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Probing coherence and noise tolerance in discrete-time quantum walks:
Unveiling self-focusing and breathing dynamics
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The sensitivity of quantum systems to external disturbances is a fundamental problem for the implementation
of functional quantum devices, quantum information, and computation. Based on remarkable experimental
progress in optics and ultracold gases, we study the consequences of a short-time (instantaneous) noise while
an intensity-dependent phase acquisition is associated with a qubit propagating on an N cycle. By employing
quantum coherence measures, we report emerging unstable regimes in which quantum walks arise, such as
self-focusing and breathing dynamics. Our numerical and analytical results unveil appropriate settings which
favor the stable regime, with the asymptotic distribution surviving for weak nonlinearities and disappearing
in the thermodynamic limit with 1/N . The diagram showing the threshold between different regimes reveals
the quantum gates close to Pauli-Z as more noise tolerant. As we move towards the Pauli-X quantum gate,
such aptness dramatically decreases and the threshold to the self-focusing regime becomes almost unavoidable.
Quantum gates close to Hadamard exhibit an unusual aspect, in which an increment of the nonlinear strength
can remove the dynamics from the self-focusing regime.
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I. INTRODUCTION

Quantum walks on a lattice have been indicated as a pow-
erful environment for developing quantum algorithms, as well
as a versatile and intuitive framework capable of performing
any quantum computation [1–3]. In addition, quantum walks
have been shown to be ideal testbeds for studying and explor-
ing quantum systems [4–6]. Thus, designing and controlling
such quantum processes for the long-time dynamics is a fun-
damental issue that requires a deep understanding.

Quantum noises are the main obstacle for performance
improvement of quantum computing, since their presence can
destroy a fundamental component: the delicate quantum state
of qubits [7–12]. Decoherence is a physical phenomenon that
typically arises from the interaction of quantum systems and
their environment. In discrete-time quantum walks (DTQWs),
the decoherence in the quantum gates drives the walker to
a spreading rate quadratically slower in the long-time limit
[13–15]. Broken links, simultaneous measurements of chiral-
ity and position, random phases, and fluctuations in a given
preestablished unitary operation can also induce the same
behavior [16–19]. Such results have been corroborated by
experimental studies that describe the decoherence inducing
a crossover of quantum dynamics from ballistic to diffusive
[20–22]. Sub-ballistic and Anderson localized regimes have
been reported for quantum walks with specific irregularities
[23–25]. Effects of decoherence on discrete-time quantum
walks have been associated with a very fast mixing time
and uniform distribution regardless of the initial state of the
system and the parity of lattice size [26–31].

Nonlinear phenomena on a DTQW have also been investi-
gated, in which its source emerges from different frameworks

[32–38]. An anomalous slow diffusion has been reported for
feed-forward DTQWs, a nonlinear quantum walk in which
the coin operator depends on the coin states of the nearest-
neighbor sites [32]. Feed-forward DTQWs have provided
the dynamics of a nonlinear Dirac particle, with a descrip-
tion of solitonic behavior and the collisional phenomena
between them [33]. A modified conditional shift operator
displaying a dependence on the local occupation probability
shows solitonlike propagation and a chaotic regime [34]. By
using DTQWs which combine zero modes with a particle-
conserving nonlinear relaxation mechanism, a conversion of
two zero modes of opposite chirality into an attractor-repeller
pair of nonlinear dynamics was reported [36]. One of the
earliest studies reporting the emergent nonlinear phenomena
on DTQWs studied the nonlinear self-phase modulation on
the wave function during the walker evolution [37]. Restricted
only to Hadamard quantum gates, nondispersive pulses and
chaoticlike dynamics have been reported. A detailed study
exploring other quantum gates reveals a rich set of dynamical
profiles, including the self-trapped quantum walks, a localized
regime in which the quantum walker remains localized around
its initial position [38]. An interesting mathematical treatment
on nonlinear DTQWs is described in Ref. [35].

Although it seems natural to consider linearity in the
quantum regime, quantum-mechanical systems the effective
evolution of which is governed by a nonlinear dynamics
have been described in both optics [39] and Bose-Einstein
condensates [40,41], the same environments where quantum
walks have shown a remarkable experimental progress [6,20–
22,42,43]. By considering that fault-tolerant architectures are
built from the understanding of each possible ingredient, act-
ing simultaneously or not, we studied here the weight of a
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noise on the dynamics of a quantum walker within a nonlinear
framework. We consider a small and instantaneous amount
of decoherence on the qubit distribution, which expresses
a measurement process or other environmental intervention.
Nonlinear character is associated with an intensity-dependent
phase acquisition with a qubit propagating on the lattice,
which can represent an emerging third-order nonlinear sus-
ceptibility at photonic setups or interatomic interactions in
ultracold atomic systems. By systematically exploring quan-
tum coherence measures, we report appropriate settings which
favor the stable regime. However, unstable regimes unveil
DTQWs never once attained, such as the self-focusing and
breathing dynamics. The stability threshold was investigated
by varying the quantum gates, as well as the lattice size, which
estimates the quantum behavior in the thermodynamic limit.

II. MODEL

Here, we consider an intensity-dependent (nonlinear)
phase acquisition associated with a quantum walker propa-
gating on a one-dimensional lattice of interconnected sites
[37,38]. More precisely, the walker consists of a qubit, the
state |ψ〉 of which is associated with its position and in-
ternal state (chirality), which can be described by spin or
polarization states. Thus, |ψ〉 belongs to a Hilbert space H =
Hc ⊗ Hp, with positions described by the orthonormal basis
{|n〉: n ∈ Z} spanning the position Hilbert space Hp, while
the internal state is associated with a two-dimensional Hilbert
space Hc spanned by an orthonormal basis {|R〉 = (1, 0)T ,
|L〉 = (0, 1)T }.

Each step of evolution consists in quantum gates Ĉ located
in the lattice sites which act on the quantum walker and
shuffles its internal state, followed by spatial shifts to adjacent
sites (left or right) according to its new chirality. Thus, given
a general state written as

|ψ (t )〉 =
∑

n

[an,t |R〉 + bn,t |L〉] ⊗ |n〉, (1)

in which amplitudes an,t and bn,t are complex numbers that
satisfy

∑
n(|an,t |2 + |bn,t |2) = 1, a single step of dynamical

evolution is performed by applying the unitary transformation
|ψ (t + 1)〉 = Û |ψ (t )〉.

The standard (linear) protocol regards Û = Ŝ(Ĉ ⊗ Ip). Ip

describes the identity operator in space of positions and Ĉ is
an arbitrary SU (2) unitary operator given by

Ĉ = cos(θ )|R〉〈R| − sin(θ )|R〉〈L|
+ sin(θ )|L〉〈R| + cos(θ )|L〉〈L|, (2)

in which the parameter θ ∈ [0, 2π ] controls the variance of
the probability distribution of the walk. The conditional shift
operator Ŝ then performs Ŝ(|R〉 ⊗ |n〉) = |R〉 ⊗ |n + 1〉 and
Ŝ(|L〉 ⊗ |n〉) = |L〉 ⊗ |n − 1〉.

In our quantum algorithm, the qubit acquires an intensity-
dependent (nonlinear) phase in each step of the previous
protocol. We consider a quadratic nonlinearity depending on
the chirality state, which can represent either nonlinear optical
media in photonic setups or the interactions between atoms
for ultracold atomic systems. Thus, we add to dynamical

evolution protocol (Û ) one more operator

K̂t =
∑

n

(ei2πχ |ψ t
n,R|2 |R〉〈R|

+ ei2πχ |ψ t
n,L |2 |L〉〈L|) ⊗ |n〉〈n|, (3)

such that Û (t ) = Ŝ(Ĉ ⊗ Ip)K̂t−1. The parameter χ denotes
the nonlinear strength of the medium and χ = 0 restores the
standard (linear) protocol. Furthermore, periodic boundary
conditions are assumed on the conditional shift operator

Ŝ =
N−1∑

n=1

|n + 1〉〈n| ⊗ |R〉〈R| +
N∑

n=2

|n − 1〉〈n| ⊗ |L〉〈L|

+ |1〉〈N | ⊗ |R〉〈R| + |N〉〈1| ⊗ |L〉〈L|, (4)

in order to describe the N-cycle architecture employed here.
The important framework of DTQWs on cycles has been used
to display how quantum algorithms can be quadratically faster
than its classical correspondent [2] and how decoherence
can be useful in quantum walks [26], for example. Rigor-
ous treatment for noiseless DTQWs on N cycles has proved
the long-time average probability distribution of finding the
qubit in each site as being uniform on the sites for odd N
and nonuniform for even N [2,44]. Thus, we assume odd-N
lattices with the initial state of a qubit given by

|ψ (0)〉 = 1√
2N

N∑

n=1

(|R〉 + i|L〉) ⊗ |n〉, (5)

superposed to a weak noise (ε = 10−3/
√

2N). The latter ex-
presses the interaction with environment, which can represent
a measurement process. Hence, we evolve the state of a
quantum walker the initial amplitudes of which at each site
are randomly distributed in the interval [ 1√

2N
− ε, 1√

2N
+ ε],

in which a proper normalization is employed to ensure the
unitary norm of the resulting distribution.

III. RESULTS

We start following the dynamical evolution protocol de-
scribed above and computing the quantum coherence, the
rigorous measurement framework of which has only been
developed recently [45,46]. Among the advisable measures,
we compute the l1 norm coherence

Cl1(t ) =
∑

i

∑

i′ �=i

|ρi,i′ (t )|, (6)

defined as a sum of the absolute values of all off-diagonal
elements in the density matrix ρ = |ψ (t )〉〈ψ (t )| under the
reference basis. By considering the experimental character
an important issue, we observe such quantity being em-
ployed to directly measure quantum coherence of an unknown
quantum state [47]. Starting from an initial state maximally
coherent [Eq. (5)] [45,46], we show in Fig. 1 the l1 norm
coherence of the whole system at each time step for lat-
tices with N = 101 sites ruled by quantum gates Hadamard
(θ = π/4) [Figs. 1(a)–1(d)] and θ = π/3 [Figs. 1(e)–1(h)]
homogeneously distributed. In absence of nonlinearity (χ =
0.00) both quantum gates induce a dynamics with fluctuations
over time around a saturation value (Cl1(t ) ∼ 2N), which are
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FIG. 1. Time evolution of the l1 norm coherence of the whole
system for lattices with N = 101 sites and ruled by quantum gates
(a)–(d) θ = π/4 and (e)–(h) θ = π/3 homogeneously distributed.
Oscillatory patterns suggest the lack of stability of the stationary dis-
tribution as the nonlinear parameter χ increases, with the emergence
of regular and irregular (chaoticlike) breathing dynamics. Above a
critical nonlinear strength, which seems to depend on the quantum
gate, the further decrease in quantum coherence after some transient
time indicates the wave packet becoming even narrower.

fully consistent with previous literature [46]. However, this
behavior is heavily modified as χ grows. In Figs. 1(b) and
1(f), we observe the quantum coherence losing stability and
developing regular breaths for a small amount of nonlinearity
(χ = 0.02). As we further increase the nonlinearity, breath-
ing dynamics gives way to fluctuations the average value
of which is decreased when compared to the linear regime.
Such fluctuations become more rough, suggesting a chaotic
aspect. However, both lattices exhibit different behaviors as
χ increases even more. Lattices governed by Hadamard quan-
tum gates remain with coherence exhibiting rough fluctuations
around a decreased saturation value (Cl1(t ) ∼ 3N/2), just as
χ = 0.20. On the other hand, the coherence for lattices ruled
by θ = π/3 quantum gates reveals an additional decrease
after an initial transient, with oscillations Cl1(t ) ∼ N [see
Figs. 1(d) and 1(h)].

Since fluctuations in quantum coherence are related to
the oscillatory nature of the probability distribution [26], we
investigate the probability density distribution |ψn(t )|2. We
use in Fig. 2 the same configurations shown in Fig. 1, with
Figs. 2(a)–2(d) and Figs. 2(e)–2(f) illustrating the dynamical
behaviors for lattices governed by θ = π/4 and π/3 quantum

FIG. 2. Time evolution of the density of probability in position
space of a quantum walker for the same configurations of θ and χ

used in Fig. 1: (a)–(d) θ = π/4 and (e)–(h) θ = π/3. Corroborating
the previous results, we observe clear signatures of regular breathing
dynamics for weak nonlinearities. Although both scenarios culmi-
nate in a chaoticlike regime as the nonlinear parameter (χ ) increases,
the self-focusing quantum walk emerges only for θ = π/3, which
suggests a phenomenology with quantum gate dependence.

gates, respectively. Corroborating the coherence measures,
the spreading of the qubit remains uniformly extended
over the entire lattice while χ = 0.0, which signals the stabil-
ity of the uniform distribution even after the disturbance. Such
stability may disappear when nonlinearity is present, giving
way to different regimes. Fully agreeing with the expecta-
tions created from the coherence measures, the wave packet
develops regular breathings for very small nonlinearities and
irregular breathings, with a chaoticlike aspect, for strong
enough nonlinearities. The similarity between both lattices
vanishes with χ = 0.40. A self-focusing regime emerging
after an initial transient clarifies the strong decreasing of the
coherence reported for lattices with θ = π/3.

In order to better understand, we follow the time evolution
for a long time looking for χ configurations able to remove
the qubit dynamics from the limiting distribution. In Fig. 3
we show the relationship between the quantum gates (θ ) and
the critical nonlinearity (χsd ), above which the distribution
becomes unstable. We observe the stationary regime surviv-
ing to a greater range of nonlinearities when the system is
managed by quantum gates close to Pauli-Z (θ = 0). On the
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FIG. 3. Critical nonlinearity of the stationary state (χsd ) as a
function of θ (π units) showing quantum gates close to Pauli-Z better
able to sustain the stationary regime. A monotonic decreasing of χsd

as we move θ towards the Pauli-X gate is also observed, regardless
of the size N (arrow points to the growth of N). Inset: All the minima
of the coherence (Cmin

l1 ) as a function of the nonlinear strength (χ )
illustrating the critical point χsd , signaled by the significant change
in width of Cmin

l1 , which comes from the lack of stability and the
emerging breathing dynamics.

other hand, systems governed by quantum gates nearby to
Pauli-X (θ = π/2) are more sensitive, with minor critical
nonlinearities. Thus, quantum gates close to Pauli-Z are less
liable to provide qubits with logical errors. The stationary
regime threshold exhibits a monotonic decreasing as we move
towards the Pauli-X quantum gates. Such scenario clearly
demonstrates the sensitivity associated with the interference
terms of the quantum gates, which has its influence amplified
by the nonlinear component. The figure also shows a relation-
ship between the critical nonlinearity and the size N , with the
arrow pointing to the growth of N . The monotonic decline
of χsd as we leave systems ruled by Pauli-Z towards Pauli-X
systems remains unchanged. However, the increase of lattice
size makes the system more susceptible to instability, since
the range of nonlinearities capable of sustaining the stationary
regime decreases. The inset illustrates the critical point χsd ,
above which the distribution becomes unstable. We recorded
all the minima of l1 norm coherence (Cmin

l1 ) for every time
step throughout the dynamic evolution of a system ruled by
Hadamard quantum gates. By plotting Cmin

l1 as a function of
the nonlinear strength χ , we observe a well-defined change in
width of Cmin

l1 which is consistent with the lack of stability and
the emerging breathing dynamics [see Figs. 1(a), 1(b) 1(e),
and 1(f)].

The dependence between the critical nonlinearity and the
lattice size, which is suggested in Fig. 3, is shown for some
representative quantum gates in Fig. 4. The χsd vs N analysis
exhibits the critical nonlinearity scaling with 1/N , regard-
less of employed quantum gates. This behavior indicates the
stationary regime disappearing with N → ∞ for any finite
nonlinear strength, i.e., the stationary regime requires systems

100
N

10
-4

10
-3

10
-2

10
-1

χ sd

θ = π/6
θ = π/4
θ = π/3
θ = 4π/9

~N
-1

FIG. 4. Critical nonlinearity of the stationary state (χsd ) com-
puted for different lattice sizes and some representative quantum
gates. The χsd vs N analysis confirms the size dependence of the crit-
ical nonlinearities and reveals a gate-independent scaling χsd ∝ 1/N ,
which indicates the requirement for error-free operations to preserve
the stable regime in the thermodynamic limit N → ∞.

with error-free operations in the thermodynamic limit. Such
feature can be analytically reached by using the connection
between the dynamics of the discrete-time quantum walkers
and the Dirac particles. In absence of noise, previous studies
have shown a massive Dirac particle can be simulated on
a discrete-time quantum walk, for both the linear [48–52]
and nonlinear [33] systems. Interesting scenarios in which
discrete-time quantum walkers exhibit behavior congruous to
a massless Dirac fermion have also been reported [52–54].
Following the formalism employed in Refs. [33,51], which
shortly consists in taking an effective Hamiltonian for the
dynamics by defining a displacement operator using momen-
tum p̂ as e±p̂�xψ (x) = ψ (x ± �x) and relating it to the shift
operator, the discrete-time quantum walk evolution can be
written analogous to the 1 + 1-dimensional Dirac equation (in
units of h̄ = 1) as

i∂tψ = (−icα∂x + βmc2 + χ |ψ |2)ψ. (7)

The equivalent terms of mass, speed of light, and Dirac
matrices are related with quantum gates and Pauli matrices.
Although the familiar Dirac Hamiltonian exhibits a linear
equation in momentum, terms quadratic in momentum can
play an important role in characteristic scenarios, such as
for the formation of topological insulators [55,56]. Here,
our model also required quadratic corrections ∝ p2 to the
Dirac equation, justified from a second-order approximation
in e±i p̂ψ (t, x) [33,51], which results in a modified Dirac equa-
tion as follows:

i∂tψ = ( − icα∂x + βmc2∂2
x + βmc2 + χ |ψ |2)ψ. (8)

By considering the parametrization of Ref. [51], the mass
and speed of light equivalent terms are m = sin(θ ) and c = 1,
respectively. x is the spatial coordinate, α = −cos(θ )σ3 +
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sin(θ )σ1, and β = σ2, where σi (i = 1, 2, 3) are Pauli matri-
ces. Note that α and β are Hermitian matrices satisfying

α2 = β2 = I and αβ + βα = 0. (9)

To perform a stability analysis of the stationary regime
when subject to a perturbation, we start by observing that the
continuous version of Eq. (8) supports a continuous-wave so-
lution ψ (t ) = ψ0e−i(βmc2+χ |ψ0|2 )t , with ψ0 ∈ Re without loss
of generality. Just like in the numerical analysis, we impose a
slight perturbation ε(x, t ) in its amplitude:

ψ (x, t ) = [ψ0 + ε(x, t )]e−i(βmc2+χ |ψ0|2 )t . (10)

By considering a standard linearization as a function of the
initial state of the qubit [ε(x, t )  ψ0], we obtain the follow-
ing time evolution equation for the perturbation:

i∂tε = −icα∂xε + βmc2∂2
x ε + χ |ψ0|2(ε + ε∗). (11)

Here, ε∗ denotes the complex conjugate of ε and the abbrevi-
ation ε = ε(x, t ) has been used. Since a white noise random
perturbation exhibits a wide spectral range, which includes all
harmonic contributions, we study solutions given by

ε(x, t ) = a1ei(kx−t ) + a2e−i(kx−t ), (12)

where a1 and a2 are the amplitudes of the weak modulation, k
is the modulation wave number, and  is the frequency. Sub-
stituting Eq. (12) into Eq. (11) and considering its nontrivial
solution, we obtain the dispersion relation

 = cαk ±
√

βmc2k2(βmc2k2 − 2χ |ψ0|2). (13)

This result shows the stability of the stationary regime for
disturbances with large wave vectors, since  remains real.
In contrast,  ∈ Im reveals an exponential amplification of
all wave vectors with k <

√
2χ |ψ0|2/βmc2, which results in

breakup of continuous waves and thus describes the instability
of the uniform distribution. Given the nature and the bound-
ary conditions of the system, the allowed harmonic waves
have wave numbers in the interval 2π/N < k < 2π . Since the
wave-function normalization for a uniform solution provides
ψ0 = 1/

√
N , we observe the characteristic nonlinear strength

above which the solution is unstable as being χsd ∝ 1/N , in
full agreement with Fig. 4.

By considering the implementation of a universal set of
quantum gates as crucial for a quantum computing archi-
tecture, we extend our numerical experiments and show a
χ vs θ diagram in Fig. 5. Here, we compute the long-time
average of Cl1(t∞) for N = 101 lattice sites. Data reveal the
stationary regime surviving for weaker nonlinearities, pre-
vailing for systems configured next to the Pauli-Z quantum
gate, which is characterized by leaving the basis state |L〉
unchanged and takes |R〉 to −|R〉. Although Fig. 2 suggests the
stationary, breathing, chaoticlike, and self-focusing regimes in
ascending order of nonlinearity, the breathing regime persists
for systems with quantum gates close to Pauli-Z even for
strong nonlinearities. On the other hand, systems with quan-
tum gates nearby to Pauli-X exhibit a fairly narrow range of
χ for breathing dynamics. The emergence of the chaoticlike
regime is predominantly surrounding the (θ = π/6) quantum
gates, which arises for an intermediate nonlinear strength.
The self-focusing regime appears around the quantum gates

FIG. 5. Plot of χ vs θ for the long-time average of the l1 norm
coherence. Quantum gates close to Pauli-Z are more liable to sustain
the stationary distribution. As we increase θ towards the Pauli-Z gate
(θ = π/2), such propensity vanishes and different scenarios emerge
as we change χ : Breathing dynamics, chaoticlike, and self-focusing
quantum walks. The last ones are predominant when θ gets close to
the Pauli-Z gate. An unusual aspect is reported for quantum gates
close to Hadamard, in which an increment of χ can remove the
dynamics from the self-focusing regime.

of Hadamard, preceded by chaoticlike, breathing, and sta-
tionary regimes in decreasing order of nonlinearity. However,
we observe an unusual threshold between the self-focusing
and chaoticlike regimes: The increment on the nonlinear pa-
rameter is able to direct the system from the self-focusing
to the chaoticlike regime, which persists as the nonlinearity
increases. Such remarkable feature agrees with report of self-
trapped quantum walks described for narrow qubits spreading
in noiseless systems [38]. For systems ruled by quantum gates
close to Pauli-X, which is characterized by mapping |L〉 to |R〉
and |R〉 to |L〉, the self-focusing regime emerges for very weak
nonlinearities and remains for the strongest nonlinearities. On
the other hand, the self-focusing regime is absent as θ gets
very close to Pauli-Z.

IV. CONCLUSIONS

In summary, we have implemented a quantum protocol in
order to rate the sensitivity to a short-time (instantaneous)
noise while nonlinear components are present in a discrete-
time quantum walk. The intensity-dependent nonlinearity is
based on possible third-order nonlinear susceptibility in op-
tical setups or emergent interatomic interactions in ultracold
atomic systems, while the noise can represent a measurement
process or other environmental intervention. Our results un-
veil optimal sets of operating parameters that favor a stable
operation. Quantum gates close to Pauli-Z are more noise
tolerant, contrary to the behavior exhibited by quantum gates
near Pauli-X gates. When it loses stability, the system may
present breathing dynamics and self-focusing quantum walks.
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Numerical and analytical analysis exhibits the crossover from
the uniform distribution to the unstable regime decaying as
1/N reveals a fault-intolerant system in the thermodynamic
limit (N → ∞), i.e., nonlinearities may be responsible for
the inability to encode and decode qubits robustly. We con-
sider optical systems as the most promising for a current
experimental achievement, in which the use of Kerr-like
optical media in the optical paths of experimental settings
such as linear cavities [57], optical rings [58,59], Michel-
son interferometers [60], and optical lattices [61] would be
responsible for nonlinear character. Another possibility con-
sists of an optical network with a cascade of beam splitters,
the adjustable transmission of which would be conditioned
to the output of photodetectors for each path [32]. In addi-

tion to contributing to the deeper fundamental understanding
on discrete-time quantum walks, breathing and self-focusing
quantum walks also bring applicability prospects for mi-
croresonators, lensinglike effects, and wave guiding, which
arises from accumulated self-focusing.
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