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The Fermi National Accelerator Laboratory (FNAL) Muon g−2 Experiment has measured the anomalous
precession frequency aμ ≡ (gμ−2)/2 of the muon to a combined precision of 0.46 parts per million with data
collected during its first physics run in 2018. This paper documents the measurement of the magnetic field in the
muon storage ring. The magnetic field is monitored by systems and calibrated in terms of the equivalent proton
spin precession frequency in a spherical water sample at 34.7 ◦C. The measured field is weighted by the muon
distribution resulting in ω̃′

p, the denominator in the ratio ωa/ω̃
′
p that together with known fundamental constants

yields aμ. The reported uncertainty on ω̃′
p for the Run-1 data set is 114 ppb consisting of uncertainty contributions

from frequency extraction, calibration, mapping, tracking, and averaging of 56 ppb, and contributions from fast
transient fields of 99 ppb.

DOI: 10.1103/PhysRevA.103.042208

I. INTRODUCTION

The Muon g−2 Collaboration reports a new measurement
of the positive muon magnetic anomaly aμ = (gμ−2)/2 [1].
The result is based on the Run-1 data set analysis, collected
from March through July of 2018. The data are divided into
four subsets grouped by different operating parameters of the
experiment. These data subsets are analyzed separately and
give consistent results for aμ. The combined Run-1 result is

aμ(FNAL) = 116 592 040 (54) × 10−11(0.46 ppm). (1)

Three companion papers to Ref. [1] provide the details
for the key inputs to this result. Reference [2] details the

analysis of the precision determination of the anomalous spin-
precession frequency ωa. Reference [3] provides corrections
to the aμ measurement that arise from effects of the muon
beam dynamics. This paper provides data reconstruction,
analysis, and systematic uncertainties of the measurement of
the magnetic field in the muon storage ring.

The goal of the Fermi National Accelerator Laboratory
(FNAL) Muon g−2 Experiment is the determination of the
muon magnetic anomaly with high precision [4]. There is
great interest in this quantity because the standard model of
particle physics is incomplete; this quantity is sensitive to
potential new physics contributions not present in the cur-
rent calculations. The previous experiment at Brookhaven
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FIG. 1. An image of the storage ring as prepared for Run-1.
Credit: Fermilab.

National Laboratory (BNL) [5] shows a tension between the
theoretical expectation and the experimental result of about
3.7 σ [6]. Since aμ is sensitive to a wide array of poten-
tial new physics contributions, both experimentalists [1] and
theorists [6–26] have worked to reduce their uncertainties.
Contributions to aμ from quantum electrodynamics (QED),
electroweak theory, and quantum chromodynamics (QCD)
loops have also been calculated to higher precision [6]. This
new result, from the Run-1 data set, differs by 3.3 σ from
the standard model prediction and agrees with the BNL E821
measurement. The combined experimental average results in
a 4.2 σ discrepancy with the theoretical calculation.

A. The Muon g − 2 Experiment

In this experiment, pulses of polarized muons are in-
jected with momentum p = 3.094 GeV/c into the magnetic
storage ring shown in Fig. 1. In the highly uniform ver-
tical magnetic field of magnitude |B| ≈ 1.45 T, the muons
circulate with a mean radius of 7.112 m at the cyclotron fre-
quency ωc/(2π ) = 6.7 MHz. Their spin-precession frequency
ωs/(2π ) is the combination of their Larmor and Thomas pre-
cession, and differs slightly from the cyclotron frequency. The
difference between these two frequencies is the rate at which
the muons’ helicity precesses, and is called the anomalous
spin-precession frequency. For a muon in a uniform vertical
magnetic field and an ideal horizontal orbit, the experimen-
tally observed anomalous spin-precession frequency is

ωa = ωs − ωc = −aμ

q

mμ

B. (2)

The measurement of both the magnitude of the anomalous
spin-precession frequency ωa = |ωa| and the storage ring
magnetic field B can be used to calculate aμ. Additional
terms modifying Eq. (2) originate in the experiment due to
the electric focusing fields that are needed for vertical muon
confinement and from muon motion that is not entirely per-
pendicular to |B|. While the choice of the momentum strongly
suppresses these additional terms, small corrections are ap-

FIG. 2. A cross section of the storage ring magnet featuring the
components used to generate the highly uniform 1.45 T magnetic
field in the Run-1 configuration.

plied when calculating aμ [3]. Furthermore, the presence of
an electric dipole moment of the muon would give rise to
additional terms in Eq. (2) [27].

The experiment was designed to balance the statistical
and systematic uncertainties to reach its precision goal. The
measurement of ωa [2] is based on the time dependence of
the decay positrons above an energy threshold measured in 24
electromagnetic calorimeters [28–30] with gain stabilized by a
laser system [31]. Two in-vacuum straw trackers [32] provide
the detailed information about the distribution of the muons
in the storage ring that determines how the magnetic field is
weighted and inform the beam-dynamics corrections to aμ [3].

A central component of the experiment is the precision
superconducting magnetic storage ring that generates the
magnetic field. Its main elements were designed for the BNL
E821 experiment and detailed in [33]. The temporal stability
and spatial homogeneity of the magnetic field are essential
to the experiment. Because the muon precession frequency is
proportional to the strength of the magnetic field, we require
that the average magnetic field experienced by the muons
remain stable on the scale of parts per million (ppm) through-
out the experiment. A very homogeneous field is required to
minimize the uncertainty of the magnetic-field maps caused
by any nonuniformities in the muon distribution.

The magnet, operated in nonpersistent mode, had a cur-
rent of ∼5170 A. Over long timescales, the magnetic field’s
stability is driven by thermal expansion and contraction of
the magnet steel in response to temperature changes in the
experimental hall. The magnetic field is stabilized by feedback
to the magnet current supply from a set of nuclear magnetic
resonance (NMR) magnetometers, described in Sec. I C, dis-
tributed around the ring.

The homogeneity of the magnetic field required shimming
with a suite of movable elements labeled in Fig. 2 that can
fine tune the magnetic field in localized regions during data
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FIG. 3. The coordinate systems used in this paper. The muon
beam nominal orbital radius is at r = 7.112 m in the ryφ basis,
equivalent to x = 0 cm in the xyz basis.

collection periods. Precision positioning of the 72 pole pieces
(36 each upper and lower) drives the overall field strength,
while their pitch with respect to horizontal drives the linear
gradients. Additional pieces of iron were positioned along
the surfaces of the pole pieces (edge shims and iron foil
laminations), in the air gap between the pole pieces and yoke
(wedges), and the top and bottom of the 24 yoke pieces (top
hats). These were used to fine tune the average field as a
function of azimuth and control gradients in the direction
transverse to the beam propagation. A set of coils, called sur-
face correction coils (SCC), are installed on the surface of the
pole pieces. The SCC consists of 100 individually powered,
concentric coils on each of the upper and lower pole surfaces.
Specific current distributions were used to minimize the field
variations across the beam aperture to better than 1 ppm
when averaged over the storage ring azimuth, and updated
periodically in response to magnetic field drifts. Shimming
resulted in a field homogeneity over the storage volume of
roughly 14 ppm RMS, a threefold improvement [34] in the
azimuthal variation of the average field compared to the BNL
E821 experiment [5].

Figure 3 shows the coordinate systems we use in this
paper. There are two primary reference frames: a top-down
view of the entire storage ring used mostly for considering
azimuthally dependent effects, and a cross section through the
ring used for considering the radially and vertically dependent
effects. The coordinate y always refers to the direction of the
axis of the storage ring in both systems. The coordinate r in
the top-down system is replaced by the coordinate x in the
cross-section system. They are related by x = r − 7.112 m.
The azimuthal angle in the top-down system is represented by
φ. In the cross-section system, it is replaced by z.

B. Measuring the magnetic field

Equation (2) shows that determining aμ from ωa requires
precise knowledge of the magnetic-field magnitude experi-
enced by the muons, which we measured with pulsed proton
NMR. This technique, pioneered by Bloch [35] and Purcell
[36], has been employed since the 1950s [37] across a wide
range of chemical and physical applications, routinely demon-
strating accuracy and precision at the ppm and even parts per
billion (ppb) scales. The NMR devices (or magnetometers)
are called probes. A careful sequence of calibrations and syn-
chronizations is performed to relate the magnetic field to the

Larmor precession frequency of protons shielded in a spheri-
cal water sample at a reference temperature T . The average
field over the muon distribution weighted by the detected
decays over time is B̃. The frequency measurements determine
B̃ when combined with the shielded proton magnetic moment
μ′

p(T ) via

B̃ = h̄ω̃′
p(T )

2μ′
p(T )

= h̄ω̃′
p(T )

2

μe(H )

μ′
p(T )

μe

μe(H )

1

μe

. (3)

Here, μe(H )/μ′
p(T ) is the ratio of the magnetic moments of

an electron bound in hydrogen to that of a proton shielded
in a spherical water sample, measured to 10.5 ppb at a water
temperature Tr = 34.7 ◦C [38]. The bound-state QED correc-
tions that determine the magnetic moment ratio of the electron
bound in hydrogen versus a free electron μe(H )/μe are
considered essentially exact [39], and the electron magnetic
moment μe is known to 0.3 ppb [39]. Combining Eqs. (2),
(3), and μe = ge

2
e

me

h̄
2 yields

aμ = ωa

ω̃′
p(Tr )

μ′
p(Tr )

μe(H )

μe(H )

μe

mμ

me

ge

2
. (4)

The ratio of the mass of the muon and the mass of the electron
mμ/me is known to 22 ppb from the measurement of the hy-
perfine splitting of muonium [40] and bound-state QED [39].
Finally, the g factor of the electron ge is known to 0.28 ppt
[41].

To determine ω̃′
p(Tr ), we perform a sequence of measure-

ments with proton-rich magnetometers:
(1) The 17 NMR probes of the in-vacuum trolley are

calibrated in terms of the equivalent ω′
p(Tr ) with a precision

calibration probe containing a pure water sample. The calibra-
tion probe’s precise measurements are corrected for material
effects, temperature, and field variations during the calibration
to achieve high accuracy and precision.

(2) The magnetic field in the muon storage volume is
mapped using the trolley approximately every three days. The
result is called a trolley map or field map.

(3) The 378 fixed NMR probes, located in 72 azimuthal
stations, are synchronized to the trolley measurements. These
fixed probes are located above and below the storage volume
and regularly spaced around the ring to track the field’s evolu-
tion between trolley maps.

(4) The magnetic-field maps are weighted by the temporal
and spatial distributions of those muons included in the ωa

measurement.
(5) Corrections are applied for the presence of fast tran-

sient fields generated by pulsed muon injection systems that
are not resolved by the asynchronous magnetic-field tracking
and not present during the trolley measurements.

C. Hardware systems

The precision calibration probe employed in the first step
of the measurement sequence is shown in Fig. 4. This probe
is highly symmetric and uses an ultrapure, cylindrical water
sample. It is constructed from a combination of paramagnetic
and diamagnetic materials so that the total correction due to
its intrinsic magnetic influence is less than 10 ppb [42]. The
calibration probe’s total uncertainty on the corrections is less

042208-4
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FIG. 4. Schematic drawing of the calibration probe used to cali-
brate the trolley probe measurements.

than 20 ppb, corroborated through cross calibrations with both
a spherical water sample [43] and 3He [44]. The calibration
probe is used to generate calibration constants for each of the
trolley probes. It is operated inside the vacuum chambers and
mounted on a three-dimensional (3D) translation stage that
allows it to match each trolley probe’s position using applied
magnetic-field gradients. Details of the calibration procedure
are given in Sec. IV.

Figure 5 shows the design of the trolley and fixed probes,
which are based on a similar design from the BNL E821
experiment [45]. The cylindrical sample volume in each probe
is filled with petroleum jelly, chosen for its low volatility.
The trolley shell and its mechanical hardware for the motion
(rails and drums) were from the BNL E821 experiment and
the trolley electronics, position encoders, and controllers were
upgraded for this experiment as detailed in [46].

The calibrated trolley is used to produce detailed field maps
over the entire azimuth of the storage ring. The muon storage
region extends in the x and y directions to ±4.5 cm, defined by
a set of five circular collimators placed at various azimuthal
positions around the storage ring. In order to determine the
magnetic field in the muon storage region, the trolley’s 17
NMR probes are arranged in the configuration shown in Fig. 6.
The trolley is pulled by two cables along rails in the storage
ring vacuum chamber, and the field is sampled in ∼9000 az-
imuthal locations. The analysis of the trolley maps is detailed
in Sec. V.

The trolley system includes electronics to control the NMR
sequence and to read out the digitized free induction decay
(FID) signals. The initial ∼61.79 MHz signal, corresponding
to |B| ≈ 1.45 T, is mixed down to approximately 50 kHz prior
to digitization and transferred through an electronic interface
to a data acquisition (DAQ) computer. A bar code scanner on
the trolley reads marks etched into the bottom of the storage
ring vacuum chambers that are analyzed to determine the
trolley’s azimuthal position.

In order to measure the field experienced by the muons,
ideally the trolley maps would be taken under the identical
conditions that exist during muon injections. In reality, three

FIG. 5. Schematic drawing of the NMR probe for field mapping
and monitoring.
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FIG. 6. The layout of the 17 probes in the trolley. Positive x is
towards higher radius. The fixed probe locations on the top (T) and
bottom (B) of the storage region are shown as well. For the fixed
probes, the six-probe stations have probes in the inner (I), middle
(M), and outer (O) positions. In the four-probe stations, only the
middle and outer probes are present.

main configuration changes are needed for field mapping: (i)
the pulsed beam injection systems [kicker and electrostatic
quadrupole (ESQ)] are switched off, (ii) the beam collimators
are moved from their regular positions because they would
physically interfere with the trolley, and (iii) the garage rail
is moved into the storage region to insert the trolley. Ded-
icated measurements and calculations were made to correct
for these modified conditions and are described in Secs. V B 5
and VIII.

The 378 fixed probes mounted above and below the storage
region to continuously track the field drift are synchronized
with the trolley measurements during each mapping run. Be-
cause trolley runs interrupt muon data taking, the detailed
field mapping is only performed approximately every three
days, driven by the fixed probes’ field tracking capability.
The fixed probes provide information about the field drift
during the muon data-taking periods between trolley maps.
Four or six probes (see Fig. 6) are installed at 72 azimuthal
locations, called stations, regularly spaced around the storage
ring, allowing continuous monitoring of the magnetic field at
each azimuthal station. The fixed probe FIDs are read out
through 20 multiplexers and mixed down to about 50 kHz
and digitized. A computer controls the read sequence, in-
cluding the probe selection and the recording of the digitized

042208-5
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waveforms. The synchronization of the trolley measurements
to the fixed probes and the subsequent field tracking are dis-
cussed in Sec. VI.

The magnetic field DAQ serves as an access point for
controlling individual field measurement systems. These in-
clude fixed probes, trolley control, trolley readout, calibration
probe control, power supply feedback, surface coil settings,
and environmental fluxgate sensors. These systems are each
managed by custom front ends that run asynchronously and
communicate with a common DAQ core. The field DAQ uses
standalone hardware that runs independently from the detector
DAQ, which controls the rest of the Muon g−2 Experiment.
The field DAQ collects data whenever the magnet is powered
and runs decoupled from the main DAQ for the calorimeters,
trackers, pulsed injection systems, and other hardware. The
field and main DAQs used a common 10 MHz time reference
disciplined by a Rb-clock and a global positioning system,
allowing measurement time stamps to be correlated with data
from the detector DAQ with high precision.

D. Magnetic-field analysis

The data are analyzed to extract ω̃′
p(Tr ) as one input for the

calculation of aμ. The evaluation of the trolley and fixed probe
data is based on multipole and Cartesian moments described
in Sec. I D 1. They form the basis for various steps in the
overall analysis, which is outlined in Sec. I D 2. Throughout
the rest of this paper, we provide the details of these analysis
steps and their implementation. For many steps, there were
two or three parallel analysis implementations by independent
teams that cross checked each other and refined systematic
uncertainties. We highlight important analysis differences be-
tween the independent teams in Sec. I D 3.

1. Multipole and Cartesian moments

The NMR probes measure the magnitude of the mag-

netic field, |B| =
√

B2
x + B2

y + B2
z , and are often referred to

as “scalar magnetometers.” Due to the design of the magnet
and the shimming, the magnetic field is predominantly in the y
direction, i.e., Bx, Bz � By. The difference between the NMR
measurement of |B| and the field component in the y direction
can be approximated to first order as

|B| − By ≈ B2
x + B2

z

2By

. (5)

During the shimming procedure, measurements of the radial
and longitudinal components Bx and Bz were performed at ≈
100 azimuthal locations. The azimuthally averaged radial field
was determined to be Bx/|B| < 40 ppm during Run-1 with
the applied SCC settings, and the measurement of the average
longitudinal field was consistent with zero. Local variations in
the longitudinal component were typically Bz/|B| < 100 ppm
with respect to |B|, leading to (|B| − By)/|B| = O(10 ppb).
Therefore, it is well-justified (at our desired accuracy) to re-
place |B| with By and focus on its extraction from the data.
From here forward, we will use the convention B = |B| and
make the approximation B ≈ By.

The measurements from the trolley and fixed probes rep-
resent the field magnitudes B(x, y, φ = φk ) at an azimuthal
slice φk . We can extract the field’s spatial dependence in
these two-dimensional (2D) slices in terms of moments mi
of the magnetic field. For the trolley probe geometry, the
parametrization of B in a slice comes from the general solution
to the source-free Laplace equation for the scalar potential in
polar coordinates (r, θ ),

B ≈ By = A0 +
∑
n=1

(
r

r0

)n

[An cos(nθ ) + Bn sin(nθ )], (6)

where, here and in Table I only, r =
√

x2 + y2 is the in-slice
radius from the center of the muon orbit and r0 = 4.5 cm is
a normalization to the outer edge of the muon storage region.
The An and Bn parameters are the multipole strengths, also
known as the normal and skew multipoles, respectively. These

TABLE I. The first measurable moments for both the multipole and Cartesian basis. The parameters An and Bn are the multipole strengths
for the normal and skew moments, respectively, defined in Eq. (6). Here, r = √

x2 + y2. In this experiment r0 = 4.5 cm, a scale set by the
radius of the collimated muon beam. Notice that evaluating these moments at (0,0) recovers the multipole strengths, creating a relationship
between the Cartesian and multipole moments.

Trolley Fixed probe stations

multipole Cartesian Multipole Cartesian moment

Moment (common name) By(r, θ ) derivative By(x, y) 6-probe station 4-probe station

m1 (normal dipole) A0 By A0 A0 A0

m2 (normal quadrupole) A1
r
r0

cos(θ ) ∂By

∂x A1
1
r0

x A1
r0

A1
r0

m3 (skew quadrupole) B1
r
r0

sin(θ ) ∂By

∂y B1
1
r0

y B1
r0

B1
r0

m4 (skew sextupole) B2( r
r0

)2 sin(2θ ) ∂2By

∂x∂y 2B2( 1
r0

)
2
xy 2B2

r2
0

2B2
r2
0

m5 (normal sextupole) A2( r
r0

)2 cos(2θ ) ∂2By

∂x2 2A2( 1
r0

)
2
(x2 − y2) 2A2

r2
0

m6 (skew octupole) B3( r
r0

)3 cos(3θ ) ∂3By

∂x2∂y
(Unused) (Unused)

m7 (normal octupole) A3( r
r0

)3 sin(3θ )
...

...
...

...
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Calibrate Trolley with
Calibration Probe: δtr

i

Absolute Cal-
ibration: δcp

Trolley Run:
mtr

i (φ, 0)
Trolley DQC Cuts Field Map: mtr

i (φ, t)

Fixed Probe
DQC Cuts

Muon Production
Run: εfpi (φ, t)

Muon-Weighted
Field Map

Muon Distribu-
tion: ki(φ, t)

ω̃′
p(Tr)

Transients:
δkicker, δESQ

FIG. 7. A flow chart of the field analysis showing the calibration chain through the data processing. The muon distribution is an input
that is external to the field analysis, and is required to calculate the muon-weighted field average. Bold items show input measurements to the
analysis. Not shown is the NMR frequency extraction step required for each of the field measurements.

names are often written as “normal/skew (2n + 2)-pole,” such
as the “normal 2-pole (normal dipole),” “skew 4-pole (skew
quadrupole),” or “normal 6-pole (normal sextupole).” The 17
trolley measurements from a given azimuthal slice are trans-
formed into the multipole basis defined by Eq. (6).

The fixed probe geometries for both the four- and six-probe
stations (see Fig. 6) are symmetric in a Cartesian coordinate
system and are therefore parametrized as Cartesian field mo-
ments, which are analogous to the multipole moments. These
Cartesian moments are the x and y derivatives of By evaluated
at x = y = 0. These moments are also normalized to r0 in
analogy with the multipole moments. The fixed probe mea-
surements are used to make discrete estimates of the moments
by calculating sums and differences of the measurements.

Table I summarizes the moments mi in terms of the trolley
multipole moments and the fixed probe Cartesian moments.
Only six (four) moments can be calculated at a six-probe
(four-probe) station as indicated in the Cartesian moment
columns. Given the discrete positions of the fixed probes, it
is possible to estimate the values of these moments at the
center of the storage region in terms of the multipole strengths
defined in Eq. (6), implying that the fixed probes can be used
to track the lower-order moments up to m6 in the time between
the trolley maps. In practice, we only use the fixed probes to
track the first five moments due to the high uncertainty asso-
ciated with the sixth moment and its relative unimportance in
the final result.

2. Analysis flow

The first step in the magnetic-field analysis represented
in Fig. 7 is the extraction of FID parameters such as the
frequency, amplitude, and length from all NMR measure-
ments, described in Sec. II A. Data quality cuts are applied
on these extracted parameters to discard FID waveforms that
correspond to instrument failures or severe field instabilities.
A brief overview of these cuts is given in Sec. II B.

Throughout this section and the rest of this paper, we use
the symbol δ to refer to systematic and statistical effects. The
uses of these symbols represent both corrections and uncer-
tainties from the effect in question.

In Eq. (4), ω̃′
p(Tr ) is the average frequency that would

be measured by a spherical water sample at the calibration
reference temperature Tr = 34.7 ◦C in the same position as the
detected muons. This shielded proton frequency is related to
the calibration probe frequency ωcp through a set of correc-
tions, denoted by δcp(Tr ) that account for the probe materials,
effects due to sample shape and susceptibility, temperature,
and other probe-related effects:

ω′
p(Tr ) = ωcp[1 + δcp(Tr )]. (7)

The determination of δcp(Tr ) is the absolute calibration step
in Fig. 7 and was mainly performed in a dedicated calibration
setup including a solenoid magnet as discussed in Sec. III.

The calibration probe is then used to calibrate the trolley
probes, detailed in Sec. IV. This step determines the relation-
ship between each trolley probe n and the shielded proton
frequency via a calibration constant

ω′
p(Tr ) = ωtr

n

(
1 + δtr

n

)
. (8)

Since the moments mi are linear combinations of trolley probe
measurements ωtr

n , we can generalize to

m′
p,i = mtr

i

(
1 + δtr

i

)
. (9)

Details of the trolley map analysis step are given in Sec. V.
The fixed probe field moments mfp

i are synchronized to the
trolley field moments when the trolley passes each fixed probe
station at a specific time t = 0. A first-order Taylor expansion
of the trolley moments in terms of the fixed probe moment
yields

mtr
i (φ, t ) = mtr

i (φ, 0) +
∑

j

Ji j (φ)
[
mfp

j (t ) − mfp
j (0)

]
+ εho

i (φ, t ), (10)

where the subscripts i and j indicate specific field mo-
ments. The Jacobian Ji j (φ) = ∂mtr

i (φ)

∂mfp
j

relates small changes

in fixed probe moments to small changes in the trolley
moments for each station (indicated by the φ dependence)
and εho

i (φ, t ) represents the effects of higher-order moments
that the fixed probes cannot track. Note that εho

i (φ, 0) ≡ 0.
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Because εho
i (φ, t ) cannot be tracked due to the limited number

of fixed probes in a station, we model it as a random walk and
include its effect only as an uncertainty. The full procedure for
synchronizing and tracking the field with the fixed probes is
discussed in Sec. VI. We can rewrite Eq. (10) as

mtr
i (φ, t ) = mtr

i (φ, 0) + ε
fp
i (φ, t ) + εho

i (φ, t ), (11)

where

ε
fp
i (φ, t ) =

∑
j

Ji j (φ)
[
mfp

j (t ) − mfp
j (0)

]
. (12)

Assuming that the trolley calibrations (δtr
n ) do not change

over time, we can combine the fixed probe tracking, trolley
maps, trolley calibration, and calibration probe corrections to

m′
p,i(φ, t, Tr ) = [

mtr
i (φ, 0) + ε

fp
i (φ, t ) + εho

i (φ, t )
]

× (
1 + δtr

i

)
, (13)

with the field moment index i. Note that in this equation,
δcp(T ) is absorbed into δtr

i through Eq. (9). These moments
are then weighted by the muon distribution in space and time
and averaged over time t and azimuth φ to determine ω̃′

p(Tr ),
as described in Sec. VII.

3. Multiple analysis approaches

For several of the key analysis steps described above,
the analysis was performed by at least two independent
teams in order to provide important cross checks and test
different algorithms against each other. Comparison of the
parallel analyses often found a high degree of consistency.
In cases where noticeable differences were identified, a de-
tailed comparison of the approaches allowed us to develop
and implement improved algorithms. Sections II–VII present
the final analysis that led to the reported result for the mea-
surement of ω̃′

p(Tr ). Here, we highlight a few of the notable
differences between the different trolley calibration and field
tracking algorithms. The details associated with these differ-
ences will be explained in the analysis sections of the paper.

Three individual analyzers performed the trolley calibra-
tion analysis (see Sec. IV) for our Run-1 data set with the
following main differences:

(1) One analysis used a zero-crossing counting method for
the frequency extraction of the calibration probe, while the
other two used the Hilbert transform method (see Sec. II A).

(2) The calibration analysis in Run-1 had to correct both
the normal long-term drift of the magnetic field due to slow
changes in the magnet and a field oscillation with an am-
plitude of about 20 ppb and a period of 2 min. The three
analyzers chose different approaches for selecting and treating
the fixed probe data used to correct the calibration and trolley
probe measurements.

(3) The analysis needed to account for uncertainties asso-
ciated with gradients in the magnetic field that coupled to the
error in the relative positioning of the probes. The determina-
tion of local field gradients was based on polynomial fits to
local maps, and each analyzer chose fits with different orders
and ranges.

All cross checks showed consistency between the three
analyses at the 10-ppb level for the probe calibration offsets.

For synchronizing the trolley and fixed probes and the
subsequent tracking (see Sec. VI), two independent analyses
[47,48] were implemented with the following major differ-
ences:

(1) Three fixed probe stations located in regions with large
field gradients exhibited significantly more noise than typical.
One analysis replaced the measurements from these stations
with the average of the stations’ nearest neighbors. The other
analysis relied on long averaging times to improve resolutions.

(2) The trolley and fixed probes were read out at 2 and
0.7 Hz, respectively, and were not simultaneous. One analysis
worked with these original asynchronous times while the sec-
ond interpolated both to produce a time series at 1-s intervals.

(3) During synchronization between the trolley and a
given fixed probe station, the fixed probe station was tied to
a local azimuthal average of trolley measurements when the
trolley was closest to that station. One analysis used about
±2.5◦ of trolley measurements for each station, while the
other analysis only used ±1◦ with a secondary synchroniza-
tion to take into account the unused parts of the trolley maps.

(4) While the trolley is near a fixed probe station, its
magnetization distorts the local field measured by that station.
This “trolley footprint” window is vetoed in the fixed probe
data when the trolley is nearby. The analyses differed in the
implementation of the veto window, the interpolation across
the missing data, and the usage of other fixed probe stations
to account for short-term field fluctuations.

A blind analysis comparison campaign focused on these
differences to understand each choice’s impact on the final
results. The treatment of the poor-resolution stations was the
dominant contribution to the difference. The two analyses dif-
fered by maximally 30 ppb over a field tracking time interval
of about three days and only by 1.5 ppb after averaging over
the entire tracking period.

II. DATA EXTRACTION AND PREPARATION

A. NMR frequency extraction

The NMR technique generates FIDs, which are the signals
measured in the probe coil due to the precessing magnetiza-
tion across the sample. The finite size of the sample combined
with a nonuniform magnetic field affects the evolution of the
frequency and signal amplitude during the FID. Therefore, it
is critical to develop algorithms that determine the relationship
between the frequency evolution and B and to understand
features associated with the observed signal that stem from
the nonuniformities in the magnetic field. The following is a
summary of frequency extraction and its related uncertainties.
Further details can be found in [49].

In the first step of the data analysis, the frequency and
other characteristics including the FID length and amplitude
are extracted from the digitized waveforms of the calibration,
fixed, and trolley probes. A typical FID signal is shown in
Fig. 8. Two algorithms were used to analyze these signals:

(1) For trolley and fixed probes, the main frequency
extraction algorithm extracts the phase function 
(t ) =
tan−1[ f (t )/H( f (t ))] from the discrete Hilbert transform
H( f (t )) of the FID signal f (t ). To mitigate effects of a
time-varying baseline, finite FID length, and sampling period,
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FIG. 8. A typical free induction decay (FID) from a trolley
probe. The zoomed inset shows the periodic behavior that is used to
measure ω(t ).

we apply time- and frequency-domain filters to the extraction
of 
(t ).

(2) For the calibration probe, an alternative extraction of
the phase function 
(t ) uses an iterative baseline subtraction
and identification of zero-crossing times in the oscillatory FID
signal, which correspond to a phase advance of π .

The initial frequency of the NMR signal, ω(t = 0), is
related to the phase function by ω(0) = d


dt (0) [50]. A polyno-
mial fit is used to extract ω(0), shown in Fig. 9. The truncation
order (up to fifth order) and range of the fit (roughly 40% of
the FID length1) were chosen to optimize the combined sta-
tistical and systematic uncertainties. While a lower truncation
order and longer fit range generally reduce the statistical un-
certainty, the nonlinear terms of 
(t ) increase the systematic
uncertainty.

We developed the phase-template method for fixed and
trolley probes, which reduces the effect from static, nonlinear
terms by subtracting an initial phase template, 
0(t ) from
each 
(t ). In the case of the trolley, only static effects ex-
tracted in an optimized field are subtracted by 
0(t ). The
fixed probes generally observe small frequency changes due
to temporal field changes; the nonlinear terms in 
(t ) change
less than the linear term d
(t )

dt , measurement-to-measurement.
The systematic and statistical effects related to the fre-

quency extraction were extensively studied using simulated
and real FIDs, real noise waveforms recorded in the magnetic
field without initiating the NMR sequence, and waveforms
recorded with the regular NMR sequence without the main
magnetic field present. The following main uncertainties were
identified:

(1) The systematic fit uncertainty ε f is dependent on the
frequency extraction algorithm and quantifies the difference
between the fitted value and the true ω(0). It originates from
approximating the phase function with a truncated polynomial
or from artifacts of the applied filter.

(2) The intrinsic systematic uncertainty from the simu-
lation εi is the difference between the extracted ω(0) and

1The FID length is defined as the time when the envelope’s ampli-
tude falls below 1/e of the initial amplitude.

FIG. 9. The upper panel shows 
(t ) as extracted from the Hilbert
transform of the signal in Fig. 8. The blue points in the lower panel
are the difference between 
(t ) and a linear fit 
(t )lin to 
(t ). The
black line is a polynominal fit to these residuals, the dotted part
shows the extrapolation outside the fit range to t = 0.

the frequency ω0 corresponding to the magnetic field at the
center of the probe. This uncertainty is driven by the probe
geometry and the magnetic-field inhomogeneity during the
measurement and was independent of our choice of algorithm.

(3) The statistical uncertainty δω(0) is caused by the noise
in the FID waveform. It is determined from the standard
deviation of the fit values for several FIDs measured in the
same magnetic field.

The determination of these uncertainties was performed
for the calibration and trolley probes and will be reported in
Secs. IV C 1 and V B 1, respectively. For the fixed probes, the
systematic uncertainties are absorbed in the synchronization
step with the trolley, and statistical uncertainties are negligible
due to long averaging times.

B. Data quality control

In preparation for the determination of ω̃′
p(Tr ) described in

the following sections, data quality selection was performed
to only include field measurements where the magnetic field
changed slowly with respect to the measurement period. All
analyses apply common data quality selections that fall into
the following two categories:

(1) Event level effects. Data quality flags were introduced
at the individual FID level (see Appendix A 1) to identify
intermittent measurement failures. These flags are based on
the FID parameters; cut thresholds were determined based on
identifying outliers from the distributions of these parameters
over a short period.

(2) Global effects. Several types of magnetic-field instabil-
ities were identified over the course of Run-1. The two main
causes of these instabilities were sudden magnet coil move-
ments that generated abrupt changes in the magnetic field
and failures in the fixed probe electronics crates that drove
erroneous changes in the feedback system (see Appendix A 2).
Data analysis is vetoed for ±2 min around these easily identi-
fiable abrupt changes. Dedicated studies showed that the field
tracking outside the veto window is uncompromised.
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TABLE II. Summary of the Run-1 data subsets. The different
voltages on the beam-injection systems impact the ωa analysis, and
the magnetic-field analysis is grouped accordingly.

Run-1 ESQ Kicker
data subset (kV) (kV)

Run-1a 18.3 130
Run-1b 20.4 137
Run-1c 20.4 130
Run-1d 18.3 125

The FID quality cuts are applied to only the ω̃′
p(Tr ) analysis

and not the ωa analysis because omitting individual FIDs has
negligible effects on the field tracking and the final deter-
mination of aμ. However, during periods with magnetic-field
instabilities the field is not reliably tracked. Therefore, these
periods must be excluded from the ωa analysis. Additional
veto windows were applied to all analyses roughly every two
hours during the 12-s-long transitions in the DAQ, during
which no field data are recorded.

C. Run-1 data sets

During the Run-1 data taking period, experimental condi-
tions were varied in each of the pulsed high-voltage systems,
the ESQ and the fast kicker. The Run-1 data are grouped
into four distinct subsets according to the ESQ and kicker
high voltages as shown in Table II. For the analysis of ωa,
periods with different set points are analyzed individually,
and separate beam-dynamics corrections are applied [3]. The
magnetic-field analysis produces a separate result for each of
these data subsets in Sec. IX for ω̃′

p(Tr ).

III. CALIBRATION PROBE

To determine aμ as written in Eq. (4), a well-characterized
NMR standard is required. For that purpose, the calibration
probe with a cylindrical high-purity water sample was con-
structed. Its material perturbations were characterized so that
its measured Larmor frequencies can be corrected to those
expected of a shielded proton in a spherical water sample
ω′

p(Tr = 34.7 ◦C) with high accuracy and precision. The local
magnetic field is then obtained using Eq. (3). The calibration
of this probe is transferred to each of the 17 trolley probes,
compensating for the trolley probes’ material effects and dif-
ferences in diamagnetic shielding.

A. Systematic effects

A set of corrections, described below, are required to re-
late the NMR frequencies measured by the calibration probe
ω

cp
p (T ) to ω′

p(Tr ) via2

ω′
p(Tr ) = ωcp

p (T ) × [1 + δT (Tr − T )

+ δb(H2O, T ) + δt ], (14)

2In principle, the corrections would be multiplicative but we use
the approximation (1 + δ1)(1 + δ2) ≈ (1 + δ1 + δ2) because the cor-
rections δ1 and δ2 are O(ppm) or less and the term δ1δ2 is hence
negligible.

where δT corrects for the temperature dependence of the
diamagnetic shielding of H2O between the temperature T
of the measurement and the chosen reference temperature
Tr = 34.7 ◦C [38,51,52]; δb is a correction dependent on water
magnetic susceptibility and sample shape; and δt is the sum of
corrections for the probe materials and other effects related to
the probe. The probe temperature T , typically close to 26 ◦C,
was measured to 0.5 ◦C with a PT-1000 sensor installed in the
probe near the sample.

The correction δt consists of several contributions:

δt = δs + δp + δRD + δd . (15)

Here, δs denotes the correction for effects due to the probe
materials, the probe’s angular orientation about its long axis,
the pitch angle relative to the field axis, and the magnetic
images it induces in the surrounding magnet’s iron. We split
this term into two parts δs = δs, intr + δs, config. Here, δs, intr

corrects for the effects that are intrinsic to the probe and
δs, config corrects for the specific probe configuration when
used in the experiment at Fermilab. The correction δp is due to
the water sample and the water sample holder and δRD is the
contribution from radiation damping [53], an effect where the
NMR-induced signal in the radio frequency (RF) coil affects
the proton spin precession. Finally, δd is the proton dipolar
field perturbation [54].

1. Intrinsic effects: δb(H2O), δs, intr, δp, δRD, δd

Intrinsic systematic effects in the calibration probe are
terms that affect the probe’s measured frequency indepen-
dent of its environment. These corrections and uncertainties
were measured at Argonne National Laboratory (ANL) in a
dedicated magnetic resonance imaging (MRI) solenoid and
include the bulk magnetization and several of the material
perturbations.

A correction due to the bulk magnetic susceptibility δb is
required because the calibration probe uses a cylindrical water
sample perpendicular to the field, not a spherical sample. The
magnetization of the water molecules in one location of the
sample perturbs the field at other locations, and the magnitude
depends on the shape and volume susceptibility of the NMR
sample. In SI units

δb(H2O, T ) = (
ε − 1

3

)
χ (H2O, T ), (16)

where ε is the shape factor of the sample. For a sphere ε =
1/3 so the field perturbation from this effect would vanish,
whereas ε = 1/2 for an infinite cylinder perpendicular to the
field [55–57].

The recommended value for the volume magnetic suscep-
tibility of water χ (H2O, T = 20 ◦C) = −9.032 × 10−6 was
measured at temperature of T = 20 ◦C [58]. A comparison
with an additional measurement taken at an unknown temper-
ature χ (H2O) = −9.060(3) × 10−6 [59] is used to estimate
an uncertainty of 3 × 10−8. The measured, small, temperature
dependence of the magnetic susceptibility [60] is used to
determine the magnetic susceptibility of water at an experi-
mental measurement temperature T .

The intrinsic probe correction δs, intr was measured in the
MRI magnet by removing the 5-mm-diameter cylindrical
water sample and measuring the field shift caused by the
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TABLE III. The calibration probe corrections due to effects described in the text. The temperature-dependent entries were evaluated for
the calibration probe’s temperatures ranging from T = 25.13 ◦C to 26.4 ◦C during the calibration of the trolley probes. Positive values indicate
that the field measurements are increased to correct a given effect.

Quantity Symbol Correction (ppb) Uncertainty (ppb)

Bulk magnetic susceptibility δb(H2O, T ) −1505.9 to −1505.6 6
T dependence of diamagnetic shielding δT (Tr − T ) −99.1 to −86.0 5
Intrinsic and configuration-specific probe effects δs 15.2 12
Water sample δp 0 2
Radiation damping δRD 0 3
Proton dipolar field δd 0 2
Total −1589.8 to −1576.4 15

remaining calibration probe materials, when a test probe was
inserted inside the calibration probe. The dependence on the
probe’s roll and pitch3 was measured.

For the estimation of δp, ASTM type-1 water from different
vendors was utilized, and degassed and nondegassed water
samples were examined. A variety of additional tests were
performed in which the glass water sample tube was rotated,
and different sample tubes were used. No systematic shifts
were observed within an uncertainty of 2 ppb. The δRD term
was estimated by varying the magnetization tip angle and de-
tuning the probe’s resonant circuit. No relevant effects larger
than 3 ppb were observed, consistent with expectations [53].
The value for δd is based on estimates for the specific probe
geometry described in Sec. I B, and the effect is estimated to
be less than 2.5 ppb [54].

The results for all of the terms described in this section are
shown in Table III and δs is evaluated for the configuration
used at Fermi National Accelerator Laboratory (FNAL) as
described in the next section.

2. Configuration effects: δs, config

The configuration specific δs, config accounts for four addi-
tional corrections, which arise when the calibration probe is
used in the storage ring magnet at FNAL. First, new materials
were added to support the probe whose field perturbation
must be determined: an aluminum holder clamped around the
probe, a long aluminum rod used to move the probe into the
measurement region, and a new SMA connector and cable.
The perturbations of the aluminum holder, SMA connector,
and cable were measured in the MRI solenoid, and were
consistent with expectations based on the volumes, distances
from the NMR sample, and magnetic susceptibilities of the
materials.

Second, when inserted between the iron magnet poles,
magnetic images of the magnetized components of the probe
perturb the field at the water sample. The image effects were
measured in the MRI solenoid by observing the field pertur-
bation from the calibration probe on a test probe located one
image distance (18 cm) away, and were consistent with cal-
culations. The total correction δs including the probe, holder,
and rod and their images was also measured directly in the

3The roll is the angle of the rotation around the probe’s long axis
and the pitch is the long axis’ angle with respect to horizontal.

storage volume, and was consistent with the measurements
performed with the ANL solenoid. The effect of the rod could
not be verified in the solenoid, but the measurement result in
the storage ring magnet was consistent with expectations.

Third, when installed on the long rod, the long axis of
the probe is not exactly perpendicular to the field so its pitch
angle is nonzero. The probe angle with respect to the vertical
field was measured using a camera and plate with fiducial
markings, and found to be offset by 0.7◦. The material effects
for a probe pitched at 2.5◦ were measured at ANL and scaled
linearly, yielding a difference of 4(4) ppb with respect to a
probe aligned with the field.

The fourth correction arises because the material perturba-
tion measurements involve the probe displacing air, which is
paramagnetic due to the molecular oxygen, whereas the probe
displaces vacuum when used during the calibration procedure.
This vacuum shift is effectively the magnetic perturbation due
to a volume of air in the shape of the probe, estimated as
−2(2) ppb.

3. Correcting the measurement to the shielded
proton frequency: δT (Tr − T )

To extract the shielded-proton precession frequency from
calibration probe measurements, we solve Eq. (14), apply-
ing all corrections. With δT (Tr − T ) = −10.36(30) ppb/◦C ×
(Tr − T ) and calibration probe temperatures of around 26 ◦C,
the typical value for this correction was δT ≈ 90 ppb. These
shielded-proton frequencies are then transferred to the trol-
ley via a detailed calibration program, which we discuss in
Sec. IV.

B. Cross checks with spherical water sample and 3He

The difference between cylindrical and spherical samples
was verified by comparing cylindrical calibration probe fre-
quencies with those of the spherical sample probe used in the
BNL E821 experiment [43]. The measurements were taken
in the stable homogeneous field of an MRI magnet at 1.45 T
at ANL. The measured difference 1514(15) ppb agrees with
expectations from Eq. (16), with the uncertainty dominated by
the asphericity of the BNL water sample. To account for the
finite length of our water sample, a small correction of 0.02%
was applied to the shape factor ε = 1/2 of an infinte cylinder
[57].

As a cross check with considerably different systemat-
ics, a 3He probe described in [44,61] was also compared
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with the BNL spherical water probe. After correcting the
BNL probe to 25 ◦C and for material effects, the ratio of
3He to spherical probe frequencies was measured to be
0.761 786 139(29)(38 ppb). This result agrees with a previous
measurement [62] of the ratio of frequencies from 3He and
water in a spherical sample,

μh(3He )

μ′
p

= −0.761 786 1313(33)(4.3 ppb).

The cylindrical calibration probe was therefore calibrated to
3He indirectly through the BNL spherical probe, effectively
validating the calibration probe to 10(38) ppb.

IV. TROLLEY CALIBRATION

The field measured by each of the 17 trolley probes is a
combination of the storage ring magnetic field and additional
perturbations introduced by the NMR probes, their sample
shape, and surrounding magnetized materials in the trolley.
The trolley probe calibration procedure described in this sec-
tion provides a set of offsets δtr

j (Tr ) [see Eq. (8)], used to
correct the measured frequency of probe j to the shielded
proton frequency at Tr = 34.7 ◦C. The offsets are due primar-
ily to differences in diamagnetic shielding of protons in water
versus petroleum jelly, sample shape, and magnetic perturba-
tions from magnetization of the materials used in the NMR
probes and trolley body. This procedure allows the trolley fre-
quency maps to be converted into maps of the magnetic field
in the storage volume. The trolley calibration constants are
extracted from the difference of trolley probe frequencies ωtr

j
and calibration probe measurements corrected to the shielded
proton frequency ω′

p, j (Tr ), with the two probes swapped into
the same position. Remaining misalignments and magnetic
footprints of the calibration probe on the trolley and vice versa
during the actual calibration measurement lead to procedure
specific corrections δ

align
j and δ

fp
j . The ωtr

j in Eq. (8) have to be
expressed in terms of the actual measured trolley frequencies
ωtr, meas

j via ωtr
j = ωtr, meas

j (1 − δ
align
j − δ

fp
j ). The difference in

trolley probe temperature between calibration and trolley field
mapping is taken into account in the trolley map analysis (see
Sec. V B). The trolley calibration constants are extracted as

δtr
j (Tr ) =ω′

p, j (Tr ) − ωtr, meas
j

ωtr, meas
j

+ δ
align
j + δ

fp
j . (17)

The calibration procedure described in Sec. IV A was per-
formed for all 17 trolley probes. The full campaign took
about two weeks to complete, meaning it was not feasible
to repeat the procedure often. For the Run-1 analysis, the
calibration campaign was performed during the FNAL ac-
celerator summer shutdown following the production period.
The calibration of the central probe was performed multiple
times as a cross check. We have performed four calibration
campaigns, associated with each annual running period, and
preliminary analyses of the Run-2 and Run-3 calibration data
show good consistency with the Run-1 results discussed here.

A. Calibration procedure

Each trolley probe was calibrated with the following pro-
cedure:

(1) The calibration probe (Sec. III) was mounted on a
translation stage in the vacuum chamber. The translation stage
allowed the calibration probe to be moved to each trolley
probe position at a specific azimuthal location.

(2) The SCC and a set of local azimuthal coils were used
to impose known, large field gradients in the calibration re-
gion, allowing precision determination of the two probes’
positions.

(3) The field was shimmed locally with the SCC based on
a local field map by the calibration probe.

(4) The trolley and calibration probe were rapidly
swapped back and forth into the same position. Several mea-
surements were taken with each probe in this calibration
position.

(5) Nearby fixed probes tracked the magnetic-field drift
during the calibration procedure.

To determine the probe’s position, we imposed large gradi-
ents in all three directions using the SCC and azimuthal coils
to colocate the calibration probe and the target trolley probe
j. The difference of the field with and without these large
gradients uniquely determined the probe position. This pro-
cedure allowed the position to be determined with a precision
of typically 0.5 mm.

With the large external gradients turned off, remaining
spatial field gradients in the storage region will couple to small
position offsets between the probes. To minimize this sys-
tematic uncertainty, the field in the vicinity of a target trolley
probe was mapped using the calibration probe and shimmed
locally with the SCC and a set of azimuthal coils to reduce
local field gradients to less than 30 nT/mm (21 ppb/mm).
The calibration probe mapped the residual field gradients so
we could correct any errors from the remaining misalignment
between the probes.

The magnetic field in the muon storage region drifts over
time. We used the power supply feedback to suppress this
drift and monitored the remaining magnetic-field drift using
the fixed probes. Repeated “rapid swaps” between the trolley
and the calibration probe help mitigate the effects of long-
term drifts in “ABA”-style measurements [63]. Measurements
were taken with the trolley at the calibration location for
30 s, then the trolley was retracted upstream azimuthally by
≈ 4◦ 	 50 cm. The calibration probe was then moved into the
calibration location and we took measurements for 30 s. We
repeated this sequence at least 4 times per probe and up to 10
times for some probes.

B. Analysis

To extract δtr
j for a trolley probe j via Eq. (8), the data

taken during the rapid swapping are analyzed as discussed
in Sec. IV B 1. Since both probes cannot be placed exactly
at the same position when they are moved into the mea-
surement position, the analysis must also account for the
small, relative position misalignments of the trolley probe
j and the calibration probe. This analysis is described in
Sec. IV B 2.
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FIG. 10. Oscillatory signal as measured by the fixed probes
(black dots), where linear drift corrections have been applied. The
calibration probe data before (blue diamonds) and after (orange
crosses) the correction is overlaid to show the typical size of
corrections.

1. Rapid swapping analysis

From the ABA . . . series of measurements, the A and B
measurements are interpolated to common times, which al-
lows us to correct for linear drifts that occurred while the two
probes were being swapped. In these measurements, the drift
rate was up to 100 ppb/h.

During Run-1, we observed an oscillation in the magnetic
field with an amplitude of 10 to 20 ppb and a period of 2 min,
which is shorter than the measurement and swapping periods
of ∼10 min. Therefore, the ABA method does not remove this
oscillation. However, the oscillation is not a localized effect in

the calibration region but coherent around the entire ring and
it can be removed using data from the fixed probes. The shape
of the oscillation is shown in Fig. 10, where the slow field
drift has already been corrected. Table IV shows the statistical
uncertainty from this procedure for all trolley probes.

2. Misalignment correction: δ
align
j

The difference between the frequencies with and without
imposed gradients are calculated using an ABA method. The
drift-corrected differences are called 
ωtr

j,q, where q ranges
over x, y, and φ and j indicates the probe number. The
transverse gradients were fitted across the 17 trolley probes.
For the azimuthal gradient, the trolley was moved azimuthally
through the calibration region in ≈ 0.5 cm steps.

Figure 11 shows the field gradients used to locate each
trolley probe in the x and y directions. The combination of
the two uniquely determines each probe’s xy position. This
uniqueness can be extended to xyz by including the azimuthal
gradient measurement. From these measurements, we obtain

the strength of the imposed gradients ∂ω
grad
q

∂q . The calibration
probe was moved in the field with the same imposed gradient
to find the location where its 
ω′

cp,q values matched the trol-
ley’s 
ωtr

j,q. In practice, the calibration probe’s position was
iterated until |
ω′

cp,q − 
ωtr
j,q|/2π � 20 Hz (324 ppb) for x

and y directions and � 5 Hz (81 ppb) for the φ direction,
corresponding to a position alignment better than 0.5 mm. The
remaining difference determines the two probes’ misalign-
ment sq. Using the measured gradients, the misalignment in
each direction can be extracted via

sq
j = (


ω′
cp,q − 
ωtr

j,q

)/∂ω
grad
q

∂q
. (18)

TABLE IV. Calibration coefficients δtr
j (Tr ) and their statistical and systematic uncertainties. The total uncertainties in the last column are

the quadrature sum of the statistical and systematic uncertainties listed and the uncertainty of 15 ppb for the corrections to ω′
p, j (Tr ) from

Table III.

Systematic uncertainties

δtr
j (Tr ) Statistical uncertainty Misalignment Freq. Extr. Footprint Total

Probe (ppb) (ppb) (ppb) (ppb) (ppb) (ppb)

1 1470 6 27 6 9 33
2 1363 11 3 7 9 22
3 1538 9 29 11 8 36
4 1392 4 11 2 9 21
5 1504 8 3 2 9 20
6 1719 7 4 13 8 23
7 1888 16 4 19 8 30
8 1236 10 6 7 8 22
9 1352 4 18 8 8 27
10 389 22 2 11 8 30
11 2873 4 21 18 8 32
12 1794 7 15 17 8 29
13 1989 34 14 22 9 46
14 1248 9 13 21 9 32
15 1211 17 15 10 10 31
16 329 7 40 18 9 48
17 2786 20 14 22 9 37
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FIG. 11. 
ωtr
j,x (left) and 
ωtr

j,y (right) measured by the trolley.
The graphs were fitted to a two-dimensional polynomial to extract
the large imposed field gradient. These gradients are used to uniquely
identify a probe’s location in the xy plane.

Prior to the rapid swapping, the local field inhomogeneities
around each trolley probe’s position were mapped with the
calibration probe. Additional imposed fields generated with
the SCC and the azimuthal coils reduced the local gradients
to less than 21 ppb/mm (30 nT/mm). The calibration probe
was used to map the residual local shimmed field ωlocal. The
misalignment between the target trolley probe and the calibra-
tion probe together with the local gradients created an error
that is corrected since we measure both the misalignment and
gradient. The misalignment correction is then

δ
align
j = ∇ωlocal · s j .

To minimize the time between the rapid swaps, the measure-
ments of 
ω′

cp,q and 
ωtr
j,q were only performed prior to the

first swap. While the calibration probe can be placed into the
same position repeatedly with a precision of <0.1 mm, the
trolley positioning during the rapid swapping was based on
the less precise encoder readings. This results in position vari-
ations of O(1 mm). To correct for this position variation, the
more precise bar code position was used offline to determine
an additional azimuthal position offset δtr

j,s for each placement
of the trolley during the swap s in the sequence. This leads to
a modification of Eq. (18) for q = φ:

sφ
j,s = (


ω′
cp,φ − 
ωtr

j,φ

)/∂ω
grad
φ

∂φ
+ δtr

j,s. (19)

C. Systematic effects

Multiple systematic uncertainties arise from the trolley
calibration procedure. They comprise a statistical component
from the rapid swapping in ω′

p, j (Tr ) − ωtr
j and systematic

uncertainties arising from the analysis of the FIDs, from the
misalignment, and the remaining magnetic footprints of the
probes.

1. Frequency extraction uncertainty: εi, ε f

The calibration constants are based on a zero-crossing al-
gorithm for the frequency extraction of the calibration probe
and the Hilbert transform algorithm for the trolley. The
systematic fit uncertainty (ε f ) and the intrinsic systematic
uncertainty (εi) (see Sec. II A) are estimated based on simu-
lated FIDs. The large gradients required to colocate the probes
produce large field nonuniformities over the probe samples.

Thus, systematic effects from frequency extraction are larger
for these measurements than in the well-shimmed field dur-
ing the rapid swapping. The full calibration procedure was
compared with an independent analysis utilizing the Hilbert
transform for the calibration probe frequency extraction. The
results agreed within the stated uncertainties.

2. Position misalignment uncertainty: δ
align
j

The determination of the position misalignment is based

on imposing additional large gradients
∂ωq−grad

∂q with the SCC
and the azimuthal coils. These large gradients degrade the
field uniformity and result in larger systematic effects from
FID frequency extraction. However, the same gradients in the
denominator of Eqs. (18) and (19) suppress the effect of the
frequency uncertainty on the actual misalignment, leading to
a misalignment uncertainty of less than 0.4 mm.

A set of local measurements of the shimmed field ωlocal

in the vicinity of the probe’s location is used to evaluate the
local gradient ∇ωlocal at the actual position of the probe. A
lack of knowledge of higher-order and cross-term derivatives
in this local field map causes systematic effects in this evalu-
ation. The residual field was only measured at two positions
along some directions for some probes, hence not constraining
second- and higher-order gradients along this axis. For those
probes and directions, the largest observed gradient is used
to estimate an upper limit for the uncertainty of 3 ppb/mm,
which then couples to the misalignments sx

j and sy
j . The az-

imuthal direction was not mapped for all probes. The observed
variations in gradient of up to 22 ppb/mm are used as an
uncertainty, which couples to the azimuthal misalignment sφ

j .
The resulting uncertainties range of 0 to 13 ppb.

No second-order cross terms (e.g., ∂2ω
∂x∂y ) were explicitly

measured. They are estimated from quadratic terms measured
along the x and y directions. The cross terms are assumed
to be smaller than two times the largest quadratic derivative
along the x and y axes ( ∂2

∂x2 , ∂2

∂y2 ). The largest uncertainty

generated by the cross term is εcross = 12 ppb/mm2, leading
to an uncertainty of εcross
qi
q j for i 
= j in a range of 0 to
8 ppb.

3. Trolley and calibration probe magnetic footprints

During the calibration probe measurements in the rapid
swapping procedure the trolley was azimuthally retracted by
∼4◦. The calibration probe was used to measure the remaining
magnetic footprint of the trolley in situ as a function of relative
trolley position in a range from 3◦ to 100◦. No perturbations
are observed for relative distances larger than ∼25◦. The
probe-independent correction due to the perturbation from the
magnetic footprint of the trolley retracted by ∼4◦ is δfp,tr =
40(8) ppb.

During the trolley measurements the calibration probe is
retracted radially inwards. The material of the probe itself and
its aluminum fixture perturb the field at the location of the
trolley probes slightly. The size of the resulting corrections
δ

fp, cp
j ranges from 2 to 7 ppb depending on the trolley probe

location and the uncertainties were in the range of 1 to 6 ppb.
Table IV lists the associated uncertainties of the total footprint
correction δ

fp
j = δ

fp, tr
j − δ

fp, cp
j for all trolley probes.
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D. Results

The final calibration coefficients δtr
j (Tr ) were determined

via Eq. (17) and are shown in Table IV along with the statis-
tical and systematic uncertainties described above. The total
uncertainty also includes the uncertainty of 15 ppb from the
corrections to ω′

p, j (34.7 ◦C) from Table III.
While most probes have total uncertainties of about 20 to

30 ppb, a few of the probes on the outer circle have total
uncertainties as large as 48 ppb, which is driven by large field
nonuniformities for probes located nearest to the trolley rails
and the iron pole pieces. Many measurements of the field
gradient at the outer probes were performed after the main
calibration campaign to determine the misalignment, and the
drift of the azimuthal gradient contributes significantly to the
systematic uncertainty.

V. TROLLEY FIELD MAPPING

The determination of ω̃′
p(Tr ) requires precision measure-

ment of the field in the region in which the muons are stored.
However, continuous field measurements with NMR in the
storage region would physically interfere with the muons.
The trolley provides detailed frequency maps over the en-
tire storage region. We determined the azimuthally averaged
field with a precision of 30 ppb. Critically, the trolley is also
retracted from the storage region during muon injection pe-
riods. While mapping, the set of probes in the fixed probe
station are synchronized to the trolley probes. Trolley runs
take about four hours in total to execute and are performed
approximately every three days to minimize interruptions to
muon data taking. The fixed probes continuously track field
drifts between the trolley runs. Therefore, we have occasional
precise measurements of the field in the storage volume that
are interpolated with continuous, less precise measurements.
This section covers the analysis of the trolley frequency maps
and the corresponding systematic corrections and uncertain-
ties. The relationship between the trolley map and the fixed
probe measurements is discussed in Sec. VI.

A. Trolley maps: ωtr
j (φ, 0)

The trolley moment maps mtr
i (φ, t = 0) in Eq. (13) are

extracted from the frequency maps ωtr
j (φ, 0) that are directly

measured in the continuous trolley runs by the 17 probes
(index j). Note that the part of a trolley run, that generates
the baseline trolley maps, takes about an hour. Therefore,
calling a trolley run time t = 0 is a notational convenience.
The finite duration of the trolley run is taken into account
in Sec. VI. Figure 12 shows the results from a typical trol-
ley run. The top panel shows the raw, relative frequency
[ωtr

j (φ, 0) − 〈ωtr
j 〉]/〈ωtr

j 〉 for the central probe ( j = 1), where
〈ωtr

j 〉 is the azimuthal average frequency of that probe. The
bottom three plots show the extracted multipole moments
mtr

i (φ, 0) for the dipole (i = 1), normal quadrupole (i = 2),
and skew quadrupole (i = 3), normalized to the dipole mo-
ment.

An azimuthally averaged relative frequency distribution for
a typical trolley run is shown in Fig. 13. The corresponding
azimuthally averaged quadrupole moments are 6.7 ppb/mm

FIG. 12. A typical field map from a trolley run (25th of April
2018, approximately at 3 a.m.). On top, the raw, relative frequency
[ω j (φ, 0) − 〈ω j〉]/〈ω j〉 for the central trolley probe j = 1. The lower
three plots show the corresponding lowest-order multipoles, dipole
(black), normal quadrupole (green), and skew quadrupole (red), as a
function of azimuth. The dipole distribution has an RMS of 16 ppm
with a peak-to-peak variation of 101 ppm.

(normal) and 8.87 ppb/mm (skew), and higher-order mo-
ments are shown in Table V.

The frequency maps are an integral part of the magnetic-
field tracking described in Sec. VI. Specifically, they provide
precise baseline measurements of the field, which are interpo-
lated using the fixed probes. The trolley maps are averaged
over 5◦ of azimuth into 72 bins that correspond to each

FIG. 13. Variations in the azimuthally averaged, relative fre-
quency [ωtr

j (φ, 0) − 〈ωtr
j 〉]/〈ωtr

j 〉 for the central probe ( j = 1). The
locations of the 17 trolley probes are indicated by (x). Their raw
frequencies are averaged and the field variations are interpolated.
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TABLE V. Strength of each moment from the fit in Fig. 13 with
r0 = 4.5 cm and normalized to the strength of the dipole A0 [see
Eq. (6) and Table I], and averaged over azimuth.

Normal Skew
Normalized moment strength (ppb) (ppb)

Dipole (A0/A0, −) 1 000 000 000
Quadrupole (A1/A0, B1/A0 ) 300 399
Sextupole (A2/A0, B2/A0) −1 247 395
Octupole (A3/A0, B3/A0 ) 14 273
Decupole (A4/A0, B4/A0) 39 −1 319
Dodecupole (A5/A0, B5/A0 ) −756 −187
Tetradecupole (A6/A0, B6/A0 ) −1 067 −0

fixed probe station. The edges of the bins are defined by the
midpoints between adjacent fixed probe stations. Azimuthal
averages of the 72 bins are used for the systematic uncertainty
evaluation (Sec. V B), but do not enter directly into the de-
termination of ω̃′

p(Tr ), which is mainly based on fixed probe
data and a synchronization of each station to the trolley data
as discussed in Sec. VI.

B. Systematic effects: δ
tr, syst
i

The final field moment maps mtr
i (φ, t = 0) that enter

in Eq. (13) can be derived from the measured maps via
mtr

i (φ, 0) = mtr, meas
i (φ)(1 + δ

tr, syst
i ), where δ

tr, syst
i is the sum

of systematic corrections and their uncertainties caused by the
following effects.

(1) δ
freq
i : frequency extraction biases and uncertainties

from the FIDs from the trolley NMR probes.
(2) δmotion

i : effects that are introduced by the continuous
trolley motion and dominated by eddy currents in the trolley
shell.

(3) δ
pos
i : corrections for transverse and azimuthal trolley

position offsets.

(4) δ
temp
i : corrections due to the temperature of the trolley

NMR probes during the field mapping.
(5) δ

multipole
i : field variations that are not described by the

moments in Table V.
(6) δ

config
i : differences in the experiment configuration dur-

ing a trolley run from nominal muon storage conditions.
The uncertainties associated with the field maps in Run-1

are treated conservatively and combined as correlated uncer-
tainties. The following sections discuss these systematics in
more depth. An overview of their numerical values for both
the correction and associated uncertainty is given in Table VI.

1. Trolley frequency extraction: δ
freq
i

The uncertainty in the extracted NMR frequency can be
split into δ

freq
i (φ) = δ

freq, stat
i (φ) + δ

freq, syst
i (φ), the statistical

uncertainty and the systematic uncertainty which combines
the fit uncertainty ε f and the intrinsic uncertainty εi (see
Sec. II A). The systematic contribution is evaluated based
on FID simulation, taking into account the local field shape
around the azimuth φ as described in Sec. II A. Systematic
stop-and-go trolley runs collect frequency data while the trol-
ley is stationary before being moved to the next position.
These measurements are free of motion effects described be-
low and are used to extract the probes’ statistical resolution.
The resulting uncertainties are statistically independent for
each field map but sampled from the same underlying distri-
bution. The probe resolution is extracted from the variance of
measurements taken over 5 s while the trolley is stationary;
the field drift is negligible on this timescale.

2. Trolley motion: δmotion
i

The trolley movement through the nonuniform magnetic
field generates eddy currents in the conducting compo-
nents, most significantly the aluminum shell. These produce
transient field variations that affect the trolley map leading
to the correction δmotion

i . It was determined in two ways:

TABLE VI. Overview of all contributions to 〈δtr, syst
i 〉. Uncertainties from different trolley regions are treated as correlated uncertainties,

leading to a conservative uncertainty estimate. Ranges are specified for uncertainties that vary between data subsets; the range is defined by
the minimum and maximum uncertainties from the Run-1a through Run-1d data subsets.

Quantity Dipole Normal quadrupole Skew quadrupole

〈δX
i 〉 Corr. (ppb) Unc. (ppb) Corr. (ppb) Unc. (ppb) Corr. (ppb) Unc. (ppb)

Freq
syst, fit <1 10 1 0 0 0
stat 0.0 0.1 0.0 0.2 0.0 0.2

Motion −15 18 21 10 −8 12
Position

transverse 0 12 0 27 0 4
azimuthal 0 4 0 2 0 4

Temperature 0 15–27
Multipoles 0 1 0 1 0 1
Config

garage −5 22
collimators <1 <1
ground loop −2 0 −2 0 3 0

Total −21 36–43 20 29 −5 13

042208-16



MAGNETIC-FIELD MEASUREMENT AND ANALYSIS FOR … PHYSICAL REVIEW A 103, 042208 (2021)

FIG. 14. The difference between moving and static trolley mea-
surements. (a) Comparison of the frequencies measured in a selected
azimuthal region for the normal trolley motion and the stop-and-go
operation. (b) The distribution of the dipole differences between
motion and static measurements over the full ring.

(1) comparison of the frequency measurements from two
trolley-run modes, one with continuous motion (standard trol-
ley run) and one in stop-and-go, and (2) the comparison of
maps taken in the clockwise and counterclockwise directions.

Figure 14(a) shows a comparison of the continuous and
stop-and-go modes over a narrow azimuthal range. Taking
the differences of these frequencies for each probe allows the
construction of the azimuthally averaged differences in the
field moments shown in Fig. 14(b) for the dipole moment.
The resolution for the moving trolley is two orders of mag-
nitude worse than what is observed in the static situation.
Additionally, large eddy current spikes generate fluctuations
of the measured trolley probe frequencies of up to 20 ppm
with decay constants on the order of 100 ms. The statis-
tical and systematic uncertainties are determined from the
statistics-scaled RMS and dedicated studies that removed
spikes from the maps, respectively. The dipole moment cor-
rection is δmotion

1 = −15(2)(17) ppb.

3. Trolley position: δ
position
i

Extracting moments from trolley data requires knowledge
of its position in x, y, and φ for each measurement. The
trolley’s azimuthal position is determined from the bar code
reader, and the uncertainty in the trolley’s azimuthal location
propagated into the uncertainty δ

pos, azi
i in the field maps.

Position deviations in the transverse directions from the ideal
circular muon orbit of radius 7.112 m predominantly origi-
nate from the location and shapes of the rails, generating an

FIG. 15. Surveyed offsets (top: radial with a mean of 0.2 mm and
RMS of 0.5 mm, middle: vertical with a mean of −0.6 mm and RMS
of 0.6 mm) and rotation (bottom: roll with a mean of −0.3◦ and a
RMS of 0.6◦) of the trolley rails.

uncertainty δ
pos, vert
i . The total trolley position uncertainty is

δ
position
i = δ

pos, azi
i + δ

pos, vert
i .

(a) Transverse trolley position: δ
pos, vert
i . The trolley rails

have shape distortions with respect to their design curvature
and limitations on the precision of their placement inside the
vacuum chambers. Extensive rail surveillance data were col-
lected prior to installation using laser tracking, and additional
trolley motion verification was performed during installation.
The vertical and radial offsets of the rails and their corre-
sponding roll of the trolley are shown in Fig. 15. These data
are analyzed to determine the trolley probes’ vertical and
radial displacements and any roll movement during trolley
motion.

The multipole moment extraction is performed without
accounting for the positional distortions. By repeating the
multipole fits with slightly different probe positions de-
termined by including linearly interpolated displacement
information at each azimuthal location, systematic uncer-
tainties are determined for the azimuthally averaged dipole
(12 ppb), normal quadrupole (27 ppb), and skew quadrupole
(4 ppb).

(b) Azimuthal trolley position: δ
pos, azi
i . The bar code reader

provides the azimuthal position via the recording of regular,
2-mm-wide alternating dark and bright marks etched into the
vacuum chambers. The bar code reader is equipped with two
sensor groups that are 12 cm apart and record the same bar
code patterns with a small time delay. In the Run-1 analysis,
only one group is used to determine the azimuthal position,
resolving about 80% of the full azimuth. For the remaining
20%, the position information is determined using less precise
rotary encoders installed in the cable winding mechanism. The
differences between reconstructed bar code positions for the
two sensor groups determines the precision of the bar code
reader to be 0.2 mm.

Because there are small gaps between adjacent vacuum
chambers and some regions that rely on the encoders, a
conservative overall position resolution of 2 mm is used. A
random variation of the azimuthal trolley positions with a
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TABLE VII. The mean temperature and uncertainties per data subset. The different trolley runs are linearly interpolated weighted by the
number of decay muons.

Temperature 〈δtemp
dipole(Trun )〉 〈δtemp

dipole(
T )〉
Data subset (◦C) Corr. (ppb) Unc. (ppb) Corr. (ppb) Unc. (ppb)

Run-1a 27.44 0 27 0 4
Run-1b 27.99 0 25 0 4
Run-1c 28.79 0 20 0 4
Run-1d 30.06 0 14 0 4

2-mm-wide Gaussian distribution is used to estimate a sys-
tematic uncertainty of 4 ppb on the average dipole field.

4. Temperature correction: δ
temp
i

The temperature of the trolley probes increases during op-
eration due to the trolley’s electronics’ power dissipation. The
precession frequency produced by these NMR probes has a
temperature dependency of 0(5) ppb/◦C which was measured
with a dedicated setup in the stable and homogeneous solenoid
at ANL. Because the trolley temperature during the field
mapping runs differed from the temperature during the trolley
calibration, a run-specific uncertainty δ

temp
i (Trun ) is applied.

The mean temperatures of all trolley runs, linearly inter-
polated and weighted by the corresponding number of decay
muons, are grouped into data subsets shown in Table VII.
The temperature also varies during the one-hour duration of
a trolley run and adds an additional uncertainty. Temperature
changes on the order of 1.59 ◦C to 1.70 ◦C are observed dur-
ing the trolley runs. This corresponds to assigned systematic
uncertainty δ

temp
i (
T ) of 4 ppb. The data-subset-specific sys-

tematic uncertainty from the temperature is the sum of these
two parts: δ

temp
i = δ

temp
i (Trun ) + δ

temp
i (
T ).

5. Other systematic corrections: δ
config
i , δ

multipoles
i

Other systematic effects include those that arise from
the experiment’s different configuration during field mapping
compared to muon data taking. The configuration differences
during the trolley measurement generate three systematic con-
tributions from (1) the change in the configuration of the
garage, (2) the change in the orientation of the beam colli-
mators, and (3) an electrical ground loop. All of these effects
are constant for all trolley runs. An additional systematic is
caused because the truncated moment expansion does not
completely describe the magnetic field. The trolley is unable
to measure higher-order moments accurately, leading to an
uncertainty δ

multipoles
i .

The trolley was moved radially in and out of the storage re-
gion by a sliding rail section and only measured the magnetic
field when this segment of the rails was inserted. However,
the segment of the rails was retracted during muon injection.
The magnetization of this rail section changed the magnetic
field during the trolley measurement in a way that the muons
do not experience. A similar systematic effect is caused by
three copper collimators.4 The collimators are retracted during

4The experiment is equipped with five collimators, but in Run-1
only three of them were used.

field mapping measurements to prevent interference with the
trolley’s motion, but inserted during muon injection.

Corrections and uncertainties are determined for both the
garage and collimator effects by modeling their magnetization
and estimating the two configurations’ differences. Addition-
ally, the effect from the garage was measured by the fixed
probe system. The systematic effects are −5(22) ppb for the
garage and less than 1(1) ppb for the collimators.

Over a small azimuthal extent of ≈ 5◦, the trolley shell
makes contact with the grounded kicker plates. This provides
an additional ground path for the return current of the trol-
ley power, which normally flows through the coaxial cable
connected to the trolley. The imbalance in current paths gen-
erates a small magnetic field and affects the trolley probes
and all fixed probe stations between the trolley and the end
of the coaxial cable at the trolley drive. Dedicated measure-
ments that broke the ground loop showed systematic shifts for
the azimuthally averaged dipole (-2 ppb), normal quadrupole
(-2 ppb), and skew quadrupole (3 ppb). The electrical contact
causing the ground-loop effect has since been corrected for
future data sets.

VI. MAGNETIC-FIELD TRACKING

Changes of ω̃′
p between trolley map measurements are pre-

dominantly due to changes of the magnetization and geometry
of the magnet’s ferromagnetic components and may include
hysteresis. We track ω̃′

p with the 72 fixed probe stations, each
containing four or six probes mounted outside the vacuum
chambers (see Fig. 6). The procedure of synchronizing the
fixed probes during the trolley run and tracking certain mo-
ments accounts for the changes of ω̃′

p during muon storage,
up to uncertainties that are discussed in Sec. VI B 3.

The tracking procedure incorporates the following main
steps, which will be described in more detail in Secs. VI A
and VI B:

(1) After the application of all data quality cuts (see
Sec. II B) and the trolley probe calibration offsets, all NMR
measurements obtained from the trolley mapping and fixed
probes are converted into 2D moments according to the pre-
scription in Sec. I D 1.

(2) Because the magnetization of the trolley’s materials
and eddy currents in its shell distort a fixed probe station’s
local field, algorithms are applied to remove this magnetic
footprint from the fixed probe measurements.

(3) The four or five moments tracked at each four- or
six-probe station shown in Table I are synchronized to the
moments measured by the trolley during a trolley run using
a Jacobian described below (and in Appendix B).
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(4) The field’s evolution is interpolated by tracking the
changes in the fixed probe measurements from the baseline
measured during a trolley run mtr

s (0).
(5) Corrections are added to the interpolated field map for

systematic sources such as temperature variations, magnetic
configuration changes, trolley systematic effects, and fast field
transients.

The tracking procedure combined with the calibration
probe corrections from Sec. III provide the field moments
m′

p,i(φk, t, T ) = mtr
i (φk, t )(1 + δtr

i ) [see also Eq. (13)], where
φk refers to the azimuthal locations of the kth fixed probe
station. As a reminder, mtr

i (φ, t ) and mfp
j (φ, t ) denote the ith

multipole (trolley) and jth Cartesian (fixed probe) moment,
respectively. Additionally, mtr (φ, t ) and mfp(φ, t ) denote vec-
tors in the vector space of moments in a slice of azimuth φ

and time t . These vectors are, in principle, elements of R17

(trolley), R6 (six-probe stations), or R4 (four-probe stations).
However, in practice, we truncate the trolley and six-probe
stations to only R9 and R5 due to the large uncertainties in
the tracking of the higher-order moments. The effect of this
truncation is negligible because the influence of the higher-
order moments on the average magnetic field is suppressed
when the field is weighted by the muon distribution, discussed
in Sec. VII.

For a specific station s at φ = φs, the field moments
are mtr

s (t ) = mtr (φs, t ) and mfp
s (t ) = mfp(φs, t ). In practice,

mtr
s (0) is averaged over ∼5◦ of azimuth and mfp

s (0) is aver-
aged over the amount of time it takes the trolley to traverse
that azimuth, about 40 s. With this notation and neglecting
the untrackable higher-order moments εho

s (t ) for now, Eq. (10)
from Sec. I D 2 becomes

mtr
s (t ) = mtr

s (0) + Js · [
mfp

s (t ) − mfp
s (0)

]
, (20)

where t = 0 is the synchronization time during the trolley run
for that particular station. Js is the Jacobian with elements

Js, i j = ∂mtr
i (φs )

∂mfp
j (φs )

. The Jacobian matrix is 9 × 5 for the six-probe

stations and 9 × 4 for the four-probe stations. Because the
fixed probes can only track lower-order moments, Js, i j = 0
for i � 6 (i � 5 for the four-probe stations). For moments that
are measurable by the trolley but not the six-probe stations,
we linearly interpolate between the two trolley runs. The
moment m5, which can be tracked by a six-probe station but
not a four-probe station, is estimated in four-probe stations to
be the average of m5 from the nearest neighbors (which are
always six-probe stations). This approximation is mathemati-
cally equivalent to increasing the weight of six-probe stations
that neighbor four-probe stations.

When considering the azimuthal average over the full stor-
age ring, we sum over the stations weighted by their azimuthal
spacing Ws = 
φs/2π :

〈mtr (t )〉φ =
∑

s

Ws
{
mtr

s (0) + Js · [
mfp

s (t ) − mfp
s (0)

]}
. (21)

Equation (21) has four quantities of interest: mtr
s (0),

mfp
s (0), mfp

s (t ), and the Jacobian matrix Js. The baseline mea-
surements mtr

s (0) and mfp
s (0) for each fixed probe station are

measured simultaneously during a trolley run. Trolley mea-
surements are grouped according to the closest fixed probe

station (∼ ± 2.5◦ around a fixed probe station), establishing
t = 0 for each station and synchronizing the two sets of
probes. From the fixed probe stations’ measurements, mfp

s (t )
is calculated for times between the two trolley runs. The
Jacobian matrix is determined analytically from each fixed
probe station’s geometry. Details of the explicit Jacobians for
the general six- and four-probe stations and some stations with
special geometry are given in Appendix B.

A. Tracking analysis

The tracking analysis has five primary steps outlined
above. This section addresses the first four, which are needed
as inputs to Eq. (20). The final step is to determine system-
atic corrections and uncertainties and is covered in detail in
Sec. VI B.

1. Data preparation

Before beginning the tracking analysis, the data quality
selection described in Sec. II B is performed. Then, the trol-
ley calibration offsets described in Sec. IV are added to the
frequency measurements from the trolley as shown in Eq. (7).
The trolley and fixed probe NMR measurements are converted
into the multipole moment and the Cartesian moment bases,
respectively. During trolley runs, there are ≈ 9000 sets of mo-
ments for the trolley and each of the 72 fixed probe stations;
during the muon production runs, there are 72 sets of moments
every 1.4 s between each pair of trolley runs.

2. Trolley footprint replacement

As the trolley is pulled past fixed probe station s, the trol-
ley’s magnetization and eddy currents in its shell perturb the
field at the location of the station’s probes. This perturbation,
the “trolley footprint,” needs to be removed from the fixed
probe data before performing the time averaging of the sta-
tion moments to calculate mfp

s (0). All measurements from the
fixed probes are vetoed during the time when the trolley was
close enough to influence the station measurably (±12.5◦ of
azimuth about the fixed probe location, approximately 200 s).
The vetoed data are replaced by an estimate of the fixed probe
moments’ unperturbed values. We use data from outside the
veto window when the trolley is sufficiently far away not
to perturb the measurements and interpolate over the vetoed
data points. The interpolating function is a model of the local
drift of the station during the veto window. The local model
is a fifth-order polynomial fit to the unperturbed data from
the station. It is corrected with data measured over the rest
of the ring to account for global field transients that would
otherwise be missed in the veto region. An example of a
footprint replacement for one of the fixed probe stations is
shown in Fig. 16. A subset of the interpolated points are used
to calculate the fixed probe baseline moments mfp

s (0).

3. Synchronization and tracking

In the synchronization step, we find the trolley and fixed
probe baseline (t = 0) moments mtr

s (0) and mfp
s (0) in Eq. (20)

for each of the 72 fixed probe stations. The trolley measure-
ments closest to each station, ∼5◦ per station, are averaged
with a weight determined by the azimuthal step size of each
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FIG. 16. The trolley footprint as seen by the fixed probe station,
and the replacement data after vetoing the perturbed region.

trolley measurement. These azimuthal averages are the base-
line trolley moments mtr

s (0) for that station. During the time
interval when the trolley is closest to the station, the footprint-
corrected fixed probe measurements are averaged over time to
calculate the baseline fixed probe moments mfp

s (0).
Equation (20) can be rearranged to group baseline terms

together

mtr
s (t ) = Js · mfp

s (t ) + [
mtr

s (0) − Js · mfp
s (0)

]
= Js · mfp

s (t ) + cs(0). (22)

In this form, cs(0) is a synchronization constant for station s,
measured entirely during the trolley run. During Run-1, there
was one production trolley pair that only had a trolley one
before the period due to magnet issues preventing us from
bookending the period. However, trolley runs bookend most
production data sets, so two synchronization constants can be
calculated for those data sets, one from each adjacent trolley
run. In general the two values are not equal, implying that
the synchronization drifted over the course of the production
period. This effect is the “tracking error.” Because the goal
is to track the field between one trolley run at time t = 0
and the next at t = T , we replace cs in Eq. (22) with a time-
dependent form cs(t ). With no additional information about
this term between times t = 0 and T , we express cs(t ) as a
linear interpolation from cs(0) to cs(T ). The time-dependent
synchronization is

mtr
s (t ) =Js · mfp

s (t ) + cs(t )

=Js · mfp
s (t )

+
[

cs(0) + cs(T ) − cs(0)

T
t

]
+ �s(t ), (23)

where �s(t ) is the nonlinear component of the drift of mo-
ments that the fixed probes cannot track, which leads to the
tracking error. This term is the leading source of uncertainty in
the field tracking analysis. The process described in Eq. (23) is
called “backward interpolation” because it involves correcting

FIG. 17. Before the backward correction, the uncorrected track-
ing curve (light) can disagree with the measurement from the second
trolley run. After the correction (dark), mtr

s (t ) is equal to the corre-
sponding trolley measurements mtr

s (0) (left diamond) and mtr
s (T =

74 h) (right diamond) at both bookending trolley runs. Note that this
plot shows only a single station.

for drift from the first (“forward”) synchronization by inter-
polating backward in time from the second (see Fig. 17 for an
example of the effect). Long stationary trolley runs to measure
the tracking error rate suggest that it follows the statistics of
a random walk with known initial and final constraints; we
approximate �s(t ) as a Brownian bridge [64]. The distribution
of the differences cs(T ) − cs(0) from 11 trolley pairs is used
to parametrize the rate of the random walk for each station,
and therefore estimate the uncertainty on our time averages
of mtr

s from not knowing the functional form of �s(t ). With
the time-dependent tracking error, the Jacobians, and the fixed
probe measurements, Eq. (23) is evaluated to determine each
station’s mtr

s (t ). This quantity is an estimate of what the trolley
would measure at station s at time t . The set of all 72 mtr

s (t )
for a given time constitutes our field map at time t .

Figure 18 shows the results of the tracking analysis over all
four major data subsets in Run-1. The dipole and the normal
quadrupole are each averaged over azimuth and shown as a
function of time. The dipole trend generally behaves smoothly
and the drift is understood to be caused by the selection of
probes used in the stabilizing power supply feedback algo-
rithm. The normal quadrupole term is sensitive to temperature
variations and exhibits a diurnal structure in addition to slow
drifts. The moments are used as inputs in the muon weighting
in Sec. VII.

B. Systematic effects

The systematic uncertainties are presented by the term they
enter in Eq. (20). The shown values of the corrections and
uncertainties are for the azimuthally and time-averaged field
(the averaging procedure is discussed in Sec. VII). The trolley
baseline systematics are discussed in Sec. V B and shown in
Table VI. Fixed probe baseline and fixed probe run systematic
uncertainties refer to uncertainties on the relevant terms in
Eq. (20). An overview of their numerical values for both the
correction and associated uncertainty is given in Table VIII.
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FIG. 18. The first two moments (dipole and normal quadrupole),
each azimuthally averaged, tracked over the four major data sub-
sets in Run-1. The average field m1 is reported as ppm away
from a reference value of 61.79 MHz, so the value is ( f −
61.79 MHz)/61.79 MHz. The moment m2 is also reported as ppm of
61.79 MHz, but with a central value of 0 Hz. The major discontinu-
ities coincide with magnet ramps and major configuration changes.

The tracking error systematic refers to the uncertainty related
to the untrackable term �s(t ) in Eq. (23).

1. Fixed probe baseline systematic effects: mfp
s (0)

The fixed probe baseline systematic is driven by the trolley
footprint replacement and short (∼1 h) averaging times of the
fixed probe noise during the trolley run. We estimate these
effects by implementing the same footprint-replacement algo-
rithm used during the trolley run on fixed probe data in which
the trolley is not present. The fixed probe baseline calculated
from the replacement data can then be directly compared to a
baseline calculated from the measured value. This process can
be repeated for all the fixed probe stations and all moments
over many sample data sets. The resulting uncertainty is 8 ppb.

2. Fixed probe run systematic effects: mfp
s (t )

The primary source of uncertainty on the fixed probe mea-
surement is caused by the measurement noise on the fixed
probes. Here, noise is defined as the standard deviation of
a measurement over times short enough for field drift to be
negligible. Despite some fixed probes being quite noisy from
measurement to measurement, over very long averaging times

TABLE VIII. The systematic corrections and uncertainties from
the field tracking analysis. The uncertainties are categorized by
where they enter in Eq. (20). The trolley baseline systematics can
be found in Table VI.

Quantity Corr. (ppb) Unc. (ppb)

mfp(0)
Trolley footprint 0 8

mfp(t )
Fixed probe resolution 0 1

�s(t ) 0 22–43

(3 days) the contribution to the uncertainty on the azimuthal
average is reduced to under 1 ppb.

3. Tracking error systematic effects: �s(t )

The dominant source of uncertainty in the field tracking
comes from the tracking error between the trolley and fixed
probes, discussed in Sec. VI A 3. This drift is parametrized
by the difference in the synchronization constants cs from
Eq. (22) between trolley runs cs(T ) − cs(0) and is modeled
as a Brownian bridge. Its uncertainty is derived analytically,
using the equations for the variance and covariance of points
in a Brownian bridge process [64]. One time period during
Run-1d did not have a trolley run after the muon data period
due to the magnet’s safety monitoring systems triggering a
ramp down, so the tracking error for that period is instead
modeled as a random walk. Because each trolley baseline is
corrected for temperature (see Sec. V B 4), this model also ac-
counts for temperature drift in the fixed probes that influence
their frequency measurements.

To average N measurements x with normalized weights a,
we need to know the N × N covariance matrix �. Then the
average of the measurements is a · x, and the variance of the
average is a · � · a. In our case, the weights a are related to the
number of muons in the storage ring at a given time (described
in detail in Sec. VII). The expectation value of a random
walk or Brownian bridge is zero, so there is no correction
associated with the tracking error. However, the variance of
either process is not zero. For a Brownian bridge between
times 0 and T , the covariance between any two times during
the process t1 � t2 is

σ (t1, t2) = M
(T − t2)t1

T
, (24)

where M parametrizes the rate of the process. The value peaks
at t1 = t2 = T/2, showing that the variance of the Brownian
bridge is largest in the middle of the process and decreases
to zero at either bound. We use this functional form to con-
struct the covariance matrix for all the measurements between
adjacent trolley runs, and then use that matrix to calculate
the variance on the average of the measurements described
above; the tracking error uncertainty is the square root of the
variance on the average. The same process is repeated for the
unbookended data period, except the drift is modeled as a
random walk instead of a Brownian bridge. The covariance
of a random walk is

σ (t1, t2) = Mt1 (25)

for t1 � t2 and the same M as above. The variance during a
random walk increases linearly in time.

To use either Eq. (24) or (25), we must have an estimate
of the parameter M. As alluded to above, M is estimated
by considering the differences cs(T ) − cs(0) for each trolley
run pair. These differences for each of the 72 × 9 station-
(trolley) moment combinations can be interpreted as sampling
the random walk space and can be normalized by the square
root of the time between the measurement for each trolley
pair, which varies from 54 to 88 h. For each station-moment
combination, the root mean square (RMS) of the normalized
samples is taken as an estimate of the random walk rate.
The azimuthal average of the random walk rate is calculated
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TABLE IX. The tracking error uncertainty for each data subset in
Run-1. Note that the uncertainty decreases with the number of trolley
pairs in the data subset.

Number of Tracking Error 


Data subset trolley pairs (ppb)

Run-1a 1 43
Run-1b 2 34
Run-1c 3 25
Run-1d 5 22

for each moment, taking into account correlations between
adjacent stations using an autocorrelation function of the dif-
ferences cs(t = T ) − cs(t = 0) over s. It is then used in the
equations above to calculate the covariance matrix �.

Any two separate random walks (or Brownian bridges)
are uncorrelated with each other. When we average multiple
trolley pairs within each data subset, the tracking error uncer-
tainties become smaller. The more trolley pairs averaged in a
single data subset, the lower the uncertainty will be for that
subset. Therefore, despite the uncertainty being ∼40 ppb for a
single trolley pair (or 73 ppb for the period with no closing
trolley run), the uncertainties for the four data subsets are
significantly lower, 22 to 43 ppb. The values of the synchro-
nization uncertainty for each subset are shown in Table IX.

VII. MUON-WEIGHTED MAGNETIC FIELD

The average magnetic field experienced by the muons as
they precess in the storage ring is expressed in terms of ω̃′

p [see
Eq. (3)]. It is determined by weighting the frequency maps
with the muon distribution and averaging over space and time.
The quantities needed for this determination are the muon
distribution as a function of space and time, ρμ(r, y, φ, t )
and calibrated, interpolated frequency maps ω′

p(r, y, φ, t ) that
represent the field in the ryφ basis (see Fig. 3). Over a time
interval [0, T ], with a muon distribution bounded radially and
vertically, the resulting muon-weighted magnetic field, ex-
pressed in terms of the shielded proton precession frequency,
is

ω̃′
p =

∫ T
0 dt

∫ 2π

0 dφ
∫ r2

r1
dr

∫ y0

−y0
dy rρμ(r, y, φ, t )ω′

p(r, y, φ, t )∫ T
0 dt

∫ 2π

0 dφ
∫ r2

r1
dr

∫ y0

−y0
dy rρμ(r, y, φ, t )

.

(26)

A. Time averaging

Before evaluating the integral over t in Eq. (26), we con-
sider the relevant timescales involved. The storage time of a
muon injection (the intrafill time) is on the order of hundreds
of microseconds and is considered in depth in Appendix C.
On the submillisecond timescale, the magnetic field can be
considered constant (see Sec. VIII for small corrections to
this assumption). On the timescale of tens of seconds, the
magnetic field drifts, but the muons’ spatial distribution re-
mains constant, except for fluctuations in the total number of
muon decays detected. The calorimeter data acquisition pro-
duces data binned on this timescale, allowing us to track the
number of muon decays detected. On the timescale of hours,

FIG. 19. A typical example of the muon distribution measured
by the trackers after integrating for several hours. This distribution is
used to weight the field map.

the trackers sum the muons’ spatial distribution information,
generating distributions such as the one shown in Fig. 19.
On the timescale of days, driven by the time between trolley
runs, we produce a value for ω̃′

p for each trolley pair, and
then combine the results from multiple trolley pairs into four
data subsets, Run-1a–d. These timescales are summarized in
Table X.

Each trolley run pair is broken down into the same time
bins as the tracker data. These bins, indicated by index q, span
the time intervals bounded by sq � t � uq, where uq − sq ≈
3 h. Equation (26) is evaluated assuming that the muons’
spatial distribution is constant, but the overall number varies.
Essentially, ρμ is factored into a time-dependent and a time-
independent part:

ρμ(r, y, φ, t ) = N (t )σμ(r, y, φ). (27)

The time-averaged field for each time bin q is the average of
the field weighted by the number of muon decays detected in
that bin,

ω′
p,q(r, y, φ) =

∫ uq

sq
dt ω′

p(r, y, φ, t )N (t )∫ uq
sq

dt N (t )
, (28)

where the subscript q indicates the average of the quantity in
bin q.

The decay positrons detected in the calorimeter are used as
a proxy measurement for the number of muons in the storage
region N (t ). These data are available in the intermediate time
bins (approximately 10 s) and are integrated for each tracker
bin q. Figure 20 shows a typical detected muon decay time
series and the dipole field over a 60-h time interval.

Using Eqs. (27) and (28), we can write Eq. (26) for an
individual bin q:

ω̃′
p,q =

∫ 2π

0 dφ
∫ r2

r1
dr

∫ y0

−y0
dy rσμ

q (r, y, φ)ω′
p,q(r, y, φ)∫ 2π

0 dφ
∫ r2

r1
dr

∫ y0

−y0
dy rσμ

q (r, y, φ)
.

(29)

Note that σμ
q is the density determined by the trackers and

beam dynamics, and the finest binning we have for the muon
distribution. The muon distribution is reconstructed from
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TABLE X. The six relevant timescales used in the muon-weighted averaging and magnetic-field analysis. Each timescale is averaged over
and then binned into the next highest scale. This procedure is repeated up to the data set level.

Name Duration Usage

Intrafill ∼700 μs Storage time for each muon injection
Magnetic-field measurements ∼1 s Measurements of magnetic field
Calorimeter bins ∼10 s Tracking field drift, muon distribution time dependence
Tracker bins ∼3 h Tracking drift of muon distribution
Trolley pairs ∼3 d Resynchronization of the fixed probes by the trolley
Data set 1–5 trolley pairs Combination of ωa and ω̃′

p

tracker profiles and propagated to other azimuthal locations
using beam dynamics simulations. After the three spatial in-
tegrals in Eq. (29) are evaluated for each of the tracker bins
q (see next Sec. VII B), the resulting set of ω̃′

p,q are averaged
together, weighted by the total number of detected positrons
in each bin, to determine ω̃′

p over the trolley run pair interval
[0, T ],

ω̃′
p =

∑
q Nqω̃

′
p,q∑

q Nq
, (30)

with Nq = ∫ uq

sq
dt N (t ).

B. Spatial averaging

The spatial averaging procedure described here is per-
formed for each time bin q described above. The result of the
spatial averaging is ω̃′

p,q for each time bin, used as input for
Eq. (30). The azimuthal part of the integral is broken down
into azimuthal bins, indexed by j, set by the spacing between
the fixed probe stations. Bin j is defined by bounds η j � φ �
ψ j with ψ j − η j ≈ 2π/72 rad. We average the muon distri-
bution within each azimuthal bin and use that average value

FIG. 20. The number of muons integrated per bin over a typical
trolley run pair and the azimuthally averaged dipole field over the
same time. The number of integrated muons, represented by the
number of observed decay positrons, is used to weight the field when
evaluating the integral over time in Eq. (26).

σ
μ
q, j (r, y) for all positions in the bin, so the azimuthal portion

of the spatial integral is

1

ψ j − η j

∫ ψ j

η j

dφ σμ
q ω′

p,q(r, y, φ) = σ
μ
q, j (r, y)ω′

p,q, j, (31)

with

ω′
p,q, j (r, y) = 1

ψ j − η j

∫ ψ j

η j

dφ ω′
p,q(r, y, φ) (32)

is the frequency map azimuthally averaged over a given fixed
probe station. As before, the subscript j indicates that the
quantity has been averaged over azimuthal bin j (and the
subscript q continues to mean the quantity is averaged over
time bin q). The azimuthal average in these bins is the natural
product of the field tracking described in Sec. VI. The full az-
imuthal integral is then just the sum over j for all 72 stations,

weighted by each station’s azimuthal extent
ψ j−η j

2π
.

The two-dimensional integral of r and y is also performed
per azimuthal bin. Assuming that the muon distribution is
independent of azimuth within a bin j, the integral can be
written

ω̃′
p,q, j =

∫ r2

r1
dr

∫ y0

−y0
dy rσμ

q, j (r, y)ω′
p,q, j (r, y)∫ r2

r1
dr

∫ y0

−y0
dy rσμ

q, j (r, y)
. (33)

The magnetic field is parametrized with moments, dis-
cussed in Sec. I D 1, so the field ω′

p,q, j (r, y) can be written

ω′
p,q, j (r, y) =

∑
i

mi,q, j fi(r, y), (34)

where the functions fi(r, y) encode the spatial dependence of
the moments i in Eq. (6) (shown explicitly in Table I) and
the mi,q, j are the moment strengths averaged in bins q and j.
The sum runs over all of the tracked moments. Combining
Eqs. (33) and (34) yields

ω̃′
p,q, j =

∑
i

mi,q, j

∫ r2

r1

dr
∫ y0

−y0

dy rσμ
q, j (r, y) fi(r, y)

=
∑

i

mi,q, jki,q, j, (35)

with

ki,q, j =
∫ r2

r1

dr
∫ y0

−y0

dy rσμ
q, j (r, y) fi(r, y). (36)

These k parameters are calculated for each azimuthal bin j in
each time bin q. The values in the time and azimuthal bins
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FIG. 21. The amplitudes of the muon beam moments ki decrease
as i increases. The moments with positive (negative) amplitudes
are shown in dark (light). This decrease implies that the effect of
higher-order moments on the average field is suppressed by the
muon distribution. The muon distribution can be thought of as a
low-pass filter on the moments of the field. The vertical line shows
the truncation order. All moments (and beam parameters) to the right
of the vertical line are truncated.

are combined as described above, yielding the value of ω̃′
p for

the full trolley run pair. The average field experienced by the
muons in a given data set is

ω̃′
p =

〈∑
i

ki,q, jmi,q, j

〉
q, j

, (37)

where the index i is summed over all moments and the brack-
ets indicate the quantity is averaged over the time bins q and
azimuthal bins j. The averaging is performed as prescribed in
Eq. (30). Sample values of the ki parameters (averaged over
all bins) are shown in Fig. 21. Note that k1 = 1 analytically.

C. Systematic effects

Table XI shows the corrections and uncertainties related
to the muon beam distribution. Because the field is highly
uniform, ω̃′

p is dominated by the dipole field contribution.
The corresponding uncertainties, δω̃′

p can be grouped into
terms that include uncertainties in the field moment (kiδmi)

TABLE XI. The contributions to the uncertainty on ω̃′
p from

miδki terms are shown. Ranges are specified when the corrections
or uncertainties vary across the four Run-1 data subsets.

Contribution Correction (ppb) Uncertainty (ppb)

Uncorrelated Uncertainties
δin-fill −1–−4 0

Correlated uncertainties
δtracker x 0 1–9
δtracker y 0 7–19
δtracker accept 0 1–2
δy cod B-rad 0 2–3
δcod ESQ 1–2 4–5
δcalo accept 0 0–3
Total −3–1 11–20

and terms that include uncertainties in the muon beam mo-
ments (miδki). The beam and field moments are uncorrelated
and thus no cross terms contribute to the overall uncertainty
for ω̃′

p.
The systematic effects from the field moment uncertainties

have been described in detail in the previous sections on the
frequency extraction (Sec. II A), probe calibration (Secs. III
and IV B), trolley measurements (Sec. V), and the magnetic
field tracking (Sec. VI). When weighted by the muon distribu-
tion, terms correlated across measurements contribute 50–55
ppb per data subset. Additional terms are uncorrelated for
each trolley pair and generate contributions between 22–43
ppb for the four Run-1 data subsets. These results are collected
in the final uncertainty table in Sec. IX.

The remaining systematic effects from the muon distribu-
tion uncertainties δki are due to the uncertainty in the muon
decay position reconstruction from the trackers and the un-
certainty from beam dynamics simulations used to propagate
the tracker profiles to other azimuthal locations. The general
process for estimating these systematic uncertainties is to
introduce reasonable perturbations to the distributions before
calculating the ki. The resulting variation of the beam parame-
ters is used to estimate the uncertainty on the muon weighting.

1. Muon tracker systematics: δtracker

The trackers used to measure the muon distribution are
affected by several sources of uncertainty estimated by sim-
ulation, including misalignment of the physical devices, their
resolution, and their spatial acceptance based on the decay
position of the parent muon. For each variation, the measured
muon distribution is modified based on the uncertainty of the
parameter being studied. New ki parameters are determined
for the resulting muon distribution. The resulting variation of
the beam parameters is used to estimate the uncertainty on the
muon weighting.

Uncertainty in the tracker alignment leads to a ±0.6 mm
horizontal and vertical position uncertainty in the measured
muon distribution. The vertical position uncertainty couples
to the skew quadrupole resulting in an uncertainty δtracker y.
For the different conditions of the four data subsets, this
uncertainty was typically 7 to 19 ppb. A similar proce-
dure was followed to estimate the uncertainty from the
trackers’ horizontal alignment, resulting in δtracker x = 1 to
9 ppb. The trackers’ spatial acceptance uncertainty results in
δtracker accept = 1 to 2 ppb.

2. Closed orbit distortion: δcod

Several effects can distort the muon beam’s closed orbit
away from its ideal orbit, leading to an azimuth-dependent
mean position of the muon distribution. This azimuthal de-
pendence on the beam can couple to azimuthally dependent
variations in the field gradients, leading to a shift in ω̃′

p.
The dominant closed orbit distortion (COD) contribution is
the lowest-order Fourier component of the dipole moment
vs azimuth, and is included in the standard muon distribu-
tions used for muon weighting. Additional distortions lead to
corrections and uncertainties. The presence of a radial mean
field with azimuthal variation would cause a vertical COD;
a misalignment of the ESQ plates causes both a radial and
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vertical COD by steering the beam. The discrete structure of
the ESQs, as well as higher-order Fourier terms, also cause
small distortions. Corrections and uncertainties due to COD
effects are evaluated by generating a distribution of possible
CODs based on each error source, shifting the muon distri-
bution in each azimuthal bin, and calculating the resulting
distribution of ki parameters which is used to propagate the
uncertainty. The radial and vertical CODs due to ESQ plate
misalignment contribute corrections of 	 2 ppb with uncer-
tainties of δi,cod ESQ = 2 to 4 ppb. An additional uncertainty
is attributed to the beam distortions generated by the ra-
dial component of the magnetic field and its uncertainties
δy cod B-rad = 2 to 3 ppb.

3. Calorimeter acceptance: δcalo accept

The muon distributions used for muon weighting represent
the true muon distribution in the ring. A subset of these
muons enter the ωa analysis according to the spatially vary-
ing calorimeter acceptance. Each muon in this subset has a
different probability for its decay positron to be detected by
a calorimeter and also experiences a different magnetic field
along its trajectory. A set of muon distributions representing
this subset is generated using spatial weighting based on
calorimeter acceptance as a function of muon beam trajec-
tories. The ki parameters are calculated for this set of muon
distributions and used to evaluate the resulting uncertainty. A
maximum uncertainty δcalo accept = 3 ppb is identified.

4. In-fill time dependence: δin-fill

The spatial muon distribution is approximated as constant
over time in the fill. However, during Run-1, it was changing
during the fill due to instabilities in the ESQ system [3];
this problem was fixed before Run-2. This leads to a time
dependence of the muon-weighted field over each muon beam
pulse.

Time-binned azimuthally averaged muon distributions are
used to calculate the ki and the corresponding muon-weighted
field as a function of time in the fill. The resulting time
dependence, approximated by a linear fit, leads to a correction
to the muon-weighted field δin-fill < 4 ppb.

D. Results

The muon distribution is highly symmetric but slightly
outside the magic radius around the storage ring, leading to
low values for the ki parameters for i > 1. Because the beam
is not centered, the leading order, nondipole terms couple to
the normal quadrupole and normal sextupole moments of the
field, and are k2 ∼ 0.15 and k5 ∼ 0.09. All of the other param-
eters are at least a factor of 10 lower (see Fig. 21). The low-k
values combined with the low values of the higher-order field
moments mean that the effect on the average field experienced
by the muons from their distribution over the nonuniform part
of the field is small. The largest effect comes from the normal
sextupole (∼8 Hz, ∼ 128 ppb), which is larger than the effect
of the normal quadrupole due to dedicated shimming efforts
to reduce the normal quadrupole around the ring. The net
difference between the average field and the dipole field is
of the same order.

VIII. FAST TRANSIENT FIELDS

Two time-dependent, μs-timescale magnetic fields are in-
duced by the pulsed magnetic and electric fields from the
kicker and ESQs that are synchronized with each muon fill.
These transient magnetic fields are not present during the trol-
ley runs and must be included as corrections to ω̃′

p. The fixed
probe system measures the field at intervals of 1.2 to 1.4 s, typ-
ically asynchronously with respect to muon injection. The fast
transient fields change on much shorter timescales. Addition-
ally, the skin depth effect in the aluminum vacuum chamber
walls shields the fixed probes from both of these transients,
which originate in the muon storage region. For these reasons,
both transients required unique measurement solutions.

The kicker transient was studied with two dedicated fast
magnetometers for the current experiment. The transient asso-
ciated with the ESQs was discovered in studies of correlations
of the fixed probe measurements with the muon injection.
A set of NMR probes was developed to measure the ESQ
transient.

An additional systematic uncertainty is assigned to tran-
sient fields associated with the booster ring near the muon
campus at FNAL. By synchronizing the field measurement
systems to the injection cycles with the pulsed systems turned
off, we were able to apply an upper limit of 7 ppb to any stray
transient fields from the booster.

A. Kicker transient fields

A set of three kicker magnets reside in the storage ring
vacuum chambers [3]. The kickers reduce the 1.45 T field
locally by roughly 22 mT for 150 ns to deflect the injected
muons onto the stored orbit. This kick consists of a current
pulse through three pairs of thin curved aluminum plates, each
1.27 m long, that subtend an angle of 62.5◦ at a radius of
4.5 cm in the xy plane. The pulsed field induces eddy currents
in the surrounding metal, leading to field perturbations in the
storage volume during the times muons are stored. The fixed
NMR probes are shielded from this rapid transient field by the
skin depth effect of the aluminum vacuum chambers and do
not have the required measurement bandwidth.

1. Measurement

We built two Faraday magnetometers to measure this tran-
sient, one similar to the one used in E821 [65] and the
other substantially improved against vibrations caused by the
pulsing systems, which we are going to describe next. Such
magnetometers exploit the rotation of the polarization angle
θ of linear polarized light that occurs in almost any isotropic
dielectric in a magnetic field B parallel to the light propagation
direction 
θ (t ) = V B(t )L. Here L is the length, and V is the
Verdet constant of the dielectric.

The magnetometer [see Fig. 22(a)] fits between the kicker
plates and was made without any metal. Light from a 405-nm
diode laser passed through a Faraday isolator into a multi-
mode fiber. The fiber went through a vacuum flange to the
magnetometer. The unpolarized light was collimated, polar-
ized by a polarizing beam splitter cube (PBSC), and then its
plane of polarization was rotated by a half-wave plate. The
light reflected off a 45◦ mirror, and then passed through two
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FIG. 22. (a) Schematic of the fiber magnetometer. The device is
about 6 cm tall. (b) The signal measured by the fiber magnetometer
after subtracting the vibration background. The measurements and
a fit to the transient are shown. The gray shaded band represents
the associated uncertainty of ±0.6 μT. Muon data are fit from 30 to
700 μs after the kick.

terbium gallium garnet (TGG) crystals, each 5 mm in diam-
eter with their 14.5-mm-long axis parallel to By. The Verdet
constant was measured to be V (405 nm) ≈ 450 rad/T m. The
beam was reflected and passed through another PBSC which
directed s- and p-polarized light to different return fibers.
Time dependence in the magnetic field B(t ) changes the
plane of polarization and the fraction of light entering each
of the two return fibers. Typically, ≈ 1 mW was detected in
photodiodes attached to each fiber. The photocurrents were
subtracted, amplified, and digitized, yielding a voltage signal
of the form V (B) = V0 cos (2V BL + φ) where φ depends on
the wave-plate angle.

The magnetometer was calibrated in two steps. The magnet
was ramped from full field, 1.45 T at 5173 A, to 0 A at a
rate of -0.5 A/s while the magnetometer voltage was recorded
as a function of magnet current V (I ). A Hall sensor was

inserted near the magnet gap and recorded B(I ). From the two
measurements, the sensitivity dV/dB = (dV/dI ) × (dI/dB)
was determined. Prior to calibration, the magnetometer was
inserted between the kicker plates in the storage volume
and the λ/2 wave plate adjusted to maximize the sensitivity
dV/dB at the full field. Constraints on the design made pre-
cise wave-plate adjustment difficult and the actual maximum
dV/dB occurred at 5124 A, which was used for subsequent
measurements. The calibration value extracted at this current
was

dV

dB
= (12.5 mV/A)(1 A/183 μT)

= 68.3(7) mV/mT.

Because the magnetometer baseline voltage depends on the
laser current and the coupling efficiency into the incident
fiber, the data were scaled to the voltage observed during
calibration. This correction was less than 7%.

In addition to showing the expected kicker pulse, the sig-
nals showed a repeatable pattern of oscillations in the few
kHz range that grew after each kicker pulse and spanned
±1 μT. This pattern is thought to be due to vibrations in the
cages holding the kicker plates that jostled the magnetometer,
causing variations in the detected light. The system was run
at magnet currents of 4841 and 4326 A to reduce this back-
ground. Here, dV/dB ≈ 0, corresponding to all of the light
going into the lower and middle return fibers, respectively.
At these settings, fluctuations in detected light are ascribed
to vibration, with sensitivity to real magnetic fields reduced
by at least a factor of 20. The final result was assembled by
recording data at minimum sensitivity dV/dB ≈ 0 at 4841 and
4326 A, weighting it by 0.5 and subtracting it from the maxi-
mum sensitivity dV/dB ≈ 68 mV/T data acquired at 5124 A.
The result is shown in Fig. 22(b).

2. Analysis

The data are fit to a decaying exponential from 30 to 700
μs after the kick (t = 0 μs), corresponding to the nominal fit
range of the ωa analysis. The total uncertainty includes those
from calibration, fit uncertainty, and background subtraction.
We estimate an uncertainty on the background subtraction of
0.6 μT.

The kickers subtend about 8.5% of the storage ring
azimuth, so the results were scaled by 0.085 to get the av-
erage kicker transient seen by the muons, assuming that the
transients do not extend beyond the kicker plates. The magne-
tometer measured the field in the center of the storage volume.
Simple models of the transient’s spatial dependence suggest
it drops off in the horizontal direction from the center but
increases in the vertical when closer to the fields’ sources. A
weighted average of the muon distribution with this transient
spatial dependence suggests the average muon sees a slightly
smaller transient, reduced by a factor of 0.94.

For a field perturbation of the form 
B(t ) =

B(t0) exp[−(t − t0)/τk], the fractional effect on the
muon anomalous precession frequency for a fit starting
at t = t0 = 30 μs and ending at measurement time t 
 (γ τμ)
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is


ωa

ωa
≈ 
B(t0)

B(t0)

(
τk

τk + γ τμ

)2

≈ −1.87 μT

1.45 T
× 8.5% × 0.94 ×

(
68 μs

68 μs + 64 μs

)2

≈ −27(37) ppb (38)

The uncertainty on the correction is estimated from 15% on
amplitude, 25% on τk (17 μs), 25% on azimuthal weighting
factor, 25% on the transverse weighting factor, and ±0.6 μT
due to uncertainties on the vibrating background subtraction.

A second Faraday magnetometer gave consistent results.
This magnetometer directed the light through open-air paths
rather than optical fibers. It used TGG crystals and a free-
space laser propagation directed by mirrors inside the storage
volume, while all other optical elements were on a breadboard
outside the storage volume, allowing excellent control of sys-
tematic effects except for a weak sensitivity to vibration.

B. Electrostatic quadrupole transient fields

During studies of the correlation between the fixed probe
measurements and the muon injection time, a time-dependent,
μs-scale transient magnetic field was discovered. Further
studies revealed that the transient field is caused by mechan-
ical vibrations of the charged plates induced by pulsing the
ESQs. The perturbation caused by this transient field is large
enough to require precise measurements; however, the fixed
probe system cannot directly measure the field to the required
precision, primarily due to the skin depth effect of the alu-
minum vacuum chambers.

The ESQs are arranged into four stations, each consisting
of a short section, which subtends 13◦ in azimuth, and a long
section approximately twice the length of a short section. The
amplitude of the transient field generated by a short section is
maximized near the section’s azimuthal center. Observations
showed that the long sections can be approximated as two
short sections in series. In total, the ESQs cover 156◦ (43.3%
of the ring). Averaging the perturbation to the magnetic field
over the whole ring reduces the total effect accordingly.

The dedicated transient measurements were performed at
a lower high voltage (HV) (18.2 kV) than production runs
(18.3 and 20.4 kV). From first principles, the amplitude of
the magnetic-field transient scales quadratically with the ESQ
voltage, which was confirmed with in situ measurements in a
range from 0 to 18.2 kV. Therefore, we can correct the mea-
surements to the HV setting used during any given production
period.

1. Measurement

The dedicated measurements were made by a set of trolley
NMR probes sealed inside polyether ether ketone (PEEK)
plastic tubes for vacuum compatibility and read out through
the fixed probe NMR system. The NMR system is synchro-
nized with the ESQ pulsing system; the ESQ trigger usually
precedes muon injection by 23 μs. The ESQs remain powered
for the duration of the muon precession fit range, which ends
650 μs after beam injection, corresponding to 673 μs after

FIG. 23. (a) The time structure of the ESQ transient is deter-
mined by scanning the delay time between the pulse trigger and
the NMR measurement. The gray region corresponds to the time
intervals in which the ESQ are charged and muons can be used for
the muon precession fits. (b) The same time structure zoomed in to
a single beam pulse. The black dashed line indicates the time of the
muon injection, the dotted line the earliest start of the precession fits.

the trigger. The ESQs discharge 700 μs after the trigger. The
beam is delivered in a series of eight such pulses spaced by
10 ms. The second series of eight pulses occurs 266.7 ms after
the first series. The entire structure of 16 beam pulses repeats
every ≈1.4 s. Reading NMR measurements from every fixed
probe in the ring takes 1.2 s. The frequencies of the FIDs are
extracted in 0.4-ms-long fit windows. No additional frequency
structures with fixed relations to the ESQ pulsing time are
observed within these windows.

The transient’s time dependence was measured by vary-
ing the delay time between the ESQ trigger and the NMR
measurement. Figure 23(a) shows the time structure of the
transient field, including a closeup in Fig. 23(b) of the tran-
sient over a single pulse.

The measurements of the transient’s dependence on the
azimuthal position within an ESQ were made in one half
of a single long section, chosen for the accessibility in the
vacuum chamber. The long sections are approximated by two
identical short sections in series by pins [66]. The transient
was measured at seven positions along one ESQ section as
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FIG. 24. The relative field shift caused by the transient as a
function of the azimuthal position with respect to the center (φ = 0◦)
of a long ESQ. The transient is strongest in the center of the ESQ
section, falling off toward the edges.

shown in Fig. 24. Additional measurements were made with
one probe in each of the eight sections.

2. Analysis

Because of the skin depth effect at 100 Hz (the ESQs’
pulse rate), the fixed probes’ sensitivities are reduced by
70%. Harmonics are attenuated even further, making the fixed
probes mostly insensitive to the transient field’s substructure.
By comparison, the trolley probes used in the dedicated PEEK
measurement system have a 0.5-mm-thick aluminum shell and
are attenuated by less than 5%. The fixed and PEEK probes
also experience a phase delay due to the aluminum skin depth
accounted for in the analysis.

Because each ESQ pulse in the series causes a mechan-
ical vibration in the plates, the transient’s precise structure
is affected by previous pulses. Figure 23(b) shows the time
structure for the fourth pulse in the series as an example. The
transient field, which was extensively mapped in a single sec-
tion, is then averaged over its azimuthal extent. The transient
at the center of all sections was measured, but the azimuthal
and transverse variations were only measured in half of one
long ESQ; the volume average of the effect over this section
was scaled by the measurement at the center of each of other
seven sections.

The transient is not constant over the time of a muon injec-
tion. Different weighting methods were developed to model
how the muons sample the transient field over their lifetime.
Each method is propagated through the analysis as a sys-
tematic check. The final determination produces an accurate
correction to ω̃′

p and assigns a very conservative estimate of
the uncertainty due to this effect.

3. Systematic effects

The uncertainty sources for the Run-1a data subset are
summarized in Table XII. The substructure in time and az-
imuth of the ESQ transient is the dominant uncertainty. It
arises because the azimuthal dependence of only one of the
12 ESQ sections was measured, and the substructure of the
ESQ transient was not measured until Run-3. Because of the
length of time between these measurements and Run-1, we
applied a very conservative estimate of the uncertainty to the

TABLE XII. The sources of uncertainty in the determination of
the ESQ transient measured at ESQ HV=18.2 kV. The total ESQ-
transient uncertainty is the dominant uncertainty in the determination
of the ω̃′

p uncertainties for Run-1.

Systematic source Uncertainty (ppb)

Time and azimuthal structure 77
Second pulse train 14
Repeatability 13
Skin depth 13
Field drift 10
Frequency extraction 5
Radial dependence 4
Probe positioning 2
Total ESQ-transient uncertainty 82

Run-1 data. Figure 25 shows the distribution of the observed
ESQ transients for the four ESQ stations.

The ESQ transient studies were performed using the first
train of eight beam pulses. It is expected that the second
group of eight pulses behaves like the first group because the
vibrations and the field transient completely die out before the
next set of pulses begin. A simple study was conducted that
confirmed this expectation. The average transient from the
first train and a second train agreed to within 14 ppb, which is
used to estimate the uncertainty.

Other systematic checks include measuring the transient
beyond the azimuthal extent of the ESQ sections and the radial
dependence of the transient. Both of these observed variations
are added as uncertainties. The measurements were checked
for repeatability, which was found to be at the 13 ppb level.
This number was conservatively assigned as an uncertainty.
Linear drift in the dipole field during the measurement is
removed by tracking the local fixed probe drift. Higher-order
drift is small on the timescales of these measurements (3
hours). Estimates of this drift are made using PEEK probe
measurements outside of the ESQ stations.

The final correction to each data subset and the uncertainty
due to the ESQ transient are shown in Table XIII. Note that

FIG. 25. The distribution of the observed ESQ transient effect
over all stations and sections. The full width of the distribution is
used as the uncertainty (±178 ppb) in the ESQ region and scaled
down by the geometrical coverage factor of the ESQ in the storage
ring (0.433).
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TABLE XIII. The total correction and uncertainty on the de-
termination of ω̃′

p from the ESQ transient. The data subsets have
different values because they had different ESQ HV values. The
dedicated measurements shown in Table XII are scaled for each
data subset using the known quadratic relation between transient
amplitude and HV setting.

Data subset Correction (ppb) Uncertainty (ppb)

Run-1a −15 83
Run-1b −19 103
Run-1c −19 103
Run-1d −15 83

the uncertainty values differ from Table XII because they are
scaled to the HV settings from each data subset individually.

IX. FINAL RESULTS

This paper has covered the full analysis chain for the de-
termination of the magnetic field ω̃′

p(Tr ) for the Muon g−2
Experiment. Run-1 was broken down into four data subsets,
Run-1a through Run-1d, defined by the settings for the kicker
and ESQs. The values of ω̃′

p(Tr ) are combined with the corre-
sponding values of ωa into the ratio ωa

ω̃′
p(Tr ) for each data subset.

The ratios are then combined into the single Run-1 value that
is input into Eq. (4) to calculate aμ [1].

The instrumentation and measurements in this paper rep-
resent a significant improvement over the BNL experiment.
They are part of a well-studied chain of calibrations and syn-
chronizations where all of our measurements are referenced
to the absolute calibration of the water calibration probe that
was cross checked with a novel 3He probe.

Several key field analyses (the trolley calibration, field
tracking, and muon weighting) were performed by at least two
mutually blinded independent teams that, in all cases, found
agreement below our total uncertainty.

The ESQ transient discovery and measurement represents
a significant effort to characterize each system, as well as
interactions between systems. A dedicated measurement cam-
paign quickly quantified the systematic correction to the
measured field and the corresponding uncertainties. Addi-
tional measurements taken after Run-1 will further constrain
the systematic effect of the transient.

The final results of the field analysis are summarized in
Table XIV. Tables XV and XVI summarize the systematic
corrections and uncertainties covered in this paper. The uncer-
tainty is dominated by the ESQ transient. These uncertainties
are not strictly independent, leading to correlations between
the four data subsets. Most uncertainties are treated as fully
correlated between the data subsets; only the tracking error
discussed in Sec. VI B is treated as uncorrelated.

The total systematic error on ω̃′
p(Tr ) for Run-1 is 114 ppb.

The contributions from calibration, field tracking, and muon
weighting total 56 ppb. The contribution from the ESQ and
kicker transients are, respectively, 92 and 37 ppb. Most of
the uncertainties in Tables XV and XVI already meet the
design goals. Improvements to the determination of the ESQ
transient are expected in future analyses and combined with

TABLE XIV. The final result for ω̃′
p(Tr ) for each of the four data

sets in Run-1. These numbers represent the Larmor precession fre-
quency of protons in a spherical water sample in the same magnetic
field experienced by the muons. The uncertainties are in ppb of the
measured value of ω′

p.

Data set ω̃′
p(Tr )/2π (Hz) Uncertainty (ppb)

Run-1a 61,791,871.2 115
Run-1b 61,791,937.8 127
Run-1c 61,791,845.4 125
Run-1d 61,792,003.4 108

Average over all data sets

Field Measurements 56
ESQ Transient 92

Kicker Transient 37
Total 114

the improved temperature stability of the magnet after Run-1,
we expect to reduce the total uncertainty below the 70 ppb
target for ω̃′

p(Tr ) in the future.
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APPENDIX A: DATA QUALITY CONTROL

1. Instrument failures

If an instrumentation failure occurs in a single measure-
ment, the corresponding value is dropped. In the fixed probe
system, such failures are caused by the absence of a proper
RF π/2 pulse needed for the NMR sequence to rotate the
sample magnetization, by an out-of-time triggered pulse or an
out-of-time waveform digitization.

The absence of the RF pulse leads to a noise-only wave-
form that is detected by the signal amplitude and power
of the FID. The switches in the multiplexer that swap be-
tween RF pulse and signal path trigger on the amplitude of
the RF pulse. If the amplitude of the RF pulse falls below
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TABLE XV. The systematic corrections and uncertainties on ω̃′
p(Tr ) that do not vary by data set.

Systematic Correction (ppb) Uncertainty (ppb) Reference

Absolute calibration 0 15 Sec. III A
Trolley calibration 0 28 Sec. IV C
Configuration −1 23 Sec. V B 5
Trolley baseline mtr (0) −13 25 Sec. V B
Fixed probe baseline mfp(0) 0 8 Sec. VI B
Fixed probe runs mfp(t ) 0 1 Sec. VI B
Total −14 48

a threshold, it is not propagated through the system. The
electronics components used show a small temperature de-
pendence that can cause slight variations in the π/2-pulse
amplitudes. If the RF-pulse amplitude is close to the thresh-
old, this can lead to isolated measurements with missing π/2
pulses.

A signal from the control board triggers the fixed probe
RF pulse. If interference from other pulsed systems in the
experiment is picked up in these signal cables, an out-of-time
π/2 pulse can be fired. Depending on the relative timing,
this can lead to the superposition of two RF pulses in the
digitization window, or to reduced FID amplitude if the spins
of the samples are not yet recovered fully. Figure 26 shows
a comparison between a waveform with a nominal FID and
a waveform with two π/2 pulses. A second RF pulse, during
the FID of a previous pulse, has not yet decayed, and can lead
to spin-echo-like behaviors of the system. Such measurements
are mainly detected by a spike in the power of the FID of the
corresponding waveform. The power of a waveform is defined
as the sum of the squared analog-to-digital converter (ADC)
values. In Run-1, damaged resistors in the pulsed electro-
static quadrupole systems induced increased numbers of such
false triggers. The replacement of the resistors and improved
shielding of the corresponding cables eliminated this issue.

Similar to false triggers of the π/2 pulses, the digitizer can
also be affected by picked up interference signals. This results
in digitization outside of the time window of the FID and with
it in noise-only waveforms.

2. Severe field instabilities

Periods around severe field instabilities are not used for the
aμ determination. Such instabilities are driven by magnetic
field jumps, induced by the feedback systems, or failing hard-
ware.

In addition to the FID-wise quality flags, sudden steps
in the magnetic fields are noted in the “production” in-
dicating field instabilities. Such steps are identified by
frequency changes larger than seven times the resolution
of a given probe, over a time of up to 8.5 s, in at least
40 probes.

a. Field steps

Sudden field steps are either caused by external changes
of the environment, for example, a magnetic connector mov-
ing into the proximity of the storage volume, or by internal
changes of the magnet. The latter are denoted field jumps. It
is believed that such jumps are caused by the physical motion
of the magnet coils in the cryostat. The coils are held in place
by radial stops [33]. Field jumps are believed to be caused
by the coils releasing tension by suddenly slipping. Figure 27
shows the effect of such field jumps as a function of azimuth.
The positions of the jumps correlate with the radial stops.
The azimuthal extent of the jumps is roughly 130◦, and their
integral over the whole ring typically cancels.

It has been shown that the fixed probes track the field
equally well before and after a field jump. The period of
120 s before and after a jump is dropped from the aμ

determination.

b. Instabilities caused by the feedback system

Instrumentation failures as described in Appendix A 1 can
lead to nonphysical frequency determinations in the online
FID analysis. If this happens in a fixed probe that is part of the
feedback system, the unphysical frequencies can impact the
proportional-integral-derivative (PID) loop. In such a case, the
feedback reacts to the nonreal change of the magnetic field,
driving the mean magnetic field away from its set point. The

TABLE XVI. The systematic corrections and uncertainties on ω̃′
p(Tr ) that vary by data set.

Run-1a Run-1b Run-1c Run-1d

Systematic Corr. (ppb) Unc. (ppb) Corr. (ppb) Unc. (ppb) Corr. (ppb) Unc. (ppb) Corr. (ppb) Unc. (ppb) Reference

Trolley temp 0 28 0 25 0 21 0 15 Sec. V B 4
Tracking Error 0 43 0 34 0 25 0 22 Sec. VI B
Muon weighting 0 11 −1 14 1 16 −3 20 Sec. VII C
Transients −43 91 −46 110 −46 110 −43 91 Sec. VIII
Total −43 105 −47 118 −46 116 −45 97
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FIG. 26. FID with two RF pulses overlayed to a nominal FID
(gray) with a single RF pulse for reference.

control loop takes some time to stabilize the field after such
an excursion.

If the mean over 10 consecutive measurement cycles of the
mean magnetic field as determined by the online FID analysis
of selected probes is more than 10 Hz (162 ppb) away from
the set point, the control loop switches to a more aggressive
correction mode. These time periods and 24 s before and
240 s afterward are dropped from the determination of aμ to
guarantee stable conditions.

In addition to instrumentation failures, field changes on a
timescale faster than the reaction time of the feedback con-
trol loop can also cause the mean frequency to diverge from
the set point. During some periods, the magnetic field was
affected by a roughly 2-min oscillation of unknown origin.
In rare cases, the amplitude of these field changes crossed
the above-mentioned threshold. The DQC also vetoes these
periods. Adjustments to the time constants of the feedback
loop mitigated these issues.

APPENDIX B: JACOBIAN MATRIX

As covered in Sec. I D 1, the trolley and fixed probe sys-
tems provide measurements of the By field in different bases,
respecting the different spatial symmetries of each set of
probes. The two different sets of moments are equivalent if the
moments can be calculated perfectly. However, because they

FIG. 27. The field step size as a function of azimuth for all field
jumps during the Run-1a data subsets. The vertical gray lines indicate
the positions of the radial stops (solid: top, dashed: bottom).

FIG. 28. This shows a pure normal sextupole (m5) field. The
fixed probes (light circles) are all located in a low region (dark). If
we simply relate the dipole component in the muon storage region
(depicted by the large circle) to the average of all six fixed probes,
then the presence of a nonzero normal sextupole would bias the
calculation.

are calculated as discrete approximations, the two sets are not
identical; there is a change-of-basis matrix that takes moments
from one basis to the other. This is the Jacobian matrix in
Eq. (20),

Js = ∂mtr
s

∂mfp
s

, (B1)

where it is important to note that the index s runs over the
number of fixed probe stations (72). Because there are four
different fixed probe configurations, there are several different
Jacobian matrices.

Analytically, it is easier to calculate J−1, which represents
how the measured Cartesian moments change as a function
of the multipole moments. Because the field is linear in the
moment strength parameter, the derivative with respect to
the multipole strength is simply the measured Cartesian mo-
ments given a multipole moment strength of 1. The Cartesian
moments are calculated from fixed probe measurements as-
suming a pure multipole input field. There are off-diagonal
terms in the Jacobian matrix caused by asymmetries in the
fixed probe positions.

There are two reasons that the two different bases are not
identical. First, the NMR probes’ discrete nature can cause
higher-order moments to alias into the extraction of lower-
order moments. The fewer probes used to calculate a moment,
the more this aliasing affects the measurement. For example,
the normal sextupole m5 causes a false dipole reading in the
fixed probes. Because of their position above and below the
muon storage region as shown in Fig. 28 the fixed probes
are all located in regions where a shift due to a normal sex-
tupole moment has the same sign. When the average of all
six probes is taken, the contribution to the average field from
a true normal sextupole moment will be nonzero, causing a
biased magnetic dipole determination. In a six-probe station,
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FIG. 29. The geometry of an offset six-probe station and the
corresponding Jacobian matrix. The change-of-basis matrix for offset
stations is not corrected; instead, the correction for the offset is done
with the Jacobian.

the fixed probes can estimate the drift in the normal sex-
tupole. The Jacobian is calculated to determine how much
the sextupole aliases into the dipole measured by the fixed
probes. Then the station’s measurements of the normal sex-
tupole moment are used to correct the dipole measurement.
However, this correction procedure is impossible to repeat for
higher-order moments that cannot be distinguished due to the
fixed probes configurations.

The second reason that the two bases are not identical is
that the fixed probes’ position in a given station is not always
symmetric. For example, in standard four-probe stations the
position average is not at (0,0) but at (1.5 cm, 0). This radial
shift means, for example, that a simple average of measure-
ments from the four probes would be an approximation of
the field at (1.5 cm, 0), not at (0,0). A correction would then
need to be made that mixes the measured moments, using
the horizontal gradient (m2) to correct the field on center
(m1). There are other fixed probe stations with geometric
configurations that are not already accounted for in the initial
change of basis. For example, all the fixed probes in the beam
injection vacuum chamber are translated radially inward by
1 cm with respect to the nominal configuration. This is shown
in Fig. 29 together with the respective Jacobian that contains
off-diagonal elements. Another example is the probe position
in the four-probe stations of the vacuum chamber containing
the trolley garage. These are not symmetric across the x axis.
Figure 30 summarizes all relevant Jacobians for the various
fixed probe station configurations present in the experiment.

APPENDIX C: DERIVATION OF THE
MUON DISTRIBUTION

This Appendix details the derivation of the muon distri-
bution used in Sec. VII from first principles. As covered in

FIG. 30. The Jacobians for all four different fixed probe layouts
present in the experiment. Recall that m5 at four-probe stations is es-
timated using the average of their nearest neighbors. These estimates
are used to make corrections to the measured values, as seen in the
5 × 5 Jacobians for the four-probe stations.

Sec. I A, the instantaneous anomalous spin-precession fre-
quency of a muon in a magnetic field at position (r, y, φ) is

ωa = −aμ

q

m
B(r, y, φ). (C1)

The muon accumulates a phase as it travels around the ring
until it decays at time T . As the decay times are short (64
μs), the field drift is negligible over the time of the fill. The
total phase accumulated by the muon from the beginning of
the integration time until its decay is


ϕk = aμ

q

m

∫ T

0
dt B

(
rμk (t )

)
, (C2)

where rμk (t ) is the muon’s position as a function of time. The
subscript k here indicates that this is a time average for the kth
muon. The average frequency of the kth muon is

〈ωa〉k = 
ϕk

T
. (C3)

To convert this to an integral over azimuth instead of over
time, the muon’s path of a function of time is converted
into the muon’s r − y position as a function of azimuth. The
following substitutions are made, assuming that the path the
muon follows is predominantly circular:

dt = dl

c
= rμk (φ)dφ

c
⇒ T = R

c

. (C4)

In this equation, 
 is the accumulated azimuth; on aver-
age, it will approach values of thousands of radians. The
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term rμk (φ) is the radius of muon’s path at a given azimuth, and R = 〈rμ〉 is the average radius. Making these substitutions,

〈ωa〉k = aμ

q

m

1

R


∫ 


0
dφ B

(
rμk (φ)

)
rμk (φ). (C5)

This integral can be extended to three dimensions by incorporating the muon path (in both the r and y directions) as delta
functions and integrating r and y over the muon storage region:

〈ωa〉k = aμ

q

m

1

R


∫ 


0
dφ

∫ r2

r1

dr
∫ y0

−y0

dy [rB(r, y, φ)δ[r − rμk (φ)]δ[y − yμk (φ)]]. (C6)

All the information about the muon’s path is encoded in the delta functions so the field map and volume element r can be
integrated over 3D space. It is useful to split the integral over φ into a sum of integrals over single revolutions around the storage
ring. These integrals are over φ ∈ [0, 2π ) and are parametrized by n, the number of cycles the muon makes. The muon makes
N + 
N total cycles. Going forward, the 
N fractional cycle is neglected (it is, on average, less than 1% of the total accumulated
azimuth). Assuming that there are an integer number of cycles, the sum ranges from n = 0 to N − 1. Note that 
 ≈ 2πN . The
only terms in the integral that depend on the parameter n are the delta functions, so the sum can be included in the integrand,
yielding

〈ωa〉k = aμ

q

m

∫ 2π

0
dφ

∫ r2

r1

dr
∫ y0

−y0

dy

[
rB(r, y, φ)

1

2πNR

(
N−1∑
n=0

δ[r − rμk (2πn + φ)]δ[y − yμk (2πn + φ)]

)]
. (C7)

The sum over delta functions is the distribution of the kth muon’s position in the ring,

ρk (r, y, φ) = 1

2πNR

(
N−1∑
n=0

δ[r − rμk (2πn + φ)]δ[y − yμk (2πn + φ)]

)
. (C8)

This is the normalized distribution with units of inverse volume, such that
∫

dV ρk = 1. As a reminder, the subscript k indicates
that this is the average distribution for the kth muon. However, it is easy to see how this generalizes to the case of an average
over many muons. The field map is constant for all muons in a fill, so the only averaging going from the case of a single muon
to many will be averaging the distributions ρk for each muon in the fill. Only muons that are included in the ωa analysis are
considered. Then, for a single fill, ρk → ρμ. As the total number of muon revolutions becomes very large, the distribution can
be approximated as continuous because the muons average the field in the storage region. The final result is an average over all
of the muons in a fill 〈ωa〉, where

〈ωa〉 = aμ

q

m

∫ 2π

0
dφ

∫ r2

r1

dr
∫ y0

−y0

dy rρμ(r, y, φ)B(r, y, φ). (C9)
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