
PHYSICAL REVIEW A 103, 042216 (2021)

Impossibility of extending the Ghirardi-Rimini-Weber model to relativistic particles
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Spontaneous collapse models are proposed modifications to quantum mechanics which aim to solve the
measurement problem. In this article, we will consider models which attempt to extend a specific spontaneous
collapse model, the Ghirardi-Rimini-Weber model (GRW), to be consistent with special relativity. We will
present a condition that a relativistic GRW model must meet for three cases: for a single particle, for N
distinguishable particles, and for indistinguishable particles. We will then show that this relativistic condition
implies that one can have a relativistic GRW model for a single particles or for distinguishable noninteracting,
nonentangled particles but not otherwise.
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I. INTRODUCTION

In quantum mechanics, there are two forms of dynamics:
(1) unitary evolution, which is time reversible and preserves
superpositions, which describes the evolution of isolated sys-
tems, and (2) evolution described by positive operator valued
measures (POVMs), which describes a system undergoing
a measurement. The measurement problem is the fact that
quantum mechanics fails to provide a precise description of
which form of evolution describes any one situation. From
observation, limits can be placed on which regimes may be
described with unitary evolution or POVMs, but the theory
itself does not provide these.

Quantum field theory, the version of quantum mechanics
consistent with special relativity, suffers from the same con-
ceptual issue as nonrelativistic quantum mechanics. It is a
mathematical tool for calculating the probability of an out-
come of a measurement given a initial condition, but it does
not have prescription for when to use unitary or nonunitary
dynamics.

Since its discovery, there have been many attempts to
solve the measurement problem; some of the most famous
suggestions include the many worlds interpretation [1,2] and
Bohmian mechanics [3–5]. Both of these suggestions are
experimentally indistinguishable from standard quantum me-
chanics.
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Spontaneous collapse models, first introduced by Ghirardi-
Rimini-Weber [6] and Pearle [7], solve the measurement
problem by giving a new dynamics which completely de-
scribes the time evolution of the system at a nonrelativistic
level. They offer different experimental predictions than
standard QM, and there are currently experiments investi-
gating these effects [8–11]. The new dynamics is defined
by introducing additional stochastic nonlinear terms to the
Schrödinger equation. These terms alter the form of unitary
evolution such that there is a nonzero probability of the wave
function describing a particle undergoing a spontaneous spa-
tial localization. This rate is proposed to be extremely low,
such that a single particle may remain in a superposition for
a long period of time, in line with what is seen experimen-
tally. However, for multiple particles which are entangled, any
single particle spontaneously collapsing collapses all particles
it is entangled with. This effectively increases the rate of
collapse for systems with high numbers of particles, such
that macroscopic bodies are localized on extremely short
timescales. This is often called the amplification mechanism
and it ensures macroscopic classicality. This removes the need
for the theory to include a description of an external observer,
as macroscopic measuring apparatus interacting with a mi-
croscopic system causes the microscopic system to become
entangled and hence collapse, via the amplification mecha-
nism. For a full review of spontaneous collapse models, see
Ref. [12].

In order for a spontaneous collapse model to be a success-
ful description of the underlying physics, it must be consistent
with special relativity. There is a tension between quantum
mechanics and special relativity as quantum mechanics is
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nonlocal because spacelike separated measurements of en-
tangled systems must be correlated (as argued by Einstein,
Podolsky, and Rosen in Ref. [13]). A spontaneous collapse
model should predict nonlocal correlations in order to remain
consistent with experiments.

This paper is concerned with the collapse model’s con-
sistency only with special relativity. From now on in this
article, we will use relativistic to mean consistent with special
relativity.

In its original formulation, the GRW model was not rel-
ativistic and described distinguishable particles with discrete
points of localization. Continuous-time collapse models have
also been developed, for instance, in Refs. [14,15]. There
are various proposed models for relativistic collapse models:
Ref. [16], where a prescription for the probability distribution
of a matter density operator is Lorentz invariant; Ref. [17],
which introduces a mediating pointer field; Ref. [18], in which
collapse dynamics emerge by tracing out an environment from
a relativistic quantum field theory; and Ref. [19], which pro-
poses that the terms modifying the conventional Schrödinger
equation are functions of the stress-energy tensor. Pearle sug-
gested a model [20] and a proposed alteration of this in
Ref. [21], where energy is conserved by considering relational
collapses. In Ref. [22], a collapse model on a 1 + 1 lattice is
presented and the authors suggest that it may be relativistic in
the continuum limit.

In this paper, we will ask if it is possible for GRW to be
made consistent with relativity while retaining its characteris-
tic features.

For single particles, distinguishable and indistinguishable
particles we will apply the conditions for consistency with
relativity to the case of GRW and consider if such conditions
permit models which give rise to collapses which localize
the wave function and cause classical behavior to emerge at
large scales. We discuss where an existing model fits into this
framework [23]. Something that has been under analyzed in
the relativistic collapse model literature is the fact that in order
to be consistent with special relativity is it not sufficient to
only ask that the dynamics are Lorentz covariant, it is also
required that initial conditions between two inertial frames
can be compared. In this article, we pay special attention to
this fact and show how this limits the possible extensions of
GRW.

This paper is organized as follows: In Sec. II, the rela-
tionship between special relativity and quantum mechanics
is reviewed and the Tomogana-Schwinger formalism is dis-
cussed. In Sec. III, the original GRW model is introduced
in the Tomogana-Schwinger formalism. In Sec. IV, rel-
ativistic conditions for single-particle distinguishable and
indistinguishable particle GRW models are given. For the
indistinguishable case, it is shown that a such a model is either
not relativistic or does not achieve macroscopic classicality.

II. QUANTUM MECHANICS AND SPECIAL RELATIVITY

Standard quantum mechanics (ignoring the measurement
problem) provides probability distributions for the values of
observables that are measured. A relativistic quantum me-
chanics must predict that observers in any two inertial frames
have the same measurement statistics for the outcome of

any experiment they can perform. This is the conclusion
reached in Ref. [24] by Aharonov and Albert. They state
that for a system with observables A, B,C... each with po-
tential values a, b, c... where observable A is measured at
time ta and found to have the value a, and other variables
respectively, then agreement with special relativity implies
that there is a covariant way of calculating the probability P
of Pta,tb (a, b, ...|c, tc, d, td ...), i.e.,

Pta,tb (a, b, ...|c, tc, d, td ...) =
Pt ′

a,t
′
b
(a′, b′, ...|c′, t ′

c, d ′, t ′
d ...).

(1)

where a′, b′, etc. are the values of the observables in the
coordinates of a different inertial frame. This condition is
stronger than only requiring that the equations of motion
transform covariantly, as in order to check this condition one
must be able to compare the initial conditions in each frame.1

This requirement is inline with the usual definition of Lorentz
covariance for quantum field theory [25], Chapter 3], where is
stated that for Lorentz covariance of a theory there must be an
explicit rule for one observer to find their state of the system
given the state of the same system in a different inertial frame
(and, of course, the dynamics must be Lorentz invariant).

We choose to use this definition instead of other ways of
characterising relativistic as it ensures that observers in any
two frames are guaranteed to obtain the same result of an
experimental run.

Probability distributions in quantum mechanics are found
from the wave function via the Born rule. For nonrelativis-
tic quantum mechanics, single-particle wave functions are
functions over every point in spacetime. However, if one
wishes to have a relativistic quantum mechanics where the
wave function undergoes instantaneous collapses triggered
by measurements, then this is not possible, as this implies
that the wave function will not be normalized on a constant
time hyperplane in some inertial frames; see Fig. 1. Also, a
preferred frame is selected, the one where the collapse occurs
instantaneously. On the other hand, instantaneous collapses
are required to ensure that nonlocal observables (for example,
momentum or total charge) are conserved [24,26]. Addition-
ally, instantaneous collapse of the state vector is required to
ensure that Bell’s inequalities are violated. This is because in
order for the outcomes of the Bell experiment to be perfectly
correlated even though the results are from spacelike mea-
surements, the two wings of the experiment must effect each
other instantly, and hence the wave function must collapse
instantly.2

In order to offer a frame-independent description of instan-
taneous collapse of the wave function, Aharonov and Albert
proposed an alternative way of describing the collapse when

1This requirement for consistency with Special Relativity (SR) in
the active transformation rather that the passive viewpoint, because
to us it seems the most natural viewpoint when considering stochastic
dynamics.

2Hence, proposals like in Ref. [27] where collapse only effects the
future light cone fail as they do not predict nonlocal correlations
between outcomes of experiments. Since these nonlocal correlations
are observed in nature, then any successful theory must predict them.
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FIG. 1. A spacetime diagram showing the support of the wave
function before and after a measurement M where the wave function
is a function over all of spacetime. The support is the shaded line with
the amplitude proportional to the thickness of the line. The point P
is a spacetime point of interest. Suppose in one frame (left figure)
the wave function is initially in a spatial superposition (as seen in
that the support is present in two places and as denoted with the
plus); then M occurs and the wave function collapses along a specific
constant time hypersurface (dotted line). The wave function on the
surface intersecting point P (thin black line) is normalized. However,
in a different inertial frame (right figure) if the collapse occurs along
the same hypersurface (dotted line), then the wave function on the
constant time hyperplane intersecting point P in the new frame (thin
black line) is not normalized.

a measurement is performed [28], in which the wave function
collapses instantaneously in every inertial frame. To allow the
wave function to collapse instantaneously in every frame, it
must be defined not on the four-dimensional (4D) manifold
but on spacelike three-dimensional (3D) hypersurfaces which
make up the manifold. Then the wave function and hence
normalized state in a Hilbert space can be defined on each
hypersurface.

Wave functions are defined on spacelike hypersurfaces;
if we label a hypersurface as ω, then we can write a wave
function on it as ψω(x). The coordinate x here labels the
coordinates of the 3D surface ω but is a four-vector x ∈ M4

as ω is understood to be embedded in 4D spacetime. So then
every inertial observer has a wave function defined on their
constant time 3D hypersurface. However, each state may have
different values at the same specific space-time point X so
that ψω(X ) �= ψω′ (X ′), where X and X ′ are the same point in
two different inertial frames. This allows wave functions to be
normalized in every frame; see Fig. 2. This is acceptable be-
cause the wave function in this framework has no ontological
meaning; it is simply a tool for calculating probabilities for
the value of observables.

In this framework, every inertial observer can describe the
time evolution of their system in terms of wave functions on
parallel constant-time hypersurfaces within their frame using
the Tomogana-Schwinger formalism. We will introduce this
formalism and show that if collapses are excluded, then this
description is Lorentz covariant if it is integrable. Then for
the case of quantum mechanics with measurements we will
derive a condition on the measurement operator for Lorentz
covariance in this framework.

FIG. 2. A spacetime diagram showing the support of the wave
function before and after a measurement M. Here, in every inertial
frame the wave function collapses on a constant time hypersurface
(dotted line) so that the wave function is always normalized for
all observers. Note that the amplitude of the wave function at P in
different frames differs; this is a consequence of treating the wave
function as a function on a 3D hypersurface.

A. The Tomogana-Schwinger formalism

The Tomogana-Schwinger formalism [29,30] describes
unitary evolution as maps between wave functions defined on
arbitrary spacelike hypersurfaces without collapses. First, we
will introduce some additional notation for hypersurfaces. Let
ω signify any generic spacelike 3D hypersurface, let σt denote
a constant-time hyperplane at time t in a inertial frame F , and
hence σ ′

t ′ is a constant-time hyperplane in a different inertial
frame F ′. Then suppose the wave function is defined on an
ω in the manifold M4. In this article, we restrict ourselves
to considering Minkowski spacetime M4 as it is sufficient
to see the relevant Lorentz transformation properties of the
probability distributions. Then in inertial frame F which has
coordinates x on a hypersurface ω the wave function is ψω(x).
In another inertial frame F ′ with coordinates x′ on the same
hyperplane ω the wave function is written ψ ′

ω(x′). A wave
function under a Lorentz boost transforms as

ψω(x) → ψ ′
ω(x′) = �ψω(x), (2)

where � is a representation of the Lorentz group. In other
words, on the same hypersurface the wave functions are equiv-
alent up to a Lorentz transform.

Analogously to the Schrödinger equation, Tomogana and
Schwinger defined the evolution of a wave function as it
evolves between hypersurfaces, if there are no measurements
between those surfaces:

δ

δω(x)
ψω(x) = −iH(x)ψω(x), (3)

where δ
δω(x) is the functional derivative with respect to ω and

H(x) is the Hamiltonian density. The functional derivative can
be understood to be the variation in ψω(x) with respect to a
infinitesimal variation of ω about point x; see Fig. 3. The
integrability condition for this system is that [H(x),H(y)] =
0 if x and y are spacelike separated. Equation (3) gives rise to
an unitary evolution operator which relates two hypersurfaces:

U ω2
ω1

= T exp

[
−i

∫ ω2

ω1

d4xH(x)

]
(4)
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FIG. 3. A diagram showing the infinitesimal variation, δω, of the
hypersurface ω about the point x.

such that ψω2 (x) = U ω2
ω1

ψω1 (x), where T means time ordering
with respect to the frame F . This operator is frame inde-
pendent although H(x) is not Lorentz invariant; the only
frame-dependant terms from the time ordering are zero due
to the integrability condition [31,32]. Therefore, we have that
for a frame F ′

U ′ω2
ω1

= T ′ exp

[
−i

∫ ω2

ω1

d4x′H′(x′)
]

(5a)

= �†U ω2
ω1

�. (5b)

B. The Tomogana-Schwinger formalism with measurements

Now we wish to extend this formalism to describe col-
lapses of the wave function due to measurements. In this
article, we will consider only collapses in the spatial basis
as this is sufficient to explain the values of any experiment
performed, as any observable can be coupled to position [33].

In a frame F , the spatial collapse of the wave function at
x ∈ M4 is described though an operator L̂ω(x) defined on the
Hilbert space on a spacelike hypersurface ω passing through x.
Following Albert and Aharanov, we consider that the collapse
occurs on the constant time hyperplane intersecting x, labeled
σt , where t = x0. This means that the collapse is described as
occurring instantaneously in F , as discussed in Sec. II.

L̂σt (x) localizes the particle it acts on about x (if the wave
function is not already localized). The properties of this op-
erator are model dependant; however, in general it is not
unitary. In a different frame F ′, the collapse operator L̂′

σ ′
t ′
(x′)

is defined on a constant time hypersurface σ ′
t ′ .

To illustrate evolution with collapses consider in a frame F
two hypersurfaces σ0 and σ f before and after a collapse at a
point x; see Fig. 4. The wave function ψσ f is found by evolving
the wave function to a hyperplane of collapse, applying the
collapse operator and normalizing, then evolving to σ f :

ψσ0 → ψσ f = U
σ f
σt L̂σt (x)U σt

σ0
ψσ0

‖L̂σt (x)U σt
σ0 ψσ0‖

. (6)

It is necessary that all points of collapse between σ0 and σ f are
known in order to construct such a map between them, as in
general L̂σt (x)ψω �= ψω for any ω. Therefore, in order to relate
wave functions in different frames on their respective constant

FIG. 4. A schematic showing a measurement at a point M be-
tween two hypersurfaces σ0 and σ f . It is not possible to relate wave
functions on σ0 and σ f without knowing if there are measurements
between them.

time hypersurfaces, all collapses between those hypersurfaces
must be known.

To find the condition on L̂σ (x) for consistency with rel-
ativity, we consider the probability P(x1, x2|ψσ1 ), which is
Eq. (1) applied to the case of two measurements at space-time
points x1 and x2 given an initial wave function ψσ1

3. σ1 is a
constant-time hypersurface intersecting the point x1 in F . For
quantum mechanics with measurements, the wave function
ψσ1 can be assumed to be specified by measurements in the
past of σ1. Then SR implies that

P(x1, x2|ψσ1 ) = P(x′
1, x′

2|ψ ′
σ ′

1′ ). (7)

If the points x1 and x2 are timelike to each other and x1

occurs before x2 in all frames, the conditional probability for
one frame is given by

P(x1, x2|ψσ1 ) = ∥∥L̂σ2 (x2)U σ2
σ1

L̂σ1 (x1)ψσ1

∥∥2
. (8)

To compare the two sides of Eq. (7), the relationship between
the wave functions ψσ1 and ψ ′

σ ′
1′

must be specified. If there

are no measurements (hence no collapses) between the two
hypersurfaces, then they can be related by

ψ ′
σ ′

1′ = �†U
σ ′

1′
σ1 ψσ1 . (9)

If there are measurements between ψσ1 and ψ ′
σ ′

1′
, then the

wave functions can be related with Eq. (6) when measure-
ment occurs and Eq. (9) for subsequent evolution, using the
appropriate positions and outcomes of measurements. In stan-
dard quantum mechanics, this is acceptable as it includes the
concept of observers performing measurements and recording
the results. So all measurements between the two surfaces
can be compared between two frames. Assuming that the

3To keep notation simple and to highlight the invariance require-
ments, we write Pt1 (x1, |ψσ1 ) as P(x1, |ψσ1 ); however, as x1 is a
space-time point of measurement, the equation below should be
understood in the same way as Eq. (1).
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Hamiltonian is covariant so that Eq. (5b) holds, then the right-
hand side of Eq. (7) can be written as

P(x′
1, x′

2|ψ ′
σ ′

1′ ) (10a)

=
∥∥∥L̂′

σ ′
2′ (x

′
2)U

′σ ′
2′

σ ′
1′

L̂′
σ ′

1′ (x
′
1)ψ ′

σ ′
1′

∥∥∥2
(10b)

=
∥∥∥L̂′

σ ′
2′ (x

′
2)�†U

σ ′
2′

σ2 U σ2
σ1

U σ1
σ ′

1′
�L̂′

σ ′
1′ (x

′
1)�†U

σ ′
1

σ1 ψσ ′
1

∥∥∥2
,(10c)

where Eq. (5b) has been used to transform the unitary op-
erators, σ ′

1′ and σ ′
2′ are hypersurfaces of collapse intersecting

x1 and x2 in frame F ′, and x′ is the same spacetime point in a
different coordinate system. So, by inspection, the condition
for Eq. (7) to hold is

L̂′
σ ′

t ′
(x′) = �†U

σ ′
t ′

σt L̂σt (x)U σt

σ ′
t ′
�. (11)

Equation (11) requires that the collapse operator transforms
covariantly and that the collapse can be described by a oper-
ator acting on any spacelike hypersurface intersecting x. This
is equivalent to requiring that the collapse happens instanta-
neously in all inertial frames.

If instead x1 and x2 are spacelike to each other, then in some
frames their time ordering may be reversed. In this case, if in
F ′ x1 precedes x2, then Eq. (8) holds and in the primed frame
we have

P(x′
1, x′

2|ψ ′
σ ′

1′ ) =
∥∥∥L̂′

σ ′
1′ (x

′
1)U

′σ ′
1′

σ ′
2′

L̂′
σ ′

2′ (x
′
2)U

′σ ′
2′

σ ′
1′

ψ ′
σ ′

1′

∥∥∥2
. (12)

Substituting in Eqs. (9) and (11), it is found that for Eq. (7) to
be satisfied

[L̂σ1 (x1),U σ1
σ2

L̂σ2 (x2)U σ2
σ1

] = 0, (13)

which is met if L̂σ (x) satisfies the microcausality condition.
As discussed in Sec. II, the wave function is a tool to cal-

culate probabilities and in order to be consistent with special
relativity the wave function must collapse instantaneously in
every inertial frame. Therefore, although we have written the
collapse operator as acting on a constant time hypersurface in
a particular frame, it could be written as a collapse operator
acting on the Hilbert space of any spacelike surface using the
relationship

L̂σt (x) = U σt
ω Q̂ω(x)U ω

σt
, (14)

where ω is any arbitrary spacelike hypersurface intersecting
the point x and Q̂ω(x) is a collapse operator like L̂ω(x) that
also satisfies Eqs. (11) and (13).

In order to check that Eq. (7) is satisfied, it has been
implicitly assumed that in any one frame the time ordering
between x1 and x2 is known. Otherwise, it would not have been
possible to write the explicit expressions of Eqs. (8), (10), and
(12).

As mentioned already, standard quantum mechanics has
the concept of observers comparing results, which means that
the order of measurements can be known between frames. If
in one frame observer A measures x1 to be before x2 and in
another frame observer B measures the inverse, then A and
B can reconcile their conditional probability distributions and
check consistency with SR. In this section, we have found

FIG. 5. Surfaces of collapse for the GRW model. The dotted
black lines show the hypersurfaces where collapses occur. The solid
lines show the amplitude of the wave function immediately after
collapse. The initial collapse, x0, is assumed to be at the origin; the
next collapse will occur on a flat hypersurface after �t .

the condition for relativistic collapse using the conditional
probability for two collapses; however, it can be easily shown
that this applies to any number of collapses.

III. THE ORIGINAL GRW MODEL

We will now describe the original nonrelativistic GRW
model. The original GRW model is a model for N distin-
guishable particles. For each particle, the initial condition is
the first point of collapse x0 and wave function ψ0 at that time
of collapse. The model then gives the probability distribution
for the next point of collapse given the previous point. Hence,
the model is Markovian and each particle has a series of
collapses. For simplicity, here we describe the model for a
single particle, using relativistic language to make clearer the
similarities and differences between the original GRW model
and its relativistic generalization.

Collapses occur randomly in time and are a realization of
a Poisson point process with mean time τ . Let �Ti be the
time interval between the (i − 1)th and the ith collapse. Since
time intervals are absolute in Galilean relativity, there is no
need to specify with respect to which frame they are defined.
This situation will change when we will consider relativistic
generalizations.

Consider a one-particle wave function ψσ0 defined on some
initial hyperplane σ0, where the first collapse has occurred; we
are now specializing the description to a frame where σ0 refers
to time t = 0.

The next collapse will occur on the hypersurface σ�t ,
where �t = �T1 as shown in Fig. 5. The probability distribu-
tion for a collapse to occur at a point x1 ∈ R3 on this surface
is

P(x1|x0,�t, ψσ0 ) = ∥∥L̂σ�t (x1)U σ�t
σ0

ψσ0

∥∥2
, (15)

where x0 is the spacetime coordinates of the first point
of collapse, U σ�t

σ0
is the standard unitary evolution between

time 0 and time �t , generated by the Schrödinger equation,

042216-5
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and

L̂σx (x) :=
(α

π

) 3
4

exp

[
−α(x − q̂)2

2

]
, (16)

where α is a free parameter of the model, σx is the hyperplane
intersecting the point (x, t ), and q̂ is the position operator of
the particle. This distribution is normalized such that

∫
R3

d3x P(x1|x0,�t, ψσ0 ) = 1. (17)

Immediately after a collapse, the wave function is localized
about the point of collapse, as given by Eq. (6), which in this
case reads

ψσ�t → ψ (c)
σ�t

= L̂σ�t (x)U σ�t
σ0

ψσ0

‖L̂σ�t (x)U σ�t
σ0 ψσ0‖

. (18)

Through this spontaneous collapse, spatial superpositions are
destroyed and hence classicality can emerge. In between col-
lapses, the wave function evolves according to the Scrödinger
equation.

The above rules define when, where, and how the collapses
occur. We will use the same logic to define the relativistic
generalization of the GRW model.

IV. GRW AND SPECIAL RELATIVITY

The GRW model is a discrete time model which provides
a conditional probability distribution for the position of a
spontaneous collapse given the position of previous collapses.
As the model is Markovian, the conditional probability for
a collapse only depends on the most recent collapse, not the
whole prior series of collapses. We claim that any extension of
GRW to the relativistic regime must provide a prescription for
calculating the probability of the next point of collapse given
the position of the previous point and that this probability
distribution must be Lorentz invariant. Note that this definition
of Markovianity assumes that there is a time ordering for the
points of collapse.

Additionally, a relativistic GRW model must cause spatial
superpositions of particles to collapse, and for N > 1 particles
it must have an amplification mechanistic to ensure emergence
of macroscopic classicality.

We note that for a relativistic GRW model, an initial seed
point of collapse must be given to define the model. This
initial point breaks the Poincaré covariance, and hence the
appropriate symmetry group is the Lorentz group.

As already remarked on in Sec. II, for a spontaneous
collapse model to be relativistic both the initial conditions
between inertial frames must be comparable and the dynamics
must be Lorentz covariant. The literature focused in ensuring
the second request to be satisfied, while here we will show that
the first one in general is not, apart from specific situations.
More specifically, in this section we will consider what these
requirements imply for the form of a relativistic spontaneous
collapse model for a single particle, distinguishable particles,
and indistinguishable particles.

FIG. 6. A schematic diagram showing how the stochastic pro-
cess defines intervals between collapses. The shaded area shows
the maximum of the wave function’s density, straight dotted lines
show the future light cone of each point of collapse, and the curved
dotted lines show the surfaces of constant four-distance from the
previous point of collapse. The left diagram shows a frame where
each collapse occurs at the same spatial point so the coordinate time
and the four-distance coincide, �Ti = ti. The right diagram shows a
different inertial frame where the four-distance between each point
of collapse is still �Ti but the coordinate t ′

i time is different.

A. Relativistic condition for a single particle

We consider a relativistic GRW model for a single particle.
For a single particle, there is a single series of collapses. In
analogy with the original GRW model, one is tempted to
define the times at which, in a given frame, collapses occur
via a Poissonian distribution with average time τ , but then one
is faced with the fact that due to time dilation this prescription
is not Lorentz invariant. In order to overcome this difficulty,
the time intervals between collapses have to be defined in
terms of Lorentz-invariant timelike four-distances; this seems
to be the only way to ensure that the time intervals are defined
in a frame-independent way. The four-distances have to be
timelike not only because we are seeking a sequences of time
intervals, but also because this prescription allows to define a
time-ordered sequence of collapses. This is done, for example,
in Ref. [23].

Consider then a Poissonian point process with average τ ,
with initial value 0. Let �Ti be the distance between the ith
and (i − 1)th point of the process. Then define the times at
which collapses occur as follows. Given the initial point of
collapse x0 = (x0, x0

0 ), the next point of collapse x1 = (x1, x0
1 )

will occur at four-distance �T1 from x0, and therefore x1 will
be on the future hyperboloid defined by all points with same
timelike four-distance �T1 = |x1 − x0| from x0; the following
point of collapse x2 = (x2, x0

2 ) will lie in the future hyper-
boloid defined by all points with same timelike four-distance
�T2 = |x2 − x1| from x1, and so on. See Fig. 6.

The four-distances among consecutive collapses have an
interesting physical interpretation. Consider a particle whose
wave function is well localized in an inertial reference frame
O where the particle is at rest, for simplicity in the origin.
In that frame, collapses are likely to occur only about the
origin (where the wave function is nonzero), and the four-
distances �Ti between consecutive collapses corresponds to
the coordinate time intervals �ti between collapses. In a
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different inertial frame O′, the particle will be moving, and
while the four-distances among the collapses do not change,
the coordinate time intervals �t ′

i are dilated. The opposite
would be true for a well-localized particle at rest with re-
spect to O′, thus in motion with respect to O. Therefore, the
four-distances �Ti roughly correspond to the coordinate time
intervals in the frame at rest with respect to the particle; in all
other frames, the coordinate time intervals between collapses
undergo time dilation. So observers measure different rates of
collapse in different frames due to time dilation, but the over-
all prescription of the rate of collapse is frame independent.
This is analogous to the situation in particle physics where a
particle with a half-life λ, for example, a muon, appears to
have a longer half-life when it is traveling at a high velocity
inside a particle accelerator.

The prescription above defines, in a relativistic invariant
way, when a collapse occurs. The model must also define
where on the hyperboloid the collapse occurs, i.e., give a
normalized probability distribution for the position of the
collapse on that hypersurface, such as done in Ref. [23], for
example. In the spirit of GRW, this probability distribution
must be equal to P� (x) = ‖L̂� (x)ψ�‖2 in order to avoid su-
perluminal signaling, where L̂� (x) is the collapse operator
centered around the point of collapse x, defined on the hy-
perboloid �. We can leave L̂� (x) unspecified, but it has to be
chosen in such a way that it localizes the wave function, it
is Lorentz covariant, and that the probability is correctly nor-
malized. However, once it is specified, it defines the collapse
operator on all spacelike hypersurfaces through Eq. (14).

The last ingredient is how a collapse occurs, i.e., how the
wave function changes due to a sudden collapse at x. Refer-
ence [23] assumes that the wave function collapses along the
hyperboloid previously introduced; this is mathematically im-
plemented by applying L̂� (x) to ψ� , and then normalizing the
collapsed wave function. In fact, the collapses can be carried
out with respect to any spacelike hypersurface containing the
point of collapse as the two prescriptions can be related by
a unitary transformation. Specifically, suppose the collapse is
defined to occur along a spacelike hypersurface ω1 according
to the prescription

ψω1 → ψ (c)
ω1

= L̂ω1 (x)ψω1

‖L̂ω1 (x)ψω1‖
, (19)

where x is the point of collapse. Given a second spacelike
hypersurface ω2 containing the point of collapse x, since
ψω2 = U ω2

ω1
ψω1 for the wave function prior to the collapse,

and ψ (c)
ω2

= U ω2
ω1

ψ (c)
ω1

for the wave function after the collapse
(because by construction there are no collapses in between ω1

and ω2 apart from x, since all collapses are assumed to be
timelike separated with respect to each other), then Eq. (19)
can be equivalently rewritten as

ψω2 → ψ (c)
ω2

= L̂ω2 (x)ψω2

‖L̂ω2 (x)ψω2‖
, (20)

with L̂ω2 (x) = U ω2
ω1

L̂ω1 (x)U ω1
ω2

. See Fig. 7. Also the probability
distribution P� (x) previously defined can be computed along

FIG. 7. Schematic diagram showing possible surfaces of collapse
in relativistic GRW. The curved thick line labeled � is a hyperboloid
of made up of points four-distance �T1 from the previous point of
collapse. The collapse operator can be defined on the surface � or
equivalently on the hyperplane σ (the straight thick line labeled σ )
via the operator U σ

� .

any spacelike hypersurface passing through x, since

P� (x) = ‖L̂� (x)ψ�‖2 = Pω(x) = ‖L̂ω(x)ψω‖2 ≡ P(x),
(21)

as one can easily check. It is in this sense that we can say that
the collapse can be described consistently in all frames.

Therefore, we are precisely in the same situations envis-
aged by Albert and Aharonov: A collapse occurs instanta-
neously along all spacelike hypersurfaces intersecting the
point of collapse, with the only (important) difference that
there the collapses are triggered by measurements, while here
they are part of the dynamical law. As pointed out by Al-
bert and Aharonov, this is necessary so that every inertial
observer can provide a normalized wave function both before
and after the collapse on their constant-time hyperplanes.
Constant-time hyperplanes are important because these are the
hypersurfaces where observers describe their physics.

It is for this reason that the model presented in Ref. [34] is
not a successful relativistic model, as this model has the wave
function collapse only in the future light cone of the point of
collapse. This means that the state is not normalized along
different constant time hyperplanes and hence the theory does
not give normalized probability distributions for systems with
entangled particles.

We argue that the only consistent way to understand the
model in Ref. [23] is that the wave function collapses on
every hypersurface intersecting the point of collapse; i.e., it
collapses instantly in every frame. This is the only consistent
way to interpret the model as otherwise the wave functions on
hyperplanes after a point of collapse would be ill defined. This
in agreement with Eq. (37) of Ref. [23], which gives the wave
function on a constant-time hypersurface for given foliation of
spacetime.

To see how an inconsistency would arise otherwise, con-
sider a collapse at point x and three hypersurfaces of interest,
a hyperboloid � intersecting x, a hyperplane σt1 intersecting
the point x, and a hyperplane σt2 a short time in the future
of σt1 . The state ψ� will be the collapsed state. Suppose that
collapses only occur on hyperboloids and then the state on
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σt1 would be uncollapsed. Now the question is the follow-
ing: What is the state on σt2 ? As there is unitary dynamics
everywhere except on the hyperboloid, then the state can
either be written as ψσt2

= U σ2
σ1

ψσt1
, meaning ψσt2

would be
an uncollapsed state or as ψσt2

= U σ2
� ψ� , meaning ψσt2

would
be collapsed. The only way to resolve this inconsistency and
still have unitary dynamics is to have the collapse occur along
σt1 as well.

Now we are in the position to assess whether this frame-
work for a relativistic GRW model is consistent with special
relativity. Given the initial wave function ψσ0 defined on a
spacelike hyperplane σ0 and the initial point of collapse x0 on
σ0, the probability for the next collapse to occur at x is given
by

P(x1|x0, ψσ0 ) = ∥∥L̂ω(x1)U ω
σ0

ψσ0

∥∥2
, (22)

where ω is a surface intersecting x1. This conditional proba-
bility distribution is analogous to Eq. (1), where ψσ0 gives all
the possible information about the system at (x0, t0) based on
the position of previous collapses.

For a Lorentz-transformed inertial frame F ′ with coordi-
nates x′, the initial conditions are the point of last collapse
x′

0 and the wave function on the hyperplane σ ′
0′ . Therefore,

special relativity requires that

P(x1|x0, ψσ0 ) = P(x′
1|x′

0, ψ
′
σ ′

0′ ). (23)

Here the condition of Eq. (1) is applied to spontaneous col-
lapse models where the measurements replaced by points of
spontaneous collapse.4 For a single particle, the wave function
is specified by the point of last collapse x0. As described in
Sec. II, in order to check this condition one must be able to
compare the initial conditions (here the wave function and
position of the previous collapse) between different inertial
frames, as noted in Ref. [31]. This has consequences when
considering collapse models for multiple particles, as we will
see in Secs. IV B and IV C.

In order to verify Eq. (23), the map between ψσ0 defined
on the constant-time hyperplane σ0 for O and ψ ′

σ ′
0′

defined on

the constant-time hyperplane σ ′
0′ for O′ must be known, and

in order to do this, positions of all collapses between those
surfaces must be known. For a series of timelike collapses,
this condition is met as there can be no collapses between σ0

and σ ′
0′ (see Fig. 8); hence, the two hyperplanes are related

by Eq. (9). By the same argument presented in Sec. II B, the
collapse operator L̂σt (x) must transform as in Eq. (11) and
obey Eq. (13).

If these conditions are met, these spatial collapses which
are timelike to one another may be described in a way that
is consistent with special relativity for a single particle. The
model proposed by Ref. [23] for a single particle meets these
conditions.

In contrast, for a single-particle theory with collapses
which are spacelike to each other (we do not discuss how
such a model could be formulated), the initial wave function in
different inertial frames can no longer be related to each other

4We will keep the notation of Sec. II B with the understanding that
now the time coordinate of x is now probabilistic.

FIG. 8. For timelike collapses (left), initial conditions between
two inertial frames can always be related by unitary evolution as, for
an initial collapse x1, there can be no collapses between constant time
hypersurfaces intersecting x1, σ0, and σ ′

0′ . For spacelike collapses
(right), then initial conditions between frames may not be related
since there may be points of collapse between σ0 and σ ′

0′ , e.g., x1.

by Eq. (9), as there might be collapses in the region enclosed
between σ0 and σ ′

0′ , as shown in Fig. 8. Then to verify Eq. (23)
the position of all collapses in this region must be known,
since this region includes points which are in the future of
x0 in F ; this is not possible.

One should notice the difference between standard quan-
tum mechanics and spontaneous collapse models. Standard
quantum mechanics has spacelike collapses. However, as dis-
cussed in Sec. II B, this is consistent with relativity due to
the position of collapses being given. In spontaneous collapse
models, the position of collapses are probabilistic and are
not know a priori and hence it cannot be taken for granted
that initial conditions in two different inertial frames can be
related. For spacelike spontaneous collapses, comparing ini-
tial conditions between two inertial frames is equivalent to
requiring knowledge of future points of collapse in one of
the inertial frames, as there might be collapses between two
constant time hypersurfaces; see Fig. 8. Stochastic theories
cannot meet this requirement, as the points of collapse are a
single realization of a random process and hence cannot be
determined with certainty.

The convention that the initial collapse occurs at the ori-
gin has been taken. Since this is just a choice of coordinate
system, one would expect that the results discussed hold re-
gardless of the choice of origin. Since in two different inertial
frames F (F ′) the initial conditions are an initial point of
collapse x (x′) displaced from the origin and a wave function
ψ0 (ψ0′) on the hypersurface intersecting it, then the same
rules for relating the two initial conditions as in the case of
collapse at the origin can be applied.

So single-particle spontaneous collapse models can meet
condition Eq. (23) when collapses are timelike to each other,
but for spacelike collapses the initial condition for observers
in two frames cannot be compared so the condition is not
satisfied. For the model proposed in Ref. [23] for a single
particle, the collapses are timelike and hence it is a viable rela-
tivistic GRW model. Of course, one does not expect spacelike
collapses for single particles as this would imply superluminal
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velocities; however, this observation is relevant for multipar-
ticle spontaneous collapse models.

B. Relativistic condition for N distinguishable particles

The natural generalization of the previous model to the
N-distinguishable particle case is to assume that there are N
series of collapses and hence N realizations of the stochastic
process. The ith realization is Si = {Ti1, Ti2...}. For each real-
ization, the construction of the collapse process—where they
occur and how they change the wave function—is the same
as for the single-particle case. Note that, in general, points
of collapse associated to different particles can be spacelike
separated, while points of collapse associated to the same
particle are always timelike to each other. The Hilbert space
for N distinguishable particles is given by

H = H1 ⊗ H2 ⊗ · · · ⊗ HN︸ ︷︷ ︸
N

, (24)

where Hi is a single-particle Hilbert space for the ith particle.
The wave function on a hypersurface may be written as σ ∈
H .

Then in this case, the condition for consistency with special
relativity is that

P(x11, . . . , xi1, . . . , xN1|x10, . . . , xi0, . . . , xN0, σ0 ) =
P(x′

11, . . . , x′
i1, . . . , x′

N1|x′
10, . . . , x′

i0, . . . , x′
N0, 

′
σ ′

0′ ),
(25)

where for the ith series of collapses the collapse at xi0 is
followed by a collapse at xi1 and σ0 is the multiparticle wave
function on a constant time hyperplane at the initial time. In
the single-particle case, the initial wave function was defined
on a hyperplane intersecting the initial point of collapse. As
for multiple particles, there are many initial points of collapse,
and it is not immediately obvious which hypersurface the
initial wave function should be defined on. The model can
be defined consistently if in frame O the initial hypersurface
intersects the earliest point of collapse in that frame for that
generation of collapses, in this case the earliest point within
the group {x10, ..., xi0, ..., xN0}. So σ0 is the wave function
on the hyperplane intersecting the earliest xi0. The relation
Eq. (25) should hold true for every value of j, not only when
j = 1; however, since the model is Markovian, the relation
can be easily iterated and checked for any pair of consecutive
collapses.

A necessary requirement for Lorentz invariance of the
probability distribution is that the distance between each xi j

and xi j+1 is a timelike four-distance given by Ti j .
As in the case of the single-particle sector, in order for

Eq. (25) to be satisfied it must be possible to relate the initial
wave functions σ0 and  ′

σ ′
0′

in any two inertial frames. For

a completely generic initial wave function σ0 , which may be
entangled, collapses for any particle may affect the probability
for the collapse of another particle via entanglement. As col-
lapses for different particles may be spacelike to each other,
then the initial wave function in one frame σt and cannot in
general be related to  ′

σ ′
t ′
, as is shown in Sec. IV of Ref. [24].

We will now give a simple illustrative example of an
entangled initial state where two observers cannot compare

FIG. 9. Schematic diagram showing two entangled distinguish-
able particles. The time and space axis are shown for two different
frames. The dashed and dotted lines show the support for each part
of the wave function without collapses [see Eq. (26)]. Points X1 and
X2 are the known initial points of collapse and Y1 and Y2 are possible
future points of collapse.

initial conditions, but for a more rigorous explanation see
Ref. [24]. Consider the situation shown in Fig. 9 with a system
of two distinguishable particles. At time t = 0, there are two
collapses, at X1 for particle 1 and at X2 for particle 2. We
assume by fiat that immediately after this the system is in the
entangled state:

|ψσ0〉 = 1√
2

(
|L〉1|L〉2 + |R〉1|R〉2

)
, (26)

where the subscripts refer to the particle number and |L〉 is
a localized state centered on the left and |R〉 is a localized
state centered on the right. We assume that their centers are
sufficiently far apart such that 〈L|R〉 ≈ 0. The entanglement
ensures that any further collapse will localize both particles;
for example, if particle 2 collapses to |R〉 then particle 1 will
also collapse to |R〉. This is a situation similar to the well-
known Bell locality scenario.

For a GRW-type model in frame F , the probability of
particle 1 collapsing at Y1 can be given by knowing the state
|ψσ0〉 and the position of the previous collapse X1. However,
in frame F ′ the initial state must be given on a constant time
hypersurface σ ′

0′ in that frame. As can be seen from Fig. 9,
particle 2 may have already collapsed in F ′, for example, at
Y2, which would also affect particle 1.

So in order to compare the initial states on σ0 and σ ′
0′ ,

the position of collapses between them (in this case Y2) must
be known, which would include collapse in the future for
frame F . Since in principle it is not possible to specify the
position of future collapses for a stochastic theory, the two
initial conditions cannot be compared.

In conclusion, there cannot be a special relativistic GRW
model for entangled distinguishable particles. For the special
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case of noninteracting particles in a separable wave function,
it is possible to have a relativistic GRW. We now discuss the
two cases more in detail.

1. Noninteracting separable particles

For noninteracting particles, the unitary evolution operator
between two surfaces ω1 ω2 may be written

W ω2
ω1

= U ω2
ω1,1

⊗ U ω2
ω1,2

⊗ U ω2
ω1,i

⊗ · · ·︸ ︷︷ ︸
N terms

, (27)

where U ω2
ω1,i

is the unitary operator for the ith particle. The
collapse operator for the the ith particle is

L̂ω,i(x) = I ⊗ I ⊗ · · ·︸ ︷︷ ︸
i terms

⊗L̂ω(x) ⊗ · · · ⊗ I ⊗ I︸ ︷︷ ︸
N-i-1 terms

, (28)

where L̂ω(x) is the collapse operator for a single particle
(here for simplicity we assume that the form of each collapse
operator is the same for every particle). There are N of such
operators.

For a separable initial condition,

σ0 = ψσ0,1 ⊗ ψσ0,2 ⊗ · · · ⊗ ψσ0,N , (29)

then each side of Eq. (25) can be factorized into N distribu-
tions of the form

P(xi1, |xi0, ψσ0,i ) = ∥∥L̂σi1 (xi1)U σi1
σ0,i

ψσ0,i

∥∥2
, (30)

where σi j is the hyperplane intersecting the point xi j . For
consistency with special relativity, each P(xi1, |xi0, ψσ0,i ) must
satisfy Eq. (23). If each particle has a series of collapses that
are timelike to each other and the collapse operator L̂ω,i(x)
transforms as in Eq. (11), then the model is consistent with
special relativity. The model presented in Ref. [23] with a
separable initial wave function meets this condition.

If the initial wave function σ0 is not separable, then
Eq. (25) will not be factorable. If it is not factorable then
the initial wave function σ1 cannot be specified in a frame-
independent way and hence the model cannot be consistent
with special relativity.

2. Interacting particles

If the particles are interacting and the wave function is
initially separable, then the unitary operator cannot be decom-
posed as in Eq. (27). In this case, the condition for Eq. (25) to
be factorable is

[W ω2
ω1

, L̂ω,i(x)] = 0 ⇒ [Ĥ, L̂ω,i(x)] = 0, (31)

where Ĥ is the Hamiltonian for the system (both the free and
interacting parts). As is well known, if an operator commutes
with the Hamiltonian, then it corresponds to a globally con-
served quantity. Therefore, if the condition of Eq. (31) holds,
then L̂ω,i(x) is a global operator and hence cannot be a local
function of the fields. In this case, it has been shown that the
dynamics does not result in a successful collapse model [35].
For example, if the collapse operator is Ĥ , then the collapse
rate is proportional to the distance between the energy eigen-
values of the system; see Eq. (21) of Ref. [36]. For systems in
spatial superpositions but with degenerate energy eigenstates,
then the model would not predict any collapse. This would

fail to solve the measurement problem as it would not lead
to a reduction in the wave function for situations where we
observe that wave function collapses.

Therefore, since Eq. (25) is not factorable, then one is faced
with the problem as the nonseparable wave function had: The
initial wave function σ0 will be different in different frames
due to the interaction. Hence, it is not possible to have a
special relativistic GRW model for interacting distinguishable
particles.

C. Relativistic condition for indistinguishable particles

A relativistic GRW model for indistinguishable particles
must only have a single collapse operator L̂σ (x) which acts
over every particle to preserve the particle interchange sym-
metry or antisymmetry for bosons and fermions respectively.
Due to this, indistinguishable particles have the same relativis-
tic condition as a single particle, namely that the stochastic
process gives the four-distance between points of collapse and
Eq. (23), where ψσ is an element of an N-particle Fock space.
From this, the requirements Eqs. (11) and (13) are derived. If
the collapses are timelike to each other, then Eq. (9) can be
used as the initial condition in one frame, and the position of
last collapse x0 and the wave function ψσ0 can be related to
the initial condition in a different frame.

Conversely, if the collapses are spacelike to each other,
then Eq. (9) does not hold and such a model is not consistent
with special relativity.

D. Emergence of macroscopicality for indistinguishable
particles

As has been discussed in Sec. IV C, a relativistic GRW
model is possible for indistinguishable particles if each col-
lapse is timelike to the previous one. However, such a model
has an issue. If given a point of collapse x0, the only region that
the subsequent collapse can occur is in the future light cone
of x0, then macroscopic classicality is not recovered. This
can be seen with a simple example, with two macroscopic
objects. Suppose there is a system made up a large number
of indistinguishable particles N , where N is an even number.
The initial wave function of the system is two macroscopic
objects, i.e., two areas with high densities of particles, with a
large distance separation between the center of mass of these
two areas, labeled 2d; see Fig. 11. Assume that initially each
object is in a spatial superposition, separated by a distance 2r,
where r � d . For simplicity, we will work in one dimension
but the argument can be extended to three dimensions. We will
work in the framework of second quantization.

The initial wave function of the system on a constant time
hypersurface σ0 is

|σ0〉 = 1

2
(Â1 + Â2)(B̂1 + B̂2)|0〉, (32)

where |0〉 is the vacuum of an N particle antisymmetric Fock
space and

Â1 =
N/2∏
n=0

ĝ(−d − r, n), (33a)
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FIG. 10. Diagram showing the action of the operator Â1 on the
vacuum, where particles are created separated by distance ε.

Â2 =
N/2∏
n=0

ĝ(−d + r, n), (33b)

B̂1 =
N/2∏
n=0

ĝ(d − r, n), (33c)

B̂2 =
N/2∏
n=0

ĝ(d + r, n), (33d)

where

ĝ(x, n) = â†(x − Nε/4 + nε), (34)

where ε is a distance such that Nε/2 � r � d . Additionally
assume that the distance scale of the collapse is much less
than the size of the superposition: 1/α � r. So the operator Â1

acting on the vacuum creates N/2 fermions, each displaced a

FIG. 11. Schematic spacetime diagram showing the evolution
of a pair of spacelike separated macroscopic objects separated by
distance 2d . For timelike collapses, if there is a collapse at point x0,
the next collapse must occur in the future light cone of x0 (shaded
gray area), and therefore the object on the right will stay in a
superposition.

distance ε from each other centered about the point −(d + r)
(see Fig. 10), and similarly for Â2, B̂1, and B̂2.

The number operator for the whole system is

N̂T =
∫ ∞

−∞
dx â†(x)â(x). (35)

The number operator for the left part of the system is

N̂A =
∫ 0

−∞
dx â†(x)â(x), (36)

with the equivalent definition for N̂B. Finally, the number
operator for the region to the left of −d is

N̂A1 =
∫ −d

−∞
dx â†(x)â(x). (37)

The initial wave function |σ0〉 is an eigenstate of the number
operator for the total system:

N̂T |σ0〉

=
∫ ∞

−∞
dx â†(x)â(x)

1

2
(Â1 + Â2)(B̂1 + B̂2)|0〉

= 1

2
(NÂ1B̂1 + NÂ1B̂2 + NÂ2B̂1 + NÂ2B̂2)|0〉

= N |σ0〉.
The initial wave function is also an eigenstate of the num-

ber operator for the left part of the system,

N̂A|σ0〉

=
∫ 0

−∞
dx â†(x)â(x)

1

2
(Â1 + Â2)(B̂1 + B̂2)|0〉

= N

2
|σ0〉,

and similarly for the right part of the system, N̂B|σ0〉 =
N/2|σ0〉. However, the initial wave function is not in an
eigenstate of the number operator for the region to the left
of −d:

N̂A1 |σ0〉

=
∫ −d

−∞
dx â†(x)â(x)(Â1B̂1 + Â1B̂2 + Â2B̂1 + Â2B̂2)|0〉

= 1

2
(
N

2
Â1B̂1 + N

2
Â1B̂2 + I + I)|0〉, (40)

which is not proportional to |σ0〉. |σ0〉 is also not an eigen-
state of N̂A2 , N̂B1 , and N̂B2 . This implies there are two objects
each in a superposition over two areas, not one object in
a superposition over four areas, nor four objects each in a
localized position. The amplification mechanism will cause
a collapse of one of the objects almost immediately. Suppose
that the collapse is at spacetime point (t,−d + r), where t
is so small that U σt

σ0
≈ I. Then, following Eq. (6), we find

the wave function immediately after the collapse, on constant
time hypersurface σt to be

|σt 〉 = Ĵσt (−d + r)|σ0〉
‖Ĵσt (−d + r)|σ0〉‖2 , (41)
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where Ĵσt (x) is an approximation for the form of a relativistic
collapse operator L̂σt (x) in the limit of low-velocity particles.
The form of Ĵσt (x) is

Ĵσt (x)|σ0〉 =∫ ∞

−∞
dy K (y) fα (x − y)â†(y)â(y)|σ0〉, (42)

where fα (x) is a function sharply peaked about x = 0 with a
width proportional to 1/α and K (y) is a normalization func-
tion. This form ensures that particles are localized about the
point of collapse. To evaluate Eq. (41), consider just the term

Ĵσt (−d + r)Â1B̂1|0〉

= 1

2

∫ ∞

−∞
dy K (y) fα (−d + r − y)

× â†(y)â(y)
N/2∏
n=0

N/2∏
m=0

ĝ(−d − r, n)ĝ(d − r, m)|0〉.

The contributions from the ĝ(−d − r, n) and ĝ(d −
r, m) operators are weighted by factors of fα (−2r + nε/4)
and fα (2d − 2r + nε/4) respectively. As −2r + nε/4 � 1/α

and 2d − 2r + nε/4 � 1/α, then fα (−2r + nε/4) ≈ 0 and
fα (2d − 2r + nε/4) ≈ 0. Hence,

Ĵσt (−d + r)Â1B̂1|0〉 ≈ 0. (44)

A similar suppression occurs for Ĵσt (−d + r)Â1B̂2|0〉. How-
ever, the terms Â2B̂1 + Â2B̂2 are not suppressed as the fα is
approximately 1 for the part of the wave function centered on
−d + r. Therefore, we are left with

Ĵσt (−d + r)|σ0〉 ≈ N

4
Â2(B̂1 + B̂2)|0〉 (45)

and therefore

|σt 〉 ≈ 1√
2

Â2(B̂1 + B̂2)|0〉. (46)

So object 1 has been collapsed but object 2 remains in
a superposition. Object 2 will be left in a superposition for
approximately 2d/c s, where c is the speed of light, as can
be seen in Fig. 11. If d is sufficiently large, then one of the
macroscopic objects will remain in a spatial superposition for
an arbitrarily long time, in violation of what we observe in
nature.

To avoid this problem for macroscopic objects, then a col-
lapse model must permit spacelike points of collapse. If there
are spacelike collapse points, then the position of the initial
collapse does not limit the region of possible collapses. Hence,
any region with a high average number density of particles is
almost certain to have a collapse occur within it in a short time
interval. However, as discussed in Sec. IV C, if one attempts to
include spacelike collapses into the indistinguishable particle
model suggested here, then the model is not consistent with
special relativity.

V. CONCLUSION

In this work, we have considered the GRW model and
its consistency with special relativity. We have emphasized
that for a model to be consistent with special relativity the

TABLE I. A table showing the regimes where a relativistic GRW
model is possible.

Particle type Separable state Entangled state

Single Yes N/A
N distinguishable noninteracting Yes No
N indistinguishable noninteracting No No
Interacting No No

dynamics must be Lorentz covariant and initial conditions in
different inertial frames must be able to be be related, and
we have applied these requirements for the case of relativistic
GRW models. For a relativistic quantum theory, this means
that the initial wave function on a constant time hypersurface
must be able to related between different frames. In Table I,
we have summarized the conclusions of this work, showing
for which cases a relativistic GRW model is possible.

We have shown that a relativistic GRW is possible for sin-
gle particles and noninteracting, nonentangled distinguishable
particles as due to the fact that the collapses for each particle
are timelike to each other, the initial conditions can be related
in different inertial frames. However, for entangled noninter-
acting distinguishable particles (as entanglement implies that
spacelike collapses for one particle can effect the probability
of collapse of another particle), the initial conditions in dif-
ferent inertial frames cannot be related. For indistinguishable
particles, either the collapses are spacelike and hence not com-
patible with special relativity, or the collapses are timelike,
the recovery of macroscopic classicality is not certain, and
hence such a model is not a viable collapse model. For inter-
acting particles, as the interactions can entangle the particles,
the initial conditions in two frames cannot be related, and
hence there is not a relativistic GRW model for interacting
particles.

The question is then if any spontaneous collapse model
can be relativistic, whether that model describes pointlike
collapses such as in GRW or other models such as continuous
spontaneous collapse. The two requirements that collapses for
interacting particles must be timelike to each other to preserve
frame-independent probability distributions and that collapses
must be spacelike to ensure that macroscopic objects remain
localized seem to imply a contradiction and therefore that such
a model is not possible. Recent work by Adler [37] supports
this idea. If collapse models are not consistent with special rel-
ativity, the effect of violations of the Lorentz symmetry should
be investigated in order to be confronted by experiment.

One thing to note is that this work only considers the
fixed particle sector, and a completely relativistic collapse
model must also describe changes in particle number. This is
something that should be considered for further work in this
subject.
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