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Nonorientability-induced PT phase transition in ladder lattices
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We study parity-time (PT ) phase transitions in the energy spectra of ladder lattices caused by the interplay
between nonorientability and non-Hermitian PT symmetry. The energy spectra show level crossings in circular
ladder lattices with increasing on-site energy gain-loss because of the orientability of a normal strip. However, the
energy levels show PT phase transitions instead of the avoided level crossings of a Hermitian situation in PT -
symmetric Möbius ladder lattices due to the nonorientability of a Möbius strip. The latter effectively presents a
perturbation that would cause avoided level crossing in a Hermitian situation, but leads, in the presence of PT
symmetry, to locked real energy parts and conjugate values of the imaginary parts. In order to understand the level
crossings of PT -symmetric phases, we generalize the rotational transformation using a complex rotation angle.
We also study the modification of resonant tunneling induced by a sharply twisted interface in PT -symmetric
ladder lattices. Finally, we find that perfect transmissions at the zero energy are recovered at the exceptional
points of the PT -symmetric system due to the self-orthogonal states.
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I. INTRODUCTION

Non-Hermitian physics has attracted considerable attention
not only as an important alternative to the Hermitian formal-
ism of quantum mechanics in open systems with energy gain
and loss [1] but also for applications in various optical and
photonic systems [2–7]. In a non-Hermitian system, the eigen-
values are complex and the eigenstates form a biorthogonal
set. The complex eigenvalues have a clear physical meaning:
the real and imaginary parts represent the eigenenergy of a
state and its decay rate, respectively.

The Möbius strip, discovered independently by Möbius
and Listing in 1858, is a continuous one-sided surface formed
by rotating one end of a rectangular strip through 180 deg and
attaching it to the other end [8,9]. This marvelous structure
with only one side and only one boundary is the epitome of
a topologically nontrivial system and shows curious proper-
ties due to its nonorientability. A surface in Euclidean space
is orientable if a two-dimensional figure cannot be moved
around the surface and back to where it started so that it looks
like its own mirror image [10,11]. Otherwise, the surface is
nonorientable. Besides fundamental studies on topology, the
nonorientability of Möbius strips has enabled their use in
many applications in various fields [12–15].

The real-space Möbius strip is therefore a fascinating
system both for mathematicians and physicists. Physics in
particular allows one to realize Möbius strip topologies in var-
ious contexts beyond real space. For example, an exceptional
point (EP), which is a degenerate point of eigenener-
gies in a non-Hermitian system, generates this structure in
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parametric space because of the square root branch prop-
erty of the singular point [16,17]. Such a Möbius strip of
eigenenergies generated in parameter space has been reported
in microwave experiments [18,19], optical microcavities [20],
and a chaotic exciton-polariton billiard [21]. One of the inter-
esting phenomena originating from the nontrivial topology of
non-Hermitian systems is parity-time (PT ) symmetry, which
exhibits a spontaneous symmetry-breaking transition from an
unbroken PT symmetric phase to a broken phase via EPs
[22]. PT symmetry is protected in non-Hermitian systems
with a balance of energy gain and loss represented by the com-
mutation relation [H,PT ] = 0, where H is a Hamiltonian.
Many PT -symmetric systems have been explored in several
fields, including optics [2,3,23–27], electronic circuits [28],
atomic physics [29], and magnetic metamaterials [30].

While the nontrivial Möbius topology in real space has
been widely applied in chemistry [13,14] and biology [15],
there have been only a few related studies in physics [31–33].
Most of these studies were particularly focused on the topo-
logical properties of quantum states in Hermitian systems
[31,32]. In this paper we study how the nonorientability of a
Möbius strip, corresponding to topological nontriviality, gen-
erates and affects the PT phase transitions in tight-binding
models by comparing circular and Möbius ladder lattices as
the simplest models in real space. Additionally, corresponding
resonances and antiresonances appearing in quantum trans-
port in quasi-one-dimensional lattices are also studied and
compared to the energy spectra in circular and Möbius ladder
lattices.

This paper is organized as follows. In Sec. II we intro-
duce the two systems, circular and Möbius ladder lattices,
and then review their characteristics. In Sec. III we study
eigenenergy evolution as a function of on-site potential in

2469-9926/2021/103(4)/042207(8) 042207-1 ©2021 American Physical Society

https://orcid.org/0000-0003-2064-1481
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.103.042207&domain=pdf&date_stamp=2021-04-07
https://doi.org/10.1103/PhysRevA.103.042207


RYU, MYOUNG, HENTSCHEL, AND PARK PHYSICAL REVIEW A 103, 042207 (2021)

FIG. 1. (a) A circular ladder lattice (CLL) and (b) a Möbius
ladder lattice (MLL). The blue box represents the unit cell of the
CLL, which has two sites with intra-unit cell hopping strength d and
inter-unit cell hopping strength t .

PT -symmetric cases, and in Sec. IV we consider quantum
transport in PT -symmetric ladder and twisted-ladder lattices
corresponding to PT -symmetric circular and Möbius ladder
lattices, respectively. Section V summarizes our results.

II. SYSTEMS: CIRCULAR AND MÖBIUS
LADDER LATTICES

Figure 1(a) depicts a circular ladder lattice (CLL). The
on-site potentials of the upper and lower sites are εu and
εd , respectively, while the intra- and inter-unit cell hopping
strengths are d and t , respectively. The Hamiltonian of an infi-
nite ladder lattice can be expressed on the basis of Pauli matrix
σ = (σx, σz ) and k-independent vector field h = (−d, δ/2 +
iγ /2) as

H (k) = h · σ + h0(k)σ0, (1)

where the extra term h0(k) = −t cos k and σ0 is an identity
matrix. δ and γ will be used to describe antisymmetric on-site
potentials when we consider Hermitian and PT -symmetric
situations. The eigenvalues of the Hamiltonian are

ε± = ±|h| + h0(k) = −2t cos k ±
√

d2 +
(

δ

2
+ i

γ

2

)2

, (2)

which are complex with ε = εr + iεi. If d = 0, a CLL can be
divided into two circular lattices with hopping strength t .

Next we consider the Möbius ladder lattice (MLL) shown
in Fig. 1(b) [34]. On-site potentials and inter- and intra-unit
cell hopping strengths are the same as those in the CLL; the
only difference is that one pair of parallel hoppings changes
into cross hoppings. In this paper we model the Möbius strip
with an abrupt change in the hopping parameters and leave the
study of a smooth parameter change to a subsequent work. If
d = 0, the MLL can be considered as one circular lattice with
two times the length of the MLL, which reflects the intrinsic
properties of a Möbius strip.

We consider a CLL with symmetric on-site potential, i.e.,
εu = εd = 0. The energy bands of the CLL are separated into

two subbands in which states are equally distributed to upper
and lower lattices with odd and even parities, respectively. As
d and t increase, the distance between the two bands and the
bandwidths increase, respectively. Using a periodic boundary
condition, the eigenvalues of the Hamiltonian of a CLL with
N sites are

ε± = −2t cos
2nπ

N
± d (n = 1, . . . , N ), (3)

where ε± are the eigenvalues of the corresponding eigenstates
with odd and even parities, i.e., uu(x) = −ud (x) and uu(x) =
ud (x), respectively.

Eigenenergies in the MLL can be obtained by replacing
the boundary condition for a CLL with that for an MLL. As a
result, the eigenvalues of the Hamiltonian of an MLL with N
sites are

ε− = −2t cos
2nπ

N
− d for even parity,

(4)

ε+ = −2t cos
(2n − 1)π

N
+ d for odd parity,

where n = 1, . . . , N . The Bloch wave vectors and correspond-
ing eigenenergies are the same as those in the CLL in the
case of even-parity eigenstates but different in the case of odd-
parity eigenstates. The upper and lower sites exhibit opposite
signs of amplitudes in the case of odd-parity eigenstates,
which correspond to opposite orientations, while the sites
have the same signs of amplitudes (meaning no orientations)
in the case of even-parity eigenstates. Consequently, for the
even-parity case, there is no effect of breaking orientation in
the MLL since there is no orientation even in the CLL. This
changes when odd-parity states are considered. It is noted
that the symmetry of the unit cell plays an important role in
obtaining eigenenergies.

The difference between normal rings and Möbius ring
structures according to the parity of the eigenstates has pre-
viously been studied [35]. It has also been found that the
difference in eigenenergies in the case of odd-parity in a
Möbius ring structure is related to the noninteger azimuthal
mode indices in three-dimensional optical Möbius strip cav-
ities [33]. In this case, the polarization of light induces an
orientation, such as opposite signs of the amplitudes of the
odd-parity eigenstates. In the next section we study the PT
phase transitions of complex eigenenergies in PT -symmetric
cases.

III. ENERGY SPECTRA IN PT -SYMMETRIC CIRCULAR
AND MÖBIUS LADDER LATTICES

We consider PT -symmetric systems that can possess en-
tirely real eigenvalues, which is a crucial factor in the transport
problems of the next section. A PT -symmetric CLL with
balanced gain and loss is introduced with antisymmetric imag-
inary on-site potentials in Eq. (1), i.e., εu = −εd = iγ /2. Here
the system parameters are d = t = 1. The non-Hermitian
CLL with PT symmetry exhibits complex-conjugate paired
energy bands in the PT -broken phase and real eigenenergies
otherwise.

Figures 2(a) and 2(c) show a PT phase transition between
unbroken and broken PT -symmetric phases possessing real
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FIG. 2. (a) Real and (c) imaginary parts of the eigenenergies as a
function of γ in a PT -symmetric CLL with 100 unit cells when d =
t = 1. (b) Real and (d) imaginary parts of the selected eigenenergies.
(e) Real and (g) imaginary parts of the eigenenergies as a function of
γ in a PT -symmetric MLL with 100 unit cells when d = t = 1. (f)
Real and (h) imaginary parts of the selected eigenenergies. See also
Figs. 3 and 4 below.

and complex conjugate eigenenergies, respectively. As γ in-
creases in the range of 0 < γ < γb, pairs of real energies
approach each other to ultimately merge at a corresponding
PT phase transition point γb = 2d . After the transition at γ =
γb, degenerate energies split into two complex conjugate en-
ergies, and the absolute values of the imaginary parts increase
as γ increases. The two bands are separable, and thus there is
no band touching except for the case of the EPs, γ = γb, in
the PT -symmetric CLL. In the case of the unbroken phase,
the real energy bands are separated with their imaginary parts
being zero, and thus their states are equally distributed to the
upper and lower lattices in spite of the PT -symmetric on-site
potential [see Fig. 3(b)]. In the case of the broken phase, the
complex energy bands are separated, while their real parts
are the same. The eigenstates belonging to the positive and
negative imaginary energy are not equally distributed to the
upper and lower circular lattices, respectively. It is noted that
PT -symmetric on-site potential in a PT -symmetric CLL
makes the real parts of the energies attractive, as shown in
Fig. 2(a), while antisymmetric real on-site potential in a CLL
makes the real energies repulsive [36].

Considering only the unbroken region of 0 < γ < γb, the
evolution of the eigenenergies shows energy level crossings as

FIG. 3. (a) Real and (c) imaginary parts of the eigenenergies in
a PT -symmetric CLL showing level crossings of real eigenenergies
of a non-Hermitian system in the PT -unbroken phase. (b) |α|2 of
two pairs of degenerate eigenstates and (d) |αθ |2 of two pairs of
degenerate eigenstates.

γ increases, as seen in Fig. 2(b), because of the orthogonality
of the two separated energy bands. The eigenstates of the
Hamiltonian are given by

|ψ〉 = α|ψa〉 + β|ψb〉, (5)

where |ψa〉 = (1, 0)T and |ψb〉 = (0, 1)T . The corresponding
eigenstates with unbroken phases are equally distributed to the
upper and lower lattices, i.e., |α|2 = |β|2 = 0.5, as shown in
Fig. 3(b). Using unitary matrix U , the Hamiltonian changes
into a diagonalized Hamiltonian Hθ as

UHU † = Hθ , (6)

where

U =
(

cos θ − sin θ

sin θ cos θ

)
. (7)

From the diagonalized condition of Hθ , the general rotating
angle θ is derived as

θ = 1

2
arccot

( iγ

2d

)
. (8)

Rotation angle θ is complex in a PT -symmetric CLL but
real in a Hermitian CLL with antisymmetric real on-site
potential. Writing complex angle θ = θr + iθi for a general
non-Hermitian system, the states can be transformed through
basis transformation with

δ + iγ

2d
= cot 2θ

= cos 2θr sin 2θr − i sinh 2θi cosh 2θi

sin2 2θr cosh2 2θi + cos2 2θr sinh2 2θi
, (9)

which has two conditions from real and imaginary equations.
For the Hermitian case, the rotating angle can be derived from
this result in cases of θi = 0. Here PT symmetry gives a
constraint in that the real part of the equation is zero and there
are two regimes, PT -unbroken and broken phases, regardless
of the fact that we only have an interest in the unbroken

042207-3



RYU, MYOUNG, HENTSCHEL, AND PARK PHYSICAL REVIEW A 103, 042207 (2021)

phases because of energy level crossings and PT -symmetric
transitions. In the region of bulk states with unbroken phases
when γ < γb in a PT -symmetric CLL, the transformation is
satisfied by γ

2d = tanh(2θi ) with θr = π
4 + n π

2 (n ∈ Z ).
Using the rotation of the basis states, the eigenstates |ψθ 〉

are given by

|ψθ 〉 = αθ

∣∣ψθ
a

〉 + βθ

∣∣ψθ
b

〉
, (10)

where

∣∣ψθ
a

〉 = U |ψa〉, (11)∣∣ψθ
b

〉 = U |ψb〉. (12)

Applying rotation to the states, |αθ |2 and |βθ |2 are changed
into 0.0 or 1.0 as shown in Fig. 3(d), while both |α|2 and |β|2
are equal to 0.5 as shown in Fig. 3(b). On the other hand, in the
region of bulk broken phases when γ > γb, the transformation
is satisfied by γ

2d = coth(2θi ) with θr = n π
2 (n ∈ Z ).

Figures 2(e)–2(h) show evolutions of the eigenenergies in
a PT -symmetric MLL with gain and loss on the upper and
lower lattices, respectively, as γ increases. The difference be-
tween the PT -symmetric CLL and the PT -symmetric MLL
lies in the existence of PT phase transitions in the unbroken
regime of the latter when γ < γb and a pair of emergent
interface states with a PT phase transition taking place at γ =
2
√

3 by complex energy inversion appears [37]. As shown in
Fig. 2(f), the PT phase transition in the PT -symmetric MLL
takes place at a pair of EPs originating from degenerate points
in the PT -symmetric CLL, which are diabolic points (not
EPs) [Fig. 2(b)]. The two EPs are developed with increasing
PT -symmetric potential, where a pair of real energies merge
at one EP and repel at the other, while a pair of imaginary
energies repel at one EP and merge at the other. Through
this process, the quantum states show PT phase transitions
from unbroken to broken and back to unbroken states again.
This effect is caused by the finite size and discrete lattice of
the system in our MLL with an abrupt parameter change, of
which the lengths between paired EPs of the nonorientability
induced PT phase transitions decrease as the system size in-
creases. We can clearly see the PT phase transitions through
measurements of quantum transport in the lattice systems in
the following section.

While there are many energy crossings in the unbroken re-
gion when γ < γb in the case of a PT -symmetric CLL, many
pairs of PT phase transitions appear in a PT -symmetric
MLL. Figure 4 shows strong and weak PT phase transi-
tions and also that a Hermitian degenerate point splits into
a pair of non-Hermitian degenerate points, or EPs, due to the
non-Hermiticity of this case. The strong or weak PT phase
transition means that the region of broken states is wider or
narrower. The eigenstates have unbroken phases, of which
eigenenergies are real, before the PT phase transitions, where
|α|2 = |β|2 = 0.5 as shown in Fig. 4(b). In the region, |αθ |2
and |βθ |2 decrease from 1.0 or increase from 0.0. After the PT
phase transition, i.e., in the broken region, |α|2 and |β|2 do not
equal 0.5 but are rather closely related to the imaginary parts
of the eigenenergies. In the broken region, |αθ |2 and |βθ |2 are
equal to 0.5.

FIG. 4. Same as Fig. 3 but for the MLL. (a) Real and (c) imag-
inary parts of the eigenenergies in a PT -symmetric MLL. (b) |α|2
of four eigenstates and (d) |αθ |2 of four eigenstates. The formation
of a pair of EPs sandwiching a region of broken PT phase is clearly
visible.

Finally, we can understand the emergence of a pair of
EPs in a PT -symmetric MLL instead of a level crossing in
a PT -symmetric CLL as follows. Cross hopping at a point
of the lattice with asymmetric on-site potentials causes the
degeneracies to be lifted through the geometric perturbation,
which transforms the CLL into an MLL. In the case of a
Hermitian Hamiltonian with real asymmetric on-site poten-
tial, it is known that level crossings at the degeneracy points
in the real energy spectra change into avoided level crossings
due to perturbation breaking the symmetries. PT symmetry,
however, requires that the degenerate points with real energies
of unbroken PT phases in the CLL are lifted into complex
conjugated energies of broken PT phases in the MLL. For
the non-Hermitian case without PT symmetry, the degener-
ate points are separated into complex energies—that is, PT
symmetry guarantees that the degeneracy in unbroken PT
phases is lifted into broken PT phases when introducing
a PT -symmetric perturbation. The eigenstates of the MLL
near the level crossing points are dictated by the broken PT -
symmetric states due to the PT phase transition, while the
MLL eigenstates far from the level crossing points converge
to the unbroken PT -symmetric states of the CLL. By varying
the non-Hermitian parameter across the level crossing points,
the unbroken phases evolve into broken phases via an EP and
then back into unbroken phases via another EP. As a result, the
degeneracy point in the CLL changes into a pair of exceptional
points in the MLL by perturbation under PT symmetry.

IV. TRANSPORT IN CORRESPONDING
LADDER LATTICES

In this section we discuss quantum transport in ladder and
twisted-ladder lattices exhibiting energy-level crossings and
PT phase transitions like as in the CLL and MLL. Quantum
transport provides important signatures of defects embedded
in the system as scattering states. The properties of the de-
fects are represented by phase shifts or interference in the
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FIG. 5. (a) A ladder lattice with two leads. The unit cell has
two sites, a and b, with hopping strengths d (dashed lines) and t
(solid lines) between the sites. The coupling strength between sites
and leads is γ

i(o)
u(d ) (long-dashed lines). (b) A twisted-ladder lattice

with two leads. (c) Detangled Fano lattices from a ladder lattice
with symmetric contacts corresponding to (a). The hopping strength
between fn and pn is ε− = (εu − εd )/2.

transmission probability. A reconfiguration of the quantum
states and corresponding quantum transport in PT -symmetric
lattices has previously been demonstrated in quasi-one-
dimensional lattices [38,39], where the quantum states can be
controlled by a PT -symmetric potential. In the broken phase,
the group velocity has been found to be a complex number, of
which the imaginary part is reflected in the suppression of the
transmission due to the attenuation of the evanescent modes.
As a result, quantum transport in the lattice with normal
metallic leads is measured only in the unbroken PT phases
in the energy band (i.e., real spectra), not in the broken PT
phases. Here, in addition, the geometrically nontrivial lattice
with non-Hermitian PT symmetry exhibits novel transport
signatures.

Let us consider quantum transport in a ladder lattice with
antisymmetric imaginary on-site potential, i.e., εu = −εd =
iγ /2. The system under study is composed of a ladder lattice
with N unit cells, as shown in Fig. 5(a), with two leads con-
nected to the left and right end unit cells. The Hamiltonian of
this system is given by

H = HLL + Hlead + Hcoupling, (13)

where HLL, Hlead, and Hcoupling describe the ladder lattice,
leads, and coupling between the lattice and leads, respectively,
and are given by

HLL =
N∑

i=1

H0d†
i di +

N−1∑
i=1

(H1d†
i+1di + H.c.), (14)

Hlead = −V0

2

∑
j �=0

(c†
j+1c j + H.c.), (15)

Hcoupling = −Gid†
1 c−1 − God†

N c1 + H.c., (16)

where

H0 =
(

εu −d
−d εd

)
, H1 =

(−t 0
0 −t

)
, (17)

and d†
j (d j) and c†

j (c j) are particle creation (annihilation)
operators for the lattice and leads, respectively. V0/2 is the
hopping strength in the leads and Gi(o) describes the coupling
between the lattice and the left (right) lead. Considering a
twisted-ladder lattice with two leads as in Fig. 5(b), Eq. (14)
has to be changed into

HtLL =
N∑

i=1

H0d†
i di +

N−1∑
i �=N/2,i=1

(H1d†
i+1di + H.c.)

+ H1
′(d†

N/2+1dN/2 + H.c.), (18)

where

H ′
1 =

(
0 −t
−t 0

)
, (19)

which induces cross coupling such as in the MLL.
We construct ladder and twisted ladder lattices of 100

unit cells with symmetric contacts, that is, γ i
u = γ i

d = γ o
u =

γ o
d = γ0, and t = d = 1. Throughout this work we set γ0 = 1.

Figures 6(a) and 6(d) show the eigenenergy spectra of the lad-
der and twisted-ladder lattices, respectively. Using the above
Hamiltonian, transmission probability T = |t|2 can be ob-
tained as a function of γ and energy E , as shown in Figs. 6(b)
and 6(e) corresponding to each lattice (see the Appendix). It
is noted that |r|2 + |t|2 = 1 in PT -symmetric systems where
|r|2 and |t|2 are the reflection and transmission probabilities,
respectively, whereas |r|2 + |t|2 �= 1 in non-Hermitian sys-
tems that do not preserve PT symmetry.

The paired eigenenergies of the ladder lattices are attracted
under PT symmetry while the energies are repelled in the
Hermitian system. For the ladder lattice, the unbroken PT
phase shows level crossings of real eigenenergies, and the
broken PT phase, γ > γb, maintains constant real eigenen-
ergies as shown in Fig. 6(a). For the twisted-ladder lattice, on
the other hand, the energy spectra show PT phase transitions
at multiple pairs of EPs corresponding to the energy level
crossings in the unbroken region in the PT -symmetric ladder
lattice, as shown in Fig. 6(d). It is from the features that
distinguish the twisted ladder from the ladder lattices that the
level crossings and PT phase transitions are developed as a
function of on-site potential iγ .

The level crossings and PT phase transitions are reflected
by resonant and antiresonant peaks through Breight-Wigner
and Fano resonances by means of quantum transport in both
PT symmetric ladder lattices, as shown in Figs. 6(b) and 6(c)
and Figs. 6(e) and 6(f). Transmission can be well explained by
the energy spectra in both PT -symmetric ladder and twisted-
ladder lattices; the transmission peaks trace the energy spectra
of the systems. The attached leads, however, perturb the sys-
tem and modify the self-energy as a non-Hermitian parameter
so that the symmetry of the system is broken. This modi-
fication lifts the degeneracy points, which is reflected by a
transmission suppression at these points. For the simple ladder
lattice, the resonance peaks at zero energy are suppressed with
increasing non-Hermitian parameter γ , even in the resonant
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FIG. 6. (a) Eigenenergies as a function of imaginary antisymmetric on-site potential γ in a ladder lattice with 100 unit cells. (b) Trans-
mission probability for the ladder lattice in which both a and b sites of the end unit cells are connected to the input and output leads. Yellow,
red, and black colors denote the highest, middle, and lowest transmission probabilities, respectively. (c) Transmission probability as a function
of γ when Re(E ) = 0. (d) Eigenenergies as a function of γ in a ladder lattice with 100 unit cells and one twisted hopping. (e) Transmission
probability for the twisted-ladder lattice in which both a and b sites of the end unit cells are connected to the input and output leads. (f)
Transmission probability as a function of γ when Re(E ) = 0. The dark regions in (e) appear larger than in (b) reflecting the presence of
evanescent modes corresponding to imaginary eigenenergies in the broken PT phase.

condition. A leakage of transmissions is reflected but current
flux is still conserved, similar to the Hermitian systems.

For the twisted-ladder lattice, as aforementioned,
the twisted boundary, causing nonorientability-induced
perturbation, introduces a PT phase transition at the crossed
levels, which can be captured through resonant transmission.
The twisted boundary reveals perfect resonance, since
the attracted energies coalesce at the EP characterized by
self-orthogonality. Transmission probability at these islands
of broken PT symmetry in the γ < γb region is suppressed
due to the presence of imaginary parts in the eigenenergies,
cf. Fig. 6(e). Otherwise the transmission itself is perfect
and reaches values of 1 even for increasing non-Hermitian
parameter γ , see Fig. 6(f). This finding, that nonorientability
reveals perfect transmission at zero energy through the PT
phase transition, is notable.

In order to understand the antiresonant states, let us
consider the amplitude equations for a ladder lattice. The
equations of the nth unit cell in a ladder lattice can be
written as

Evn =
(

iγ

2
σz − dσx

)
vn − tσ0(vn−1 + vn+1), (20)

where vn = (an, bn) is amplitude vector of the nth unit cell.
Applying Eq. (7) to these equations, we obtain amplitude
equations of rotated states, gn = ( fn, pn) = U (θ )vn, as fol-
lows:

E fn = [(iγ /2) cos 2θ + d sin 2θ ] fn
(21)

− t ( fn−1 + fn+1) + F (θ )pn,

E pn = [−(iγ /2) cos 2θ − d sin 2θ ]pn
(22)

− t (pn−1 + pn+1) + F (θ ) fn,

where θ is real and F (θ ) = [(iγ /2) sin 2θ − d cos 2θ ] is a
coupling term for the rotated equations that gives a detangled
condition, Eq. (8), when this term is zero. The condition
provides that the states are completely separated into two or-
thogonal states, fn and pn, while exhibiting energy crossings.
Here the orthogonal basis is associated with the symmetry of
the leads, which is helpful for understanding the measurement
process. When the rotation angle is θ = π/4, we get

Egn =
(

− dσz + iγ

2
σx

)
gn − tσ0(gn−1 + gn+1), (23)

where the components of gn, fn = (an − bn)/
√

2 and pn =
(an + bn)/

√
2, are antisymmetric and symmetric configura-

tions, respectively. For the symmetric contacts with leads as
shown in Fig. 5(c), pn and fn states result in resonance and
antiresonance in transmission probability as a function of
incoming energy and on-site potential, respectively, in Fig. 6.
If we use an asymmetric contact, e.g., γ i

u = γ o
u = 0 and γ i

d =
γ o

d = γ0, both lattices with on-site potentials fn and pn result
in resonances, with no antiresonance.

There is a crucial difference between Hermitian and
non-Hermitian PT -symmetric systems, namely whether the
coupling between fn and gn in Eq. (23) is real or imaginary ac-
cording to the system possessing real mass or PT -symmetric
mass. This imaginary coupling drives the attraction between
the real parts of the paired energy bands and then shows a
PT phase transition. The transition is at a collective EP in
both PT -symmetric lattices at γ = γb in Figs. 6(a) and 6(d).
While the transmission probability shows resonant features of
the bulk states in unbroken PT phases, γ < γb, the transmis-
sion probability is completely suppressed in the broken phase,
γ > γb, due to the lack of resonant energy in the real energy
space, as shown in Figs. 6(b) and 6(e). The real eigenenergies
of the unbroken PT phases correspond to propagating modes,
while the complex eigenenergies of the broken PT phases are
reflected in evanescent modes. As a result, in the broken PT
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phase, transmission is suppressed due to the attenuation of the
evanescent modes irrespective of the details of the system.
In contrast, the resonant transmission features seen in the
unbroken regime reflect real eigenenergies.

V. SUMMARY

We have studied the energy spectra of PT -symmetric
ladder lattices containing nonorientability and correspond-
ing quantum transport. Energy crossings and PT phase
transitions in both circular and Möbius ladder lattices have
been demonstrated and explained using generalized rotational
transformation. Quantum transport in non-Hermitian PT -
symmetric ladder lattices without and with a sharply twisted
interface, corresponding to the circular and Möbius ladder
lattices, respectively, have also been studied. Transmission
probabilities show resonance and antiresonance in the energy
spectra exhibiting energy crossings and PT phase transitions.
Notably, the perfect transmission probability at the zero en-
ergy is recovered by the PT phase transition. We expect the
combination of non-Hermiticity with real-space topological
structures, like the PT -symmetric Möbius ladder lattice, to
broaden the horizon of applications beyond existing non-
Hermitian systems.
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APPENDIX: TRANSMISSION PROBABILITY

The amplitude equations of the total Hamiltonian of
Eq. (13) can be written as

Eφ−1 = −V0

2
φ−2 + GiT 1, (A1)

E1 = H01 + H12 + φ−1Gi, (A2)

E j = H0 j + H†
1  j−1 + H1 j+1 (2 � j � N − 1),

(A3)

EN = H0N + H†
1 N−1 + φ1Go, (A4)

Eφ1 = −V0

2
φ2 + GoT

N , (A5)

where

φ j = eiq j + re−iq j ( j < 0) (A6)

= teiq j ( j > 0). (A7)

Here φ j represents the jth sites of the leads and Gi(o) is
given by

Gi(o) =
(−γ i(o)

u

−γ
i(o)
d

)
, (A8)

and r and t are reflection and transmission coefficients, re-
spectively, with |r|2 + |t |2 = 1 in the Hermitian case. We then
obtain the following equations:

−V0

2
= V0

2
r + GiT 1, (A9)

−e−iqGi = eiqrGi + (H0 − E )1 + H12, (A10)

0 = H†
1  j−1 + (H0 − E ) j + H1 j+1, (A11)

0 = H†
1 N−1 + (H0 − E )N + eiqtGo, (A12)

0 = V0

2
t + GoT

N , (A13)

where the energy of the leads is given by e±iq = −E/V0 ±
i
√

1 − |E/V0|2. Finally, we can obtain R and T for the ladder
lattice from the following equation:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−V0
2

−e−iqGi

0
...

0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

V0
2 GiT

eiqGi H0 − EI H1

H†
1 H0 − EI H1

. . .
. . .

. . .

H†
1 H0 − EI H1

H†
1 H0 − EI eiqGo

GoT V0
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r

1

2

...

N−1

N

t

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A14)

Hamiltonians H0 and H1 are 2 × 2 matrices that describe the unit cell and the coupling between nearest unit cells, respectively.
We set V0 = 10 throughout this paper.

[1] N. Moiseyev, Non-Hermitian Quantum Mechanics (Cambridge
University Press, New York, 2011).

[2] A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-
Ravat, V. Aimez, G. A. Siviloglou, and D. N. Christodoulides,

042207-7



RYU, MYOUNG, HENTSCHEL, AND PARK PHYSICAL REVIEW A 103, 042207 (2021)

Observation of PT -Symmetry Breaking in Complex Optical
Potentials, Phys. Rev. Lett. 103, 093902 (2009).

[3] C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N.
Christodoulides, M. Segev, and D. Kip, Observation
of parity-time symmetry in optics, Nature Phys. 6, 192
(2010).

[4] M. Liertzer, L. Ge, A. Cerjan, A. D. Stone, H. E. Türeci, and S.
Rotter, Pump-Induced Exceptional Points in Lasers, Phys. Rev.
Lett. 108, 173901 (2012).

[5] M. Brandstetter, M. Liertzer, C. Deutsch, P. Klang, J. Schöberl,
H. E. Türeci, G. Strasser, K. Unterrainer, and S. Rotter, Revers-
ing the pump dependence of a laser at an exceptional point, Nat.
Commun. 5, 4034 (2014).

[6] H. Hodaei, A. U. Hassan, S. Wittek, H. Garcia-Gracia, R.
El-Ganainy, D. N. Christodoulides, and M. Khajavikhan, En-
hanced sensitivity at higher-order exceptional points, Nature
(London) 548, 187 (2017).

[7] W. Chen, S. Kaya Özdemir, G. Zhao, J. Wiersig, and L. Yang,
Exceptional points enhance sensing in an optical microcavity,
Nature (London) 548, 192 (2017).

[8] A. F. Möbius, Über die bestimmung des inhaltes eines polyeders
(On the determination of the volume of a polyhedron), Ber.
Verh. Sächs. Ges. Wiss. 17, 31 (1865); Gesammelte Werke,
Band II (Collected Works, vol. II) (Hirzel, Leipzig, 1886).

[9] J. B. Listing, Der Census räumlicher Complexe, oder Verall-
gemeinerung des Euler’schen Satzes von den Polyädern, Abh.
Konigl. Ges. Wiss. Gottingen 10, 97 (1862).

[10] M. Spivak, Calculus on Manifolds: A Modern Approach to
Classical Theorems of Advanced Calculus (HarperCollins, New
York, 1965).

[11] A. Hatcher, Algebraic Topology (Cambridge University Press,
Cambridge, 2001).

[12] C. A. Pickover, The Möbius Strip: Dr. August Möbius’s
Marvelous Band in Mathematics, Games, Literature, Art, Tech-
nology, and Cosmology (Thunder’s Mouth, New York, 2006).

[13] D. M. Walba, R. M. Richards, and R. C. Haltiwanger, Total
synthesis of the first molecular Möbius strip, J. Am. Chem. Soc.
104, 3219 (1982).

[14] G. Gil-Ramírez, D. A. Leigh, and A. J. Stephens, Cate-
nanes: Fifty years of molecular links, Angew. Chem. 54, 6110
(2015).

[15] D. Han, S. Pal, Y. Liu, and H. Yan, Folding and cut-
ting DNA into reconfigurable topological nanostructures, Nat.
Nanotechnol. 5, 712 (2010).

[16] T. Kato, Perturbation Theory of Linear Operators (Springer,
Berlin, 1996).

[17] W. D. Heiss, The physics of exceptional points, J. Phys. A 45,
444016 (2012).

[18] C. Dembowski, H.-D. Gräf, H. L. Harney, A. Heine, W. D.
Heiss, H. Rehfeld, and A. Richter, Experimental Observation
of the Topological Structure of Exceptional Points, Phys. Rev.
Lett. 86, 787 (2001).

[19] C. Dembowski, B. Dietz, H.-D. Gräf, H. L. Harney, A. Heine,
W. D. Heiss, and A. Richter, Observation of a Chiral State in a
Microwave Cavity, Phys. Rev. Lett. 90, 034101 (2003).

[20] S.-B. Lee, J. Yang, S. Moon, S.-Y. Lee, J.-B. Shim, S. W. Kim,
J.-H. Lee, and K. An, Observation of an Exceptional Point in
a Chaotic Optical Microcavity, Phys. Rev. Lett. 103, 134101
(2009).

[21] T. Gao, E. Estrecho, K. Y. Bliokh, T. C. H. Liew, M. D. Fraser,
S. Brodbeck, M. Kamp, C. Schneider, S. Höfling, Y. Yamamoto,
F. Nori, Y. S. Kivshar, A. G. Truscott, R. G. Dall, and E. A.
Ostrovskaya, Observation of non-Hermitian degeneracies in a
chaotic exciton-polariton billiard, Nature (London) 526, 554
(2015).

[22] C. M. Bender and S. Boettcher, Real Spectra in Non-Hermitian
Hamiltonians Having PT Symmetry, Phys. Rev. Lett. 80, 5243
(1998).

[23] R. El-Ganainy, K. G. Makris, D. N. Christodoulides, and Z. H.
Musslimani, Theory of coupled optical PT-symmetric struc-
tures, Opt. Lett. 32, 2632 (2007).

[24] Z. H. Musslimani, K. G. Makris, R. El-Ganainy, and D. N.
Christodoulides, Optical Solitons in PT Periodic Potentials,
Phys. Rev. Lett. 100, 030402 (2008).

[25] K. G. Makris, R. El-Ganainy, D. N. Christodoulides, and Z. H.
Musslimani, Beam Dynamics in PT Symmetric Optical Lat-
tices, Phys. Rev. Lett. 100, 103904 (2008).

[26] S. Klaiman, U. Günther, and N. Moiseyev, Visualization of
Branch Points in PT -Symmetric Waveguides, Phys. Rev. Lett.
101, 080402 (2008).

[27] A. Regensburger, C. Bersch, M. A. Miri, G. Onishchukov, D. N.
Christodoulides, and U. Peschel, Parity-time synthetic photonic
lattices, Nature (London) 488, 167 (2012).

[28] J. Schindler, A. Li, M. C. Zheng, F. M. Ellis, and T. Kottos, Ex-
perimental study of active LRC circuits with PT symmetries,
Phys. Rev. A 84, 040101(R) (2011).

[29] Y. N. Joglekar, D. Scott, M. Babbey, and A. Saxena, Robust and
fragile PT -symmetric phases in a tight-binding chain, Phys.
Rev. A 82, 030103(R) (2010).

[30] N. Lazarides and G. P. Tsironis, Gain-Driven Discrete Breathers
in PT -Symmetric Nonlinear Metamaterials, Phys. Rev. Lett.
110, 053901 (2013).

[31] N. Zhao, H. Dong, S. Yang, and C. P. Sun, Observable topolog-
ical effects in molecular devices with Möbius topology, Phys.
Rev. B 79, 125440 (2009).

[32] Z. L. Guo, Z. R. Gong, H. Dong, and C. P. Sun, Möbius
graphene strip as a topological insulator, Phys. Rev. B 80,
195310 (2009).

[33] J. Kreismann and M. Hentschel, The optical Möbius strip cav-
ity: Tailoring geometric phases and far fields, Europhys. Lett.
121, 24001 (2018).

[34] R. K. Guy and F. Harary, On the Möbius ladders, Canadian
Math. Bull. 10, 493 (1967).

[35] Z. Li and L. R. Ram-Mohan, Quantum mechanics on a Möbius
ring: Energy levels, symmetry, optical transitions, and level
splitting in a magnetic field, Phys. Rev. B 85, 195438 (2012).

[36] J.-W. Ryu, N. Myoung, and H. C. Park, Antiresonance in-
duced by symmetry-broken contacts in quasi-one-dimensional
lattices, Phys. Rev. B 96, 125421 (2017).

[37] J.-W. Ryu, N. Myoung, A. Go, S. Woo, S.-J. Choi, and H. C.
Park, Emergent localized states at the interface of a twofold
PT -symmetric lattice, Phys. Rev. Research 2, 033149 (2020).

[38] J.-W. Ryu, N. Myoung, and H. C. Park, Reconfiguration of
quantum states in PT-symmetric quasi-one-dimensional lattices,
Sci. Rep. 7, 8746 (2017).

[39] H. C. Park, N. Myoung, and J.-W. Ryu, Quantum transport and
non-Hermiticity on flat-band lattices, J. Low Temp. Phys. 191,
49 (2018).

042207-8

https://doi.org/10.1103/PhysRevLett.103.093902
https://doi.org/10.1038/nphys1515
https://doi.org/10.1103/PhysRevLett.108.173901
https://doi.org/10.1038/ncomms5034
https://doi.org/10.1038/nature23280
https://doi.org/10.1038/nature23281
https://doi.org/10.1021/ja00375a051
https://doi.org/10.1002/anie.201411619
https://doi.org/10.1038/nnano.2010.193
https://doi.org/10.1088/1751-8113/45/44/444016
https://doi.org/10.1103/PhysRevLett.86.787
https://doi.org/10.1103/PhysRevLett.90.034101
https://doi.org/10.1103/PhysRevLett.103.134101
https://doi.org/10.1038/nature15522
https://doi.org/10.1103/PhysRevLett.80.5243
https://doi.org/10.1364/OL.32.002632
https://doi.org/10.1103/PhysRevLett.100.030402
https://doi.org/10.1103/PhysRevLett.100.103904
https://doi.org/10.1103/PhysRevLett.101.080402
https://doi.org/10.1038/nature11298
https://doi.org/10.1103/PhysRevA.84.040101
https://doi.org/10.1103/PhysRevA.82.030103
https://doi.org/10.1103/PhysRevLett.110.053901
https://doi.org/10.1103/PhysRevB.79.125440
https://doi.org/10.1103/PhysRevB.80.195310
https://doi.org/10.1209/0295-5075/121/24001
https://doi.org/10.4153/CMB-1967-046-4
https://doi.org/10.1103/PhysRevB.85.195438
https://doi.org/10.1103/PhysRevB.96.125421
https://doi.org/10.1103/PhysRevResearch.2.033149
https://doi.org/10.1038/s41598-017-09410-y
https://doi.org/10.1007/s10909-017-1848-1

