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Exact variational dynamics of the multimode Bose-Hubbard model based on SU(M) coherent states
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We propose a variational approach to the dynamics of the Bose-Hubbard model beyond the mean-field
approximation. To develop a numerical scheme, we use a discrete overcomplete set of Glauber coherent states
and its connection to the generalized coherent states studied in depth by Perelomov [Perelomov, Generalized
Coherent States and Their Applications (Springer-Verlag, Berlin, 1986)]. The variational equations of motion
of the generalized coherent state parameters as well as of the coefficients in an expansion of the wave function
in terms of those states are derived and solved for many-particle problems with large particle numbers S and
increasing mode number M. For M = 6, it is revealed that the number of complex-valued parameters that have
to be propagated is more than one order of magnitude less than in an expansion in terms of Fock states.
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I. INTRODUCTION

The mathematical foundation of the phase space formu-
lation of physical systems with Lie group symmetries has
been considerably widened by the works of Brif and Mann
[1,2]. Based on their progress, the description of the Bose-
Hubbard (BH) dynamics in terms of phase space distributions
has received new impetus from the works of Korsch and col-
laborators [3,4]. Therein, equations of motion for the P as well
as the Q function of quantum optics [5,6] have been derived
and solved for small site numbers M. The basis functions that
were found appropriate for the treatment of the particle num-
ber conserving dynamics are so-called SU(M ) coherent states
(CS), also referred to as generalized coherent state (GCS) [7].
These have been investigated and favored in the same context
by Buonsante and Penna in their review [8], whose focus is
on variational mean-field methods. A more recent review with
a focus on SU(2) CS, introduced as atomic coherent states in
Ref. [9], is given in Ref. [10]. An extension of the formalism
towards dissipative Lindblad type equations in terms of P
functions has been given in Ref. [11].

In parallel, the use of discrete, complete von Neumann
type sets of the more “standard” Glauber coherent states,
whose position representation are Gaussian wave packets,
has been applied to a flurry of different physical situations,
ranging from electron dynamics in atoms to nuclear dynamics
in molecules as well as to nonadiabatic (combined electron-
nuclear motion), as reviewed in Refs. [12–17]. The equations
of motion of the coherent state parameters as well as of the
coefficients in the expansion of the wave function in terms of
those states are usually derived from a variational principle
and possibly undergo additional approximations. It has turned
out in numerical investigations that the use of a surprisingly
small number of CS basis functions leads to converged results,
e.g., in spin-boson type problems tackled by the so-called
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multi Davydov D2 ansatz [18–20], or in the method called
coupled coherent states for indistinguishable bosons [21].

Furthermore, in Ref. [22], a generalization of the mul-
ticonfiguration time-dependent Hartree method for bosons
(MCTDHB) [23] based on McLachlan’s variational princi-
ple has been given. The time-dependent permanents used
there are based on orthogonal orbitals, however. Previous
approaches that have used Glauber coherent state based semi-
classical propagators for BH dynamics have been restricted
to small mode numbers [24,25], as is also the case for semi-
classical approaches based on SU(M ) CS [26,27], whereas
mean-field approaches as the ones discussed in Ref. [8] rely
just on a single basis function (i.e. trivial multiplicity).

It has been worked out in Refs. [28,29], that Gaussian CS
are promising basis functions also for full fledged dynami-
cal calculations for BH dynamics beyond the semiclassical
propagation or the Gross-Pitaevskii level [30]. Similarly,
imaginary time propagation to find the ground state as well
as real-time propagation to extract the excitation spectrum
using Gaussians has been performed recently for BH systems
[31]. In addition, in the two mode case, the use of a single
time-dependent atomic coherent state has been promoted in
Ref. [32]. These successes as well as that of the CS basis
functions alluded to above, leads us to investigate the question
if also for the fixed particle number generalized coherent
states multimode BH dynamics can be treated by a numeri-
cally exact variational approach, based on a multitude of those
GCS.

The presentation is organized as follows. First, in Sec. II,
we review the one-dimensional BH model and the relation
between the Glauber (field) coherent states [33] and the (gen-
eralized) SU(M ) coherent states [7]. This latter review is
necessary in order to get a handle on the discretization of the
representation of unity in terms of these states. In Sec. III,
we then derive the variational equations of motion for the
GCS parameters using the Lagrangian of the time-dependent
variational principle. As a proof of principle in Sec. IV, we
finally solve the dynamical problem for several realizations of
the BH model with different (relatively large) mode number
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M and particle number S > M and compare to results gained
from an expansion in Fock states where this is still feasible.
Conclusions are given in Sec. V, while in the Appendix some
properties of the GCS that are needed in the main text, as well
as the matrix form of the variational equations and a detailed
convergence study are gathered.

II. BOSE-HUBBARD MODEL AND COMPLETENESS
OF SU(M) COHERENT STATES

In the following, we are constructing a discrete set of GCS
for use in a variational approach to the dynamics of the BH
model, which is going to be reviewed first.

A. Bose-Hubbard model in one dimension

In this presentation, we are aiming at a treatment in terms
of the variational principle of the dynamics of the one-
dimensional linear chain BH model [34]

Ĥ =−J
M−1∑
j=1

[
(â†

j â j+1 + H.c.)
]+ U

2

M∑
j=1

â†2
j â2

j

+ K

2

M∑
j=1

( j − j0)2â†
j â j, (1)

written here in normal-ordered form in terms of bosonic
creation and annihilation operators, â†

j and â j , which fulfill

the commutation relation [âi, â†
j ] = δ̂i j and whose action on

number states {|nj〉}, n j = 0, 1, . . . is given by

â j |n j〉 = √
n j |n j − 1〉, â†

j |n j〉 = √n j + 1|n j + 1〉. (2)

The hopping matrix element J is determined by the tunneling
probability between nearest neighbors, whereas U denotes
the on-site interaction, and K is due to an external, harmonic
trapping potential (centered around j0), which will, however,
be set to zero for all the numerical results to be presented
below. The above Hamiltonian is a widely studied model for
the dynamics of spinless particles in optical lattices [35]. An
experimental realization of a quantum phase transition has
been reached by varying the model’s parameters [36]. Further-
more, Kolovsky has given a review of the spectral properties
of the BH Hamiltonian in the light of quantum chaology [37].

In Ref. [3], it has been argued that an analysis in terms of
flat space and the use of the corresponding Glauber coherent
states to describe particle number preserving BH dynamics
is inadequate. The reason given, in the case of M sites (or
modes), is that the dynamical group is spanned by the nor-
mally ordered operators

â†
i â j, i, j ∈ {1, 2, . . . M} (3)

and is equivalent to the special unitary group SU(M ).
Therefore the corresponding GCS should be employed to
investigate the dynamics. We note in passing that, in terms
of the normally ordered operators from Eq. (3), the operators
â†2

j â2
j from Eq. (1) are written as n̂ j (n̂ j − 1), with the number

operators n̂ j = â†
j â j .

B. Discrete grid of generalized coherent states

An insightful didactic discussion of the group theoretical
construction of coherent states is given in [5]. Starting by
revisiting the simple case of Glauber field coherent states
as the coherent states of the Heisenberg Weyl group, more
complex situations are discussed, where the group theoretical
approach will be more advantageous for the understanding of
the topological structure of the corresponding coherent states
than in the simple case. An open question remains as to the
completeness of a discrete set of coherent states in the general
case, however.

The Glauber coherent states |z〉 (single site case) can be
defined via the eigenvalue equation

â|z〉 = z|z〉 (4)

with the complex eigenvalue

z = γ 1/2q + iγ −1/2 p√
2

(5)

in terms of position and momentum (phase space) and width
parameter γ . These states consist of a Poissonian superposi-
tion of number states [33].

Exactly fifty years ago, two independent contributions have
proven the statement that a discretized version of the unit
operator is given by∑

k,l

|zk〉(�−1)kl〈zl | = Î, (6)

with the overlap matrix � with elements

�kl = 〈zk|zl〉, (7)

if the requirement

zk = β(m + in), (8)

with k = (m, n) where m, n are integers and 0 < β � √
π , for

the spacing of the grid points is met [38,39]. Physically, this
means that the cells in (p, q) phase space that are spanned
by the grid points must have an area less than or equal to
the Planck cell area of 2π in the present units (where h̄ = 1).
The limiting case of

√
π for the spacing of the grid points has

already been postulated long before by von Neumann [40,41].
As mentioned above, for the BH model, generalized

SU(M ) coherent states are the appropriate coherent states,
staying within the particle number conserving subspace of
the dynamics. In order to get a handle on their completeness,
we use the expansion of a Glauber coherent state in terms of
the generalized CS. The representation of the multimode GCS
that is most appropriate to this end is [8]

|S, �ξ 〉 = 1√
S!

(
M∑

i=1

ξia
†
i

)S

|0, 0, . . . , 0〉, (9)

where |0, 0, . . . , 0〉 denotes the multimode vacuum state and
S is the number of bosons of the GCS. Some properties of the
GCS that will be needed later-on are gathered in Appendix A.
The set of complex numbers {ξi} are characteristic parameters
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of the GCS, and they satisfy the normalization condition

M∑
i=1

|ξi|2 = 1, (10)

where M represents the number of different modes present in
the BH model of Eq. (1). Together with the total number of
bosons S (not restricted to, but herein chosen to be larger than
M ), this determines the dimension of the Hilbert space

CF =
(

M + S − 1

M − 1

)
=
(

M + S − 1

S

)
= (M + S − 1)!

S!(M − 1)!
(11)

spanned by the Fock states [37]. The relation of the above
definition of the GCS to the group theoretical formulation for
M > 2 is obscured by the necessity to disentangle exponen-
tiated operators [8]. It is helpful to write out the definition in
Eq. (9) explicitly for small numbers M = 2 < S to convince
oneself of the fact that the GCS is a superposition of Fock
states with coefficients to be determined from a generalized
binomial formula.

As shown in [8], and as can be proven by Taylor expansion
of the exponential function, the multimode Glauber coherent
state |Z〉 =∏M

i=1 |zi〉, and the GCS are related by

|Z〉 = e− 1
2

∑M
i=1 |zi|2 e

∑M
i=1 zia

†
i |0, 0, . . . , 0〉

= e− 1
2

∑M
i=1 |zi|2

∞∑
S=0

1

S!

(
M∑

i=1

zia
†
i

)S

|0, 0, . . . , 0〉

= e− Ñ
2

∞∑
S=0

Ñ
S
2√
S!

1√
S!

(
M∑

i=1

zi√
Ñ

a†
i

)S

|0, 0, . . . , 0〉

= e− Ñ
2

∞∑
S=0

Ñ
S
2√
S!

|S, �ξ 〉. (12)

Here, Ñ =∑M
i=1 |zi|2 denotes the average number of bosons in

|Z〉. We note that the relationship between ξi and zi is ξi = zi√
Ñ

.
Thus it is natural to construct a one-to-one map between the
sets {ξk,i} and {zk,i} (here the first index denotes the basis
function discretization index and second index denotes the
mode index) to be used in a discretized version of the unit
operator.

To this end, we first generalize the completeness relation
for the single site case from Eq. (6) for multimode Glauber
coherent states: If the complex grid LM

P,Q which lies in the mul-
tidimensional complex Z plane satisfies the multidimensional
Planck cell condition, the multimode coherent states will form
an overcomplete set and they obey the closure relation∑

k,l

Ak,l |Zk〉〈Zl | = Î, Zk, Zl ∈ LM
P,Q, (13)

where

A = �−1, �kl = 〈Zk|Zl〉, (14)

with the multidimensional direct product CS |Zk〉 =
|zk1, zk2, . . . zkM〉. A heuristic proof of the closure relation can
be obtained in the following way: Given any two coherent

states |Zm〉 and |Zn〉 and inserting unity in the multi degree
of freedom case yields

〈Zm|Zn〉 =
N∑

k,l=1

Akl〈Zm|Zk〉〈Zl |Zn〉

=
N∑

k,l=1

〈Zm|Zk〉Akl〈Zl |Zn〉. (15)

This equation has the matrix form � = �A� with the overlap
matrix � from Eq. (14) above. With the definition of the
matrix A as the inverse of the overlap matrix, the matrix
equation becomes an identity.

From this, we infer that if a set of states is complete
in the whole Hilbert space, these states are also complete
for any subspaces which belong to the Hilbert space. In our
present case, we take the subspace to be the one consisting
of multimode Fock states {|nS〉 = |n1, n2, . . .〉|n1, n2, . . . ∈
N , 〈nS|N̂ |nS〉 = S, N̂ =∑i n̂i} with fixed number of bosons
S.

Since the Glauber coherent state can be written as a sum of
SU(M ) coherent states, according to

|zk1, zk2, . . . , zk j, . . .〉

= e− Ñ
2

∞∑
S=0

Ñ
S
2√
S!

|S, ξk1, ξk2, . . . , ξk j, . . .〉, (16)

there is a map zk j → ξk j = zk j√∑M
i=1 |zki|2

. Unlike the

|zk1, zk2, . . . , zk j, . . .〉 where the parameters zk1, zk2, . . . ,

zk j, . . . are mutually independent, the ξk1, ξk2, . . . , ξk j, . . .

are correlated due to the normalization factor 1√∑M
i=1 |zki|2

,

however.
It is obvious that if the zk1, zk2, . . . , zk j, . . . form a complex

grid fulfilling the completeness criterion, then the correspond-
ing ξk1, ξk2, . . . , ξk j, . . . will also form a complete basis⎧⎨
⎩|S, ξk1, ξk2, . . . , ξk j, . . .〉|ξk j = zk j√∑M

i=1 |zki|2
, zk j ∈ LM

P,Q

⎫⎬
⎭.

(17)

for the subspace {|nS〉 = |n1, n2, . . .〉|n1, n2, . . . ∈
N , 〈nS|N̂ |nS〉 = S, N̂ =∑i n̂i}.

We now consider the two-mode case as an instructive
example. The two initially independent complex grids for
zk1 and zk2 are shown in Fig. 1. Taking samples from these
two grids for zk1 and zk2 randomly at the same time, every
produced pair of {zk1, zk2} forms a two-mode Glauber co-
herent state |zk1, zk2〉. The {zk1, zk2} correspond to a set of
couples of parameters {ξk1, ξk2} = { zk1√

|zk1|2+|zk2|2
, zk2√

|zk1|2+|zk2|2
}

for the SU(2) coherent states, but due to the mutual corre-
lation between ξk1 and ξk2, they cannot be presented on two
independent complex planes. We are now rewriting the GCS
parameters in the form

ξk1 = cos

(
θk

2

)
, (18)

ξk2 = sin

(
θk

2

)
eiφk , (19)
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Im(z)
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01 Re(z) z

02

Im(z)

Re(z)

FIG. 1. The complex grids for z1 and z2 in the case of two modes.
They are centered around {z01, z02} = {ξ01, ξ02} given by the GCS
parameters of the initial state.

where 0 � θk � π and 0 � φk � 2π are the angles and the
relative phases, respectively. Because we have just two angles
for every k and because of the factor of 1/2 that comes
along with the angle θk , this allows us to represent the GCS
parameters as points on the northern hemisphere of the Bloch
sphere.

For a visualization, we first generated 50 random pairs
of {zk1, zk2}. Using the angles {θk, φk}, the corre-
sponding 50 pairs of {ξk1, ξk2} can be expressed via
{cos(θk/2) cos(φk ), cos(θk/2) sin(φk ), sin(θk/2)}, as dis-
played in Fig. 2.

The procedure just presented can be generalized to more
than just two modes and will allow us to perform numerical
calculations with a finite, presumably small number of GCS
for the BH model. Before we can do so, we have to derive the
relevant equations of motion, however.

FIG. 2. Some of the 50 grid points {ξk1, ξk2} on the surface of the
unit sphere. There are more points on the back, which are invisible
from the present perspective.

III. LAGRANGIAN FORMULATION OF THE
VARIATIONAL DYNAMICS

Generalizing the variational coherent state ansatz reviewed
in Ref. [17] by using the GCS discussed above, we are led to
the expression

|
(t )〉 =
N∑

k=1

Ak (t )|S, �ξk (t )〉 (20)

for the wave function, where |S, �ξk (t )〉 =
|S, ξk1(t ), ξk2(t ), . . . ξkM (t )〉 and M is the number of modes
in the BH Hamiltonian of Eq. (1). The initial set of basis
functions {|S, �ξk (0)〉} is the one constructed in the previous
section. Both the expansion coefficients {Ak (t )} as well as
the basis functions are time-dependent. The multiplicity
parameter N determines the number of interacting, complex
parameters whose dynamics is to be determined. It is given
by (M + 1)N and will have to be compared to the number
of Fock states given in Eq. (11). The N replicas of condition
(10), in principle, reduce the number of independent real
parameters by N but we did not make use of this fact in the
numerics to be presented in the next section [although we
monitored that (10) is fulfilled]. We stress that the Ansatz
above goes beyond mean-field Ansätze a la Gutzwiller, used,
e.g., in Ref. [42].

The time-dependent variational principle can be formu-
lated in terms of the Lagrangian

L = i

2
[〈
|
̇〉 − 〈
̇|
〉] − 〈
(t )|Ĥ |
(t )〉, (21)

and is leading to the Euler-Lagrange equations

∂L

∂u∗
k

− d

dt

∂L

∂ u̇∗
k

= 0, (22)

where uk can be any element of {Ak, ξk1, . . . ξkM} [43]. A com-
parison of the different variational principles in this context,
which are McLachlan, time-dependent and Dirac-Frenkel is
performed in Refs. [44] and [22,23] as well as in Ref. [45].
From Eq. (20) it is obvious that the wave-function ansatz does
not contain the complex conjugates of any of the parameters
and that thus the Cauchy-Riemann conditions are fulfilled and
all three variational principles are equivalent, analogous to the
equivalence worked out in Ref. [23] for MCTDHB.

To proceed, we first need to calculate the expression (sup-
pressing the S dependence of the basis states in a short-hand
notation)

i

2
[〈
|
̇〉 − 〈
̇|
〉]

= i

2

N∑
k, j=1

(A∗
k Ȧ j − Ȧ∗

kA j )〈�ξk|�ξ j〉

+ i

2
S

N∑
k, j=1

A∗
kA j

M∑
i=1

(ξ ∗
kiξ̇ ji − ξ̇ ∗

kiξ ji )〈 �ξ ′
k| �ξ ′

j〉 (23)

for the time derivative. Here we have used the expressions for
the right and left time derivatives from Eqs. (A12) and (A13)
to arrive at the final result.
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Furthermore, from the Hamiltonian for the multimode BH model in Eq. (1), we get the expectation value

H = 〈
(t )|Ĥ |
(t )〉

=
N∑

k, j=1

A∗
kA j

[
−JS

M−1∑
i=1

(ξ ∗
kiξ j,i+1 + ξ ∗

k,i+1ξ ji )〈 �ξ ′
k| �ξ ′

j〉 + U

2
S(S − 1)

M∑
i=1

ξ ∗2
ki ξ 2

ji〈 �ξ ′′
k | �ξ ′′

j 〉 + S
K

2

M∑
i=1

(i − j0)2ξ ∗
kiξ ji〈 �ξ ′

k| �ξ ′
j〉
]
, (24)

where we have again used definitions of the (S − 1) and (S − 2)-boson GCS from Appendix A. Combining Eqs. (23) and (24),
we arrive at the Lagrangian for the multimode BH model

L = i

2

N∑
k, j=1

(A∗
k Ȧ j − Ȧ∗

kA j )〈�ξk|�ξ j〉 + i

2
S

N∑
k, j=1

A∗
kA j

M∑
i=1

(ξ ∗
kiξ̇ ji − ξ̇ ∗

kiξ ji )〈 �ξ ′
k| �ξ ′

j〉

−
N∑

k, j=1

A∗
kA j

[
−JS

M−1∑
i=1

(ξ ∗
kiξ j,i+1 + ξ ∗

k,i+1ξ ji )〈 �ξ ′
k| �ξ ′

j〉 + U

2
S(S − 1)

M∑
i=1

ξ ∗2
ki ξ 2

ji〈 �ξ ′′
k | �ξ ′′

j 〉 + S
K

2

M∑
i=1

(i − j0)2ξ ∗
kiξ ji〈 �ξ ′

k| �ξ ′
j〉
]
. (25)

This leads to the following derivatives of the Lagrangian with respect to the coefficients A∗
k and their time derivatives:

∂L

∂A∗
k

= i

2

N∑
j=1

Ȧ j〈 �ξk| �ξ j〉 + i

2
S

N∑
j=1

Aj

M∑
i=1

(ξ ∗
kiξ̇ ji − ξ̇ ∗

kiξ ji )〈 �ξ ′
k| �ξ ′

j〉 − ∂H

∂A∗
k

, (26)

d

dt

∂L

∂Ȧ∗
k

= − i

2

N∑
j=1

Ȧ j〈�ξk|�ξ j〉 − i

2
S

N∑
j=1

Aj

M∑
i=1

(ξ ∗
kiξ̇ ji + ξ̇ ∗

kiξ ji )〈 �ξ ′
k| �ξ ′

j〉, (27)

where

∂H

∂A∗
k

=
N∑

j=1

Aj

[
−JS

M−1∑
i=1

(ξ ∗
kiξ j,i+1 + ξ ∗

k,i+1ξ ji )〈 �ξ ′
k| �ξ ′

j〉 + U

2
S(S − 1)

M∑
i=1

ξ ∗2
ki ξ 2

ji〈 �ξ ′′
k | �ξ ′′

j 〉 + S
K

2

M∑
i=1

(i − j0)2ξ ∗
kiξ ji〈 �ξ ′

k| �ξ ′
j〉
]
. (28)

From the Euler Lagrange equation (22), the equation of motion for the coefficient Aj

i
N∑

j=1

Ȧ j〈 �ξk| �ξ j〉 + iS
N∑

j=1

Aj

M∑
i=1

ξ ∗
kiξ̇ ji〈 �ξ ′

k| �ξ ′
j〉 − ∂H

∂A∗
k

= 0 (29)

can thus be obtained.
Next we switch to the equations of motion for the parameters ξkm of the SU(M ) coherent states. For the corresponding

derivatives of the Lagrangian, we find

∂L

∂ξ ∗
km

= i

2
S

N∑
j=1

(A∗
k Ȧ j − Ȧ∗

kA j )ξ jm〈 �ξ ′
k| �ξ ′

j〉 + i

2
S

N∑
j=1

A∗
kA j ξ̇ jm〈 �ξ ′

k| �ξ ′
j〉

+ i

2
S(S − 1)

N∑
j=1

A∗
kA j

[
M∑

i=1

(ξ ∗
kiξ̇ ji − ξ̇ ∗

kiξ ji )ξ jm〈 �ξ ′′
k | �ξ ′′

j 〉
]

− ∂H

∂ξ ∗
km

, (30)

d

dt

∂L

∂ξ̇ ∗
km

= − i

2
S

N∑
j=1

(Ȧ∗
kA j + A∗

k Ȧ j )ξ jm〈 �ξ ′
k| �ξ ′

j〉 − i

2
S

N∑
j=1

A∗
kA j ξ̇ jm〈 �ξ ′

k| �ξ ′
j〉

− i

2
S(S − 1)

N∑
j=1

A∗
kA j

M∑
j=1

(ξ̇ ∗
kiξ ji + ξ ∗

kiξ̇ ji )ξ jm〈 �ξ ′′
k | �ξ ′′

j 〉, (31)

with

∂H

∂ξ ∗
km

=
N∑

j=1

A∗
kA j

[
−JS(ξ j,m+1 + ξ j,m−1)〈 �ξ ′

k| �ξ ′
j〉 − JS(S − 1)

M−1∑
i=1

(ξ ∗
kiξ j,i+1 + ξ ∗

k,i+1ξ j,i )ξ jm〈 �ξ ′′
k | �ξ ′′

j 〉 + US(S − 1)ξ ∗
kmξ 2

jm〈 �ξ ′′
k | �ξ ′′

j 〉

+U

2
S(S − 1)(S − 2)

M∑
i=1

ξ ∗2
ki ξ 2

jiξ jm〈 �ξ ′′′
k | �ξ ′′′

j 〉 + K

2
S(m − j0)2ξ jm〈 �ξ ′

k| �ξ ′
j〉 + K

2
S(S − 1)

M∑
i=1

(i − j0)2ξ ∗
kiξ jiξ jm〈 �ξ ′′

k | �ξ ′′
j 〉
]
.

(32)
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Again using the Euler-Lagrange equation, we finally arrive at the differential equation

iS

[
N∑

j=1

A∗
k Ȧ jξ jm〈 �ξ ′

k| �ξ ′
j〉 +

N∑
j=1

A∗
kA j ξ̇ jm〈 �ξ ′

k| �ξ ′
j〉 + (S − 1)

N∑
j=1

A∗
kA j

M∑
i=1

ξ ∗
kiξ̇ jiξ jm〈 �ξ ′′

k | �ξ ′′
j 〉
]

− ∂H

∂ξ ∗
km

= 0 (33)

for the ξkm. Equations (29) and (33) are coupled and nonlinear,
as in the more standard case of Glauber coherent states as ba-
sis functions. There are no exponential function nonlinearities
though, because the GCS overlaps are “simpler” than in the
Glauber case, as can be seen in Appendix A.

In Appendix B, we put the nonlinear, coupled, implicit dif-
ferential equations for the GCS parameters and the expansion
coefficients in matrix form, which allows us to solve them
efficiently numerically.

IV. NUMERICAL RESULTS

As a proof of principle, in the following, we will present
numerical results for the population dynamics of the BH
model with J = 1, based on the complex grid for SU(M )
coherent states introduced in Sec. II B for increasing mode
number M < S, leading to an ever increasing size of the Fock
state basis. If possible, numerical results from a calculation
in the full Fock space are compared with the GCS results.
As a guide, in Table I, the different parameters for which
results will be presented are collected, highlighting the di-
mension of the Fock space as well as the number of complex
parameters, (M + 1)N , needed for converged results using the
GCS method. We note that almost converged results can be
gained by using much smaller GCS bases than indicated in the
table. Furthermore, for longer time series more basis functions
will be needed and, as shown in Appendix C, closely spaced
grids help to keep the number of basis functions needed for
convergence small. For minimization of the number of basis
functions, both, randomization of the grid, as well as reduction
of grid spacing should be performed. This has been done only
for the cases M = 4 and M = 6, however.

A. The two mode case M = 2

Firstly, for the driven two-mode BH model with a time-
dependent tunneling matrix element studied in Ref. [4], the

Hamiltonian can be written as

H = −J (t )(a†
1a2 + a†

2a1) + U

2

(
a†2

1 a2
1 + a†2

2 a2
2

)
+ K

2

∑
j=1

( j − j0)2a†
j a j, (34)

where J (t ) = J0 + J1 cos(ωt ). The initial state

|
(0)〉 = |S = 50, ξ1 = −
√

0.7, ξ2 =
√

0.3〉 (35)

used for the propagation is the same as in Ref. [4].
By means of the SU(2) coherent states originating from

the complex grid of Glauber coherent with distance
√

π , we
employ the ansatz

|
(t )〉 =
N∑

k=1

Ak (t )|S = 50, ξk1(t ), ξk2(t )〉 (36)

for the wave function that contains 3N complex parameters.
The random grid one is constructed such that it contains the
initial state in the “middle,” as indicated in Fig. 1.

Converged results for the population (normalized to the
total number of particles) of the first mode as a function of
time were obtained by using N = 25 basis states and even 15
states lead to almost perfect results as is shown in Fig. 3. These
results agree with the ones shown in Fig. 12(c) in Ref. [4].
We stress that for trivial multiplicity N = 1, the result is only
reasonable for a very short time period and thereafter looses
its predictive power, as can be seen in Fig. 3.

There is no big difference in the number of complex param-
eters that have been used for the converged results, compared
to the size of the Fock space basis, which here is just 51,
however. Therefore let us investigate increasing mode number
in the following.

TABLE I. Collection of parameters of numerical studies presented below. In dependence of mode number M (column index) and particle
number S (line index), the table’s entries give the size of the Fock state basis from Eq. (11), as well as the number of complex parameters
needed for converged GCS results and where in the text the numerical results can be found. For M = 2, S = 200, the underlying grid was
a diagonal grid (see Appendix C). For M = 2, S = 50, the grid in Sec. IV A was random with spacing

√
π and the one in Appendix C was

diagonal but with optimized spacing.

2 3 4 6

20 CF = 231 CF = 53130
200, Sec. IV B 3500, Sec. IV C

30 CF = 5456
500, Appendix C

50 CF = 51
75, Sec. IV A, Appendix C

200 CF = 201
243, Appendix C
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86420
J

0
t

0.4

0.5

0.6

0.7

0.8

0.9

1

<
N

1>
/S

N=1 N=15
N=25 N=50
Exact

FIG. 3. Dynamics of the population of the first mode of a two
mode BH model with different numbers of SU(2) basis states. The
particle number is S = 50, the hopping parameter is J0 = 1, the
on-site interaction energy is U = 0.1J0 and K = 0. The driving fre-
quency and strength are ω = 2π/J0 and J1 = 0.5J0. Different lines
are results for different numbers of GCS: solid: N = 1, dashed:
N = 15, dotted: N = 25, dash-dotted: N = 50. Stars denote Fock
space results.

B. The three mode case M = 3

For three modes occupied by 20 bosons, we first choose the
superposition of Fock states

|
(0)〉 =
∣∣∣∣S = 20, ξ1 =

√
2

2
, ξ2 = i

√
2

2
, ξ3 = 0

〉
(37)

as the initial state. In this case, our numerical results in
Fig. 4 show that convergence is achieved with 50 basis func-
tions, i.e., 200 complex parameters, a little less than the 231

0 5 10 15 20
Jt

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

<
N

1>
/S

N=50
N=100
N=200
Exact

FIG. 4. Dynamics of the population of the first mode for three
mode case for initial state (37). The on-site interaction energy is U =
0.1J , whereas K = 0. Results for different number of basis functions
(solid: N = 50, dashed N = 100, dash-dotted N = 200) are almost
indistinguishable. Stars denote Fock space results.

0 5 10 15 20
Jt

0

0.2

0.4

0.6

0.8

1
<N

1
>/S <N

1
>/S

<N
2
>/S <N

2
>/S

<N
3
>/S <N

3
>/S

FIG. 5. Dynamics of the population of all three modes. The ini-
tial state is the Fock state |20, 1, 0, 0〉. U = 0.03J and  = 0.6 is
in the Rabi regime. The exact results are displayed by the different
markers (crosses: 〈N1〉/S, triangles: 〈N2〉/S, circles: 〈N3〉/S), while
the corresponding lines without markers are calculated by variational
dynamics using 50 basis functions whose distance is

√
π .

complex-valued amplitudes one would need for an expansion
in Fock states in the present case.

The parameter combination  = US/J is frequently ap-
plied to distinguish the dynamical features of the BH model.
For  < 1, the dynamics is located in Rabi regime, while
1 <  � S2 and  � S2 represent the so-called Josephson
and Fock regime, respectively [24,46]. In Figs. 5 and 6, we
show the accuracy of the variational dynamics for the initial
Fock state

|
(0)〉 = |S = 20, 1, 0, 0〉 (38)

0 5 10 15 20
Jt

0

0.2

0.4

0.6

0.8

1
<N

1
>/S <N

1
>/S

<N
2
>/S <N

2
>/S

<N
3
>/S <N

3
>/S

FIG. 6. Dynamics of the population of all three modes. The ini-
tial state is the Fock state |20, 1, 0, 0〉. U = 0.2J and  = 4 is in the
Josephson regime. The exact results are displayed by the different
markers (crosses: 〈N1〉/S, triangles: 〈N2〉/S, circles: 〈N3〉/S), while
the corresponding lines without markers are calculated by the varia-
tional dynamics using 50 basis functions whose distance is

√
π .
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0 5 10 15 20
Jt

0

0.1

0.2

0.3

0.4

0.5

0.6

<
N

1>
/S

N=600, 1/2

N=700, 1/2

N=800, 1/2

N=1000, 1/2

FIG. 7. The dynamics of population of the first mode for the case
of six modes. The initial state is |S = 20, ξ1 =

√
2

2 , ξ2 = i
√

2
2 , ξ3 =

· · · ξ6 = 0〉. The on-site interaction energy is U = 0.1J and K = 0.
Solid line: 600 basis functions, dashed line: 700 basis functions,
dashed-dotted line: 800 basis functions, dotted line: 1000 basis func-
tions. The spacing of the underlying Glauber CS grid was

√
π .

by comparing with the exact numerical results (gained by an
expansion of the wave funcion in terms of Fock states) for 3
modes and 20 bosons. It turns out that the 50 basis functions
that were found sufficient in Fig. 4 are still sufficient in the
Rabi and Josephson cases. The pure Fock regime case was
too demanding numerically and is therefore not considered. In
the Rabi case displayed in Fig. 5 almost undamped sinusoidal
oscillations are observed. The oscillations become more com-
plex and damped in the Josephson case shown in Fig. 6. In
this case, also the accuracy of ode45 [47] used for the solution
of the differential equations had to be promoted beyond the
default value.

C. Beyond M = 3

To highlight the power of the proposed method we now
investigate the more complicated situation where 20 bosons
occupy 6 modes. Then the Hilbert space consists of

(25
5

) =
53130 Fock states and with a standard desktop computer, it
will be difficult to propagate in this large Hilbert space using
the full Fock state basis.

If we employ the SU(M ) states originating from the com-
plex grid with the von Neumann spacing

√
π , as presented

in Fig. 7, we find that only several hundreds of GCS are
needed for converged results at longer times. This means we
need (M + 1) × 800 = 5600 complex valued parameters in
our ansatz (20), in order to converge the results for all times
shown. Especially at the extrema of the curve, a large number
of basis functions is needed.

However, if we decrease the distance of the complex grid,
the results can be converged faster. In Fig. 8, we show that the
underlying grid with the smaller distance of

√
π/32 between

the grid points allows for convergence already with 500 ba-
sis functions, whereas the “standard” grid needed 800 states
to converge the results at specific later times. An in-depth

0 5 10 15 20
Jt

0

0.1

0.2

0.3

0.4

0.5

0.6

<
N

1>
/S

N=500, 1/2/32

N=600, 1/2/32

N=700, 1/2/32

N=800, 1/2/32

FIG. 8. Convergence of the results for a distance of
√

π

32 of the un-
derlying Glauber CS grid. Other parameters (apart from the number
of basis functions) as in Fig. 7.

study of the usage of denser underlying grids is given in
Appendix C.

These numerical results show that a GCS with only M
complex parameters according to Eq. (9) and a corresponding
variational ansatz (20) with (M + 1)N parameters allows for
a faithful description of the dynamics under the BH Hamilto-
nian. The number of independent complex parameters that we
had to employ is more than one order of magnitude smaller
than the dimension of the complete Fock space.

V. CONCLUSIONS AND OUTLOOK

We have shown that a numerically favorable treatment of
BH dynamics in 1D is possible by using a variational approach
based on GCS. In contrast to established mean-field versions
of the theory, here we have employed a numerically complete
set of SU(M ) GCS as basis states in the expansion of the initial
wave function. We have built an overcomplete set of basis
function by using the expansion of the SU(M ) states in terms
of Glauber coherent states for whom it is well-established how
a numerically complete set of basis states has to be chosen.

The equations of motion of the GCS parameters as well as
of the expansion coefficients have been derived from the time-
dependent variational principle in its Lagrangian form. The
central idea is that the number of GCS parameters times the
number of basis functions is much smaller than the number of
basis functions needed in an unbiased expansion of the wave
function in terms of Fock states. In this respect the method
is closely related to the multiconfiguration time-dependent
Hartree method for bosons [23] as well as the variational
approach in Refs. [28,29], which are both, however, not based
on GCS.

That the method indeed works for considerably smaller
numbers of basis functions than in the case of an expansion
in terms of Fock states has shown to be true for large particle
number S and increasing mode number M < S for several
examples in different parameter ranges. Especially for larger
mode number, the use of small spacing (considerably smaller
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than the von Neumann spacing of
√

π ) in the underlying
Glauber CS grid turned out to be necessary for the use of a
relatively small number of GCS basis functions. In this way
we could report converged results using more than one order
of magnitude less parameters than would have been necessary
for an expansion in terms of Fock states. We stress that we
did not encounter any problems that had to be solved with the
recently introduced apoptosis procedure [19]. Regularization
also used in Ref. [19] and well known from other approaches
like MCTDH [48] was necessary, however.

In the future, we plan to investigate also larger mode
numbers and small particle numbers that are relevant in ther-
malization studies of cold atoms in optical superlattices [49],
as well as other particle number conserving bosonic lattice
systems with the proposed method. If its fortunate scaling
properties persist, new territory in parameter space may be-
come explorable and we are especially interested in the case
where U is much larger than J . Furthermore, the application
of the proposed methodology to BH models in more than 1D
is planned. It is well known that the entanglement entropy of
the ground state in lattice models fulfills so-called area laws
[50]. The entanglement growth in the course of time evolu-
tion poses a serious problem for other numerical propagation
techniques like matrix product state based methods, however
[51]. It remains to be explored how well the method proposed
herein can cope with these problems in higher dimensions.
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APPENDIX A: SOME PROPERTIES OF SU(M)
COHERENT STATES

In this Appendix, we review some computationally helpful
formulas along the lines of [8], which are needed in the main
text. Firstly, the commutation between the annihilation oper-
ator and the collective creation operator which is applied to
generate an SU(M ) coherent state is given by⎡

⎣âi,

(
M∑

j=1

ξ j â
†
j

)S
⎤
⎦ = Sξi

(
M∑

j=1

ξ j â
†
j

)S−1

. (A1)

Secondly, by defining two collective operators

Â† =
M∑

i=1

ξiâ
†
i , B̂† =

M∑
i=1

ηiâ
†
i , (A2)

two different SU(M ) coherent states can be generated via

|�ξ 〉 = 1√
S!

(Â†)S|0〉, |�η 〉 = 1√
S!

(B̂†)S|0〉. (A3)

The vectorized parameter contains the parameters of all
modes (here we do not consider doubly indexed parameters).

The inner product of the above two states is then given by

〈�η|�ξ 〉 = 1

S!
〈0|
(

M∑
i=1

η∗
i âi

)S( M∑
j=1

ξ j â
†
j

)S

|0〉

= 1

S!
〈0|

∑
n1+n2+···=S

S!

n1!n2! · · · [(η∗
1 â1)n1 (η∗

2 â2)n2 · · · ]

∑
m1+m2+···=S

S!

m1!m2! · · · [(ξ1â†
1)m1 (ξ2â†

2)m2 · · · ]|0〉

= 1

S!

( ∑
n1+n2+···=S

S!√
n1!n2! · · ·η

∗n1
1 η

∗n2
2 · · · 〈�n|

)

×
∑

m1+m2+···=S

S!√
m1!m2! · · ·ξ

m1
1 ξ

m2
2 · · · | �m〉

=
∑

m1+m2+···=S

S!

m1!m2! · · · (η∗
1ξ1)m1 (η∗

2ξ2)m2 · · ·

=
(

M∑
i=1

η∗
i ξi

)S

, (A4)

where we have used the general binomial theorem

(x1 + x2 + · · · + xn)k

=
∑

a1+a2+···+an=k

k!

a1!a2! · · · an!
xa1

1 xa2
2 · · · xan

n . (A5)

The above result (A4) is quite different from the corre-
sponding property for Glauber coherent states, which involves
exponential functions.

Using Eq. (A1), we can now calculate the action of the
annihilation operator on the SU(M ) coherent state via

âi|�ξ 〉 = âi
1√
S!

(
M∑

j=1

ξ j â
†
j

)S

|0〉

= 1√
S!

⎡
⎣( M∑

j=1

ξ j â
†
j

)S

ai + Sξi

(
M∑

j=1

ξ j â
†
j

)S−1
⎤
⎦|0〉

=
√

Sξi| �ξ ′〉 (A6)

where we have used the action of the annihilation operator on
the ground state, see Eq. (2) as well as the definition

| �ξ ′〉 = 1√
(S − 1)!

(
M∑

j=1

ξ j â
†
j

)S−1

|0〉 (A7)

of the (S − 1)-boson GCS.
Furthermore, for |η〉 and |ξ 〉, from Eq. (A6), we get

〈�η|â†
j âk|�ξ 〉 = Sη∗

j ξk〈 �η′| �ξ ′〉, (A8)

where the inner product 〈 �η′| �ξ ′〉 is

〈 �η′| �ξ ′〉 =
(

M∑
i=1

η∗
i ξi

)S−1

. (A9)
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In the main text as well as below, we will also refer to the
following two inner products:

〈 �η′′| �ξ ′′〉 =
(

M∑
i=1

η∗
i ξi

)S−2

, (A10)

〈 �η′′′| �ξ ′′′〉 =
(

M∑
i=1

η∗
i ξi

)S−3

, (A11)

of the (S − 2) and the (S − 3) GCS.
Using the chain rule, the matrix element of the right time-

derivative now is

〈�η|−→∂t |�ξ 〉 = 〈�η|
M∑

i=1

ξ̇i∂ξi |�ξ 〉

= S√
S!

〈�η|
M∑

i=1

(ξ̇iâ
†
i )(Â†)S−1|0〉

= S

S!
〈0|B̂S−1B̂

M∑
i=1

(ξ̇iâ
†
i )(Â†)S−1|0〉

= 〈 �η′|
M∑

i=1

(ξ̇iB̂â†
i )| �ξ ′〉

= 〈 �η′|
M∑

i=1

ξ̇i(η
∗
i + â†

i B̂)| �ξ ′〉

=
M∑

i=1

(ξ̇iη
∗
i )〈 �η′| �ξ ′〉 +

M∑
i, j=1

ξ̇iη
∗
j 〈 �η′|â†

i â j | �ξ ′〉

=
M∑

i=1

(ξ̇iη
∗
i )〈 �η′| �ξ ′〉 + (S − 1)

M∑
i, j=1

ξ̇iη
∗
j η

∗
i ξ j〈 �η′′| �ξ ′′〉

= S
M∑

i=1

(ξ̇iη
∗
i )〈 �η′| �ξ ′〉. (A12)

In the fifth line of the above equation, we have used the result
of Eq. (A1) for S = 1, and the relation

∑M
j=1 ξ jη

∗
j 〈 �η′′| �ξ ′′〉 =

〈 �η′| �ξ ′〉 which follows from Eqs. (A9) and (A10) is also used
to get the result of the last line.

Similarly, for the left time derivative, we find

〈�η|←−∂t |�ξ 〉 = 〈�η|
M∑

i=1

η̇∗
i ∂η∗

i
|�ξ〉

= 〈 �η′|
M∑

i=1

(η̇∗
i âiÂ

†)| �ξ ′〉

=
M∑

i=1

(η̇∗
i ξi )〈 �η′| �ξ ′〉 + (S − 1)

M∑
i, j=1

(η̇∗
i ξ jη

∗
j ξi )〈 �η′′| �ξ ′′〉

= S
M∑

i=1

(η̇∗
i ξi )〈 �η′| �ξ ′〉. (A13)

Both results will be used in the main text.

APPENDIX B: MATRIX FORM OF THE VARIATIONAL
EQUATIONS

Combining Eqs. (29) and (33), we get a compact and scal-
able matrix equation for the vector containing all coefficients
{Ak} and GCS parameters {ξkm}(

X Y
Y † Z

)(
Ȧ
ξ̇

)
= −i

(
R1

R2

)
, (B1)

analogous to the procedure lined out in the Appendix of
Ref. [19] for Glauber coherent states.

The block matrices are given by

X k j = 〈 �ξk| �ξ j〉, (B2)

Y = S(ξ∗
1, ξ

∗
2, . . . , ξ

∗
M ) ⊗ AT ◦ (11×M ⊗ X ′), (B3)

Z = 1M×M ⊗ ρ ◦ F, (B4)

where the vector �ξk is now indexed by the basis function
discretization index and the vector ξm, to be defined below,
is indexed by the mode index. Furthermore,

F i j = S(S − 1)X ′′ ◦ (ξ∗
j · ξT

i )(i �= j), (B5)

F ii = SX ′ + S(S − 1)X ′′ ◦ (ξ∗
i · ξT

i ), (B6)

and where 1m×n is an m × n matrix which only consists of
ones, and X ′

k j = 〈 �ξ ′
k| �ξ ′

j〉 and X ′′
k j = 〈 �ξ ′′

k | �ξ ′′
j 〉 are overlaps of

(S − 1) and (S − 2)-boson GCS from the previous Appendix,
respectively, whereas ρk j = A∗

kA j . Furthermore, ⊗ denotes
the tensor-product, whereas ◦ denoted the Hadamard-product
(elementwise multiplication) and · denotes the standard scalar
product.

Furthermore, the vectors are defined as

Ȧ =

⎛
⎜⎜⎝

Ȧ1

Ȧ2
...

ȦN

⎞
⎟⎟⎠, ξ̇ =

⎛
⎜⎜⎝

ξ̇1
ξ̇2
...

ξ̇M

⎞
⎟⎟⎠, ξm =

⎛
⎜⎜⎝

ξ1m

ξ2m
...

ξNm

⎞
⎟⎟⎠,

R1 =

⎛
⎜⎜⎜⎜⎝

∂H
∂A∗

1

∂H
∂A∗

2
...

∂H
∂A∗

N

⎞
⎟⎟⎟⎟⎠, R2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂H
∂ξ∗

11

∂H
∂ξ∗

21
...

∂H
∂ξ∗

1M

∂H
∂ξ∗

2M
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(B7)

with H = 〈
|H |
〉, the expectation of the Hamiltonian given
in Eq. (24).

The vectors on the right hand side of equation Eq. (B1) are

R1 = −JS
M−1∑
i=1

[X ′ · (A ◦ ξi+1) ◦ ξ∗
i + X ′ · (A ◦ ξi ) ◦ ξ∗

i+1]

+ U

2
S(S − 1)

M∑
i=1

X ′′ · (A ◦ ξi ◦ ξi ) ◦ ξ∗
i ◦ ξ∗

i

+ K

2
S

M∑
i=1

(i − j0)2X ′ · (A ◦ ξi ) ◦ ξ∗
i (B8)
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as well as

∂H

∂ξ∗
m

= −JSρ ◦ X ′ · (ξm+1 + ξm−1) − JS(S − 1)
M−1∑
i=1

[ρ ◦ X ′′ · (ξm ◦ ξi ) ◦ ξ∗
i+1 + ρ ◦ X ′′ · (ξm ◦ ξi+1) ◦ ξ∗

i ]

+ US(S − 1)ρ ◦ X ′′ · (ξm ◦ ξm) ◦ ξ∗
m + U

2
S(S − 1)(S − 2)

M∑
i=1

[ρ ◦ X ′′′ · (ξi ◦ ξi ◦ ξm) ◦ (ξ∗
i ◦ ξ∗

i )]

+ K

2
S(m − j0)2ρ ◦ X ′ · ξm + K

2
S(S − 1)

M∑
i=1

[(i − j0)2ρ ◦ X ′′ · (ξm ◦ ξi ) ◦ ξ∗
i ] (B9)

for use in the vector R2. Please keep in mind that m + 1 �
M, m − 1 � 1.

APPENDIX C: DETAILED CONVERGENCE STUDY
WITH RESPECT TO GRID SPACING

To prove the advantage of small spacings of complex grids
for getting converged results, for most of this Appendix we
choose the diagonal of the combination of the rectangular
grids rather than the random choice of points from the rectan-
gular grids which have been used in the main text. In diagonal
grids, the parameters of the SU(M ) coherent state lie in the
exact same positions for every complex subgrid, for example,

{ξmn,1, ξmn,2} =
{

zmn,1√|zmn,1|2 + |zmn,2|2
,

zmn,2√|zmn,1|2 + |zmn,2|2
}
,

(C1)

in the case of 2 modes, where m, n are the same(!) complex
grid indices. We remind of the fact that in the random choice
of the two-mode grid, a random combination of the points on
the grid of the first mode with the points of the grid of the

86420
J

0
t

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

<
N

1>
/S

1/2

1/2/3
1/2/4
1/2/8

FIG. 9. The dynamics of the population of the first mode in the
two-mode case with 50 photons. The driving frequency and strength
are ω = 2π/J0 and J1 = 0.5J0, and the on-site interaction energy
U = 0.1J . The number of SU(M ) coherent states is 25. Different
lines are results for different spacings of the complex grid. Solid:√

π , dotted:
√

π/3, dash:
√

π/4, and dash-dotted:
√

π/8.

second mode is allowed! Although using the diagonal grids is
less optimal than the random ones (as will become obvious
below), according to our numerical results, it can help us
avoid the influence of randomness and compare the effects of
different spacings directly at the same level. In the following,
we will show some results for normalized population dynam-
ics for different initial states with different photon and mode
numbers.

For the two-mode case, firstly, as in the main text, the initial
state is chosen as |50,−√

0.7,
√

0.3〉 and the parameters of
the Hamiltonian are also consistent with the ones used in
Sec. IV A. We constructed two identical complex 5 × 5 grids,
and the number of SU(M ) we used thus is just N = 25 (and
not 625, as it would be if we would allow all combinations
of the rectangular grid points). Figure 9 reveals that small
spacings allow to arrive at the converged result more quickly.
In the present case,

√
π/4 is enough to reproduce the exact

result. Please note that the result with 25 basis functions
and the largest spacing of

√
π is much worse than the one

presented in Fig. 3, where a random grid was used. For the
second, more demanding initial state |200,−√

0.7,
√

0.3〉
with 200 photons, the number of grid points is increased to 81.

86420
J

0
t

0.7

0.75

0.8

0.85

0.9

<
N

1>
/S

1/2

1/2/4
1/2/8
1/2/16

FIG. 10. The dynamics of the population of the first mode in the
two-mode case with 200 photons. The driving frequency and strength
are ω = 2π/J0 and J1 = 0.5J0, and the on-site interaction energy
U = 0.1J . The number of SU(M ) coherent states is 81. Different
lines are results for different spacings of the complex grid: solid:√

π , dotted:
√

π/4, dash:
√

π/8, and dash-dotted:
√

π/16.
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86420
Jt

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

<
N

1>
/S

1/2

1/2/4
1/2/16

1/2/32
Exact

FIG. 11. The dynamics of the population of the first mode in the
four-mode case with 30 photons. The on-site interaction energy U =
0.1J . The number of SU(M ) coherent states used is 169. Different
lines are results for different spacings of the complex grid: solid:

√
π ,

dotted:
√

π/4, dash:
√

π/16, and dash-dotted:
√

π/32. The crosses
display the exact results using the full Fock state basis.

Figure 10 shows that the spacing with
√

π/4 does not yet
work well and that for this initial condition

√
π/8 is a better

choice.
Next we extend our results to the four-mode case with

a constant in time hopping parameter J = 1. In Fig. 11,
results are shown for the initial state |30,−√

0.7,
√

0.3, 0, 0〉.
Although it has less photons than the in two-mode case above,
the spacing

√
π/4 which performs well in Fig. 9 does not give

rise to converged results with 169 basis functions, and this
kind of deviation for

√
π/4 also occurs for other states with

larger numbers of photons or other initial state parameters
(not shown). Thus the number of modes seems to be decisive,
when choosing the optimal grid spacing.

In Fig. 12, we present a study of the number of basis
functions which is needed for getting converged results by
optimizing the underlying grid spacing. This time, however,
in order for faster convergence, we go back to the case of

86420
Jt

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

<
N

1>
/S

1/2,N=350
1/2/4,N=200
1/2/16,N=150
1/2/32,N=100
1/2/64,N=100

Exact

FIG. 12. Convergence of the population dynamics in the four-
mode case with 30 photons for different spacings and basis size
N . The on-site interaction energy U = 0.1J . The different curves
(solid:

√
π , dotted:

√
π/4, dash:

√
π/16, dash-dotted:

√
π/32, star:√

π/64, and circles: exact Fock results) coincide to within line thick-
ness for most of the time interval shown.

random grids employed in the main text. All results initially
coincide to within line thickness and only for longer times
the small spacing turns out to be advantageous. Although
small spacings make the calculation generally more efficient,
decreasing the spacing indefinitely is not an option for im-
provement and we found an optimum value of

√
π/32 in the

present case. The even smaller spacing
√

π/64 will not lead
to a further promotion compared with

√
π/32 (the results

are even slightly worse). Our final conclusion is that large
numbers of photons and modes will increase the dimension
of Hilbert space dramatically [see Eq. (11)] and make the
dynamical process more complicated. As we have shown here,
constructing complex grids with optimal spacings (smaller
than

√
π ) can help speeding up the convergence of numer-

ical calculations, and for more complicated systems smaller
spacing is needed for feasibility of the calculation, but there is
no gain in decreasing the spacing indefinitely.
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