, (8)

that is, the generalized Banaszek-Wódkiewicz (BW) correla-
tion function [62], with

Ŵ (x, px, z, pz ) =
∫ ∞

−∞
dqxdqz

∣∣∣∣x − 1

2
qx, z − 1

2
qz

〉

× exp[−i(pzqz + pxqx )/h̄]

×
〈
x + 1

2
qx, z + 1

2
qz

∣∣∣∣, (9)

and the generalized Wigner operator, originally defined by
Ben-Benjamin et al. [65], for coordinates x, z with their re-
spective moments px, pz; σ̂ (θ ) is the usual Pauli operator for
an arbitrary θ direction in the plane. It has been demonstrated
that in one dimension the Wigner operator for the translational
degree of freedom is equivalent to the parity operator [65,66],
and thereby dichotomized results (for the measurement of a
particle that arrives in the positive or negative subplane of the
CSGE screen) are produced. Accordingly, the Wigner oper-
ator given by Eq. (9) is the displaced party operator �̂(x, z)
and its mean value can be seen as a correlation in a Bell-type
experiment [56,61,67] (please see Appendix A).

Hence, in this way we can calculate the correlation function
for the final state of the CSGE that is given by Eq. (4).
The relation between the correlations and entanglement in the
CSGE will be discussed later in this paper.

Results

Our quantum description of the experiments allows us to
delve into the quantum characteristics of the system; in this
manner, we study the quantum correlations that are present by
means of the CHSH, Bell-Klyshko-Mermin, and Svetlichny
inequalities.

1. CHSH inequality

From Eq. (8), the correlation function of the CSGE has the
following form:

C(X, Px, Z, Pz, θ )

= exp[ω′
z(Z, Pz ) + ω′

x(X, Px )][4 cos(θ )(exp[ωz]{exp[ωx]

× cosh[dx(X, Px )] sinh[dz(Z, Pz )] + exp[−ωx]

× cos[δx(X, Px )] cosh[dz(Z, Pz )]}) + 4 sin(θ )(exp[−ωz]

× { exp[ωx] sinh[dx(X, Px )] cos[δz(Z, Pz )]

+ exp[−ωx] sin[δx(X, Px )] sin[δz(Z, Pz )]})] (10)

up to a normalization factor. The functions ω′
z(Z, Pz ),

ω′
x(X, Px ), ωz, ωx, dz(Z, Pz ), dx(X, Px ), δz(Z, Pz ), and δx(X, Px )

are real valued functions. See Appendix B for the complete
definitions.

We have the extra dimensionless definitions given by

Px = pxσ0

h̄
, Pz = pzσ0

h̄
. (11)

The CHSH inequality [57,61,64,68] that we use to test
the existence of nonlocality between the Z-θ pair is as
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FIG. 3. Correlation function for the Z-θ pair taking the fixed
dimensionless quantities as X = 0.1, Px = 0.129, Pz = 0.049, τ2 =
6.8, τ3 = 2.6, k2 = 0.3, k3 = 0.3, x0 = 4, and z0 = 4.

follows:

−2 � BCHSH = C(X, Px, Z, Pz, θ ) + C(X, Px, Z, Pz, θ
′)

+C(X, Px, Z ′, Pz, θ ) − C(X, Px, Z ′, Pz, θ
′)

� 2. (12)

To study the nonlocality between z and θ, we need to fix the
other variables X , Px, Pz, Z ′, and θ ′.

The plot of the correlation function for this case appears in
Fig. 3 for the values of the fixed parameters X = 0.1, Px =
0.129, Pz = 0.049, τ2 = 6.8, τ3 = 2.6, k2 = 0.3, k3 = 0.3,
x0 = 4, and z0 = 4. The Bell function for this case, BCHSH, is
shown in Fig. 4 for the primed quantities Z ′ = 2.4 and θ ′ = π

5 .
We report the violation of the CHSH inequality for the Z, θ

pair for a minimum value of BCHSH of (negative) −2.62405.

2. Bell-Klyshko-Mermin inequality

Our treatment for the study of correlations and the number
of DOFs in the system allows us to evaluate tripartite non-
locality; the case of major interest is the X -Z-θ triad. The
Bell-Klyshko-Mermin (BKM) inequality that we use for this

FIG. 4. Plot of BCHSH for the primed quantities Z ′ = 2.4 and
θ ′ = π

5 . We found a minimum of −2.62405 for this function; in this
way, there exists a violation for the inequiality (12) by an amount
of 0.62405, i.e., around 75% of the maximal amount of violation,
≈0.8284, given by the Cirel’son’s bound [57,64].

purpose is the following [57,64]:

−2 � BBKM = C(X, Px, Z, Pz, θ
′) + C(X, Px, Z ′, Pz, θ )

+C(X ′, Px, Z, Pz, θ ) − C(X ′, Px, Z ′, Pz, θ
′)

� 2. (13)

In this case, we need to fix the PX , PZ , X ′, Z ′, and θ ′ variables.
The verification of Eq. (13) can only be handled numerically
and it is not possible to visualize a plot of BBKM due to the
number of DoFs in the Bell-Klyshko-Mermin inequality. Our
study of the inequality of Eq. (13) gives us as maximum value
for BBKM of 2.43258, demonstrating the violation of the in-
equality (13) for the fixed quantities Px = 0.051, Pz = 0.089,
X ′ = 0.83, and Z ′ = 3.3 and θ ′ = π

2 , τ2 = 2.7, τ3 = 4.7, k2 =
0.3, k3 = 0.3, x0 = 4, and z0 = 4.

3. Svetlichny inequality

Our third test of nonlocality is given by the Svetlichny in-
equality [60,69,70] for X , Z, and θ . The Svetlichny inequality
is given as

−4 � BS = C(X, Px, Z, Pz, θ ) + C(X, Px, Z, Pz, θ
′)

+C(X, Px, Z ′, Pz, θ ) − C(X, Px, Z ′, Pz, θ
′)

+C(X ′, Px, Z, Pz, θ )

−C(X ′, Px, Z, Pz, θ
′) − C(X ′, Px, Z ′, Pz, θ )

−C(X ′, Px, Z ′, Pz, θ
′) � 4, (14)

fixing Px, Pz, X ′, Z ′, and θ ′. Our exhaustive study of the
inequality of Eq. (14) permits us to report a possible nonvi-
olation of the Svetlichny inequality for our system. We obtain
the maximum of BS � 4 for the fixed quantities Px = 0.043,
Pz = 0.066, X ′ = 0.52, and Z ′ = 1.49 and θ ′ = π

5 , τ2 = 2.3,
τ3 = 3.5, k2 = 0.3, k3 = 0.3, x0 = 4.5, and z0 = 5.2.

Nonetheless, we have tested our system with two weaker
versions of the Svetlichny inequality given by Ref. [60],

BSV1 = −C(X, Px, Z, Pz, θ ) + C(X, Px, Z ′, Pz, θ )

+C(X ′, Px, Z, Pz, θ ) + C(X ′, Px, Z ′, Pz, θ )

+C(X, Px, Z, Pz, θ
′)

+C(X, Px, Z ′, Pz, θ
′) + C(X ′, Px, Z, Pz, θ

′)

−C(X ′, Px, Z ′, Pz, θ
′) � 4, (15)

and by inequality (185) in Ref. [15],

BSV2 = −C(X, Px, Z, Pz, θ ) − C(X, Px, Z ′, Pz, θ )

+C(X ′, Px, Z, Pz, θ ) − C(X ′, Px, Z ′, Pz, θ )

−C(X, Px, Z, Pz, θ
′)

+C(X, Px, Z ′, Pz, θ
′) − C(X ′, Px, Z, Pz, θ

′)

−C(X ′, Px, Z ′, Pz, θ
′) � 4. (16)

In both cases, for BSV1 and BSV2, we have not found any
violation for a wide variety of cases with different variables;
after a wide search for conditions to find a possible viola-
tion, this suggest possibly no violation of this quantities. This
result is in concordance with the maximum found in the Bell-
Klyshko-Mermin inequality, Eq. (13), because the maximal
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violation is not greater than 2
√

2 for our case [64,71]. Addi-
tionally, it is convenient to recall that in certain cases stronger
nonlocal effects are due to weaker entangled states [72–74],
in such cases, the maximum entangled states do not produce
the maximum nonlocality [74].

V. RELATION BETWEEN CORRELATIONS AND
ENTANGLEMENT IN THE CSGE

The entanglement in the SGE has been widely studied in
recent years, for instance, in Refs. [32,36,43]. One of the
primary goals of these descriptions of entanglement is its
quantification by means of entanglement measures either in
discrete, continuous, or hybrid systems.

Our treatment of the quantum correlations is directly com-
parable with the study of the entanglement of the SGE in
Refs. [32,36] due the similar quantum description of the SGE
in Ref. [32] and the same temporal dependence in the correla-
tion function, Eq. (10), and the entanglement in Refs. [32,36].
These studies of entanglement focus on the entanglement be-
tween the spatial and the spin degrees of freedom in a single
SGE only. Our analysis focuses on the qualitative behavior
of the entanglement, which is quantified by using the entan-
glement entropy, given in Ref. [32]. The description of the
entanglement between the spin (discrete) and position (con-
tinuous) degrees of freedom was possible in Ref. [32] by a
discretization of the SGE space, particularly by the use of the
partial trace contained in the definition of the entanglement
entropy. We consider that the qualitative temporal behavior of
the creation of entanglement between position and spin can
be implemented into each of the Stern-Gerlach apparatuses
that constitute our CSGE setup, where correlations will be
provided between the spin component and the spatial degree
of freedom corresponding to the direction of the field inho-
mogeneity of the apparatus, as in the evolutions of Eqs. (2)
and (3). Here the behavior of the entanglement is compared
with the temporal evolution of the correlations in the CSGE.
However, a deeper explanation of the temporal behavior of the
entanglement in the SGE is beyond the scope of the present
paper.

For the case of the CHSH inequality, the maximum vi-
olation found in the inequality of Eq. (12) is reached for
τ2 = 6.8, τ3 = 2.6, k2 = 0.3, and k3 = 0.3. For values of the
nondimensional time τ2 = 6.8 with k2 = 0.3, the maximum
entanglement between X and θ is almost achieved after the
first SGE, while for τ3 = 2.6 with k3 = 0.3 in a single SGE,
the entanglement would be small; see Fig. 5. Therefore, in this
case, to get the maximum quantum nonlocality the atom does
not need to spend much time in the second SGE of the CSGE;
the only thing that we can assume is that in the presence of
maximal quantum correlations exists entanglement.

We report a nonviolation of the CHSH inequality of the
CSGE for times, τ2,3, where the entanglement is maximum,
for example, τ2,3 = 10 for k2,3 = 0.3, a counterintuitive result
at first glance. Its explanation is that the distinguishablity that
the SGE state presents when time tends to infinity, a fact that
is endorsed by the probability of the final state of the SGE
[30,31], which also could be calculated for the CSGE final
state given by Eq. (B7).

FIG. 5. Entanglement entropy (E ) of the SGE for various values
of k trough the time τ . In the CSGE, we have k2,3 and τ2,3, which
are equivalent to these nonlabeled constants. In this way, we can
directly compare the temporal behavior of the quantum correlations
and entanglement in the CSGE, relying on the parameter k. Plot is
similar to the one given in Ref. [32].

We expect that for the case with more DoFs engaged, the
entanglement in the CSGE will have a behavior similar to that
of the original SGE; this is a reasonable expectation. In this
manner, we also report a nonviolation of the Bell-Klyshko-
Mermin and the weaker Svetlichny inequalities when τ2,3 →
∞, meaning that, in these cases, we anticipate the lack of
quantum correlations when the multipartite entanglement on
those cases will be maximum [72–74].

VI. CONCLUSIONS

One of our main conclusions is that the fundamental un-
derstanding of the SGE is evolving, as well as the basic
understanding of the CSGE. In this work, we have studied the
nonlocality and steering in the CSGE. We have demonstrated
that the CSGE could be used to steer quantum states between
two different places. Our analysis suggests that the spreading
of the entangled wave function allows the particle to sense
which observable is being measured by Alice, which hence
suggests that the particle senses which observable is being
measured, for example, σ̂x, σ̂z, or x̂.

Additionally, we have found violation of the CHSH and
Bell-Klyshko-Mermin inequalities; however, we have not
found data suggesting that the evolved state of the CSGE
violates the strong Svetlichny inequality or the two weaker
forms of the Svetlichny inequality. We then conclude the
presence of nonlocality in the CSGE in the bipartite case but
we cannot confirm the existence of tripartite nonlocality or
real tripartite entanglement due to the lack of violation of the
Svetlichny inequalities [64,70,71]. This result does not imply
that a violation of the Svetlichny inequality cannot exist for
the CSGE, just that we cannot provide a proof of violation
of such inequality; further research is necessary to find out
whether it is violated by this state.

The striking result of the SGE with the spatial separation
of the spins is carried to the CSGE evolution, where our
description of the evolved state indicates the presence of en-
tanglement between spin and position. The quantum character
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of the SGE is then raised to attention when proving the corre-
lations between position and spin to be nonlocal and therefore
nonclassical in nature. The quantum correlations of the hybrid
tripartite state of the CSGE were successfully characterized
by a generalization of the BW correlation function. The pro-
posed function dichotomizes the spatial DoFs using the parity
operator and combines this description with the usual one for
discrete variables [61]. With these results, the CSGE presents
an important case of hybrid nonlocality.

Furthermore, the violation of the CHSH inequality by the
correlated Z-θ pair, Z being the direction of the last separation
by the SGE apparatus, was found to have a maximum value
of 2.62. This is a sizable violation, appreciably close to the
maximum value for the violation of the two-party CHSH
inequality of 2

√
2 and a very good violation for this type of

Bell operator [58,59].
On the other hand, the maximal violation of the tripartite

Bell-Klyshko-Mermin inequality found for the CSGE state is
2.43 for the X -Z-θ triad. This proves tripartite nonlocality in
the CSGE, but this inequality detects as well the nonlocality
of the multiple two-party correlations. The violation found is
in this case is far away from the possible maximum of 4 for
the tripartite inequality [64].

We cannot establish the presence of genuine tripartite
(three-way) nonlocality from the lack of violation of the
Svetlichny inequalities; moreover, real hybrid tripartite entan-
glement is also not assured in our system [15,60,71]. It is
worth noting that the quantum correlations studied here are
between the degrees of freedom of a single particle; never-
theless, the spreading of the entangled wave function implies
a clear separation of the components of the wave functions
corresponding to the spin up and down that can be seen in
Eq. (5); see Ref. [21]. Consequently, nonlocality naturally
arises from our study when the degrees of freedom of the
SGE (in the spin degree of freedom on one side and the
position on the other one) are measured at separate distant
location; for example, the steered state will depend on the kind
of the chosen measurement device, as shown in Sec. III and
Ref. [21]. The nonlocality features of SGE have been certified
in Sec. IV, so we conclude that there exists nonlocality in our
system. Additionally, the nonlocality is in principle experi-
mentally detectable in an efficient manner due to the nature of
the Stern-Gerlach arrangement.

We can further correlate these results with the presence
of entanglement in the SGE. In the usual SGE, hybrid en-
tanglement is created as soon as we have interaction with
the inhomogeneous field, with it increasing with the time of
evolution in the field until it reaches the maximum possible
entanglement [32,36]. At this point, the correlations between
position and spin are perfect. We can reasonably expect these
results to be carried over to the CSGE. However, in the whole
configuration space two-party nonlocality has not been found
for parameters of the CSGE evolution where we expect max-
imal entanglement. Tripartite nonlocality in the form of a
violation of the Bell-Klyshko-Mermin inequality is also not
found for the parameters that would give maximal entangle-
ment. This result is in concordance with previous studies,
where it is shown that systems with maximum entanglement
present slight or null nonlocality.

We can ensure that in the points where nonlocality has been
found there exists tripartite entanglement in the state of the
CSGE, but this entanglement is not perfect.
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APPENDIX A: CONSTRUCTION
OF THE CHSH INEQUALITY

In this Appendix, we discuss the construction of the cor-
relation function for the CSGE that appears in Eq. (8) and
of the Bell operator corresponding to the CHSH inequality in
Eq. (12).

It was demonstrated by Banazek and Wódkiewicz that the
Wigner operator (function) is itself a mathematical entity
appropriate to measure correlations including a continuous
degree of freedom in a Bell-type experiment [67]. To quote
Ref. [67], p. 4346: “As the measurement of the parity operator
yields only one of two values: +1 or −1, there exists an appar-
ent analogy between the measurement of the parity operator
and of the spin-1/2 projectors.” The Wigner function then
gives a measurement of the parity operator, corresponding to
the expected value of the parity operator �r p generating the
reflection in phase space about r, p [61,66]

�r p =
∫

dqe−2ipq |r − q〉 〈r + q|

=
∫

dke−2ikr |p + k〉 〈p − k| . (A1)

The modern definition by Ben-Benjamin et al. [65] of the
Wigner operator endorses the conclusions of Banaszek and
Wódkiewicz that the Wigner operator given in terms of the
parity operator dichotomizes the phase space of the system
and, for the case of the CSGE, we have that our complete ob-
servable, given by Ŵ σ̂ (θ ), describes adequately, on average,
the correlations between spin and position for our final state
of Eq. (4); i.e., in principle this observable can distinguish be-
tween the positive and negative parts of the position variables
and relate them with the spin degree of freedom.

This is the central part of the Banaszek-Wódkiewicz cor-
relation function [62,67], which gives the joint measurement
of the spin degree of freedom and of a spatial degree of
freedom, dichotomized in this way by the Wigner opera-
tor. This correlation function has been used in this way to
describe a measurement of the position in only one coordi-
nate [56,61,63], as was used for the SGE in Ref. [52]. The
evolution of the CSGE, given in Eq. (5), ensures that a di-
chotomization in both the x and z directions can be done to
obtain the measurement in the position degree of freedom.
Therefore, we construct the BW correlation function using the
Wigner operator of Eq. (9).

In this way, to construct the function explored by the CHSH
inequality (and similarly for the other inequalities present in
this article), we take the correlation function of Eq. (10) that
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defines by itself a correlation in a Bell-type experiment, and
we compose the BCHSH function with the appropriate pairings
of variables needed by the CHSH inequality. We fix the rest
of the variables to study the Z-θ pair, in order to make the
resulting function depend only on Z and θ . As we can see from
Eq. (12), we take into consideration the correlations in the
primed quantities, Z ′ and θ ′, and in the not primed quantities Z
and θ , that represent two measurements made by two different
persons in different separate places.

APPENDIX B: DYNAMIC EVOLUTION OF THE CSGE

In this Appendix, we will find the explicit evolution of the
initial wave packet as it traverses the configuration of CSGE
shown in Fig. 1.

The effective Hamiltonian related with the first experiment
is [30,31]

Ĥ2 = − h̄2

2m
∇2 + μc(σ · B2), (B1)

with the effective inhomogeneous magnetic field B2 = (B2 +
b2x)ı̂, μc = geh̄/(4m), where g is the gyromagnetic ratio, m
is the mass of the particle, e is the unit charge, and σ is the
Pauli matrices vector. In a similar way, we have the effective
Hamiltonian associated with the second experiment,

Ĥ3 = − h̄2

2m
∇2 + μc(σ · B3), (B2)

with the effective field B3 = (B3 + b3z)k̂.
The initial state is given in Eq. (1) of the article as

|ψi〉 = 1(
2πσ 2

0

) 3
4

exp

(
− (x2 + y2 + z2)

4σ 2
0

+ ikyy

)
|↑z〉 . (B3)

To obtain the evolution through the first experiment, we have
the evolution operator associated with the Hamiltonian Ĥ2 of
Eq. (B1), appearing in Eq. (2) of the article,

Û2(t ) = exp

(
−1

6
κ

)
exp

[
− it

2mh̄

(
p2

y + p2
z

)]
exp

[
− itμc

h̄
(B2 + b2x)σx

]
exp

(
it2μcb2

2mh̄
pxσx

)
exp

(
− it

2mh̄
p2

x

)
, (B4)

with κ = (it2μ2
cb2

2)/(mh̄) where B2 is the homogeneity parameter of the magnetic field, b2 is the inhomogeneity parameter, and
σx is the Pauli operator. The evolution operator of this Eq. (B4) is factorized utilizing the evolution operator factorization method
of Refs. [53,54], as done in Refs. [30,31].

Applying Û2(t ) for a certain time t2 to |ψi〉 , we have the intermediate state |ψm〉,

Û2(t2) |ψi〉 = |ψm(t2)〉 = 1√
2

exp

(
−1

6
κ2

)
σ

3
2

0

(
σ 2

0 + ih̄t2
2m

)− 3
4

⎧⎨
⎩
[

(2π )
1
2

(
σ 2

0 + ih̄t2
2m

) 1
2

]− 1
2

⎫⎬
⎭

3

× exp
(− k2

y σ
2
0

)
exp

{
−[(y − 2ikyσ

2
0

)2 + z2
]

4
(
σ 2

0 + ih̄t2
2m

)
}{

exp
[
− it2μc

h̄
(B2 + b2x)

]
exp

[
−(x + t2

2 μcb2

2m

)2

4
(
σ 2

0 + ih̄t2
2m

)
]

|↑x〉

+ exp

[
it2μc

h̄
(B2 + b2x)

]
exp

[
−(x − t2

2 μcb2

2m

)2

4
(
σ 2

0 + ih̄t2
2m

)
]

|↓x〉
}

, (B5)

where we remember |↑z〉 = 1√
2
(|↑x〉 + |↓x〉) and κ2 = κ (t2).

Now, following our description of the CSGE, we apply the evolution operator associated with the last SGE for a fixed time
t3. That is, we apply the evolution operator in direction z direction, corresponding to the Hamiltonian of Eq. (B2), to the state of
the Eq. (B5). This operator is given by

Û3(t ) = exp

(
−1

6
κ

)
exp

[
− it

2mh̄

(
p2

x + p2
y

)]
exp

[
− itμc

h̄
(B3 + b3z)σz

]
exp

(
it2μcb

2mh̄
pzσz

)
exp

(
− it

2mh̄
p2

z

)
. (B6)

Then we obtain the final state of the system, |ψ f 〉,

Û3(t3) |ψm(t2)〉 = |ψ f 〉 = A′
3 × exp

{
−(y − 2ikyσ

2
0

)2

4
[
σ 2

0 + ih̄(t2+t3 )
2m

]
}[

exp

[
− it3μc

h̄
(B3 + b3z)

]
exp

{
−(z + t2

3 μcb3

2m

)2

4
[
σ 2

0 + ih̄(t2+t3 )
2m

]
}

×
(

exp

{
− it2μc

h̄
B2

}
exp

{
−[x + t2

2 μcb2

2m + 2i t2μcb2

h̄

(
σ 2

0 + ih̄t2
2m

)]2

4
[
σ 2

0 + ih̄(t2+t3 )
2m

]
}

+ exp
{ it2μc

h̄
B2

}
exp

{
−[x − t2

2 μcb2

2m − 2i t2μcb2

h̄

(
σ 2

0 + ih̄t2
2m

)]2

4
[
σ 2

0 + ih̄(t2+t3 )
2m

]
})

|↑z〉
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+ exp

[
it3μc

h̄
(B3 + b3z)

]
exp

{
−(z − t2

3 μcb3

2m

)2

4
[
σ 2

0 + ih̄(t2+t3 )
2m

]
}

×
(

exp

{
− it2μc

h̄
B2

}
exp

{
−[x + t2

2 μcb2

2m + 2i t2μcb2

h̄

(
σ 2

0 + ih̄t2
2m

)]2

4
[
σ 2

0 + ih̄(t2+t3 )
2m

]
}

− exp

{
it2μc

h̄
B2

}
exp

{
−[x − t2

2 μcb2

2m − 2i t2μcb2

h̄

(
σ 2

0 + ih̄t2
2m

)]2

4
[
σ 2

0 + ih̄(t2+t3 )
2m

]
})

|↓z〉
]

(B7)

with κ3 = κ (t3) and

A′
3 = exp

(−κ2 − κ3

6

)
1

2

[
σ0

(2π )
1
2

] 3
2
(

σ 2
0 + ih̄

2m
(t2 + t3)

)− 3
2

exp
(−k2

y σ
2
0

)
exp

(
it2
h̄

μcb2 · t2
2 μcb2

2m

)

× exp

[
−
(

t2μcb2

h̄

)2(
σ 2

0 + ih̄t2
2m

)]
. (B8)

To obtain Eq. (4) in the article, we rewrite the final state of Eq. (B7) as follows:

|ψ f 〉 = |ψ+〉 |↑z〉 + |ψ−〉 |↓z〉 , (B9)

defining, as in Eq. (5) of the article,

|ψ±〉 = M exp
(∓i

√
2k2

3τ3z0
)

exp

{
−
(
Z ± {√

2k3
3τ

2
3 + i2

√
2k3

3τ3[1 + i(τ2 + τ3)]
})2

4[1 + i(τ2 + τ3)]

}

×
(

exp
(−i

√
2k3

2τ2x0
)

exp

{
−
[
X + √

2k3
2τ

2
2 + i2

√
2k3

2τ2(1 + iτ2)
]2

4[1 + i(τ2 + τ3)]

}

± exp
(
i
√

2k3
2τ2x0

)
exp

{
−
[
X − √

2k3
2τ

2
2 − i2

√
2k3

2τ2(1 + iτ2)
]2

4[1 + i(τ2 + τ3)]

})
, (B10)

with M being the normalization factor given from Eqs. (B5) and (B8) by

M = exp
(−κ2 − κ3

6

)1

2

[
σ0

(2π )
1
2

] 3
2
(

σ 2
0 + ih̄

2m
(τ2 + τ3)

)− 3
2

exp
(−k2

y σ
2
0

)× exp

[
−
(

t2μcb2

h̄

)2

σ 2
0

]

× exp

[
−
(

t3μcb3

h̄

)2(
σ 2

0 + ih̄t2
2m

)]
exp

{
−(y − 2ikyσ

2
0

)2

4
[
σ 2

0 + ih̄(t2+t3 )
2m

]
}

, (B11)

and the dimensionless definitions of Eq. (6) in the article

τ2,3 = h̄t2,3

2mσ 2
0

, k2,3 =
√

2σ0

(
mμcb2,3

2h̄2

)1/3

,

x0 = B2

σ0b2
, z0 = B3

σ0b3
,

Z = z

σ0
, X = x

σ0
. (B12)

APPENDIX C: THE CORRELATION FUNCTION FOR THE CSGE

In the discussion surrounding Eq. (9) of the article, we found that the correlation function for the CSGE can be written as

C(X, Px, Z, Pz, θ ) = exp[ω′
z(Z, Pz ) + ω′

x(X, Px )][4 cos(θ )( exp[ωz]{ exp[ωx] cosh[dx(X, Px )] sinh[dz(Z, Pz )]

+ exp[−ωx] cos[δx(X, Px )] cosh[dz(Z, Pz )]}) + 4 sin(θ )( exp[−ωz]{ exp[ωx] sinh[dx(X, Px )] cos[δz(Z, Pz )]

+ exp[−ωx] sin[δx(X, Px )] sin[δz(Z, Pz )]})] (C1)

up to a normalization factor.
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We do so by defining the following functions that appear in Eq. (C1):

ω′
z(Z, Pz ) = 1

4[1 + (τ2 + τ3)2]

[− (τ2 + τ3)2
(
Z2 + 2k6

3τ
4
3

)]− 2k6
3τ

2
3 [1 + (τ2 + τ3)2]

+ 2k6
3τ

3
3 (τ2 + τ3) − 2[1 + (τ2 + τ3)2]P2

z − 1

4
Z2 + 2PzZ (τ2 + τ3)

− 1

4[1 + (τ2 + τ3)2]

(
Z2 + 2k6

3τ
4
3

)− 4k6
3τ

2
3 , (C2)

ω′
x(X, Px ) = 1

4[1 + (τ2 + τ3)2]

(− (τ2 + τ3)2(X 2 + 2k6
2τ

4
2

)− 8k6
2τ

2
2

[
4
(
1 + τ 2

2

)2 − 2τ 2
3

(
1 − τ 2

2

)+ 4τ2τ3
(
1 + τ 2

2

)]
+ 8k6

2τ
3
2 {4(τ2 + τ3) − 2τ2[1 − (τ2 + τ3)2]})− 2[1 + (τ2 + τ3)2]P2

x − 1

4
X 2 + 2XPx(τ2 + τ3)

− 1

4[1 + (τ2 + τ3)2]

{
X 2 + 2k6

2τ
4
2 − 8k6

2τ
2
2

[
2
(
1 + τ 2

2

)+ 4τ2τ3
]
16k3

2τ
3
2 τ3

}
, (C3)

ωz = −1

2
k6

3τ
4
3 − 2k6

3τ
2
3 [1 + (τ2 + τ3)2] + 2(τ2 + τ3)k6

3τ
3
3 , (C4)

ωx = −1

2
k6

2τ
4
2 − 2k6

2τ
2
2 , (C5)

dz(Z, Pz ) = 1

4[1 + (τ2 + τ3)2]

[−2
√

2k3
3τ

2
3 (τ2 + τ3)2Z

]+
√

2k3
3τ3(τ2 + τ3)Z

− 1√
2

k3
3τ

2
3 Z +

√
2k3

3τ3(τ2 + τ3)Z − 1

4[1 + (τ2 + τ3)2]

[
2
√

2k3
3τ

2
3 Z
]

+ Pz
{−4

√
2k3

3τ3 + (τ2 + τ3)
[
2
√

2k3
3τ

2
3 − 4

√
2k3

3τ3(τ2 + τ3)
]}

, (C6)

dx(X, Px ) = 1

4[1 + (τ2 + τ3)2]

(−2
√

2k3
2τ

2
2 (τ2 + τ3)2X + 2

√
2k3

2τ2X {4(τ2 + τ3) − 2τ2[1 − (τ2 + τ3)2]})
− 1√

2
k3

2τ
2
2 X + Px

[
2
√

2k3
2τ

2
2 (τ2 + τ3) − 4

√
2k3

2τ2
(
1 + τ 2

2 + τ2τ3
)]

− 1

4[1 + (τ2 + τ3)2]

(
2
√

2k3
2τ

2
2 X + 8

√
2k3

2τ2τ3X
)
, (C7)

δz(Z, Pz ) = −Pz2
√

2k3
3τ

2
3 + 2

√
2k3

3τ3Z + 2
√

2k3
3τ3z0, (C8)

δx(X, Px ) = 1

4[1 + (τ2 + τ3)2]

{
2
√

2k3
2τ2X [2 − 2(τ2 + τ3)2 + 4τ2(τ2 + τ3)]
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